@inproceedings{nandakumar-etal-2018-comparative,
title = "A Comparative Study of Embedding Models in Predicting the Compositionality of Multiword Expressions",
author = "Nandakumar, Navnita and
Salehi, Bahar and
Baldwin, Timothy",
editor = "Kim, Sunghwan Mac and
Zhang, Xiuzhen (Jenny)",
booktitle = "Proceedings of the Australasian Language Technology Association Workshop 2018",
month = dec,
year = "2018",
address = "Dunedin, New Zealand",
url = "https://aclanthology.org/U18-1009",
pages = "71--76",
abstract = "In this paper, we perform a comparative evaluation of off-the-shelf embedding models over the task of compositionality prediction of multiword expressions(``MWEs''). Our experimental results suggest that character- and document-level models capture knowledge of MWE compositionality and are effective in modelling varying levels of compositionality, with the advantage over word-level models that they do not require token-level identification of MWEs in the training corpus.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nandakumar-etal-2018-comparative">
<titleInfo>
<title>A Comparative Study of Embedding Models in Predicting the Compositionality of Multiword Expressions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Navnita</namePart>
<namePart type="family">Nandakumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bahar</namePart>
<namePart type="family">Salehi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothy</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Australasian Language Technology Association Workshop 2018</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sunghwan</namePart>
<namePart type="given">Mac</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiuzhen</namePart>
<namePart type="given">(Jenny)</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<place>
<placeTerm type="text">Dunedin, New Zealand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we perform a comparative evaluation of off-the-shelf embedding models over the task of compositionality prediction of multiword expressions(“MWEs”). Our experimental results suggest that character- and document-level models capture knowledge of MWE compositionality and are effective in modelling varying levels of compositionality, with the advantage over word-level models that they do not require token-level identification of MWEs in the training corpus.</abstract>
<identifier type="citekey">nandakumar-etal-2018-comparative</identifier>
<location>
<url>https://aclanthology.org/U18-1009</url>
</location>
<part>
<date>2018-12</date>
<extent unit="page">
<start>71</start>
<end>76</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Comparative Study of Embedding Models in Predicting the Compositionality of Multiword Expressions
%A Nandakumar, Navnita
%A Salehi, Bahar
%A Baldwin, Timothy
%Y Kim, Sunghwan Mac
%Y Zhang, Xiuzhen (Jenny)
%S Proceedings of the Australasian Language Technology Association Workshop 2018
%D 2018
%8 December
%C Dunedin, New Zealand
%F nandakumar-etal-2018-comparative
%X In this paper, we perform a comparative evaluation of off-the-shelf embedding models over the task of compositionality prediction of multiword expressions(“MWEs”). Our experimental results suggest that character- and document-level models capture knowledge of MWE compositionality and are effective in modelling varying levels of compositionality, with the advantage over word-level models that they do not require token-level identification of MWEs in the training corpus.
%U https://aclanthology.org/U18-1009
%P 71-76
Markdown (Informal)
[A Comparative Study of Embedding Models in Predicting the Compositionality of Multiword Expressions](https://aclanthology.org/U18-1009) (Nandakumar et al., ALTA 2018)
ACL