
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1282–1286
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

1282

Zoho at SemEval-2019 Task 9: Semi-supervised Domain Adaptation using
Tri-training for Suggestion Mining

Sai Prasanna
Zoho

saiprasanna.r@zohocorp.com

sai.r.prasanna@gmail.com

Sri Ananda Seelan
Zoho

anandaseelan.ln@zohocorp.com

Abstract
This paper describes our submission for the
SemEval-2019 Suggestion Mining task. A
simple Convolutional Neural Network (CNN)
classifier with contextual word representations
from a pre-trained language model is used
for sentence classification. The model is
trained using tri-training, a semi-supervised
bootstrapping mechanism for labelling unseen
data. Tri-training proved to be an effective
technique to accommodate domain shift for
cross-domain suggestion mining (Subtask B)
where there is no hand labelled training data.
For in-domain evaluation (Subtask A), we use
the same technique to augment the training set.
Our system ranks thirteenth in Subtask A with
an F1-score of 68.07 and third in Subtask B
with an F1-score of 81.94.

1 Introduction

Task 9 of SemEval-2019 (Negi et al., 2019) fo-
cuses on mining sentences that contain sugges-
tions in online discussions and reviews. Sugges-
tion Mining is modelled as a sentence classifica-
tion task with two Subtasks:

• Subtask A evaluates the classifier perfor-
mance on a technical domain specific setting.

• Subtask B evaluates the domain adaptability
of a model by doing cross-domain suggestion
classification on hotel reviews.

We approached this task as an opportunity to
test the effectiveness of transfer learning and semi-
supervised learning techniques. In Subtask A, the
high class imbalance and relatively smaller size
of the training data made it an ideal setup for
evaluating the efficacy of recent transfer learn-
ing techniques. Using pre-trained language mod-
els for contextual word representations has been
shown to improve many Natural Language Pro-
cessing (NLP) tasks (Peters et al., 2018; Ruder

and Howard, 2018; Radford, 2018; Devlin et al.,
2018). This transfer learning technique is also
an effective method when less labelled data is
available as shown in (Ruder and Howard, 2018).
In this work, we use the BERT model (Devlin
et al., 2018) for obtaining contextual representa-
tions. This results in enhanced scores even for
simple baseline classifiers.

Subtask B requires the system to not use man-
ually labelled data and hence it lends itself to a
classic semi-supervised learning scenario. Many
methods have been proposed for domain adapta-
tion for NLP (Blitzer et al., 2007; Chen et al.,
2011; Chen and Cardie, 2018; Zhou and Li, 2005;
Blum and Mitchell, 1998). We use a label boot-
strapping technique called tri-training (Zhou and
Li, 2005) with which unlabelled samples are la-
belled iteratively with increasing confidence at
each training iteration(explained in Section 2.4).
Ruder and Plank (2018) shows the effectiveness of
tri-training for baseline deep neural models in text
classification under domain shift. They also pro-
pose a multi-task approach for tri-training, how-
ever we only adapt the classic tri-training proce-
dure presented for suggestion mining task.

Detailed explanation of the submitted system
and experiments are elicited in the following sec-
tions. Section 2 describes the components of the
system. Following this, Section 3 details the ex-
periments, results and ablation studies that were
performed.

2 System Description

The models and the training procedures are
built using AllenNLP library (Gardner et al.,
2018). All the code to replicate our experi-
ments are public and can be accessed from
https://github.com/sai-prasanna/
suggestion-mining-semeval19.

https://github.com/sai-prasanna/suggestion-mining-semeval19
https://github.com/sai-prasanna/suggestion-mining-semeval19

1283

2.1 Data cleaning and pre-processing

Basic data pre-processing is done to normalize
whitespace, remove noisy symbols and accents.
Very short sentences with less than four words are
disregarded from training.

2.2 Word Representations

We use GloVe word representations (Pennington
et al., 2014) and compare the performance im-
provement that we obtain with pre-trained BERT
representations (Devlin et al., 2018).

2.3 Suggestion Classification

Our baseline classifier is Deep Averaging Network
(DAN) (Iyyer et al., 2015). DAN is a neural bag-
of-words model that is considered as a strong base-
line for text classification. In DAN, a sentence
representation is obtained by averaging the word
level representations and is fed to a series of recti-
fied linear unit (ReLU) layers with a final softmax
layer.

A simple Convolutional Neural Network (CNN)
text classifier (Kim, 2014) is used for the final sub-
mission.

2.4 Training

We use the classic tri-training procedure for label
bootstrapping as mentioned in (Ruder and Plank,
2018). Consider a labelled dataset L from the
source domain S and an unlabelled dataset U from
the target domain T . The objective of tri-training
is to label U iteratively and augment it with L.
Three CNN +BERT classifiers M1, M2, M3 are
trained separately using subsets of L namely l1, l2,
l3 respectively. These subsets are obtained from L
using bootstrap sampling with replacement.

The above mentioned models are used to pre-
dict labels for the unlabelled set U . Predictions
which are agreed by two models is considered as a
new training example for the third model in the
next iteration. For example, an unlabelled sen-
tence U1 ∈ U is added as a labelled example to
l1, if and only if the label for U1 is agreed upon
by both M2 and M3. Same way, l2 is updated
with newly labelled data if those labels have been
agreed by M1 and M3 and so on. This constitutes a
single iteration of tri-training. The procedure that
is used for the training of our models is mentioned
in Algorithm 1.

In this way, the original training data gets added
with three newly labelled subsets which are again

used for the next training iteration. At the end of
each iteration, validation F1-score is calculated by
using the predictions that are obtained through a
majority vote. The procedure is continued until
there is no improvement in the validation score.

Algorithm 1 Tri-training
1: L← Labelled Data , |L| = m
2: U ← Unlabelled Data , |U | = n
3: for i← 1, 2, 3 do
4: li ← BootstrapSamples(L)
5: end for
6: repeat
7: for i← 1, 2, 3 do
8: Mi ← Train(li)
9: end for

10: for i← 1, 2, 3, do
11: li ← L
12: for j ← 1, n do
13: if Mp(Uj) == Mq(Uj)
14: where p, q 6= i then
15: li ← li + {(Uj ,Mp(Uj)}
16: end if
17: end for
18: end for
19: until no improvement in validation metrics

3 Experiments and Results

This section details the various experiments that
were performed using the above components for
our submissions.

3.1 Data
The test set provided during the trial phase of the
evaluation is used as the validation data for all our
experiments. For those experiments that do not
involve tri-training, we only use the provided la-
belled data from the technical domain for training.

In Subtask B, for those experiments that involve
tri-training, L is the same as mentioned above. U
here is obtained in two ways:

• Unlabelled data from final test set of Subtask
B.

• Unlabelled data from Yelp hotel reviews
(Blomo et al., 2013).

The results reported are mean and confidence
intervals of Precision, Recall and F1-score over
five runs of the same experiments with different
random seeds.

1284

Subtask A - Technical Domain

Experiment Validation Test
Precision Recall F1 Precision Recall F1

Organizer Baseline 58.72 93.24 72.06 15.69 91.95 26.80
DAN +glove 68.51±2.43 87.30±5.00 76.69±1.06 25.40±3.56 84.60±9.87 38.84±3.10
DAN +bert 76.06±1.31 90.27±1.71 82.55±0.50 45.80±4.49 90.80±1.75 60.82±3.99
DAN +bert w/o upsampling 79.04±2.67 83.38±2.73 81.11±0.68 55.06±6.36 83.68±2.75 66.28±4.28
CNN +bert 80.34±4.21 89.93±4.23 84.76±0.52 50.34±6.70 91.72±2.55 64.81±4.86
CNN +bert w/o upsampling 83.22±3.01 84.73±3.86 83.90±0.70 58.98±5.41 88.05±1.63 70.58±4.24
CNN +bert +tritrainTest* 83.06±1.96 89.19±1.88 86.00±0.35 52.89±2.69 90.80±2.02 66.81±1.90

Subtask B - Hotel Reviews Domain

Experiment Validation Test
Precision Recall F1 Precision Recall F1

Organizer Baseline 72.84 81.68 77.01 68.86 78.16 73.21
DAN +glove 82.00±4.25 52.97±9.25 64.01±5.75 73.32±3.50 46.09±7.21 56.35±4.71
DAN +bert 89.75±2.79 65.74±8.71 75.65±5.10 78.90±4.03 64.20±8.77 70.49±4.09
DAN +bert w/o upsampling 94.26±1.87 31.73±5.73 47.31±6.27 87.98±3.41 31.09±7.17 45.62±7.47
CNN +bert 93.77±1.34 51.88±6.88 66.65±5.68 90.17±2.45 50.34±8.71 64.31±6.72
CNN +bert w/o upsampling 93.94±1.36 45.99±7.59 61.53±6.73 89.75±4.41 44.08±9.38 58.66±7.79
CNN +bert +tritrainTest* 91.91±2.06 88.32±2.05 90.05±0.76 81.26±1.63 83.16±1.40 82.19±1.03
CNN +bert +tritrainY elp 88.09±0.62 87.13±0.38 87.61±0.42 78.01±5.42 86.67±3.96 81.98±2.05

Table 1: Performance metrics of different models on validation and test sets of both subtasks. Confidence intervals
for the metrics are reported for five runs using different random seeds on t-distribution with 95% confidence.
Upsampling is used in the training dataset unless otherwise specified. Single model from experiments with * was
used for the final submission.

3.2 Input

For input representations, we use 300d GloVe vec-
tors with dropout (Srivastava et al., 2014) of 0.2
for regularization. We also experiment with the
pre-trained BERT base uncased model. The BERT
model is not fine-tuned during our training. A
dropout of 0.5 is applied for the 768d represen-
tations obtained from BERT.

3.3 Baseline Deep Averaging Net

Our neural baseline is Deep Averaging Net (DAN)
(Section 2.3). When used with GloVe, the hidden
sizes of DAN are 300, 150, 75, and 2 respectively.
When BERT representations are used, the hidden
sizes of the network are 768, 324, 162, and 2 re-
spectively. We report an F1-score of 60.82 when
DAN is used with BERT in Subtask A and 70.49 in
Subtask B. Both these scores are a significant im-
provements from those obtained with GloVe rep-
resentations (Table 1).

We retain the same configuration of BERT em-
bedding layer for other experiments also. Training
is performed with Adam (Kingma and Ba, 2015)
optimizer with a learning rate of 1e−3 for all the
models.

3.4 CNN Classifier

The CNN classifier is composed of four 1-D con-
volution layers with filter widths ranging from two
to five. Each convolutional layer has 192 filters.
The output from each layer is max-pooled over se-
quence (time) dimension. This results in four 192d
vectors, which are concatenated to get a 768d out-
put.

The max-pooled outputs are passed through
four fully connected feed forward layers with hid-
den dimensions of 768, 324, 162, and 2 respec-
tively. The intermediate layers use ReLu activa-
tion and the final layer is a softmax layer. We use
dropout of 0.2 on all layers of the feed forward
network except for the final layer.

Without tri-training, this model obtains an ab-
solute improvement of ≈ 4% F1-score over DAN
in Subtask A. However in Subtask B, it performs
poorer than the baseline DAN model with an F1-
score of 64.31. This decrease in performance
could be because of overfitting on the source do-
main due to the larger number of parameters in
CNN compared to DAN.

1285

3.5 Tri-training

The aim of doing tri-training is for domain adap-
tation by labelling unseen data from a newer do-
main. For Subtask B, the CNN + BERT model
achieves an F1-score of 82.19 when trained with
the tri-training procedure mentioned in Algorithm
1. Tri-training is used to label the 824 unlabelled
sentences from the test set of Subtask B and aug-
mented with the original training data. This score
is a huge improvement from the classifier model
trained only on the given data which gets an F1-
score of 64.31.

We also do the same experiment using 5000 un-
labelled sentences from Yelp hotel reviews dataset
(Blomo et al., 2013). The model obtains a simi-
lar score of 81.98 which proves the importance of
tri-training in domain adaptation.

For Subtask A, we get an improvement in the
F1-score using tri-training, however the increase is
not as profound as we observe for Subtask B. We
compare the statistical significance of the different
models and experiments in Section 3.7.

3.6 Upsampling

We also wanted to find how the class balance in
the dataset has affected our model performance.
The class distribution of the datasets including the
test set distribution that was obtained after the final
evaluation phase are mentioned in Table 2.

Dataset Suggestions (%)

Training 23
Subtask A validation 50
Subtask B validation 50
Subtask A Test 10
Subtask B Test 42

Table 2: Label distribution

The original training data has a class imbalance
with only 23% of the sentences labelled as sugges-
tions. We tried to balance the labels by naive up-
sampling, ie., adding duplicates of sentences that
are labelled as suggestions. This allowed us to
have a balanced training dataset for our experi-
ments. This resulted in consistent gains over the
original dataset during the trial evaluation phase.

However during the final submission, in Sub-
task A we found that the model’s performance in
the test set did not correlate well with that of the
validation set as shown in Table 1. This could be

because the percentage of positive labels in the test
set is only 10% while the validation set has 50%.

Experiments without upsampling gives better
performance in test set even though there is a de-
crease in the validation score. For Subtask B how-
ever, upsampling has actually increased the model
performance. On hindsight, this could be because
of similar distribution of class labels in both vali-
dation and test sets.

The submitted models received an F1-score of
68.07 in Subtask A and 81.03 in Subtask B.

3.7 Statistical Significance Test

Reichart et al. (2018) suggests methods to measure
whether two models have statistically significant
differences in their predictions on a single dataset.
We incorporate a non-parametric testing method
for significance called the McNemar’s test recom-
mended by them for binary classification. Pair-
wise comparison of few of our models are reported
in Table 3. The table contains the p-values for the
null hypothesis. The null hypothesis is that two
models do not have significant differences in their
label predictions. In simpler words, a small p-
value for an experiment pair denotes a significant
difference in the prediction disagreement between
two models. For example, from Table 3, DAN +
GloVe and DAN + BERT models have a p-value
less than 0.05 in both sub-tasks. This indicates that
there is significant disagreement between the pre-
dictions of two models. Since DAN + BERT gets
a better F1-score and p < 0.05, we can confidently
assert that improvement is not obtained by chance.

We use majority voting from five random seeds
to get the final predictions on the test set for doing
the paired significance testing.

4 Conclusion

We discussed our experiments for doing sugges-
tion mining using tri-training. Tri-training com-
bined with BERT representations proved to be
an effective technique for doing semi-supervised
learning especially in a cross-domain setting. Fu-
ture work could explore more optimal ways of do-
ing tri-training, evaluate the effect of contextual
representations in tri-training convergence, and try
more sophisticated architectures for classification
that may include different attention mechanisms.

1286

Subtask Model A Model B p-value

A DAN +glove DAN +bert ≈ 0
A DAN +bert CNN +bert 0.046
A CNN +bert CNN +bert +tritrainTest 0.108
B DAN +glove DAN +bert 1.419e− 05
B DAN +bert CNN +bert 0.4208
B CNN +bert CNN +bert +tritrainTest 3.251e− 08
B CNN +bert +tritrainTest CNN +bert +tritrainY elp 0.5862

Table 3: Pairwise comparison of various models using the McNemar’s Test. p ≤ 0.05 indicates a significant
disagreement between the model predictions.

References
John Blitzer, Mark Dredze, and Fernando Pereira.

2007. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classi-
fication. In ACL.

Jim Blomo, Martin Ester, and Marty Field. 2013. Rec-
sys challenge 2013. In RecSys.

Avrim Blum and Tom M. Mitchell. 1998. Combin-
ing labeled and unlabeled data with co-training. In
COLT.

Minmin Chen, Kilian Q. Weinberger, and John Blitzer.
2011. Co-training for domain adaptation. In NIPS.

Xilun Chen and Claire Cardie. 2018. Multinomial ad-
versarial networks for multi-domain text classifica-
tion. In NAACL-HLT.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. CoRR, abs/1810.04805.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew E.
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2018. Allennlp: A deep semantic natural language
processing platform. CoRR, abs/1803.07640.

Mohit Iyyer, Varun Manjunatha, Jordan L. Boyd-
Graber, and Hal Daumé. 2015. Deep unordered
composition rivals syntactic methods for text clas-
sification. In ACL.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Sapna Negi, Tobias Daudert, and Paul Buitelaar. 2019.
Semeval-2019 task 9: Suggestion mining from on-
line reviews and forums. In Proceedings of the
13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In EMNLP.

Matthew E. Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee, and
Luke S. Zettlemoyer. 2018. Deep contextualized
word representations. In NAACL-HLT.

Alec Radford. 2018. Improving language understand-
ing by generative pre-training.

Roi Reichart, Rotem Dror, Gili Baumer, and Segev
Shlomov. 2018. The hitchhiker’s guide to testing
statistical significance in natural language process-
ing. In ACL.

Sebastian Ruder and Jeremy Howard. 2018. Universal
language model fine-tuning for text classification. In
ACL.

Sebastian Ruder and Barbara Plank. 2018. Strong
baselines for neural semi-supervised learning under
domain shift. In ACL.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15:1929–1958.

Zhi-Hua Zhou and Ming Li. 2005. Tri-training: ex-
ploiting unlabeled data using three classifiers. IEEE
Transactions on Knowledge and Data Engineering,
17:1529–1541.

