@inproceedings{janchevski-gievska-2019-andrejjan,
title = "{A}ndrej{J}an at {S}em{E}val-2019 Task 7: A Fusion Approach for Exploring the Key Factors pertaining to Rumour Analysis",
author = "Janchevski, Andrej and
Gievska, Sonja",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2190",
doi = "10.18653/v1/S19-2190",
pages = "1083--1089",
abstract = "The viral spread of false, unverified and misleading information on the Internet has attracted a heightened attention of an interdisciplinary research community on the phenomenon. This paper contributes to the research efforts of automatically determining the veracity of rumourous tweets and classifying their replies according to stance. Our research objective was to investigate the interplay between a number of phenomenological and contextual features of rumours, in particular, we explore the extent to which network structural characteristics, metadata and user profiles could complement the linguistic analysis of the written content for the task at hand. The current findings strongly demonstrate that supplementary sources of information play significant role in classifying the veracity and the stance of Twitter interactions deemed to be rumourous.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="janchevski-gievska-2019-andrejjan">
<titleInfo>
<title>AndrejJan at SemEval-2019 Task 7: A Fusion Approach for Exploring the Key Factors pertaining to Rumour Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrej</namePart>
<namePart type="family">Janchevski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sonja</namePart>
<namePart type="family">Gievska</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The viral spread of false, unverified and misleading information on the Internet has attracted a heightened attention of an interdisciplinary research community on the phenomenon. This paper contributes to the research efforts of automatically determining the veracity of rumourous tweets and classifying their replies according to stance. Our research objective was to investigate the interplay between a number of phenomenological and contextual features of rumours, in particular, we explore the extent to which network structural characteristics, metadata and user profiles could complement the linguistic analysis of the written content for the task at hand. The current findings strongly demonstrate that supplementary sources of information play significant role in classifying the veracity and the stance of Twitter interactions deemed to be rumourous.</abstract>
<identifier type="citekey">janchevski-gievska-2019-andrejjan</identifier>
<identifier type="doi">10.18653/v1/S19-2190</identifier>
<location>
<url>https://aclanthology.org/S19-2190</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>1083</start>
<end>1089</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AndrejJan at SemEval-2019 Task 7: A Fusion Approach for Exploring the Key Factors pertaining to Rumour Analysis
%A Janchevski, Andrej
%A Gievska, Sonja
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F janchevski-gievska-2019-andrejjan
%X The viral spread of false, unverified and misleading information on the Internet has attracted a heightened attention of an interdisciplinary research community on the phenomenon. This paper contributes to the research efforts of automatically determining the veracity of rumourous tweets and classifying their replies according to stance. Our research objective was to investigate the interplay between a number of phenomenological and contextual features of rumours, in particular, we explore the extent to which network structural characteristics, metadata and user profiles could complement the linguistic analysis of the written content for the task at hand. The current findings strongly demonstrate that supplementary sources of information play significant role in classifying the veracity and the stance of Twitter interactions deemed to be rumourous.
%R 10.18653/v1/S19-2190
%U https://aclanthology.org/S19-2190
%U https://doi.org/10.18653/v1/S19-2190
%P 1083-1089
Markdown (Informal)
[AndrejJan at SemEval-2019 Task 7: A Fusion Approach for Exploring the Key Factors pertaining to Rumour Analysis](https://aclanthology.org/S19-2190) (Janchevski & Gievska, SemEval 2019)
ACL