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1 Introduction

The “Meaning” system has been developed within
the framework of the Meaning European research
project1 . It is a combined system, which integrates
several supervised machine learning word sense
disambiguation modules, and several knowledge–
based (unsupervised) modules. See section 2 for de-
tails. The supervised modules have been trained ex-
clusively on the SemCor corpus, while the unsuper-
vised modules use WordNet-based lexico–semantic
resources integrated in the Multilingual Central
Repository (MCR) of the Meaning project (Atserias
et al., 2004).

The architecture of the system is quite simple.
Raw text is passed through a pipeline of linguis-
tic processors (tokenizers, POS tagging, named en-
tity extraction, and parsing) and then a Feature Ex-
traction module codifies examples with features ex-
tracted from the linguistic annotation and MCR.
The supervised modules have priority over the un-
supervised and they are combined using a weighted
voting scheme. For the words lacking training ex-
amples, the unsupervised modules are applied in a
cascade sorted by decreasing precision. The tuning
of the combination setting has been performed on
the Senseval-2 allwords corpus.

Several research groups have been providers of
resources and tools, namely: IXA group from the
University of the Basque Country, ITC-irst (“Is-
tituto per la Ricerca Scientifica e Tecnologica”),
University of Sussex (UoS), University of Alicante
(UoA), and TALP research center at the Technical
University of Catalonia. The integration was carried
out by the TALP group.

2 The WSD Modules

We have used up to seven supervised learning sys-
tems and five unsupervised WSD modules. Some
of them have also been applied individually to the

1Meaning, Developing Multilingual Web-scale Lan-
guage Technologies (European Project IST-2001-34460):
http://www.lsi.upc.es/ � nlp/meaning/meaning.html.

Senseval-3 lexical sample and allwords tasks.

� Naive Bayes (NB) is the well–known Bayesian
algorithm that classifies an example by choos-
ing the class that maximizes the product, over
all features, of the conditional probability of
the class given the feature. The provider of this
module is IXA. Conditional probabilities were
smoothed by Laplace correction.

� Decision List (DL) are lists of weighted clas-
sification rules involving the evaluation of one
single feature. At classification time, the algo-
rithm applies the rule with the highest weight
that matches the test example (Yarowsky,
1994). The provider is IXA and they also ap-
plied smoothing to generate more robust deci-
sion lists.

� In the Vector Space Model method (cosVSM),
each example is treated as a binary-valued fea-
ture vector. For each sense, one centroid vec-
tor is obtained from training. Centroids are
compared with the vectors representing test ex-
amples, using the cosine similarity function,
and the closest centroid is used to classify the
example. No smoothing is required for this
method provided by IXA.

� Support Vector Machines (SVM) find the hy-
perplane (in a high dimensional feature space)
that separates with maximal distance the pos-
itive examples from the negatives, i.e., the
maximal margin hyperplane. Providers are
TALP (SVM � ) and IXA (SVM 	 ) groups. Both
used the freely available implementation by
(Joachims, 1999), linear kernels, and one–vs–
all binarization, but with different parameter
tuning and feature filtering.

� Maximum Entropy (ME) are exponential
conditional models parametrized by a flexible
set of features. When training, an iterative opti-
mization procedure finds the probability distri-
bution over feature coefficients that maximizes
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the entropy on the training data. This system is
provided by UoA.

� AdaBoost (AB) is a method for learning an en-
semble of weak classifiers and combine them
into a strong global classification rule. We
have used the implementation described in
(Schapire and Singer, 1999) with decision trees
of depth fixed to 3. The provider of this system
is TALP.

� Domain Driven Disambiguation (DDD) is an
unsupervised method that makes use of do-
main information in order to solve lexical am-
biguity. The disambiguation of a word in
its context is mainly a process of compari-
son between the domain of the context and
the domains of the word’s senses (Magnini
et al., 2002). ITC-irst provided two variants
of the system DDD � and DDD ��� , aiming at
maximizing precision and F � score, respec-
tively. The UoA group also provided another
domain–based unsupervised classifier (DOM).
Their approach exploits information contained
in glosses of WordNet Domains and introduces
a new lexical resource “Relevant Domains” ob-
tained from Association Ratio over glosses of
WordNet Domains.

� Automatic Predominant Sense (autoPS) pro-
vide an unsupervised first sense heuristic for
the polysemous words in WordNet. This
is produced by UoS automatically from the
BNC (McCarthy et al., 2004). The method
uses automatically acquired thesauruses for the
main PoS categories. The nearest neighbors
for each word are related to its WordNet senses
using a WordNet similarity measure.

� We also used a Most Frequent Sense tagger,
according to the WordNet ranking of senses
(MFS).

3 Evaluation of Individual Modules

For simplicity, and also due to time constraints, the
supervised modules were trained exclusively on the
SemCor-1.6 corpus, intentionally avoiding the use
of other sources of potential training examples, e.g,
other corpora, WordNet examples and glosses, sim-
ilar/substitutable examples extracted from the same
Semcor-1.6, etc. An independent training set was
generated for each polysemous word (of a certain
part–of–speech) with 10 or more examples in the
SemCor-1.6 corpus. This makes a total of 2,440 in-
dependent learning problems, on which all super-
vised WSD systems were trained.

The feature representation of the training exam-
ples was shared between all learning modules. It
consists of a rich feature representation obtained
using the Feature Extraction module of the TALP
team in the Senseval-3 English lexical sample task.
The feature set includes the classic window–based
pattern features extracted from a local context and
the “bag–of–words” type of features taken from a
broader context. It also contains a set of features
representing the syntactic relations involving the
target word, and semantic features of the surround-
ing words extracted from the MCR of the Meaning
project. See (Escudero et al., 2004) for more details
on the set of features used.

The validation corpus for these classifiers was the
Senseval-2 allwords dataset, which contains 2,473
target word occurrences. From those, 2,239 occur-
rences correspond to polysemous words. We will
refer to this subcorpus as S2-pol. Only 1,254 words
from S2-pol were actually covered by the classifiers
trained on the SemCor-1.6 corpus. We will refer to
this subset of words as the S2-pol-sup corpus. The
conversion between WordNet-1.6 synsets (SemCor-
1.6) and WordNet-1.7 (Senseval-2) was performed
on the output of the classifiers by applying an auto-
matically derived mapping provided by TALP2.

Table 1 shows the results (precision and cover-
age) obtained by the individual supervised modules
on the S2-pol-sup subcorpus, and by the unsuper-
vised modules on the S2-pol subcorpus (i.e., we
exclude from evaluation the monosemous words).
Support Vector Machines and AdaBoost are the best
performing methods, though all of them perform in
a small accuracy range from 53.4% to 59.5%.

Regarding the unsupervised methods, DDD is
clearly the best performing method, achieving a re-
markable precision of 61.9% with the DDD � vari-
ant, at a cost of a lower coverage. The DDD ��� ap-
pears to be the best system for augmenting the cov-
erage of the former. Note that the autoPS heuristic
for ranking senses is a more precise estimator than
the WordNet most–frequent–sense (MFS).

4 Integration of WSD modules
All the individual modules have to be integrated in
order to construct a complete allwords WSD sys-
tem. Following the architecture described in section
1, we decided to apply the unsupervised modules
only to the subset of the corpus not covered by the
training examples. Some efforts on applying the
unsupervised modules jointly with the supervised
failed at improving accuracy. See an example in ta-
ble 3.

2http://www.lsi.upc.es/ � nlp/tools/mapping.html



supervised, S2-pol-sup corpus unsupervised, S2-pol corpus
SVM � AB cosVSM SVM � ME NB DL DDD � DDD ��� autoPS MFS DOM

prec. 59.5 59.1 57.8 57.1 56.3 54.6 53.4 61.9 50.2 45.2 32.5 23.8
cov. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 48.8 99.6 89.6 98.0 49.1

Table 1: Results of individual supervised and unsupervised WSD modules

As a first approach, we devised three baseline
systems (Base-1, Base-2, and Base-3), which use
the best modules available in both subsets. Base-1
applies the SVM � supervised method and the MFS
for the non supervised part. Base-2 applies also the
SVM � supervised method and the cascade DDD � –
MFS for the non supervised part (MFS is used in the
cases in which DDD � abstains). Base-3 shares the
same approach but uses a third unsupervised mod-
ule: DDD � –DDD ��� –MFS.

The precision results of the baselines systems can
be found in the right hand side of table 3. As it can
be observed, the positive contribution of the DDD �

module is very significant since Base-2 performs
2.2 points higher than Base-1. The addition of the
third unsupervised module (DDD � � ) makes Base-3
to gain 0.4 extra precision points.

As simple combination schemes we considered
majority voting and weighted voting. More sophis-
ticated combination schemes are difficult to tune
due to the extreme data sparseness on the valida-
tion set. In the case of unsupervised systems, these
combination schemes degraded accuracy because
the least accurate systems perform much worse that
the best ones. Thus, we simply decided to apply a
cascade of unsupervised modules sorted by preci-
sion on the Senseval-2 corpus.

In the case of the supervised classifiers there is a
chance of improving the global performance, since
there are several modules performing almost as well
as the best. Previous to the experiments, we cal-
culated the agreement rates on the outputs of each
pair of systems (low agreements increase the prob-
ability of uncorrelatedness between errors of differ-
ent systems). We obtained an average agreement of
83.17%, with values between 64.7% (AB vs SVM 	 )
and 88.4% (SVM 	 vs cosVSM).

The ensembles were obtained by incrementally
aggregating, to the best performing classifier, the
classifiers from a list sorted by decreasing accu-
racy. The ranking of classifiers can be performed
by evaluating them at different levels of granular-
ity: from particular words to the overall accuracy
on the whole validation set. The level of granularity
defines a tradeoff between classifier specialization
and risk of overfitting to the tuning corpus. We de-
cided to take an intermediate level of granularity,
and sorted the classifiers according to their perfor-

mance on word sets based on the number of training
examples available3 .

Table 2 contains the results of the ranking exper-
iment, by considering five word-sets of increasing
number of training examples: between 10 and 20,
between 21 and 40, between 41 and 80, etc. At each
cell, the accuracy value is accompanied by the rel-
ative position the system achieves in that particu-
lar subset. Note that the resulting orderings, though
highly correlated, are quite different from the one
derived from the overall results.

(10,20) (21,40) (41,80) (81,160) � 160
SVM � 60.9-1 59.1-1 64.2-2 61.1-2 56.4-1
AB 60.9-1 56.6-2 60.0-7 64.7-1 56.1-2
c-VSM 59.9-2 56.6-2 62.6-3 57.0-4 55.8-3
SVM � 50.8-5 55.1-4 61.6-4 57.4-3 53.1-5
ME 56.7-3 55.3-3 65.3-1 53.3-5 53.8-4
NB 59.9-2 54.6-5 61.1-5 49.2-6 51.5-7
DL 56.4-4 49.9-6 60.5-6 47.2-7 52.5-6

Table 2: Results on frequency–based word sets

Table 3 shows the precision results4 of the Mean-
ing system obtained on the whole Senseval-2 corpus
by combining from 1 to 7 supervised classifiers ac-
cording to the classifier orderings of table 2 for each
subset of words. The unsupervised classifiers are
all applied in a cascade sorted by precision. M-Vot
stands for a majority voting scheme, while W-Vot
refers to the weighted voting scheme. The weights
for the classifiers are simply the accuracy values on
the validation corpus. As an additional example,
the column M-Vot+ shows the results of the vot-
ing scheme when the unsupervised DDD � module
is also included in the ensemble. The table also in-
cludes the baseline results.

Unfortunately, the ensembles of classifiers did
not provide significant improvements on the final
precision. Only in the case of weighted voting a
slight improvement is observed when adding up to
3 classifiers. From the fourth classifier performance
also degrades. The addition of unsupervised sys-
tems to the supervised ensemble systematically de-
graded performance.

As a reference, the best result (67.5% precision

3One of the factors that differentiates between learning al-
gorithms is the amount of training examples needed to learn.

4Coverage of the combined systems is 98% in all cases.



M-Vot W-Vot M-Vot+ Base-1 Base-2 Base-3
1 67.3 67.3 66.4 – – –
2 – 67.4 66.3 – – –
3 67.2 67.5 67.1 – – –
4 – 67.1 66.9 – – –
5 66.5 66.5 66.7 – – –
6 – 66.3 66.3 – – –
7 65.7 65.9 66.0 – – –

best 67.3 67.5 67.1 64.8 67.0 67.4

Table 3: Results of the combination of systems

System prec. recall F �
Meaning-c 61.1% 61.0% 61.05
Meaning-wv 62.5% 62.3% 62.40

Table 4: Results on the Senseval-3 test corpus

and 98.0% coverage) would have put our combined
system in second place in the Senseval-2 allwords
task.

5 Evaluation on the Senseval-3 Corpus
The Senseval-3 test set contains 2,081 target words,
1,851 of them polysemous. The subset covered by
the SemCor-1.6 training contains 1,211 target words
(65.42%, compared to the 56.0% of the Senseval-2
corpus). We submitted the outputs of two different
configurations of the Meaning system: Meaning-
c and Meaning-wv. These systems correspond to
Base-3 and W-Vot (in the best configuration) from
table 3, respectively. The results from the official
evaluation are given in table 4. Again, we applied an
automatic mapping from WordNet-1.6 to WordNet-
1.7.1 synset labels. However, there are senses in
1.7.1 that do not exist in 1.6, thus our system sim-
ply cannot assign them.

It can be observed that, even though on the tun-
ing corpus both variants obtained very similar pre-
cision (67.4 and 67.5), on the test set the weighted
voting scheme is clearly better than the baseline sys-
tem, probably due to the robustness achieved by the
ensemble. The performance decrease observed on
the test set with respect to the Senseval-2 corpus is
very significant ( � 5 points). Given that the baseline
system performs worse than the voted approach, it
seems unlikely that there is overfitting during the
ensemble tuning. However, we plan to repeat the
tuning experiments directly on the Senseval-3 cor-
pus to see if the same behavior and conclusions
are observed. Probably, the decrease in perfor-
mance is due to the differences between the train-
ing and test corpora. We intend to investigate the
differences between SemCor-1.6, Senseval-2, and
Senseval-3 corpora at different levels of linguistic
information in order to check the appropriateness of

using SemCor-1.6 as the main information source.
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