@inproceedings{klimaszewski-andruszkiewicz-2019-wut,
title = "{WUT} at {S}em{E}val-2019 Task 9: Domain-Adversarial Neural Networks for Domain Adaptation in Suggestion Mining",
author = "Klimaszewski, Mateusz and
Andruszkiewicz, Piotr",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2221",
doi = "10.18653/v1/S19-2221",
pages = "1262--1266",
abstract = "We present a system for cross-domain suggestion mining, prepared for the SemEval-2019 Task 9: Suggestion Mining from Online Reviews and Forums (Subtask B). Our submitted solution for this text classification problem explores the idea of treating different suggestions{'} sources as one of the settings of Transfer Learning - Domain Adaptation. Our experiments show that without any labeled target domain examples during training time, we are capable of proposing a system, reaching up to 0.778 in terms of F1 score on test dataset, based on Target Preserving Domain Adversarial Neural Networks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="klimaszewski-andruszkiewicz-2019-wut">
<titleInfo>
<title>WUT at SemEval-2019 Task 9: Domain-Adversarial Neural Networks for Domain Adaptation in Suggestion Mining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mateusz</namePart>
<namePart type="family">Klimaszewski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Piotr</namePart>
<namePart type="family">Andruszkiewicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a system for cross-domain suggestion mining, prepared for the SemEval-2019 Task 9: Suggestion Mining from Online Reviews and Forums (Subtask B). Our submitted solution for this text classification problem explores the idea of treating different suggestions’ sources as one of the settings of Transfer Learning - Domain Adaptation. Our experiments show that without any labeled target domain examples during training time, we are capable of proposing a system, reaching up to 0.778 in terms of F1 score on test dataset, based on Target Preserving Domain Adversarial Neural Networks.</abstract>
<identifier type="citekey">klimaszewski-andruszkiewicz-2019-wut</identifier>
<identifier type="doi">10.18653/v1/S19-2221</identifier>
<location>
<url>https://aclanthology.org/S19-2221</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>1262</start>
<end>1266</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T WUT at SemEval-2019 Task 9: Domain-Adversarial Neural Networks for Domain Adaptation in Suggestion Mining
%A Klimaszewski, Mateusz
%A Andruszkiewicz, Piotr
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F klimaszewski-andruszkiewicz-2019-wut
%X We present a system for cross-domain suggestion mining, prepared for the SemEval-2019 Task 9: Suggestion Mining from Online Reviews and Forums (Subtask B). Our submitted solution for this text classification problem explores the idea of treating different suggestions’ sources as one of the settings of Transfer Learning - Domain Adaptation. Our experiments show that without any labeled target domain examples during training time, we are capable of proposing a system, reaching up to 0.778 in terms of F1 score on test dataset, based on Target Preserving Domain Adversarial Neural Networks.
%R 10.18653/v1/S19-2221
%U https://aclanthology.org/S19-2221
%U https://doi.org/10.18653/v1/S19-2221
%P 1262-1266
Markdown (Informal)
[WUT at SemEval-2019 Task 9: Domain-Adversarial Neural Networks for Domain Adaptation in Suggestion Mining](https://aclanthology.org/S19-2221) (Klimaszewski & Andruszkiewicz, SemEval 2019)
ACL