@inproceedings{hamidian-diab-2019-gwu,
    title = "{GWU} {NLP} at {S}em{E}val-2019 Task 7: Hybrid Pipeline for Rumour Veracity and Stance Classification on Social Media",
    author = "Hamidian, Sardar  and
      Diab, Mona",
    editor = "May, Jonathan  and
      Shutova, Ekaterina  and
      Herbelot, Aurelie  and
      Zhu, Xiaodan  and
      Apidianaki, Marianna  and
      Mohammad, Saif M.",
    booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S19-2195/",
    doi = "10.18653/v1/S19-2195",
    pages = "1115--1119",
    abstract = "Social media plays a crucial role as the main resource news for information seekers online. However, the unmoderated feature of social media platforms lead to the emergence and spread of untrustworthy contents which harm individuals or even societies. Most of the current automated approaches for automatically determining the veracity of a rumor are not generalizable for novel emerging topics. This paper describes our hybrid system comprising rules and a machine learning model which makes use of replied tweets to identify the veracity of the source tweet. The proposed system in this paper achieved 0.435 F-Macro in stance classification, and 0.262 F-macro and 0.801 RMSE in rumor verification tasks in Task7 of SemEval 2019."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hamidian-diab-2019-gwu">
    <titleInfo>
        <title>GWU NLP at SemEval-2019 Task 7: Hybrid Pipeline for Rumour Veracity and Stance Classification on Social Media</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Sardar</namePart>
        <namePart type="family">Hamidian</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Mona</namePart>
        <namePart type="family">Diab</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aurelie</namePart>
            <namePart type="family">Herbelot</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Xiaodan</namePart>
            <namePart type="family">Zhu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Social media plays a crucial role as the main resource news for information seekers online. However, the unmoderated feature of social media platforms lead to the emergence and spread of untrustworthy contents which harm individuals or even societies. Most of the current automated approaches for automatically determining the veracity of a rumor are not generalizable for novel emerging topics. This paper describes our hybrid system comprising rules and a machine learning model which makes use of replied tweets to identify the veracity of the source tweet. The proposed system in this paper achieved 0.435 F-Macro in stance classification, and 0.262 F-macro and 0.801 RMSE in rumor verification tasks in Task7 of SemEval 2019.</abstract>
    <identifier type="citekey">hamidian-diab-2019-gwu</identifier>
    <identifier type="doi">10.18653/v1/S19-2195</identifier>
    <location>
        <url>https://aclanthology.org/S19-2195/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>1115</start>
            <end>1119</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GWU NLP at SemEval-2019 Task 7: Hybrid Pipeline for Rumour Veracity and Stance Classification on Social Media
%A Hamidian, Sardar
%A Diab, Mona
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F hamidian-diab-2019-gwu
%X Social media plays a crucial role as the main resource news for information seekers online. However, the unmoderated feature of social media platforms lead to the emergence and spread of untrustworthy contents which harm individuals or even societies. Most of the current automated approaches for automatically determining the veracity of a rumor are not generalizable for novel emerging topics. This paper describes our hybrid system comprising rules and a machine learning model which makes use of replied tweets to identify the veracity of the source tweet. The proposed system in this paper achieved 0.435 F-Macro in stance classification, and 0.262 F-macro and 0.801 RMSE in rumor verification tasks in Task7 of SemEval 2019.
%R 10.18653/v1/S19-2195
%U https://aclanthology.org/S19-2195/
%U https://doi.org/10.18653/v1/S19-2195
%P 1115-1119
Markdown (Informal)
[GWU NLP at SemEval-2019 Task 7: Hybrid Pipeline for Rumour Veracity and Stance Classification on Social Media](https://aclanthology.org/S19-2195/) (Hamidian & Diab, SemEval 2019)
ACL