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Abstract

We present a study of a dataset of ta-
bles from biomedical research publica-
tions. Our aim is to identify characteris-
tics of biomedical tables that pose chal-
lenges for the task of extracting informa-
tion from tables, and to determine which
parts of research papers typically contain
information that is useful for this task. Our
results indicate that biomedical tables are
hard to interpret without their source pa-
pers due to the brevity of the entries in the
tables. In many cases, unstructured text
segments, such as table titles, footnotes
and non-table prose discussing a table, are
required to interpret the table’s entries.

1 Introduction

Automation of information extraction (IE) from
biomedical literature has become an important
task (Shatkay and Craven, 2012). In particu-
lar, biomedical IE enables the semi-automation of
tasks such as document indexing (Aronson et al.,
2004) and database curation, e.g., (Donaldson et
al., 2003; Karamanis et al., 2008).

Most research in biomedical IE has concen-
trated on information extraction from prose. How-
ever, much important data, such as experimental
results and relations between biomedical entities,
often appear only in tables (Ansari et al., 2013).
This insight was confirmed experimentally for the
task of mutation database curation. In particu-
lar, Wong et al. (2009) showed that for a sam-
ple of research articles used to populate the Mis-
match Repair database (Woods et al., 2007), tables
served as a sole source of information about mu-
tations for 59% of the documents. Yepes and Ver-
spoor (2013) reported that a text mining tool ap-
plied to full articles and their supplementary ma-
terial, used to catalogue mutations in the COS-
MIC (Bamford et al., 2004) and InSiGHT (Plazzer
et al., 2013) databases, could recover only 3-8%

of the mutations if only prose was considered. An
additional 1% of the mutations was extracted from
tables in the papers, with an improvement of mu-
tation coverage to about 50% when supplementary
material (mostly tables) was considered.

Information extraction from tables (Table IE)
comprises various tasks, such as (1) classification
of table entries or columns into a set of specific
classes (Quercini and Reynaud, 2013; Wong et al.,
2009); (2) association of table entries or columns
with concepts from a domain vocabulary (Assem
et al., 2010; Yosef et al., 2011); and (3) extraction
of relations, defined in a vocabulary, between enti-
ties in tables – usually done with Task 2 (Hignette
et al., 2009; Limaye et al., 2010; Mulwad et al.,
2013; Venetis et al., 2011). These tasks are of-
ten performed by consulting external knowledge
sources. However, despite the intuition that un-
structured text accompanying tables often pro-
vides helpful information, little use has been made
of such text. Examples of such usage are the works
of Yosef et al. (2011), who performed collective
named entity normalisation in Web texts and ta-
bles; Hignette et al. (2009), who employed ta-
ble titles to improve relation extraction from Web
tables; and Govindaraju et al. (2013), who im-
proved performance in extracting a few predefined
relations from papers in Economics, Geology and
Petrology by processing jointly the text and tables
in the papers.

This paper describes the first step of a project
that aims to automatically perform Tasks 2 and 3
on biomedical tables. In this step, we manually
analyse a dataset of tables from the biomedical lit-
erature to identify characteristics of biomedical ta-
bles that pose challenges for column annotation,
and determine the parts of a research paper that
typically contain information which is useful for
interpreting tables.

Our results show that tables in biomedical re-
search papers are generally hard to interpret with-
out their source papers due to the brevity of the
entries in the tables. Further, in many cases, un-
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structured text (e.g., table titles, footnotes and non-
table prose discussing a table) must be considered
to disambiguate table entries.

2 Analysis Design

The dataset used in our analysis comprises a set
of biomedical research papers discussing genetic
variation. To build the dataset, we randomly sam-
pled five articles from each of the three datasets
used in (Wong et al., 2009) and (Yepes and Ver-
spoor, 2013). The resulting sample contains 39
tables, with a total of 280 columns.

We manually analysed the dataset to collect
statistics regarding typical data types in the tables
(Section 3.1). Columns in the tables were anno-
tated with Semantic Types (STs) from the Unified
Medical Language System (UMLS), which has 133
STs in total. To assign a label to a column in a
table, the annotator first located a specific UMLS
concept corresponding to a fine-grained type of
the entities listed in the column (e.g., “[C0009221]
Codon (nucleotide sequence)” for Columns 3-7 in
Figure 1), after which the ST corresponding to
the selected concept was assigned to the column
(e.g., “Nucleotide Sequence [T086]”). Individ-
ual data entries were not annotated due to insuffi-
cient coverage of specific values (e.g., mutations)
in UMLS, and the predominantly numerical nature
of the data (Section 3.1).

On the basis of our annotation, we gathered
statistics regarding issues that may influence the
performance of an automatic Table IE system, e.g.,
the consistency of the data types in tables (Sec-
tion 3.2), and the sources of information that are
useful for concept annotation (Section 3.3). It is
worth noting that the annotator (first author of the
paper) had little background in biomedical science
at the time of annotation, and employed external
sources such as NCBI databases1 and Wikipedia to
assist with the annotation. This lack of biomedical
background may have affected the accuracy of the
disambiguation of biomedical entities. However,
we posit that the obtained results provide more
relevant insights into the use of non-table compo-
nents in automatic Table IE than those obtained
from expert annotation.

3 Results

3.1 Content of the Data Entries
We analysed our dataset to determine which data
types are typically contained in biomedical ta-

1http://www.ncbi.nlm.nih.gov/

bles. It was previously noted that, in general, table
entries contain very little text, which often does
not provide enough context for entity disambigua-
tion (Limaye et al., 2010). Unlike the interpreta-
tion of noun phrases, interpreting numerical data is
the biggest challenge for Table IE, because num-
bers are highly ambiguous (in principle they could
be assigned most of the UMLS STs). Another sig-
nificant challenge in both general and biomedical
IE is the use of abbreviations.

In light of the above, our analysis shows that
biomedical tables are very difficult to interpret:

• 42% of the columns in our sample contain
numbers, and 3% contain numerical expres-
sions (e.g., 45/290 and 45±6), both represent-
ing information such as statistical data, per-
centages, times, lengths, patient IDs and DNA
sequences (e.g., codons 175, 176 and 179 in
Column 3 in Figure 1).

• 32% of the columns comprise abbreviated en-
tries (e.g., MSI, N and A in Figure 1) and sym-
bolic representations (e.g., ± for heterozygote).

• 7% of the columns contain free text.

• Only 12% of the columns comprise biomedical
terms as entries.

• The remaining 4% of the columns contain a
mixture of abbreviations, free text, and numer-
ical expressions.

Our study shows that numerical and abbreviated
entries can be interpreted correctly if they are ap-
propriately expanded using mentions from table ti-
tles, footnotes and prose. For example, in the table
in Figure 1, the abbreviations MSI, N and A can
be expanded using the table footnote; and codon
mentions in Columns 3-7 can be expanded using
the prose describing the table (highlighted).2

3.2 Quality of the Column Headers
We analysed our dataset to determine whether it is
possible to identify types of biomedical table en-
tries based only on the content of column headers.
To do so, we first identified the number of cases
where column headers were sufficient for column
type identification during the manual table anno-
tation phase (Section 2). We determined that al-
though 97% of the columns in our sample have
headers, in many cases they are too ambiguous to
be used as the only evidence for the column type.

2It was impossible to determine that Columns 3-7 in Fig-
ure 1 referred to codons without the prose.
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Figure 1: An example of a biomedical table and prose discussing the table. Source: (Oda et al., 2005)

In fact, only 34% of the columns in our sample
could be annotated without referring to parts of
the documents other than the column entries and
their headers. In 57% of the cases, additional in-
formation was required to confirm the type of a
column (e.g., Columns 3-7 in Figure 1), and in 9%
of the cases, headers were not helpful in column
type identification (Table 1). This finding agrees
with observations in the Web domain, e.g., (Li-
maye et al., 2010; Venetis et al., 2011).

We then compared the labels (STs) assigned to
table columns to the STs of the entities in the cor-
responding headers. The comparison showed that
in only 53% of the cases a header was labeled with
the same ST as the entries in the column. For in-
stance, Columns 3-7 in Figure 1 contain entities
of the class “Codon” (ST “Nucleotide Sequence
[T086]”), while the headers, which designate ex-
ons, have the ST “Nucleic Acid, Nucleotide, or
Nucleotide [T114]” or “Biologically Active Sub-
stance [T123]”. We therefore conclude that, in
general, headers in isolation are insufficient, and
often misleading, for column type identification.

3.3 Sufficiency and Criticality of Information
Sources for Column Annotation

We analysed the dataset to determine the contribu-
tion of different sources of information in a table
and its source article to the identification of the
types of biomedical table entries. To this effect,
we found it useful to consider the following infor-
mation sources for each column: (1) the content of
the data entries in the column, (2) the header of the
column, (3) the headers of other columns, (4) the
title of the table, (5) table footnotes, and (6) prose
describing the content of the table (referred to as
“prose” for simplicity). We distinguish between

two aspects of these sources: sufficiency and criti-
cality.

• The sufficiency categories are: (1) Sufficient,
if the source on its own was enough to iden-
tify the column label; (2) Insufficient, if the
source allowed the formulation of a hypothesis
about the column label, but required informa-
tion from other sources to confirm the hypoth-
esis; and (3) Non-indicative, if the source did
not contribute to the column labelling.

• The criticality categories are: (1) Critical, if
disregarding the source is very likely to lead
to an annotation error; (2) Probably Critical, if
disregarding the source may lead to an anno-
tation error; and (3) Non-critical, if the source
could be disregarded without causing an error.

Criticality was assigned to each information
source in an incremental manner depending on the
sufficiency of the source: if some “cheap” sources
of information were sufficient for column type
identification, more “expensive” sources were not
considered to be critical. The cost of a source was
based on the complexity of the methods required
to locate and process this source, increasing in the
following order: column header, other headers, ta-
ble title, table footnotes and prose.

To illustrate these ideas, consider Column 3
(concept “Codon”) in Figure 1. The other headers,
table title and footnotes were classified as Non-
indicative, and hence Non-critical, since they do
not contain any explicit information regarding the
column type (“codon” is mentioned in the foot-
note in a sentence about formatting, which is not
considered at present). The header and prose were
classified as Insufficient, because each merely sug-
gests the column class, and Critical, because both
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Information source S IS NI
— 1% 18% 81%
Column header 34% 57% 9%
Other column headers 0% 22% 78%
Table title 3% 36% 61%
Table footnotes 12% 34% 54%
Prose 13% 62% 25%

Table 1: Percentages of cases where sources of in-
formation were characterised as Sufficient (S), In-
sufficient (IS) and Non-indicative (NI) if consid-
ered in addition to the content of the column.

were required to label the column. When anno-
tating Column 8 (“Codon change”, ST “Genetic
Function [T045]”), the title was classified as Prob-
ably Critical, because there was no direct corre-
spondence with any UMLS concept – the mapping
was performed intuitively, and the title confirmed
the chosen hypothesis.

The results of our analysis are summarised in
Tables 1 and 2, which respectively show statistics
regarding the sufficiency and criticality of various
sources of information. The results in Table 1 indi-
cate that none of the information sources were suf-
ficient for each table column in our dataset when
taken in isolation. However, it was possible to la-
bel every column when all the sources were con-
sidered jointly. It is worth noting that the com-
bination of the information sources that enabled
labelling all the columns of a single table varied
from table to table.

As seen in Table 2, each type of unstructured
text associated with tables (i.e., table titles, foot-
notes and prose) was characterised as critical or
probably critical in a substantial number of cases.
In addition, we observed that in 59.3% of the
cases, a table title or prose segments were char-
acterised as critical or probably critical; and in
70.9% of the cases a table title, footnotes or prose
were critical or probably critical.

Table footnotes represent an important source
of information for abbreviation expansion: 97% of
the tables in our sample have footnotes in the form
of unstructured text, and about 62% of the foot-
notes introduce at least some of the abbreviations
in the tables. Further, about 72% of the footnotes
contain remarks associated with column headers
or data entries. No other uses of footnotes were
identified.

The prose that was required to interpret the ta-
bles during annotation was found in referencing
paragraphs (i.e., containing descriptors such as
“(Table 4)”) in 70% of the cases; in 22% of the

Information source C PC NC
Column content 19% 0% 81%
Column header 87% 4% 9%
Other column headers 8% 10% 82%
Table title 15% 16% 69%
Table footnotes 27% 10% 63%
Prose 28% 20% 52%

Table 2: Percentages of cases where sources of
information were characterised as Critical (C),
Probably Critical (PC) and Non-critical (NC).

cases the prose was found elsewhere in the sec-
tions containing referencing paragraphs; and in
8% of the cases it was found elsewhere in the
source document.

Our analysis shows that table titles, footnotes
and prose tend to be complementary and, in gen-
eral, none of them can be disregarded during an-
notation (Tables 1 and 2). For example, although
all the tables in our sample have titles, on average
only 40% of the columns in each table are rep-
resented in the titles — column “representatives”
are either not mentioned in the titles, or their en-
tity types in the titles differ from the types of the
columns.

We therefore conclude that all unstructured text
associated with biomedical tables (i.e., table titles,
footnotes and prose) is vital for interpreting them.

4 Conclusion

In this paper, we presented an analysis of a dataset
of tables from biomedical research papers per-
formed from the perspective of information ex-
traction from tables. Our results show that tables
in biomedical research papers are characterised by
an abundance of numerical and abbreviated data,
for which existing approaches to Table IE do not
perform well. Further, we ascertained that in many
cases, unstructured text (e.g., table titles, footnotes
and non-table prose discussing a table) must be
considered in order to disambiguate table entries,
and determine the types of table columns.

We conclude that considering unstructured text
related to tables – in particular, combining existing
techniques for the interpretation of stand-alone ta-
bles with IE from unstructured text – will improve
the performance of Table IE. In the near future,
we propose to develop techniques for locating ta-
ble descriptions in the full text of source articles,
and incorporating text processing techniques into
approaches to Table IE.

121



Acknowledgments

We would like to thank the anonymous reviewers
for their very detailed and insightful comments.

NICTA is funded by the Australian Government
through the Department of Communications and
by the Australian Research Council through the
ICT Centre of Excellence Program.

References
S. Ansari, R. E. Mercer, and P. Rogan. 2013. Auto-

mated phenotype-genotype table understanding. In
Contemporary Challenges and Solutions in Applied
Artificial Intelligence, pages 47–52. Springer.

A. R. Aronson, J. G. Mork, C. W. Gay, S. M.
Humphrey, and W. J. Rogers. 2004. The NLM In-
dexing Initiative’s Medical Text Indexer. Medinfo,
11(Pt 1):268–72.

M. Van Assem, H. Rijgersberg, M. Wigham, and
J. Top. 2010. Converting and annotating quantita-
tive data tables. In The Semantic Web–ISWC 2010,
pages 16–31. Springer.

S. Bamford, E. Dawson, S. Forbes, J. Clements, R. Pet-
tett, A. Dogan, A. Flanagan, J. Teague, P. A. Futreal,
M. R. Stratton, and R. Wooster. 2004. The COS-
MIC (Catalogue of Somatic Mutations in Cancer)
database and website. British Journal of Cancer,
91(2):355–358.

I. Donaldson, J. Martin, B. de Bruijn, C. Wolting,
V. Lay, B. Tuekam, S. Zhang, B. Baskin, G. D.
Bader, K. Michalickova, T. Pawson, and C. WV.
Hogue. 2003. PreBIND and Textomy – mining the
biomedical literature for protein-protein interactions
using a support vector machine. BMC Bioinformat-
ics, 4(1):11.

V. Govindaraju, C. Zhang, and C. Ré. 2013. Under-
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F. Wu, G. Miao, and C. Wu. 2011. Recovering se-
mantics of tables on the Web. Proceedings of the
VLDB Endowment, 4(9):528–538.

W. Wong, D. Martinez, and L. Cavedon. 2009. Ex-
traction of named entities from tables in gene mu-
tation literature. In Proceedings of the Workshop
on Current Trends in Biomedical Natural Language
Processing, pages 46–54. Association for Computa-
tional Linguistics.

M. O. Woods, P. Williams, A. Careen, L. Edwards,
S. Bartlett, J. R. McLaughlin, and H. B. Younghus-
band. 2007. A new variant database for mismatch
repair genes associated with Lynch Syndrome. Hu-
man Mutation, 28(7):669–673.

A. Jimeno Yepes and K. Verspoor. 2013. Towards
automatic large-scale curation of genomic variation:
improving coverage based on supplementary mate-
rial. In BioLINK SIG 2013, pages 39–43, Berlin,
Germany, July.

M. A. Yosef, J. Hoffart, I. Bordino, M. Spaniol, and
G. Weikum. 2011. Aida: An online tool for accurate
disambiguation of named entities in text and tables.
Proceedings of the VLDB Endowment, 4(12):1450–
1453.

122


