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Abstract 

This paper describes a method for “boot-
strapping” a Reinforcement Learning-
based dialog manager using a Wizard-of-
Oz trial.  The state space and action set 
are discovered through the annotation, 
and an initial policy is generated using a 
Supervised Learning algorithm.  The 
method is tested and shown to create an 
initial policy which performs significantly 
better and with less effort than a hand-
crafted policy, and can be generated using 
a small number of dialogs. 

1 Introduction and motivation 

Recent work has successfully applied Rein-
forcement Learning (RL) to learning dialog strat-
egy from experience, typically formulating the 
problem as a Markov Decision Process (MDP).  
(Walker et al., 1998; Singh et al., 2002; Levin et 
al., 2000). Despite successes, several open 
questions remain, especially the issue of how to 
create (or “bootstrap”) the initial system prior to 
data becoming available from on-line operation.  

This paper proceeds as follows.  Section 2 out-
lines the core elements of an MDP and issues re-
lated to applying an MDP to dialog management.  
Sections 3 and 4 detail a method for addressing 
these issues, and the procedure used to test the 
method, respectively.  Sections 5-7 present the re-
sults, a discussion, and conclusions, respectively.  

2 Background 

An MDP is composed of a state space, an action 
set, and a policy which maps each state to one ac-
tion.  Introducing a reward function allows us to 
create or refine the policy using RL.  (Sutton and 
Barto, 1998).  

When the MDP framework is applied to dialog 
management, the state space is usually constructed 
from vector components including information 
state, dialog history, recognition confidence, data-
base status, etc.  In most of the work to date both 
the state space and action set are hand selected, in 
part to ensure a limited state space, and to ensure 
training can proceed using a tractable number of 
dialogs.  However, hand selection becomes im-
practical as system size increases, and automatic 
generation/selection of these elements is currently 
an open problem, closely related to the problem of 
exponential state space size.  

3 A method for bootstrapping RL-based 
systems 

Here we propose a method for “bootstrapping” an 
MDP-based system; specifically, we address the 
choice of the state representation and action set, 
and the creation of an initial policy. 

3.1 Step 1: Conduct Wizard-of-Oz dialogs 

The method commences with “talking wizard” 
interactions in which either the wizard’s voice is 
disguised, or a Text-to-speech engine is used. We 
choose human/wizard rather than human/human 
dialogs as people behave differently toward (what 
they perceive to be) machines and other people as 
discussed in Jönsson and Dahlbick, 1988 and also 
validated in Moore and Browning, 1992. The dia-
log, including wizard’s interaction with back-end 
data sources is recorded and transcribed. 

3.2 Step 2: Exclude out-of-domain turns 

The wizard will likely handle a broader set of re-
quests than the system will ultimately be able to 
cover; thus some turns must be excluded.  Step 2 
begins by formulating a list of tasks which are to 
be included in the final system’s repertoire; turns 
dealing with tasks outside this repertoire are la-
beled out-of-domain (OOD) and excluded. 



This step takes an approach which is analogous 
to, but more simplistic than “Dialogue Distilling” 
(Larsson et al., 2000) which changes, adds and re-
moves portions of turns or whole turns.  Here rules 
simply stipulate whether to keep a whole turn. 

3.3 Step 3: Enumerate action set and state 
space 

Next, the in-domain turns are annotated with dia-
log acts.  Based on these, an action set is enumer-
ated, and a set of state parameters and their 
possible values to form a vector describing the 
state space is determined, including: 

• Information state (e.g., departure-city, arri-
val-city) from the user and database. 

• The confidence/confirmation status of in-
formation state variables. 

• Expressed user goal and/or system goal. 

• Low-level turn information (e.g., yes/no re-
sponses, backchannel, “thank you”, etc.). 

• Status of database interactions (e.g., when a 
form can be submitted or has been returned). 

A variety of dialog-act tagging taxonomies ex-
ist in the literature.  Here we avoid a tagging sys-
tem that relies on a stack or other recursive 
structure (for example, a goal or game stack) as it 
is not immediately clear how to represent a recur-
sive structure in a state space.  

In practice, many information state components 
are much less important than their corresponding 
confirmation status, and can be removed. 

Even with this reduction, the state space will be 
massive – probably too large to ever visit all states.  
We propose using a parameterized value function -
- i.e., a value function that shares parameters 
across states (including states previously unob-
served).  One special case of this is state tying, in 
which a group of states share the same value func-
tion; an alternative is to use a Supervised Learning 
algorithm to estimate a value function. 

3.4 Step 4: Form an initial policy 

For each turn in the corpus, a vector is created rep-
resenting the current dialog state plus the subse-
quent wizard action.  Taking the action as the class 
variable, Supervised Learning (SL) is used to build 
a classifier which functions as the initial policy. 

Depending on the type of SL algorithm used, it 
may be possible to produce a prioritized list of ac-
tions rather than a single classification; in this case, 
this list can form an initial list of actions permitted 
in a given state. 

As noted by Levin et al. (2000), supervised 
learning is not appropriate for optimizing dialog 
strategy because of the temporal/environmental 
nature of dialog.  Here we do not assert that the 
SL-learned policy will be optimal – simply that it 
can be easily created, that it will be significantly 
better than random guessing, and better and 
cheaper to produce than creating a cursory hand-
crafted strategy. 

3.5 Limitations of the method 

This method has several obvious limitations: 

• Because a talking, perfect-hearing wizard is 
used, no/little account is taken of the recog-
nition errors to be expected with automated 
speech recognition (ASR).   

• Excluding too much in Step 2 may exclude 
actions or state components which would 
have ultimately produced a superior system. 

4 Experimental design 

The proposed approach has been tested using the 
Autoroute corpus of 166 dialogs, in which a talk-
ing wizard answered questions about driving direc-
tions in the UK (Moore and Browning, 1992).   

A small set of in-domain tasks was enumerated 
(e.g., gathering route details, outputting summary 
information about a route, disambiguation of place 
names, etc.), and turns which did not deal with 
these tasks were labeled OOD and excluded.  The 
latter included gathering the caller’s name and lo-
cation (“UserID”), the most common OOD type. 

The corpus was annotated using an XML 
schema to provide the following: 

• 15 information components were created 
(e.g., from, to, time, car-type).  

• Each information component was given a 
status: C (Confirmed), U (Unconfirmed), 
and NULL (Not known).   

• Up to 5 routes may be under discussion at 
once – the state tracked the route under dis-



cussion (RUD), total number of routes (TR), 
and all information and status components 
for each route.  

• A component called flow tracked single-
turn dialog flow information from the caller 
(e.g., yes, no, thank-you, silence).  

• A component called goal tracked the (most 
recent) goal expressed by the user (e.g., 
plan-route, how-far).  Goal is empty 
unless explicitly set by the caller, and only 
one goal is tracked at a time.  No attempt is 
made to indicate if/when a goal has been 
satisfied.  

33 action types were identified, some of which 
take information slots as parameters (e.g., wh-
question, implicit-confirmation) . 

The corpus gave no indication of database in-
teractions other than what can be inferred from the 
dialog transcripts.  One common wizard action 
asked the caller to “please wait” when the wizard 
was waiting for a database response.  To account 
for this, we provided an additional state component 
which indicated whether the database was working 
called db-request, which was set to true 
whenever the action taken was please-wait 
and false otherwise.  Other less common database 
interactions occurred when town names were am-
biguous or not found, and no attempt was made to 
incorporate this information into the state represen-
tation. 

The state space was constructed using only the 
status of the information slots (not the values); of 
the 15, 4 were occasionally expressed (e.g., day of 
the week) but not used to complete the transaction 
and were therefore excluded from the state space.   
Two turns of wizard action history were also in-
corporated.  This formulation of the state space 
leads to approximately 1033 distinct states. 

For evaluation of the method, a hand-crafted 
policy of 30 rules mapping states to actions was 
created by inspecting the dialogs.1 

5 Results 

Table 1 shows in-domain vs. out-of-domain wizard 
and caller turns.  Figures 1 through 4 show counts 
of flow values, goal values, action values, and state 
                                                           
1 It was not clear in what situations some of the actions should 
be used, so some (rare) actions were not covered by the rules. 

components, respectively.  The most common ac-
tion type was “please-wait” (14.6% of actions). 

 
Turn 
type 

Total In  
domain 

OOD: 
User ID 

OOD: 
Other 

Wiz-
ard 

3155 
(100%)

2410 
(76.4%) 

594 
(18.8%) 

151 
(4.8%) 

Caller 2466 
(100%)

1713 
(69.5%) 

561 
(22.7%) 

192 
(7.8%) 

Table 1: In-domain and Out-of-domain (OOD) turns  
 

Criteria States Visits 
Visited only 
once 

1182  
(85.7%) 

1182  
(45.9%) 

Visited more 
than once 
without a con-
flict 

96  
(7.0%) 

353  
(13.7%) 

Visited more 
than once with 
conflict 

101 
(7.3%) 

1041  
(40.3%) 

TOTAL 1379  
(100%) 

2576  
(100%) 

Table 2: “Conflicts” by state and visits 
 

Estimated action probabilities  Visits 
p(action taken | state) > p(any 
other action | state) 

774 (74.3%) 

p(action taken | state) = p(one 
or more other actions | state) > 
p(all remaining actions | state) 

119 (11.4%) 

p(action taken | state) < 
p(another action | state) 

148 (14.2%) 

TOTAL 1041 (100%) 
Table 3: Estimated probabilities in “conflict” states 

 

Engine Class Precision 
Action-type only 72.7% jBNC 
Action-type & parameters 66.7% 
Action-type only 79.1% C4.5 
Action-type & parameters 72.9% 
Action-type only 58.4% Hand- 

craft Action-type & parameters 53.9% 
Table 4: Results from SL training and evaluation 
 

In some cases, the wizard took different actions 
in the same state; we labeled this situation a “con-
flict.” Table 2 shows the number of distinct states 
that were encountered and, for states visited more 
than once, whether conflicting actions were se-
lected.  Of states with conflicts, Table 3 shows 
probabilities estimated from the corpus.  



The interaction data was then submitted to 2 SL 
pattern classifiers – c4.5 using decision-trees 
(Quinlan, 1992) and jBNC using Naïve Bayesians 
(Sacha, 2003).  Table 4 shows both algorithms’ 10-
fold cross validation classification error rates 
classifying (1) the action type, and (2) the action 
type with parameters, as well as the results for the 
hand-crafted policy. 

Figure 5 show the 10-fold cross validation clas-
sification error rates for varying amounts of train-
ing data for the two SL algorithms classifying 
action-type and parameters. 

6 Discussion 

The majority of the data collected was “usable”: 
although 26.7% of turns were excluded, 20.5% of 
these were due to a well-defined task not under 
study here (user identification), and only 6.1% fell 
outside of designated tasks.  That said, it may be 
desirable to impose a minimum threshold on how 
many times a flow, goal, or action must be ob-
served before adding it to the state space or action 
set given the “long tails” of these elements.   
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Figure 1: Dialogs containing flow components 
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Figure 2: Dialogs containing goal components 

About half of the turns took place in states 
which were visited only once.  This confirms that 
massive amounts of data would be needed to ob-
serve all valid dialog states, and suggests dialogs 
do not confine themselves to familiar states. 

Within a given state, the wizard’s behavior is 
stochastic, occasionally deviating from an other-
wise static policy.  Some of this behavior results 
from database information not included in the cor-
pus and state space; in other cases, the wizard is 
making apparently random choices. 
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Figure 3: Dialogs containing action types 
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Figure 4: Dialogs containing information components 

 
Figure 5 implies that a relatively small number 

of dialogs (several hundred turns, or about 30-40 
dialogs) contain the vast majority of information 
relevant to SL algorithms – less than expected.  
Correctly predicting the wizard’s action in 72.9% 
of turns is significantly better than the 58.4% cor-
rect prediction rate from the handcrafted policy. 

When a caller allows the system to retain initia-
tive, the policy learned by the c4.5 algorithm han-
dled enquiries about single trips perfectly.  Policy 



errors start to occur as the user takes more initia-
tive, entering less well observed states. 

Hand examination of a small number of mis-
classified actions indicate that about half of the 
actions were “reasonable” – e.g., including an extra 
item in a confirmation.  Hand examination also 
confirmed that the wizard’s non-deterministic be-
havior and lack of database information resulted in 
misclassifications. 

Other sources of mis-classifications derived 
primarily from under-account of the user’s goal 
and other deficiencies in the expressiveness of the 
state space. 

7 Conclusion & future work 

This work has proposed a method for determining 
many of the basic elements of a RL-based spoken 
dialog system with minimal input from dialog de-
signers using a “talking wizard.”  The viability of 
the model has been tested with an existing corpus 
and shown to perform significantly better than a 
hand-crafted policy and with less effort to create. 

Future research will explore refining this ap-
proach vis-à-vis user goal, applying this method to 
actual RL-based systems and finding suitable 
methods for parameterized value functions 
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Figure 5: Classification errors vs. training samples for action-type & parameters 


