@inproceedings{magnusson-dietz-2019-unh,
    title = "{UNH} at {S}em{E}val-2019 Task 12: Toponym Resolution in Scientific Papers",
    author = "Magnusson, Matthew  and
      Dietz, Laura",
    editor = "May, Jonathan  and
      Shutova, Ekaterina  and
      Herbelot, Aurelie  and
      Zhu, Xiaodan  and
      Apidianaki, Marianna  and
      Mohammad, Saif M.",
    booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S19-2230/",
    doi = "10.18653/v1/S19-2230",
    pages = "1308--1312",
    abstract = "The SemEval-2019 Task 12 is toponym resolution in scientific papers. We focus on Subtask 1: Toponym Detection which is the identification of spans of text for place names mentioned in a document. We propose two methods: 1) sliding window convolutional neural network using ELMo embeddings (cnn-elmo), and 2) sliding window multi-Layer perceptron using ELMo embeddings (mlp-elmo). We also submit Bi-lateral LSTM with Conditional Random Fields (bi-LSTM) as a strong baseline given its state-of-art performance in Named Entity Recognition (NER) task. Our best performing model is cnn-elmo with a F1 of 0.844 which was below bi-LSTM F1 of 0.862 when evaluated on overlap macro detection. Eight teams participated in this subtask with a total of 21 submissions."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="magnusson-dietz-2019-unh">
    <titleInfo>
        <title>UNH at SemEval-2019 Task 12: Toponym Resolution in Scientific Papers</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Matthew</namePart>
        <namePart type="family">Magnusson</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Laura</namePart>
        <namePart type="family">Dietz</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aurelie</namePart>
            <namePart type="family">Herbelot</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Xiaodan</namePart>
            <namePart type="family">Zhu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>The SemEval-2019 Task 12 is toponym resolution in scientific papers. We focus on Subtask 1: Toponym Detection which is the identification of spans of text for place names mentioned in a document. We propose two methods: 1) sliding window convolutional neural network using ELMo embeddings (cnn-elmo), and 2) sliding window multi-Layer perceptron using ELMo embeddings (mlp-elmo). We also submit Bi-lateral LSTM with Conditional Random Fields (bi-LSTM) as a strong baseline given its state-of-art performance in Named Entity Recognition (NER) task. Our best performing model is cnn-elmo with a F1 of 0.844 which was below bi-LSTM F1 of 0.862 when evaluated on overlap macro detection. Eight teams participated in this subtask with a total of 21 submissions.</abstract>
    <identifier type="citekey">magnusson-dietz-2019-unh</identifier>
    <identifier type="doi">10.18653/v1/S19-2230</identifier>
    <location>
        <url>https://aclanthology.org/S19-2230/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>1308</start>
            <end>1312</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UNH at SemEval-2019 Task 12: Toponym Resolution in Scientific Papers
%A Magnusson, Matthew
%A Dietz, Laura
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F magnusson-dietz-2019-unh
%X The SemEval-2019 Task 12 is toponym resolution in scientific papers. We focus on Subtask 1: Toponym Detection which is the identification of spans of text for place names mentioned in a document. We propose two methods: 1) sliding window convolutional neural network using ELMo embeddings (cnn-elmo), and 2) sliding window multi-Layer perceptron using ELMo embeddings (mlp-elmo). We also submit Bi-lateral LSTM with Conditional Random Fields (bi-LSTM) as a strong baseline given its state-of-art performance in Named Entity Recognition (NER) task. Our best performing model is cnn-elmo with a F1 of 0.844 which was below bi-LSTM F1 of 0.862 when evaluated on overlap macro detection. Eight teams participated in this subtask with a total of 21 submissions.
%R 10.18653/v1/S19-2230
%U https://aclanthology.org/S19-2230/
%U https://doi.org/10.18653/v1/S19-2230
%P 1308-1312
Markdown (Informal)
[UNH at SemEval-2019 Task 12: Toponym Resolution in Scientific Papers](https://aclanthology.org/S19-2230/) (Magnusson & Dietz, SemEval 2019)
ACL