
Evaluating text quality: judging output texts without a clear source

Abstract

We consider how far two attributes of
text quality commonly used in MT
evaluation – intelligibility and fidelity –
apply within NLG. While the former
appears to transfer directly, the latter
needs to be completely re-interpreted.
We make a crucial distinction between
the needs of symbolic authors and
those of end-readers. We describe a
form of textual feedback, based on a
controlled language used for specifying
software requirements that appears well
suited to authors’ needs, and an
approach for incrementally improving
the fidelity of this feedback text to the
content model.

1 Introduction

Probably the most critical questions that need to
be addressed when evaluating automatically
generated texts are: does the text actually say
what it’s supposed to say and is it fluent,
coherent, clear and grammatical? The answers to
these questions say something important about
how good the target texts are and — perhaps
more to the point — how good the system that
generated them is. There is no a priori reason
why the target texts should be any better or
worse when they result from natural language
generation (NLG) or from machine translation
(MT): indeed, they could result from the same
language generator. Given this, it may be natural
to assume that NLG could appropriately adopt
evaluation methods developed for its more

mature sister, MT. However, while this holds
true for issues related to intelligibility (the
second critical question), it does not apply as
readily to issues of fidelity (the first question).
We go beyond our recent experience of
evaluating the AGILE system for producing
multilingual versions of software user manuals
(Hartley, Scott et al., 2000; Kruijff et al., 2000)
and raise some open questions about how best to
evaluate the faithfulness of an output text with
respect to its input specification.

2 Evaluating intelligibility

The use of rating scales to assess the
intelligibility of MT output has been widespread
since the early days in the field. Typically,
monolingual raters assign a score to each
sentence in the output text. However, this does
not amount to an agreed methodology, since the
number of points on the scale and their
definition have varied considerably. For
example, Carroll (1966) used a nine-point scale
where point 1 was defined as “hopelessly
unintelligible” and point 9 as “perfectly clear
and intelligible”; Nagao and colleagues (Nagao
et al., 1985), in contrast, used a five-point scale,
while Arnold and his colleagues (Arnold et al.,
1994) suggest a four-point discrimination. In
evaluating the intelligibility of the AGILE output,
we asked professional translators and authors
who were native speakers of the languages
concerned—Bulgarian, Czech and Russian—to
score individual text fragments on a four-point
scale. The evaluators were also asked to give a
summative assessment of the output’s suitability
as the first draft of a manual.

In a single pass, AGILE is capable of
generating several types of text, each

Anthony Hartley and Donia Scott
Information Technology Research Institute,

University of Brighton
UK

{firstname.lastname}@itri.bton.ac.uk

constituting a section of a typical software user
manual—i.e., overview, short instructions, full
instructions, and functional descriptions—and
appearing in one of two styles (personal/direct
or impersonal/indirect). We evaluated all of
these text types using the same method. The
intelligibility evaluation was complemented by
an assessment of the grammaticality of the
output, conducted by independent native
speakers trained in linguistics. Following an
approach widely used in MT (e.g., Lehrberger
and Bourbeau, 1987), the judges referred to a
list of error categories for their annotations.

3 Evaluating fidelity

In MT, evaluating fidelity (or “accuracy”)
entails a judgment about the extent to which two
texts “say the same thing”. Usually, the two
texts in question are the source (i.e., original)
text and the (machine-)translated text and the
judges are expert translators who are again
invited to rate the relative information content of
pairs of sentences on an anchored scale (e.g.,
Nagao et al., 1985). But others (e.g., Caroll,
1966) have also compared the informativeness
of the machine translation and a human
translation deemed to serve as a benchmark.
Interestingly, both of these researchers found a
high correlation between the intelligibility
evaluations and the fidelity evaluations, which
suggests that it may be possible to infer fidelity
from the (less costly) evaluation of
intelligibility. However, at the current state-of-
the-art this approach does not guarantee to
detect cases where the translation is perfectly
fluent but also quite wrong.

For NLG, the story is rather different.
Lacking a source text, we are denied the
relatively straightforward approach of detecting
discrepancies between artifacts of the same type:
texts. The question is, instead, whether the
generated text “says the same thing” as the
message — i.e., the model of the intended
semantic content together with the pragmatic
force of the utterance.

The message is clearly only available
through an external representation. In translation
generally, this external representation is the
source text and the task is commonly
characterized as identifying the message —

which originates in the writer’s mental model —
in order to re-express it in the target language. In
an NLG system, the one external representation
that is commonly available is the particular
domain model that serves as input to the
generation system. This model may have been
provided directly by an artificial agent, such as
an expert system. Alternatively, it may have
been constructed by a human agent as the
intended instantiation of their mental model.
Yet, whatever its origins, directly comparing
this intermediate representation to the output
text is problematic.

A recent survey of complete NLG systems
(Cahill et al., 1999) found that half of the 18
systems examined accepted input directly from
another system1. A typical example is the
Caption Generation System (Mittal et al., 1998),
which produces paragraph-sized captions to
accompany the complex graphics generated by
SAGE (Roth et al., 1994). The input to generation
includes definitions of the graphical constituents
that are used to by SAGE to convey information:
“spaces (e.g., charts, maps, tables), graphemes
(e.g., labels, marks, bars), their properties (e.g.,
color, shape) and encoders—the frames of
reference that enable their properties to be
interpreted/translated back to data values (e.g.,
axes, graphical keys).”2 For obvious reasons,
this does not readily lend itself to direct
comparison with the generated text caption.

In the remaining half of the systems
covered, the domain model is constructed by the
user (usually a domain expert) through a
technique that has come to be known as
symbolic authoring: the ‘author’ uses a
specially-built knowledge editor to construct the
symbolic source of the target text. These editors
are interfaces that allow authors to build the
domain model using a representation that is
more ‘natural’ to them than the artificial
language of the knowledge base.3 The purpose
of these representations is to provide feedback
intended to make the content of the domain
model more available to casual inspection than
the knowledge representation language of the

1 By complete systems, we refer to systems that determine
both “what to say” and “how to say it”, taking as input a
specification that is not a hand-crafted simulation of some
intermediate representation.
2 Mittal et al., 1998, pg. 438.
3 See Scott, Power and Evans, 1998.

domain model. As such, they are obvious
candidates as the standard against which to
measure the content of the texts that are
generated from them.

We first consider the case of feedback
presented in graphical mode, and then the option
of textual feedback, using the WYSIWYM
technology (Power and Scott, 1998; Scott,
Power and Evans, 1998). We go on to make
recommendations concerning the desirable
properties of the feedback text.

4 Graphical representations of content

Symbolic authoring systems typically make use
of graphical representations of the content of the
domain model—for example, conceptual graphs
(Caldwell and Korelsky, 1994). Once trained in
the language of the interface, the domain
specialist uses standard text-editing devices such
as menu selection and navigation with a cursor,
together with standard text-editing actions (e.g.,
select, copy, paste, delete) to create and edit the
content specification of the text to be generated
in one or several selected languages.

The user of AGILE, conceived to be a
specialist in the domain of the particular
software for which the manual is required (i.e.,
CAD/CAM), models the procedures for how to
use the software. AGILE’s graphical user
interface (Hartley, Power et al., 2000) closely
resembles the interface that was developed for
an earlier system, DRAFTER, which generates
software manuals in English and French (Paris
et al., 1995). The design of the interface
represents the components of the procedures
(e.g., goals, methods, preconditions, sub-steps,
side-effects) as differently coloured boxes. The
user builds a model of the procedures for using
the software by constructing a series of nested
boxes and assigning labels to them via menus
that enable the selection of concepts from the
underlying domain ontology.

4.1 The input specification for the user
As part of our evaluation of AGILE, we asked 18
IT professionals4 to construct a number of
predetermined content models of various
degrees of complexity and to have the system

4 There were six for each of the three Eastern European
languages; all had some (albeit limited) experience of
CAD/CAM systems and were fluent speakers of English.

generate text from them in specified styles in
their native language. Since the evaluation was
not conducted in situ with real CAD/CAM
system designers creating real draft manuals, we
needed to find a way to describe to the
evaluators what domain models we wanted them
to build. Among the possible options were to
give them a copy of either:

• the desired model as it would appear to
them in the interface (e.g., Figure 1);

• the target text that would be produced
from the model (e.g., Figure 2);

• a ‘pseudo-text’ that described the model
in a form of English that was closer to
the language of the AGILE interface than
to fluent English (e.g., Figure 3).

Figure 1: Graphical display of content model

Figure 2: Target text

Figure 3: Pseudo-text input specification

We rejected the first option because it

amounted to a task of replication which could be
accomplished successfully even without users
having any real understanding of the meaning of

Draw a line by specifying its start and end points.

To draw a line
Specify the start point of the line.
Specify the end point of the line.

the model they were building. Therefore, it
would shed no light on how users might be able
to build a graphical model externalising their
own mental model.

We discarded the second because a text may
not necessarily make any explicit linguistic
distinction between different components of the
model—for example, between a precondition on
a method and the first step in a method
consisting of several steps5. Thus, in general,
target texts may not reflect every distinction
available in the underlying domain model
(without this necessarily causing any confusion
in the mind of the reader). As a result of such
underspecification, they are ill-suited to serving
as a staring point from which a symbolic author
could build a formal model.

We opted, then, for providing our evaluators
with a pseudo-text in which there was an
explicit and regular relationship between the
components of the procedures and their pseudo-
textual expression. Figure 4 is one of the
pseudo-texts used in the evaluation.

F

4.2
This p
of ju
betwe

5 For ex
make su
medium
pluck th
hours.”

We focused on (a), which was of course
mediated by (c); that is, we focused on the issue
of creating an accurate model. This is an easier
issue than that of the fidelity of the output text to
the model (b), while the representations in (d)
are too remote from one another to permit useful
comparison.

To measure the correspondence between the
actual models and the desired/target models, we
adopted the Generation String Accuracy (GSA)
metric (Bangalore, Rambow and Whittaker,
2000; Bangalore and Rambow, 2000) used in
evaluating the output of a NLG system. It
extends the simple Word Accuracy metric
suggested in the MT literature (Alshawi et al.,
1998), based on the string edit distance between
some reference text and the output of the
system. As it stands, this metric fails to account
for some of the special properties of the text
generation task, which involves ordering word
tokens. Thus, corrections may involve re-
ordering tokens. In order not to penalise a
misplaced constituent twice—as both a deletion
and an insertion—the generation accuracy
metric treats the deletion (D) of a token from
one location and its insertion (I) at another
location as a single movement (M). The
remaining deletions, insertions, and substitutions
(S) are counted separately. Generation accuracy
is given by the following equation, where R is
the number of (word) tokens in the reference
text.

��
�

�
�
�

� +++−=
R

SDIMAccuracyGeneration 1

Draw an arc
 First, start-tool the ARC command.

M1. Using the Windows
operating system: choose the 3
Points option from the Arc
flyout on the Draw toolbar.
M2. Using the DOS or UNIX
operating system:

choose the Arc option from
the Draw menu.
choose 3 Points option.

 Specify the start point of the arc.
igure 4: fragment of a typical pseudo-text

Evaluating the fidelity of the output
articular set-up afforded us the possibility
dging the fidelity of the ‘translation’
en the following representations:

a) desired model and model produced
b) model produced and output text
c) pseudo-text and model produced
d) pseudo-text and the output text

ample, between: “To cook a goose: Before starting,
re the goose has been plucked. Put the goose in a
 oven for 1.5 hours.” and “To cook a goose: First
e goose. Then put it in a medium oven for 1.5

For Bangalore and his colleagues, the
reference text is the desired text; it is a gold
standard given a priori by a corpus representing
the target output of the system. The generation
accuracy of a string from the actual output of the
system is computed on the basis of the number
of movements, substitutions, deletions and
insertions required to edit the string into the
desired form.

In our case, the correspondence was
measured between models rather than texts, but
we found the metric ‘portable’. The tokens are
no longer textual strings but semantic entities.
Although this method provided a useful
quantitative measure of the closeness of the fit
of the actual generated text to what was
intended, it is not without problems, some of

which apply irrespective of whether the metric is
applied to texts or to semantic models. For
example, it does not capture qualitative
differences between the generated object and the
reference object, that is, it does not distinguish
trivial from serious mistakes. Thus, representing
an action as the first step in a procedure rather
than as a precondition would have less impact
on the end-reader’s ability to follow the
instructions than would representing a goal as a
side-effect.6

5 Textual representations of content

Once the model they represent becomes
moderately complex, graphical representations
prove to be difficult to interpret and unwieldy to
visualise and manipulate (Kim, 1990; Petre,
1995). WYSIWYM offers an alternative, textual
modality of feedback, which is more intuitive
and natural. As we will discuss below, there is a
sense in which, in its current form, the feedback
text may be too natural.

5.1 Current status of WYSIWYM feedback
text

The main purpose of the text generated in
feedback mode, as currently conceived, is to
show the symbolic author the possibilities for
further expanding the model under development.

As with AGILE’s box representation,
clicking on a coloured ‘anchor’ brings up a
menu of legitimate fillers for that particular slot
in the content representation. Instantiating green
anchors is optional, but all red anchors must be
instantiated for a model to be potentially
complete (Figure 5). Once this is the case,
authors tend to switch to output mode, which
produces a natural text reflecting the specified
model and nothing else.

Figure 5: fragment of a typical feedback text

6 See Hartley et al (2000) for further discussion of this
issue and the results of the AGILE evaluation.

In WYSIWYM systems the same generator
is used to produce both the feedback and output
texts; this means that the feedback text can be as
fluent as the output text. In its current
instantiations, this is precisely what is produced,
even when the generator is capable of producing
texts of rather different styles for the different
purposes.7

5.2 Feedback in a controlled language
The motivation for generating a new type of
feedback text comes from two sources.

The first is the pseudo-texts that we
constructed by hand for the AGILE evaluation.
As far as the form of the models actually
constructed is concerned, they proved
consistently reliable guides for the symbolic
authors. Where they proved inadequate was in
their identification of multiple references to the
same domain model entity; several authors
tended to create multiple instances of an entity
rather than multiple pointers to a single instance.
Let us now turn from the testing scenario, where
authors have a defined target to hit, and consider
instead a production setting where the author is
seeking to record a mental model. It is a simple
matter to have the system generate a second
feedback text, complementing the present one,
this time in the style of the pseudo-texts8 for the
purpose of describing unambiguously, if
rebarbatively, the state of a potentially complete
model.

The second is Attempto Controlled English
(ACE: Fuchs and Schwitter, 1996; Fuchs,
Schwertel and Schwitter, 1999), which allows
domain specialists to interactively formulate
software requirements specifications. The
specialists are required to learn a number of
compositional rules which they must then apply
when writing their specifications. These are
parsed by the system.

For all sentences that it accepts, the system
creates a paraphrase (Figure 6) that indicates its
interpretations by means of brackets. These
interpretations concern phenomena like
anaphoric reference, conjunction and
disjunction, attachment of prepositional phrases,
relative clauses and quantifier scope. The user

7 As, for example, in the ICONOCLAST system (see
http://www.itri.bton.ac.uk/projects/iconoclast).
8 Modulo the reference problems, for which a solution is
indicated below

1. Do <red>this action</red> by using
<green>this method</green>.

2. Schedule <red>this event</red> by
using <green>this method</green>.

3. Schedule the appointment by using
<green>this method</green>.

either accepts the interpretation or rephrases the
input to change it.

Figure 6: ACE paraphrases

The principle of making interpretations

explicit appears to be good one in the NLG
context too, especially for the person
constructing the domain model. Moreover, in
the context where the output text is required to
be in a controlled language, the use of
WYSIWYM relieves the symbolic author of the
burden of learning the specialized writing rules
of the given control language.

Optimising the formulation of the controlled
language feedback is matter of iteratively
revising it via the testing scenario, using GSA as
the metric, until authors consistently achieve
total fidelity of the models they construct with
the reference models.

6 Conclusions

So how can go about judging whether the
products of NLG systems express the intended
message? A first step towards this goal is to
enable symbolic authors to satisfy themselves
that they have built the domain model they had
in mind. Graphical feedback is too difficult to
interpret, while natural language output that is
optimised for the end-reader may not show the
unequivocal fidelity to the domain model that
the symbolic author requires.

We have suggested that textual feedback in
a form close to a controlled language used for
specifying software requirements is a good
candidate for this task. We have further outlined
a method for incrementally refining this
controlled language by monitoring symbolic
authors’ ability to construct reference domain
models on the basis of controlled language
feedback. The trade-off between transparency
and naturalness in the output text intended for

the end-reader will involve design decisions
based on, among other things, reader profiling.
Assessing the fidelity of the end-reader text to
the model is also a necessary step, but not one
that can be conflated with or precede that of
validating the accuracy of the model with
respect to the author’s intentions.

Acknowledgements
The work described in the paper has been

supported by EC INCO-COPERNICUS project
PL961104 AGILE “Automatic generation of
Instructions in Languages of Eastern Europe”.
The authors express their gratitude to all the
partners of, and participants in, the AGILE
project, upon whose work this paper reports.

References
Alshawi, H., Bangalore, S. and Douglas, S. (1998).

Automatic acquisition of hierarchical transduction
models for machine translation. Proceedings of the
36th Annual Meeting of the Association for
Computational Linguistics and the 17th
International Conference on Computational
Linguistics (COLING-ACL’98), Montreal,
Canada, pp. 41 – 47

Arnold, D., Balkan, L., Lee Humphreys, R., Meijer,
S. and Sadler, L. (1994). Machine translation: an
introductory guide. Blackwell.

Bangalore, S. and Rambow, O. (2000). Exploiting a
Hierarchical Model for Generation. Proceedings of
the 18th International Conference on
Computational Linguistics (COLING’2000),
Saarbruecken, Germany, pp. 42 – 48.

Bangalore, S., Rambow, O. and Whittaker, S. (2000).
Evaluation Metrics for Generation. Proceedings of
the 1st International Conference on Natural
Language Generation, Mitzpe Ramon, Israel, pp. 1
– 8.

Cahill, L., Doran, C., Evans, R., Mellish, C., Paiva,
D., Reape, M., Scott, D. and Tipper, N. (1999). In
search of a reference architecture for NLG
systems. Proceedings of the 7th European
Workshop on Natural Language Generation
(EWNLG'99), Toulouse, France, pp 77 – 85.

Caldwell, T. and Korelsky, T. (1994). Bilingual
generation of job descriptions from quasi-
conceptual forms. Proceedings of the Fourth
Conference on Applied Natural Language
Processing (ANLP’94), pp. 1 – 6.

Input:
The customer enters a card and a numeric personal
code. If it is not valid then SM rejects the card.

Paraphrase:
The customer enters a card and [the customer
enters] a numeric personal code. If [the personal
code] is not valid then [SimpleMat] rejects the card.

Carroll, J.B. (1966). An experiment in evaluating the
quality of translations. In J. Pierce. Language and
machines: computers in translation and
linguistics. Report by the Automatic Language
Processing Advisory Committee (ALPAC).
Publication 1416. National Academy of Sciences
National Research Council, pp. 67 – 75.

Fuchs, N.E. and Schwitter, R. (1996). Attempto
Controlled English (ACE). Proceedings of the 1st
International Workshop on Controlled Language
Applications (CLAW’96), Leuven, Belgium.

Fuchs, N.E., Schwertel, U. and Schwitter, R. (1999).
Attempto Controlled English (ACE) Language
Manual Version 3.0, Technical Report 99.03,
Department of Computer Science, University of
Zurich, August 1999.

Hartley, A., Power, R., Scott, D. and Varbanov, S.
(2000). Design specification of the user interface
for the AGILE final prototype. Deliverable INTF2
of INCO-COPERNICUS project PL961104
AGILE: “Automatic. Generation of Instructions in
Languages of Eastern Europe”. Available at
http://www.itri.bton.ac.uk.

Hartley, A., Scott, D., Kruijff-Korbayova, I., Sharoff,
S. et al. (2000). Evaluation of the final prototype.
Deliverable EVAL2 of INCO-COPERNICUS
project PL961104 AGILE: “Automatic. Generation
of Instructions in Languages of Eastern Europe”.
Available at http://www.itri.bton.ac.uk.

Kim, Y. (1990). Effects of conceptual data modelling
formalisms on user validation and analyst
modelling of information requirements. PhD
thesis, University of Minnesota.

Kruijff, G-J., Teich, E., Bateman, J., Kruijff-
Korbayova, I. et al. (2000). Multilinguality in a
text generation system for three Slavic languages.
Proceedings of the 18th International Conference
on Computational Linguistics (COLING’2000),
Saarbruecken, Germany, pp. 474 – 480.

Lehrberger, J. & Bourbeau, L. (1987) Machine
translation: linguistic characterisitics of MT
systems and general methodology of evaluation.
John Benjamins.

Mittal, V.O, Moore, J., Carenini, G. and Roth, S.
(1998). Describing Complex Charts in Natural
Language: A Caption Generation System.
Computational Linguistics, 24(3), pp. 431 – 468.

Nagao, M. Tsujii, J. and Nakamura, J. (1985). The
Japanese government project for machine
translation. Computational Linguistics, 11(2-3),
pp. 91 – 109.

Paris, C., Vander Linden, K., Fischer, M., Hartley,
T., Pemberton, L., Power, R. and Scott, D. (1995).
A Support Tool for Writing Multilingual
Instructions. Proceedings of the Fourteenth
International Joint Conference in Artificial
Intelligence (IJCAI’95), pp. 1395 – 1404.

Petre, M. (1995). Why looking isn’t always seeing:
readership skills and graphical programming,
Communications of the ACM, 38(6), pp. 33 – 42.

Power, R. and Scott, D. (1998) Multilingual
Authoring Using Feedback Texts. Proceedings of
the 36th Annual Meeting of the Association for
Computational Linguistics and the 17th
International Conference on Computational
Linguistics, Montreal, Canada, pp. 1053 – 1059.

Roth, S.F., Kolojejchick, J., Mattis, J. and Goldstein,
J. (1994) Interactive graphics design using
automatic presentation knowledge. Proceedings
of CHI’94: Human Factors in Computing
Systems, Boston, M.A.

Scott, D.R., Power, R., and Evans, R. (1998)
Generation as a Solution to Its Own Problem.
Proceedings of the 9th International Workshop on
Natural Language Generation (INLG'98), Niagara-
on-the-Lake, Canada, pp. 256 –265.

