@inproceedings{prasanna-seelan-2019-zoho,
title = "Zoho at {S}em{E}val-2019 Task 9: Semi-supervised Domain Adaptation using Tri-training for Suggestion Mining",
author = "Prasanna, Sai and
Seelan, Sri Ananda",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2225/",
doi = "10.18653/v1/S19-2225",
pages = "1282--1286",
abstract = "This paper describes our submission for the SemEval-2019 Suggestion Mining task. A simple Convolutional Neural Network (CNN) classifier with contextual word representations from a pre-trained language model was used for sentence classification. The model is trained using tri-training, a semi-supervised bootstrapping mechanism for labelling unseen data. Tri-training proved to be an effective technique to accommodate domain shift for cross-domain suggestion mining (Subtask B) where there is no hand labelled training data. For in-domain evaluation (Subtask A), we use the same technique to augment the training set. Our system ranks thirteenth in Subtask A with an F1-score of 68.07 and third in Subtask B with an F1-score of 81.94."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="prasanna-seelan-2019-zoho">
<titleInfo>
<title>Zoho at SemEval-2019 Task 9: Semi-supervised Domain Adaptation using Tri-training for Suggestion Mining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sai</namePart>
<namePart type="family">Prasanna</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sri</namePart>
<namePart type="given">Ananda</namePart>
<namePart type="family">Seelan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our submission for the SemEval-2019 Suggestion Mining task. A simple Convolutional Neural Network (CNN) classifier with contextual word representations from a pre-trained language model was used for sentence classification. The model is trained using tri-training, a semi-supervised bootstrapping mechanism for labelling unseen data. Tri-training proved to be an effective technique to accommodate domain shift for cross-domain suggestion mining (Subtask B) where there is no hand labelled training data. For in-domain evaluation (Subtask A), we use the same technique to augment the training set. Our system ranks thirteenth in Subtask A with an F1-score of 68.07 and third in Subtask B with an F1-score of 81.94.</abstract>
<identifier type="citekey">prasanna-seelan-2019-zoho</identifier>
<identifier type="doi">10.18653/v1/S19-2225</identifier>
<location>
<url>https://aclanthology.org/S19-2225/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>1282</start>
<end>1286</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Zoho at SemEval-2019 Task 9: Semi-supervised Domain Adaptation using Tri-training for Suggestion Mining
%A Prasanna, Sai
%A Seelan, Sri Ananda
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F prasanna-seelan-2019-zoho
%X This paper describes our submission for the SemEval-2019 Suggestion Mining task. A simple Convolutional Neural Network (CNN) classifier with contextual word representations from a pre-trained language model was used for sentence classification. The model is trained using tri-training, a semi-supervised bootstrapping mechanism for labelling unseen data. Tri-training proved to be an effective technique to accommodate domain shift for cross-domain suggestion mining (Subtask B) where there is no hand labelled training data. For in-domain evaluation (Subtask A), we use the same technique to augment the training set. Our system ranks thirteenth in Subtask A with an F1-score of 68.07 and third in Subtask B with an F1-score of 81.94.
%R 10.18653/v1/S19-2225
%U https://aclanthology.org/S19-2225/
%U https://doi.org/10.18653/v1/S19-2225
%P 1282-1286
Markdown (Informal)
[Zoho at SemEval-2019 Task 9: Semi-supervised Domain Adaptation using Tri-training for Suggestion Mining](https://aclanthology.org/S19-2225/) (Prasanna & Seelan, SemEval 2019)
ACL