@inproceedings{benites-etal-2018-classifying,
title = "Classifying Patent Applications with Ensemble Methods",
author = "Benites, Fernando and
Malmasi, Shervin and
Zampieri, Marcos",
editor = "Kim, Sunghwan Mac and
Zhang, Xiuzhen (Jenny)",
booktitle = "Proceedings of the Australasian Language Technology Association Workshop 2018",
month = dec,
year = "2018",
address = "Dunedin, New Zealand",
url = "https://aclanthology.org/U18-1012",
pages = "89--92",
abstract = "We present methods for the automatic classification of patent applications using an annotated dataset provided by the organizers of the ALTA 2018 shared task - Classifying Patent Applications. The goal of the task is to use computational methods to categorize patent applications according to a coarse-grained taxonomy of eight classes based on the International Patent Classification (IPC). We tested a variety of approaches for this task and the best results, 0.778 micro-averaged F1-Score, were achieved by SVM ensembles using a combination of words and characters as features. Our team, BMZ, was ranked first among 14 teams in the competition.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="benites-etal-2018-classifying">
<titleInfo>
<title>Classifying Patent Applications with Ensemble Methods</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fernando</namePart>
<namePart type="family">Benites</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shervin</namePart>
<namePart type="family">Malmasi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Australasian Language Technology Association Workshop 2018</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sunghwan</namePart>
<namePart type="given">Mac</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiuzhen</namePart>
<namePart type="given">(Jenny)</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<place>
<placeTerm type="text">Dunedin, New Zealand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present methods for the automatic classification of patent applications using an annotated dataset provided by the organizers of the ALTA 2018 shared task - Classifying Patent Applications. The goal of the task is to use computational methods to categorize patent applications according to a coarse-grained taxonomy of eight classes based on the International Patent Classification (IPC). We tested a variety of approaches for this task and the best results, 0.778 micro-averaged F1-Score, were achieved by SVM ensembles using a combination of words and characters as features. Our team, BMZ, was ranked first among 14 teams in the competition.</abstract>
<identifier type="citekey">benites-etal-2018-classifying</identifier>
<location>
<url>https://aclanthology.org/U18-1012</url>
</location>
<part>
<date>2018-12</date>
<extent unit="page">
<start>89</start>
<end>92</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Classifying Patent Applications with Ensemble Methods
%A Benites, Fernando
%A Malmasi, Shervin
%A Zampieri, Marcos
%Y Kim, Sunghwan Mac
%Y Zhang, Xiuzhen (Jenny)
%S Proceedings of the Australasian Language Technology Association Workshop 2018
%D 2018
%8 December
%C Dunedin, New Zealand
%F benites-etal-2018-classifying
%X We present methods for the automatic classification of patent applications using an annotated dataset provided by the organizers of the ALTA 2018 shared task - Classifying Patent Applications. The goal of the task is to use computational methods to categorize patent applications according to a coarse-grained taxonomy of eight classes based on the International Patent Classification (IPC). We tested a variety of approaches for this task and the best results, 0.778 micro-averaged F1-Score, were achieved by SVM ensembles using a combination of words and characters as features. Our team, BMZ, was ranked first among 14 teams in the competition.
%U https://aclanthology.org/U18-1012
%P 89-92
Markdown (Informal)
[Classifying Patent Applications with Ensemble Methods](https://aclanthology.org/U18-1012) (Benites et al., ALTA 2018)
ACL