@inproceedings{oostdijk-van-halteren-2019-team,
title = "Team {T}aurus at {S}em{E}val-2019 Task 9: Expert-informed pattern recognition for suggestion mining",
author = "Oostdijk, Nelleke and
van Halteren, Hans",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2219",
doi = "10.18653/v1/S19-2219",
pages = "1247--1253",
abstract = "This paper presents our submissions to SemEval-2019 Task9, Suggestion Mining. Our system is one in a series of systems in which we compare an approach using expert-defined rules with a comparable one using machine learning. We target tasks with a syntactic or semantic component that might be better described by a human understanding the task than by a machine learner only able to count features. For Semeval-2019 Task 9, the expert rules clearly outperformed our machine learning model when training and testing on equally balanced testsets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="oostdijk-van-halteren-2019-team">
<titleInfo>
<title>Team Taurus at SemEval-2019 Task 9: Expert-informed pattern recognition for suggestion mining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nelleke</namePart>
<namePart type="family">Oostdijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hans</namePart>
<namePart type="family">van Halteren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents our submissions to SemEval-2019 Task9, Suggestion Mining. Our system is one in a series of systems in which we compare an approach using expert-defined rules with a comparable one using machine learning. We target tasks with a syntactic or semantic component that might be better described by a human understanding the task than by a machine learner only able to count features. For Semeval-2019 Task 9, the expert rules clearly outperformed our machine learning model when training and testing on equally balanced testsets.</abstract>
<identifier type="citekey">oostdijk-van-halteren-2019-team</identifier>
<identifier type="doi">10.18653/v1/S19-2219</identifier>
<location>
<url>https://aclanthology.org/S19-2219</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>1247</start>
<end>1253</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Team Taurus at SemEval-2019 Task 9: Expert-informed pattern recognition for suggestion mining
%A Oostdijk, Nelleke
%A van Halteren, Hans
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F oostdijk-van-halteren-2019-team
%X This paper presents our submissions to SemEval-2019 Task9, Suggestion Mining. Our system is one in a series of systems in which we compare an approach using expert-defined rules with a comparable one using machine learning. We target tasks with a syntactic or semantic component that might be better described by a human understanding the task than by a machine learner only able to count features. For Semeval-2019 Task 9, the expert rules clearly outperformed our machine learning model when training and testing on equally balanced testsets.
%R 10.18653/v1/S19-2219
%U https://aclanthology.org/S19-2219
%U https://doi.org/10.18653/v1/S19-2219
%P 1247-1253
Markdown (Informal)
[Team Taurus at SemEval-2019 Task 9: Expert-informed pattern recognition for suggestion mining](https://aclanthology.org/S19-2219) (Oostdijk & van Halteren, SemEval 2019)
ACL