
Using Summarization for Automatic Briefing Generation

Inderjeet Mani
. Kristian Concepcion

Linda Van Guilder

The MITRE Corporation, W640
11493 Sunset Hills Road
Reston, VA 22090, USA

{imani,kjc9,1cvg}@mitre.org

A b s t r a c t

We describe a system which automatically
generates multimedia briefings from high-
level outlines. The system uses
summarization in content selection and
creation, and in helping form a coherent
narrative for the briefing. The approach does
not require a domain knowledge base.

1 I n t r o d u c t i o n

Document production is an important function in
many organizations. In addition to instruction
manuals, reports, courseware, system
documentation, etc., briefings are a very
common type of document product, often used
in slide form as a visual accompaniment to a
talk. Since so much time is spent by so many
people in producing briefings, often under
serious time constraints, any method to reduce
the amount of time spent on briefing production
could yield great gains in productivity.

Briefings involve a high degree of condensation
of information (e.g., no more than a few points,
perhaps bul,leted, per slide), and they typically
contain multimedia information. Many briefings
have a stereotypical structure, dictated in part by
the business rules of the organisation. For
example, a commander may present a daily or
weekly brief to her superiors, which is more in
the nature of a routine update of activities since
the last briefing; or she may provide an action
brief, which is triggered by a particular situation,
and which consists of a situation update
followed by arguments recommending a

particular course of action. Further, the process
of constructing a briefing may involve certain
stereotypical activities, including culling
information from particular sources, such as
messages, news, web pages, previous briefings,
etc. Thus, while part of the briefing content may

be created anew by the briefing author 1, other
parts of the briefing may be constructed from
existing information sources. However,
information in those sources need not
necessarily be in the same form as needed by the
briefing.

All these characteristics of briefings make them
attractive as an application of automatic
summarization, which is aimed at producing a
condensed, task-tailored representation of salient
content in information sources. Often, the
background information being used in a slide is
quite considerable; the author needs to identify
what's salient, presenting it in a succinct manner
so as to fit on the slide, perhaps creating a
graphic or other multimedia clip to do so.
Automatic summarization; by definition, has a
clear role to play here. A briefing usually
involves a sequence of slides; as the summary
becomes longer, it needs to form a coherent
narrative, built around the prescribed structure.
Finally, a briefing must strive, to the extent
possible, to be persuasive and vivid, so that the
point gets across. This in turn presents a further
challenge for summarization: the ability to
generate smoothly narrated, coherent
summaries.

I The noun "author" is used throughout the paper to
designate a human author.

_ 9 9

It is therefore worthwhile investigating whether
combining automatic summarization with
intelligent multimedia presentation techniques
can make the briefing generation amenable to
full automation. In other words, the author
should be able to use a computer program to
generate an initial briefing, which she can then
edit and revise as needed. The briefing can then
be presented by the author if desired, or else
directly by the computer (particularly useful if
the briefing is being sent to someone else). The
starting point for this process would be a high- "
level outline of the briefing on the part of the
author. The outline would include references to
particular information sources that had to be,
summarized in particular ways. If a program
were able to take such outlines and generate
briefings which didn't require extensive post-
editing to massage into a state deemed
acceptable for the task at hand, the program
could be regarded as a worthwhile time saving
tool.

2 Approach

Our work forms part of a larger DARPA-funded
project aimed at improving analysis and
decision-making in crisis situations by providing
tools that allow analysts to collaborate to
develop structured arguments in support of
particular conclusions and to help predict likely
future scenarios. These arguments, along with
background evidence, are packaged together as
briefing s to high-level decision-makers. In
leveraging automatic methods along the lines
suggested above to generate briefings, our
approach needs to allow the analyst to take on as
much of the briefing authoring as she wants to
(e.g., it may take time for her to adapt to or trust
the machine, or she may want the machine to
present just part of the briefing). The analyst's
organisation usually will instantiate one of
several templates dictating the high-level
structure of a briefing; for example, a briefing
may always have to begin with an executive
summary. The summarization methods also need
to be relatively domain-independent, given that
the subject matter of crises are somewhat
unpredictable; an analyst in a crisis situation is
likely to be inundated with large numbers of
crisis-related news and intelligence reports from
many different sources. This means that we

cannot require that a domain knowledge base be
available to help the briefing generation process.

Given these task requirements, we have adopted
an approach that is flexible about
accommodating different degrees of author
involvement, that is relatively neutral about the
rhetorical theory underlying the briefing
structure (since a template may be provided by
others), and that is domain-independent. In our
approach, the author creates the briefing outline,
which is then fleshed out further by the system
based on information in the outline. The system
fills out some content by invoking specified
summarizers; it also makes decisions, when
needed, about output media type; it introduces
narrative elements to improve the coherence of
the briefing; and finally, it assembles the final
presentation, making decisions about spatial
layout in the process.

A briefing is represented as a tree. The structure
of the tree represents the rhetorical structure of
the briefing. Each node has a label, which offers
a brief textual description of the node. Each leaf
node has an associated goal, which, when
realized, provides content for that node. There
are two kinds of goals: content-level goals and
narrative-level goals. Content-level goals are
also of two kinds: retrieve goals, which retrieve
existing media objects of a particular type (text,
audio, image, audio, video) satisfying some
description, and create goals, which create new
media objects of these types using programs
(called summarization filters). Narrative-level
goals introduce descriptions of content at other
nodes: they include captions and running text for
media objects, and segues, which are rhetorical
moves describing a transition to a node.

Ordering relations reflecting temporal and
spatial layout are defined on nodes in the tree.
Two coarse-grained relations, seq for
precedence, and par for simultaneity, are used to
specify a temporal ordering on the nodes in the
tree. As an example, temporal constraints for a
(tiny) tree of 9 nodes may be expressed as:

<ordering> <seq>
<par>7</par>
<par>8</par>
<par>3</par>
<par>4 5</par>
<par>6</par>

100

<par>l 9</par>
<par>2</par>

</seq> </ordering>

The tree representation, along with the temporal
constraints, can be rendered in text as XML; we
refer to the XML representation as a script.

@

Player i~

User
Interface

~ Tem~t~

r I Vail dator [

Co
Cr~ ~

C~ound ~ t

ixe utor I

XMI1 resentati.on [
~k~ Generator / ,

' Brid"mg
Generator

Figure 1: System Architecture

The overall architecture of our system is shown
in Figure 1, The user creates the briefing outline
in the form of a script, by using a GUI. The
briefing generator takes the script as input. The
Script Validator applies an XML parser to the
script, to check for syntactic correctness. It then
builds a tree representation for the script, which
represents the briefing outline, with temporal
constraints attached to the leaves of the tree.

Next, a Content Creator takes the input tree and
expands it by introducing narrative-level goals
including segues to content nodes, and rtmning
text and captions describing media objects at
content nodes. Running text and short captions
are generated from meta-information associated
with media objects, by using shallow text
generation methods (canned text). The end result
of content selection (which has an XML
representation callod a ground script) is that the
complete tree has been fully specified, with all

the create and retrieve goals fully specified ,
with all the output media types decided. The
Content Creator is thus responsible for both
content selection and creation, in terms of tree
structure and node content.

Then, a Content Executor executes all the create
and retrieve goals. This is a very simple step,
resulting in the generation of all the media
objects in the presentation, except for the audio
files for speech to be synthesized. Thus, this step
results in realization of the content at the leaves
of the tree.

Finally, the Presentation Generator takes the
tree which is output from Content Execution,
along with its temporal ordering constraints, and
generates the spatial layout of the presentation.
I f no spatial layout constraints are specified (the
default is to not specify these), the system
allocates space using a simple method based on
the temporal layout for nodes which have spatial
manifestations. Speech synthesis is also carried
out here. Once the tree is augmented with spatial
layout constraints, it is translated by the
Presentation Generator into SMIL 2
(Synchronized Multimedia Integration
Language) (SMIL 99), a W3C-developod
extension of HTML that can be played by
standard multimedia players (such as Real 3 and
Grins 4. This step thus presents the realized
content, synthesizing it into a multimedia
presentation laid out spatially and temporally.

This particular architecture, driven by the above
project requirements, does not use planning as
an overall problem-solving strategy, as planning
requires domain knowledge. It therefore differs
from traditional intelligent multimedia
presentation planners, e.g., (Wahlster etal. 93).
Nevertheless, the system does make a number o f
intelligent decisions in organizing and
coordinating presentation decisions. These are
discussed next, after which we turn to the main
point of the paper, namely the leveraging of
summarization in automatic briefing generation.

2 h. ttp://www.w3.org/AudioVideo/
3 www.real.com
4 www.oratrix.com

_ J

101

3 Intelligent Multimedia Presentation
Generation

The author of a briefing may choose to flesh out
as little of the tree as desired, with the caveat
that the temporal ordering relations for non-
narrative nodes need to be provided by her.
When a media object is generated at a node by a
create goal, the running text and captions are
generated by the system. The motivation for this
is obvious: when a summarization filter (which
is a program under our control) is generating a
media object, we can often provide sufficient
recta-information about that object to generate a
short caption and some running text. By default,
all segues and spatial layout relations are also
specified by the system, so the author does not
have to know about these unless she wants to.
Finally, the decision as to when to produce
audio, when not specified by the author, is left to
the system.

When summarization filters are used (for create
goals), the media type of the output is specified
as a parameter to the filter. This media type may
be converted to some other type by the system,
e.g., text to speech conversion using Festival
(Taylor et al. 98). By default, all narrative nodes
attempt to realize their goals as a speech media
type, using rules based on text length and
tnmcatability to less than 250 bytes to decide
when to use text-to-speech. The truncation
algorithm is based on dropping syntactic
constituents, using a method similar to (Mani et
al. 99). Captions are always realized, in addition,
as text (i.e., they have a text realization and a.
possible audio realization).

Spatial layout is decided in the Presentation
Generator, after all the individual media objects
are created along with their temporal constraints
by the Content Executor. The layout algorithm
walks through the temporal ordering in
sequence, allocating a segment to each set of
objects that is designated to occur
simultaneously (grouped by par in the temporal
constraints). Each segment can have up to 4
frames, in each of which a media object is
displayed (thus, no more than 4 media objects
can be displayed at the same time). Since media
objects declared to be simultaneous (using par)
in the temporal constraints will go together in a

separate segment, the temporal constraints
determine what elements are grouped together in
a segment. The layout within a segment handles
two special cases. Captions are placed directly
undemeath their associated media object.
Running text, when realized as text, is placed
beside the media object being described, so that
they are paired together visually. Thus,
coherence of a segment is influenced mainly by
the temporal constraints (which have been
fleshed out by the Content Creator to include
narrative nodes), with further handling of special
cases. Of course, an individual summarization
filter may choose to coordinate component
multimedia objects in particular ways in the
course of generating a composite multimedia
object.

Details such as duration and onset of particular
frames are specified in the translation to SMIL.
Duration is determined by the number of frames
present in a segment, unless there is an audio
media object in the segment (this media object
may have a spatial representation, e.g., as an
audio icon, or it may not). If an audio media
object occurs in a frame, the duration of all
media objects in that frame is equal to the length
of all the audio files in the segment. If there is
no audio present in a segment, the duration is ot
seconds (or has a default value of 5) times the
number of frames created.

4 Summarization Filters

As mentioned above, create goals are satisfied
by summarization filters, which create new
media objects summarizing information sources.
These programs are called summarization filters
because in the course of condensing information,
they take input information and turn it into some
more abstract and useful representation, filtering
out unimportant information. Such filters
provide a novel way of carrying out content
selection and creation for automated
presentation generation.

Our approach relies on component-based
software composition, i.e., assembly of software
units that have contractually specified interfaces
that can be independently deployed and reused.
The idea of assembling complex language
processing programs out of simpler ones is

102

hardly new; however, by employing current
industry standards to specify the interaction
between the components, we simultaneously
increase the robustness of the system, ensure the
reusability of individual components and create
a more fully plug-and-play capability. Among
the core technology standards that support this
plug-and-play component assembly capability
are (a) Java interfaces, used to specify functions
that all summarization components must
implement in order to be used in the system, (b)
the JavaBeans standard, which allows the
parameters and methods of individual
components to be inspected by the system and
revealed to the users (c) the XML markup
standard, which we have adopted as an inter-
component communication language. Using
these technologies, legacy or third-party
summarizers are incorporated into the system by
"wrapping" them so as to meet the interface
specification of the system. These technologies
also make possible a graphical environment to
assemble and configure complex summarization
filters from individual summarization
components.

Among the most important wins over the
traditional "piping" approach to filter assembly
is the ability to impose build-time restrictions on
the component assembly, disallowing "illegal"
compositions, e.g. component X cannot provide
input to component Y unless X's output type
corresponds to Y's input type. Build-time
restrictions such as these play a clear role in
increasing the overall robustness of the run-time
summarization system. Another build-time win
lies in the ability of JavaBeans to be serialized,
i.e., written to disk in such a way as to preserve
~he state of its parameters settings, ensuring that
every component in the system can be
configured and run at different times
independently of whether the component
provides a parameter file facility.

Establishing the standard functions required of a
summarization filter is challenging on several
fronts. One class of functions required by t h e
interface is necessary to handle the technicalities
of exchanging information between otherwise
discrete components. This set includes
functions for discovering a component's input
and output types, for handling messages,
exceptions and events passed between

components and for interpreting XML based on
one or more system-wide document type
definitions (DTDs). The other, more interesting
set of functions gets to the core of
summarization functionality. Selecting these
functions involves identifying parameters likely
to be broadly applicable across most or all
summarizers and finding ways to group them
and/or to generalize them. This is desirable in
order to reduce the burden on the end user of
understanding the subtle differences between the
various settings in the summarizers available to
her.

An. example of the difficulty inherent in this
endeavor is provided by the compression
(summary length divided by source length) vs.
reduction (l's complementof compression) vs.
target length paradigm. Different summarizers
will implement one or more of these. The
wrapper maps from the high-level interface
function, where the application/user can specify
either compression or target length, but not both,
to the individual summarizer's representation.
Thus, a user doesn't need to know which
representation(s) a particular summarizer uses
for reduction/compression.

A vanilla summarization Bean includes the
following functionality, which every summarizer
must be able to provide methods for:

source: documents to be summarized
(this can be a single document, or a
collection)
reduction-rate: either summary
size/source size, or target length
audience: user-focused or generic
(user-focused requires the specification
of a bag of terms, which can be of
different types)
output-type: specific data formats
(specified by DTDs)

The above are parameters which we expect all
summarizers to support. More specialized
summarizer beans can be constructed to reflect
groupings of summarizers. Among other
parameters are output-fluency, which specifies
whether a textual summary is to be made up of
passages (sentences, paras, blocks), named
entities, lists of words, phrases, or topics, etc.
Given that definitions of summarization in more

1 0 3

theoretical terms have not been entirely
satisfactory (Mani 2000), it is worth noting that
the above vanilla Bean provides an operational
definition of what a summarizer is.

text, and segues. The captions and running text,
when not provided by the filters, are provided by
the script input. In the case of retrieve goals, the
objects may not have any meta-information, in
which case a default caption and running-text is
generated. Clearly, a system's explanatory
narrative will be enhanced by the availability of
rich meta-information.

The segues are provided by the system. For
example, an item with a label "A biography of
bin Laden" could result in a generated segue
"Here is a biography o f bin Laden". The
Content Creator, when providing content for
narrative nodes, uses a variety o f different
canned text patterns. For the above example, the
pattern would be "Here is @6.label", where 6 is
the number of a non-narrative node, with label
being its label.

Figure 2: Summarization Filter
Composition

In addition to its practical utility in the ability to
assimilate, combine and reuse components in
different combinations, and to do so within a
GUI, this approach is interesting because it
allows powerful summarization functions to be
created by composing together simpler tools.
(Note that this is different from automatically
finding the best combination, which our system
does not address). For example, Figure 2
illustrates a complex filter created by using a
GUI to compose together a named entity
extractor, a date extractor, a component which
discovers significant associations between the
two and writes the result to a table, and a
visualizer which plots the results as a graph. The
resulting summarizer takes in a large collection
of documents, and produces as a summary a
graph (a jpeg) of salient named entity mentions
over time. Each of its components can be easily
reused within the filter composition system to
build other summarizers.

5 Narrative Summarization

Peru Action Brief
1 Preamble
2 Situation Assessment

2.1 Chronology of Events
2.1.2 Late st document summary

create C'summarize -generic
-compression. 1 ~peru~p32")

2.2 Biographies
2.2.1 Biography of Victor Polay

2.2.1.1 Picture of @2.2.2.percon
retrieve("]) Arawdata~,polay.jpg ")

2.2.1.2 Biography of @~2.2.2.person
create("summarize -bio -length 350

-span multi -person
@_~2.2.2.person -out table
/peru/* ")

3 Coda
"This briefing has aszessed aspects of the
situation in Peru. Overall, the crisis
appears to be worsening."

Figure 3: Input Script

As mentioned above, the system can construct a
narrative to accompany the briefing. Narrative
nodes are generated to cover captions, running

104

Peru Action Brief
1 Preamble

audio -- "ln this briefin~ 1 will go over
the @2.1abel. This ~¢ill cover
@2.1.1abel and @,2. 3.1.1aber"

2 Situation Assessment
2. l "An overvie~¢ of the ~2.2.label"

(Meta-2.2)
2.2 C-'hfonology of Events

2.2.1 audio = "Here is the @2.2.2.laber"
(1VIeta- 2.2.2)

2.2.2 text = "Latest document summary"
audio = text =
create ("automatize -generic

-compression .1/reru/p32")
2.3 Biographies

2.3.1 audio =
"A profile of @2. 3.2.person"
('NIeta-2.3.2)

2.3.2 Biography of Victor~olay
2.3.2.1 audio = text =

"A file photo of
@,2.3.2.person"
(Meta-2.3.2.2)

2.3.2.2 Picture of @,2.&2.person
image =
retrie ve("D Arawdata~polay.jpg")

2.3.2.3 audio = text =
"ProJile of @2. 3. 2.person"
(Meta- 2.3.2.3)

2.3.2.4 Biography of @2. 3.2.person
audio = text =
create(%-ummarize-bio -length 350

-span multi -person
@_r2.Z 2.person -out tab&
/rend* ")

3 Coda
audio = "This briefing has assessed
a~79ect~r o f the situation in Peru. Overall,
the crisis appears to be ~orr"ening."

<seq>

</seq>

<par> 1 </par>
<par>2.2.1 2.2.2</par>
<par>2.3.1 <lpar>
<par>2.3.2.1 2.3.2.2

2.3.2.3 2.3.2.4</par>
<par~3</par>

Figure 4: Ground Script

All segue nodes are by default generated
automatically by the system, based on node
labels. We always introduce a segue node at the
beginning of the presentation (called a preamble
node), which provides a segue covering the
"crown" of the tree, i.e., all nodes upto a
particular depth d from the root (d=2) are
marked with segue nodes. A segue node is also
produced at the end (called a coda). (Both
preamble and segue can of course be specified
by the author if desired).

For introducing intervening segue nodes, we use
the following algorithm based on the distance
between nodes and the height in the tree, We
traverse the non-narrative leaves of the tree in
their temporal order, evaluating each pair of
adjacent nodes A and B where A precedes B
temporally. A segue is introduced between
nodes A and B if either (a) the maximum of the
2 distances from A and B to their least common
ancestor is greater than 3 nodes or (b) the sum of
the 2 distances from A and B to the least
common ancestor is greater than 4 nodes. This is
less intrusive than introducing segues at random
or between every pair of successive nodes, and
appears to perform better than introducing a
segue at each depth of the tree.

6 An Example

We currently have a working version of the
system with a variety of different single and
multi-document summarization filters. Figure 3
shows an input script created by an author (the
scripts in Figure 3 and 4 are schematic
representations of the scripts, rather than the raw
XML). The script includes two create goals, one
with a single-document generic summarization
filter, the other with a multi-document user-
focused summarization filter. Figure 4 shows the
ground script which was created automatically
by the Content Creator component. Note the
addition of media type specifications, the
introduction of narrative nodes, and the
extension of the temporal constraints. The final
presentation generated is shown in Figure 5.
Here we show screen dumps of the six SMIL
segments produced, with the audio if any for
each segment indicated in this paper next to an
audio icon.

105

7 Status

The summarization filters have incorporated
several summarizers, including some that have
been evaluated in the DARPA SUMMAC
conference (Mani et al. 99-1). These carry out
both single-document and multi-document
summarization, and include a preliminary
biographical summarizer we have developed.
The running text for the biography table in the
second-last segment of Figure 5 is produced
from meta-information in the table XML
generated by the biographical summarizer. The
production method for running text uses canned
text which should work for any input table
conforming to that DTD.

The summarization filters are. being tested as
part of a DARPA situated test with end-users.
The briefing generator itself has been used
internally to generate numerous briefings, and
has been demonstrated as part of the DARPA
system. We also expect to carry out an
evaluation to assess the extent to which the
automation described here provides efficiency
gains in briefing production.

8 Related Work

There is a fair amount of work on automatic
authoring of multimedia presentations, e.g.,
(Wahlster et al. 93), (Dalai et al. 96), (Mittal et
al. 95), (Andre and Rist 97) 5. These efforts
differ from ours in two ways: first, unlike us,
they are not open-domain; and, second, they
don't use summarization components. While
such efforts are extremely sophisticated
compared to us in multimedia presentation
planning and fine-grained coordination and
synchronization capabilities, many of the
components used in those efforts are clearly
applicable to our work. For example, (Andre and
Rist 96) include methods for leveraging lifelike
characters in this process; these characters can
be leveraged in our work as well, to help
personify the computer narrator. In addition, our
captions, which are very short, rely on canned
text based on node labels in the initial script, or
based on shallow meta-information generated by

the summarization filter (in XML) along with
the created media object. (Mittal e t al. 95)
describe a variety of strategies for generation of
longer, more explanatory captions, some of
which may be exploited in our work by
deepening the level of recta-information, at least
for summarization components developed by us.

In our ability to leverage automatic
summarization, our work should be clearly
distinguished from work which attempts to
format a summary (from an XML
representation) into something akin to a
Powerpoint briefing, e.g., (Nagao and Hasida
98). Our work, by contrast, is focused on using
summarization in generating briefings from an
abstract outline.

9 Conclusion

We have described methods for leveraging
automatic summarization in the automatic
generation of multimedia briefings. This work
has taken an open-domain approach, in order to
meet the requirements of the DARPA
application we are involved with. We believe
there is a stronger role that NL generation can
play in the narrative aspects of our briefings,
which currently rely for the most part on canned
text. Our future work on description merging in
biographical summaries, and on introducing
referring expressions into the narrative nodes,
would in effect take advantage of more powerful
generation methods, without sacrificing open-
domain capabilities. This may require much
richer meta-information specifications than the
ones we currently use.

Finally, we have begun the design of the Script
Creator GUI (the only component in Figure l
remaining to be built). This will allow the author
to create scripts for the briefing generator
(instead of editing templates by hand), by laying
out icons for media objects in temporal order. A
user will be able to select a "standard" briefing
template from a menu, and then view it in a
briefing/template structure editor. The user can
then provide content by adding annotations to
any node in the briefing template. The user will
have a choice of saving the edit version in
template form, or in SMIL or possibly Microsoft
Powerpoint format.

106

I
I
I
I
I
i
I
I
I
I
I
I
I
I
I
I
I
I
I

Peru A c t i o n B r i e f ! ;!
• E x e e a d v ¢ S m m m u ' y

o H y p o t h e s i s

• S i t u a t i o n A s s e s s m m l :i
o E h r o m d o . e ~ o f]~','¢nls i i
o B i o g r a p h l e s :,~

• SWuctm-ed A ~ , m n e a t s :~
• .4J tentadve V i e w s ' i
• Der is ion , ~:i

.<e In this briefing I will go over the situation
assessment. This will cover an overview of the
chronology of events and a profile of Victor
Polay.

"e Next, a biography of Victor Polay.

::. Here is an overview of the chronology of
events.

I I III I II Illlll i

I : (3 q N - P e r u v i a n c e b e l ~ r e l e e t ~ e 2 b o , t a g e s - D e c . I S ~ h ~ i i
3; JUOOUC ZOO hOS~flge~ ~ . 1 ~ d tn51cle t h e h ~ 0 ~' Japeme:~e ::~
J t~ loan=edor B o c l h l = a k o k i , v h e c e T u p e c Jtz~l~u r e b e l = w e r e ~!

Victor Polay, also known as Comandante
Rolando, is the Tupac Amaru founder, a
Peruvian guerrilla commander, a former rebel
leader, and the Tupac Amaru rebels' top leader.
He studied in both France and Spain. His wife is
Rosa Polay and his mother is Otilia Campos de
Polay. His associates include Alan Garcia.

Here is the latest document summary.

This briefing has assessed aspects o f the
situation in Peru. Overall, the crisis appears to
be worsening.

Figure 5: Presentat ion

107

References

Andre, E. and Rist, T. (1997) Towards a New
Generation of Hypermedia Systems: Extending
Automated Presentation Design for Hypermedia.
L. Dybkjaer, ed., Proceedings of the Third Spoken
Dialogue and Discourse Workshop, Topics in
Natural Interactive Systems 1. The Maersk Me-
Kinney Moiler Institute for Production
Technology, Odense University, Denmark, pp. 10-
27.

Dalai, M., Feiner, S., McKeown, K., Pan, S., Zhou,
M., Hollerer, T., Shaw, J., Feng, Y., and Fromer, J.
(1996) Negotiation for Automated Generation of
Temporal MultimediaPresentations. Proceedings
of ACM Multimedia '96.

Mani, 1., Gates, B., and Bloedorn, E. (1999)
Improving Summaries by Revising Them.
Proceedings of the 37 ~ Annual Meeting of the
Association for Computational Lihguistics, College
Park, MD, pp. 558-565.

Mani, 1., Firmin, T., House, D., Klein, G., Sundheim,
B., and Hirschman, L. (1999) The TIPSTER
SUMMA C Tex t Summarization Evaluation.
Proceedings of EACL'99, Bergen, Norway, pp. 77-
85.

Mani, 1. (2000)Automatic Text Summarization. John
Benjamins Publishing Company. To appear.

Mittal, V., Roth, S., Moore, J., Mattis, J., and
Carenini, G. (1995) Generating Explanatory
Captions for Information Graphics. Proceedings of
the International Joint Conference on Artificial
Intelligence (IJCAr95), pp. 1276-1283.

Nagao, K. and K. Hasida, K. (1998) Automatic Text
Summarization Based on the Global Document
Annotation. Proceedings of COLING'98, Montreal,
pp. 917-921.

Power, R. and Scott, D. (1998) Multilingual"
Authoring using Feedback Texts. Proceedings of
COLING'98, Montreal, pp. 1053-1059.

Taylor, P., Black, A., and Caley, R. (1998) The
architecture of the Festival Speech Synthesis
System. Proceedings of the Third ESCA Workshop
on Speech Synthesis, Jenolan Caves, Australia, pp.
147-151.

Wahlster, W., Andre, E., Finkler, W., Profitlich, H.-
J., and Rist, T. (1993) Plan-Based Integration of
Natural Language and Graphics Generation. AI
Journal, 63.

108

I
l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

