@inproceedings{yamada-matsumoto-2003-statistical,
    title = "Statistical Dependency Analysis with Support Vector Machines",
    author = "Yamada, Hiroyasu  and
      Matsumoto, Yuji",
    booktitle = "Proceedings of the Eighth International Conference on Parsing Technologies",
    month = apr,
    year = "2003",
    address = "Nancy, France",
    url = "https://aclanthology.org/W03-3023/",
    pages = "195--206",
    abstract = "In this paper, we propose a method for analyzing word-word dependencies using deterministic bottom-up manner using Support Vector machines. We experimented with dependency trees converted from Penn treebank data, and achieved over 90{\%} accuracy of word-word dependency. Though the result is little worse than the most up-to-date phrase structure based parsers, it looks satisfactorily accurate considering that our parser uses no information from phrase structures."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yamada-matsumoto-2003-statistical">
    <titleInfo>
        <title>Statistical Dependency Analysis with Support Vector Machines</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Hiroyasu</namePart>
        <namePart type="family">Yamada</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yuji</namePart>
        <namePart type="family">Matsumoto</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2003-04</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Eighth International Conference on Parsing Technologies</title>
        </titleInfo>
        <originInfo>
            <place>
                <placeTerm type="text">Nancy, France</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In this paper, we propose a method for analyzing word-word dependencies using deterministic bottom-up manner using Support Vector machines. We experimented with dependency trees converted from Penn treebank data, and achieved over 90% accuracy of word-word dependency. Though the result is little worse than the most up-to-date phrase structure based parsers, it looks satisfactorily accurate considering that our parser uses no information from phrase structures.</abstract>
    <identifier type="citekey">yamada-matsumoto-2003-statistical</identifier>
    <location>
        <url>https://aclanthology.org/W03-3023/</url>
    </location>
    <part>
        <date>2003-04</date>
        <extent unit="page">
            <start>195</start>
            <end>206</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Statistical Dependency Analysis with Support Vector Machines
%A Yamada, Hiroyasu
%A Matsumoto, Yuji
%S Proceedings of the Eighth International Conference on Parsing Technologies
%D 2003
%8 April
%C Nancy, France
%F yamada-matsumoto-2003-statistical
%X In this paper, we propose a method for analyzing word-word dependencies using deterministic bottom-up manner using Support Vector machines. We experimented with dependency trees converted from Penn treebank data, and achieved over 90% accuracy of word-word dependency. Though the result is little worse than the most up-to-date phrase structure based parsers, it looks satisfactorily accurate considering that our parser uses no information from phrase structures.
%U https://aclanthology.org/W03-3023/
%P 195-206
Markdown (Informal)
[Statistical Dependency Analysis with Support Vector Machines](https://aclanthology.org/W03-3023/) (Yamada & Matsumoto, IWPT 2003)
ACL