
Sentence Compression for Automated Subtitling: A Hybrid Approach

Vincent Vandeghinste and Yi Pan
Centre for Computational Linguistics

Katholieke Universiteit Leuven
Maria Theresiastraat 21

BE-3000 Leuven
Belgium

vincent.vandeghinste@ccl.kuleuven.ac.be, yi.pan@ccl.kuleuven.ac.be

Abstract

In this paper a sentence compression tool is de-
scribed. We describe how an input sentence gets
analysed by using a.o. a tagger, a shallow parser
and a subordinate clause detector, and how, based
on this analysis, several compressed versions of this
sentence are generated, each with an associated es-
timated probability. These probabilities were esti-
mated from a parallel transcript/subtitle corpus. To
avoid ungrammatical sentences, the tool also makes
use of a number of rules. The evaluation was done
on three different pronunciation speeds, averaging
sentence reduction rates of 40% to 17%. The num-
ber of reasonable reductions ranges between 32.9%
and 51%, depending on the average estimated pro-
nunciation speed.

1 Introduction

A sentence compression tool has been built with
the purpose of automating subtitle generation for
the deaf and hard-of-hearing. Verbatim transcrip-
tions cannot be presented as the subtitle presentation
time is between 690 and 780 characters per minute,
which is more or less 5.5 seconds for two lines (ITC,
1997), (Dewulf and Saerens, 2000), while the aver-
age speech rate contains a lot more than the equiva-
lent of 780 characters per minute.

The actual amount of compression needed de-
pends on the speed of the speaker and on the amount
of time available after the sentence. In documen-
taries, for instance, there are often large silent in-
tervals between two sentences, the speech is often
slower and the speaker is off-screen, so the avail-
able presentation time is longer. When the speaker
is off-screen, the synchrony of the subtitles with
the speech is of minor importance. When subti-
tling the news the speech rate is often very high
so the amount of reduction needed to allow the
synchronous presentation of subtitles and speech is
much greater. The sentence compression rate is a
parameter which can be set for each sentence.

Note that the sentence compression tool de-

scribed in this paper is not a subtitling tool. When
subtitling, only when a sentence needs to be re-
duced, and the amount of reduction is known, the
sentence is sent to the sentence compression tool.
So the sentence compression tool is a module of an
automated subtitling tool. The output of the sen-
tence compression tool needs to be processed ac-
cording to the subtitling guidelines like (Dewulf and
Saerens, 2000), in order to be in the correct lay-out
which makes it usable for actual subtitling. Manu-
ally post-editing the subtitles will still be required,
as for some sentences no automatic compression is
generated.

In real subtitling it often occurs that the sentences
are not compressed, but to keep the subtitles syn-
chronized with the speech, some sentences are en-
tirely removed.

In section 2 we describe the processing of a sen-
tence in the sentence compressor, from input to out-
put. In section 3 we describe how the system was
evaluated and the results of the evaluation. Section
4 contains the conclusions.

2 From Full Sentence to Compressed
Sentence

The sentence compression tool is inspired by (Jing,
2001). Although her goal is text summarization
and not subtitling, her sentence compression system
could serve this purpose.

She uses multiple sources of knowledge on which
her sentence reduction is based. She makes use of
a corpus of sentences, aligned with human-written
sentence reductions which is similar to the parallel
corpus we use (Vandeghinste and Tjong Kim Sang,
2004). She applies a syntactic parser to analyse the
syntactic structure of the input sentences. As there
was no syntactic parser available for Dutch (Daele-
mans and Strik, 2002), we created ShaRPA (Van-
deghinste, submitted), a shallow rule-based parser
which could give us a shallow parse tree of the
input sentence. Jing uses several other knowl-
edge sources, which are not used (not available for
Dutch) or not yet used in our system (like WordNet).

In figure 1 the processing flow of an input sen-
tence is sketched.

Input Sentence

Tagger

Abbreviator

Numbers to Digits

Chunker

Subordinate Clause Detector

Shallow Parse
Tree

Compressor

Word ReducerCompressed
Sentence

Removal,
Non−removal,
Reduction
Database

Grammar
Rules

Figure 1: Sentence Processing Flow Chart

First we describe how the sentence is analysed
(2.1), then we describe how the actual sentence
compression is done (2.2), and after that we de-
scribe how words can be reduced for extra compres-
sion (2.3). The final part describes the selection of
the ouput sentence (2.4).

2.1 Sentence Analysis
In order to apply an accurate sentence compression,
we need a syntactic analysis of the input sentence.

In a first step, the input sentence gets tagged for
parts-of-speech. Before that, it needs to be trans-
formed into a valid input format for the part-of-
speech tagger. The tagger we use is TnT (Brants,
2000) , a hidden Markov trigram tagger, which was
trained on the Spoken Dutch Corpus (CGN), Inter-
nal Release 6. The accuracy of TnT trained on CGN
is reported to be 96.2% (Oostdijk et al., 2002).

In a second step, the sentence is sent to the
Abbreviator. This tool connects to a database
of common abbreviations, which are often pro-
nounced in full words (E.g. European Union be-

comes EU) and replaces the full form with its ab-
breviation. The database can also contain the tag
of the abbreviated part (E.g. the tag for EU is
N(eigen,zijd,ev,basis,stan) [E: singular non-neuter
proper noun]).

In a third step, all numbers which are written in
words in the input are replaced by their form in dig-
its. This is done for all numbers which are smaller
than one million, both for cardinal and ordinal nu-
merals.

In a fourth step, the sentence is sent to ShaRPa,
which will result in a shallow parse-tree of the sen-
tence. The chunking accuracy for noun phrases
(NPs) has an F-value of 94.7%, while the chunk-
ing accuracy of prepositional phrases (PPs) has an
F-value of 95.1% (Vandeghinste, submitted).

A last step before the actual sentence compres-
sion consists of rule-based clause-detection: Rel-
ative phrases (RELP), subordinate clauses (SSUB)
and OTI-phrases (OTI is om ... te + infinitive1) are
detected. The accuracy of these detections was eval-
uated on 30 files from the CGN component of read-
aloud books, which contained 7880 words. The
evaluation results are presented in table 1.

Type of S Precision Recall F-value
OTI 71.43% 65.22% 68.18%
RELP 69.66% 68.89% 69.27%
SSUB 56.83% 60.77% 58.74%

Table 1: Clause Detection Accuracy

The errors are mainly due to a wrong analysis
of coordinating conjunctions, which is not only the
weak point in the clause-detection module, but also
in ShaRPa. A full parse is needed to accurately
solve this problem.

2.2 Sentence Compression

For each chunk or clause detected in the previous
steps, the probabilities of removal, non-removal and
reduction are estimated. This is described in more
detail in 2.2.1.

Besides the statistical component in the compres-
sion, there are also a number of rules in the com-
pression program, which are described in more de-
tail in 2.2.2.

The way the statistical component and the rule-
based component are combined is described in
2.2.3.

1There is no equivalent construction in English. OTI is a
VP-selecting complementizer.

2.2.1 Use of Statistics
Chunk and clause removal, non-removal and reduc-
tion probabilities are estimated from the frequencies
of removal, non-removal and reduction of certain
types of chunks and clauses in the parallel corpus.

The parallel corpus consists of transcripts of tele-
vision programs on the one hand and the subti-
tles of these television programs on the other hand.
A detailed description of how the parallel corpus
was collected, and how the sentences and chunks
were aligned is given in (Vandeghinste and Tjong
Kim Sang, 2004).

All sentences in the source corpus (transcripts)
and the target corpus (subtitles) are analysed in the
same way as described in section 2.1, and are chunk
aligned. The chunk alignment accuracy is about
95% (F-value).

We estimated the removal, non-removal and re-
duction probabilities for the chunks of the types NP,
PP, adjectival phrase (AP), SSUB, RELP, and OTI,
based on their chunk removal, non-removal and re-
duction frequencies.

For the tokens not belonging to either of these
types, the removal and non-removal probabilities
were estimated based on the part-of-speech tag for
those words. A reduced tagset was used, as the orig-
inal CGN-tagset (Van Eynde, 2004) was too fine-
grained and would lead to a multiplication of the
number of rules which are now used in ShaRPa. The
first step in SharPa consists of this reduction.

For the PPs, the SSUBs and the RELPs, as well
as for the adverbs, the chunk/tag information was
considered as not fine-grained enough, so the es-
timation of the removal, non-removal and reduc-
tion probabilities for these types are based on the
first word of those phrases/clauses and the reduc-
tion, removal and non-removal probabilities of such
phrases in the parallel corpus, as the first words of
these chunk-types are almost always the heads of
the chunk. This allows for instance to make the
distinction between several adverbs in one sentence,
so they do not all have the same removal and non-
removal probabilities. A disadvantage is that this
approach leads to sparse data concerning the less
frequent adverbs, for which a default value (average
over all adverbs) will be employed.

An example : A noun phrase.
de grootste Belgische bank
[E: the largest Belgian bank]

After tagging and chunking the sentence and af-
ter detecting subordinate clauses, for every non-
terminal node in the shallow parse tree we retrieve
the measure of removal (X), of non-removal (=) and

of reduction2 (�). For the terminal nodes, only the
measures of removal and of non-removal are used.

NP
= 0.54
X 0.27�

0.05

DET
= 0.68
X 0.28
de

ADJ
= 0.56
X 0.35
groot-
ste

ADJ
= 0.56
X 0.35
Bel-
gische

N
= 0.65
X 0.26
bank

For every combination the probability estimate
is calculated. So if we generate all possible com-
pressions (including no compression), the phrase
de grootste Belgische bank will get the
probability estimate �������
	����������	���������	���������	
��������������������� ��� . For the phrase de Belgische
bank the probability estimate is �������!	���������"	
����#��$	��������$	����������%�&��������� #�# , and so on for the
other alternatives.

In this way, the probability estimate of all possi-
ble alternatives is calculated.

2.2.2 Use of Rules
As the statistical information allows the generation
of ungrammatical sentences, a number of rules were
added to avoid generating such sentences. The pro-
cedure keeps the necessary tokens for each kind of
node. The rules were built in a bootstrapping man-
ner

In some of these rules, this procedure is applied
recursively. These are the rules implemented in our
system:

' If a node is of type SSUB or RELP, keep the
first word.

' If a node is of type S, SSUB or RELP, keep

– the verbs. If there are prepositions which
are particles of the verb, keep the prepo-
sitions. If there is a prepositional phrase
which has a preposition which is in the
complements list of the verb, keep the
necessary tokens3 of that prepositional
phrase.

2These measures are estimated probabilities and do not need
to add up to 1, because in the parallel training corpus, some-
times a match was detected with a chunk which was not a re-
duction of the source chunk or which was not identical to the
source chunk: the chunk could be paraphrased, or even have
become longer.

3Recursive use of the rules

– each token which is in the list of nega-
tive words. These words are kept to avoid
altering the meaning of the sentence by
dropping words which negate the mean-
ing.

– the necessary tokens of the te + infinitives
(TI).

– the conjunctions.

– the necessary tokens of each NP.

– the numerals.

– the adverbially used adjectives.

' If a node is of type NP, keep

– each noun.

– each nominalised adjectival phrase.

– each token which is in the list of negative
words.

– the determiners.

– the numerals.

– the indefinite prenominal pronouns.

' If a node is of type PP, keep

– the preposition.

– the determiners.

– the necessary tokens of the NPs.

' If the node is of type adjectival phrase, keep

– the head of the adjectival phrase.

– the prenominal numerals.

– each word which is in the list of negative
words.

' If the node is of type OTI, keep

– the verbs.

– the te + infinitives.

' If the node is of type TI, keep the node.
' If the node is a time phrase4, keep it.

These rules are chosen because in tests on earlier
versions of the system, using a different test set, un-
grammatical output was generated. By using these
rules the output should be grammatical, provided
that the input sentence was analysed correctly.

4A time phrase, as defined in ShaRPa is used for special
phrases, like dates, times, etc. E.g. 27 september 1998, kwart
voor drie [E: quarter to three].

2.2.3 Combining Statistics and Rules
In the current version of the system, in a first stage
all variations on a sentence are generated in the sta-
tistical part, and they are ranked according to their
probability. In a second stage, all ungrammatical
sentences are (or should be) filtered out, so the only
sentence alternatives which remain should be gram-
matical ones.

This is true, only if tagging as well as chunking
were correct. If errors are made on these levels, the
generation of an ungrammatical alternative is still
possible.

For efficiency reasons, a future version of the sys-
tem should combine the rules and statistics in one
stage, so that the statistical module only generates
grammatically valid sentence alternatives, although
there is no effect on correctness, as the resulting sen-
tence alternatives would be the same if statistics and
rules were better integrated.

2.3 Word Reduction

After the generation of several grammatical reduc-
tions, which are ordered according to their prob-
ability estimated by the product of the removal,
non-removal and reduction probabilities of all its
chunks, for every word in every compressed alterna-
tive of the sentence it is checked whether the word
can be reduced.

The words are sent to a WordSplitter-module,
which takes a word as its input and checks if it is
a compound by trying to split it up in two parts:
the modifier and the head. This is done by lexicon
lookup of both parts. If this is possible, it is checked
whether the modifier and the head can be recom-
pounded according to the word formation rules for
Dutch (Booij and van Santen, 1995), (Haeseryn et
al., 1997). This is done by sending the modifier
and the head to a WordBuilding-module, which is
described in more detail in (Vandeghinste, 2002).
This is a hybrid module combining the compound-
ing rules with statistical information about the fre-
quency of compounds with the samen head, the fre-
quency of compounds with the same modifier, and
the number of different compounds with the same
head.

Only if this module allows the recomposition of
the modifier and the head, the word can be consid-
ered to be a compound, and it can potentially be re-
duced to its head, removing the modifier.

If the words occur in a database which contains
a list of compounds which should not be split up,
the word cannot be reduced. For example, the
word voetbal [E: football] can be split up and re-
compounded according to the word formation rules

for Dutch (voet [E: foot] and bal [E: ball]), but
we should not replace the word voetbal with the
word bal if we want an accurate compression, with
the same meaning as the original sentence, as this
would alter the meaning of the sentence too much.
The word voetbal has (at least) two different mean-
ings: soccer and the ball with which soccer is
played. Reducing it to bal would only keep the sec-
ond meaning. The word gevangenisstraf [E: prison
sentence] can be split up and recompounded (gevan-
genis [E: prison] and straf [E: punishment]). We
can replace the word gevangenisstraf by the word
straf. This would still alter the meaning of the sen-
tence, but not to the same amount as it would have
been altered in the case of the word voetbal.

2.4 Selection of the Compressed Sentence
Applying all the steps described in the previous sec-
tions results in an ordered list of sentence alterna-
tives, which are supposedly grammatically correct.

When word reduction was possible, the word-
reduced alternative is inserted in this list, just after
its full-words equivalent.

The first sentence in this list with a length smaller
than the maximal length (depending on the available
presentation time) is selected.

In a future version of the system, the word reduc-
tion information can be integrated in a better way
with the rest of the module, by combining the proba-
bility of reduction/non-reduction of a word with the
probability of the sentence alternative. The reduc-
tion probability of a word would then play its role
in the estimated probability of the compressed sen-
tence alternative containing this reduced word.

3 Evaluation
The evaluation of a sentence compression module is
not an easy task. The output of the system needs to
be judged manually for its accuracy. This is a very
time consuming task. Unlike (Jing, 2001), we do
not compare the system results with the human sen-
tence reductions. Jing reports a succes rate of 81.3%
for her program, but this measure is calculated as the
percentage of decisions on which the system agrees
with the decisions taken by the human summarizer.
This means that 81.3% of all system decisions are
correct, but does not say anything about how many
sentences are correctly reduced.

In our evaluation we do not expect the compres-
sor to simulate human summarizer behaviour. The
results presented here are calculated on the sentence
level: the amount of valid reduced sentences, be-
ing those reductions which are judged by human
raters to be accurate reductions: grammatical sen-
tences with (more or less) the same meaning as the

input sentence, taking into account the meaning of
the previous sentences on the same topic.

3.1 Method

To estimate the available number of characters in a
subtitle, it is necessary to estimate the average pro-
nunciation time of the input sentence, provided that
it is unknown. We estimate sentence duration by
counting the number of syllables in a sentence and
multiplying this with the average duration per sylla-
ble (ASD).

The ASD for Dutch is reported to be about 177
ms (Koopmans-van Beinum and van Donzel, 1996),
which is the syllable speed without including pauses
between words or sentences.

We did some similar research on CGN using the
ASD as a unit of analysis, while we consider both
the situation without pauses and the situation with
pauses. Results of this research are presented in ta-
ble 2.

ASD no pauses pauses included
All files 186 237
One speaker 185 239
Read-aloud 188 256

Table 2: Average Syllable Duration (ms)

We extract the word duration from all the files
in each component of CGN. A description of the
components can be found in (Oostdijk et al., 2002).

We created a syllable counter for Dutch words,
which we evaluated on all words in the CGN lexi-
con. For 98.3% of all words in the lexicon, syllables
are counted correctly. Most errors occur in very low
frequency words or in foreign words.

By combining word duration information and the
number of syllables we can calculate the average
speaking speed.

We evaluated sentence compression in three dif-
ferent conditions:

The fastest ASD in our ASD-research was 185 ms
(one speaker, no pauses), which was used for Con-
dition A. We consider this ASD as the maximum
speed for Dutch.

The slowest ASD (256 ms) was used for Condi-
tion C. We consider this ASD to be the minimum
speed for Dutch.

We created a testset of 100 sentences mainly fo-
cused on news broadcasts in which we use the real
pronunciation time of each sentence in the testset
which results in an ASD of 192ms. This ASD was

used for Condition B, and is considered as the real
speed for news broadcasts.

We created a testset of 300 sentences, of which
200 were taken from transcripts of television news,
and 100 were taken from the ’broadcast news’ com-
ponent of CGN.

To evaluate the compressor, we estimate the du-
ration of each sentence, by counting the number of
syllables and multiplying that number with the ASD
for that condition. This leads to an estimated pro-
nunciation time. This is converted to the number of
characters, which is available for the subtitle.

We know the average time for subtitle presenta-
tion at the VRT (Flemish Broadcasting Coorpora-
tion) is 70 characters in 6 seconds, which gives us
an average of 11.67 characters per second.

So, for example, if we have a test sentence of
15 syllables, this gives us an estimated pronunci-
ation time of 2.775 seconds (15 syllables 	 185
ms/syllable) in condition A. When converting this to
the available characters, we multiply 2.775 seconds
by 11.67 characters/second, resulting in 32 (2.775s
	 11.67 ch/s = 32.4 ch) available characters.

In condition B (considered to be real-time) for
the part of the test-sentences coming from CGN,
the pronunciation time was not estimated, as it was
available in CGN.

3.2 Results

The results of our experiments on the sentence com-
pression module are presented in table 3.

Condition A B C
No output (0) 44.33% 41.67% 15.67%
Avg Syllable speed
(msec/syllable) 185 192 256
Avg Reduction Rate 39.93% 37.65% 16.93%
Interrater Agreement 86.2% 86.9% 91.7%
Accurate Compr. 4.8% 8.0% 28.9%
+/- Acc. Compr. 28.1% 26.3% 22.1%
Reasonable Compr. 32.9% 34.3% 51%

Table 3: Sentence Compression Evaluation on the
Sentence Level

The sentence compressor does not generate out-
put for all test sentences in all conditions: In those
cases where no output was generated, the sentence
compressor was not able to generate a sentence
alternative which was shorter than the maximum
number of characters available for that sentence.
The cases where no output is generated are not con-
sidered as errors because it is often impossible, even
for humans, to reduce a sentence by about 40%,

without changing the content too much. The amount
of test sentences where no output was generated
is presented in table 3. The high percentage of
sentences where no output was generated in condi-
tions A and B is most probably due to the fact that
the compression rates in these conditions are higher
than they would be in a real life application. Condi-
tion C seems to be closer to the real life compression
rate needed in subtitling.

Each condition has an average reduction rate over
the 300 test sentences. This reduction rate is based
on the available amount of characters in the subtitle
and the number of characters in the source sentence.

A rater scores a compressed sentence as + when
it is grammatically correct and semantically equiva-
lent to the input sentence. No essential information
should be missing. A sentence is scored as +/-
when it is grammatically correct, but some infor-
mation is missing, but is clear from the context in
which the sentence occurs. All other compressed
sentences get scored as -.

Each sentence is evaluated by two raters. The
lowest score of the two raters is the score which the
sentence gets. Interrater agreement is calculated on
a 2 point score: if both raters score a sentence as +
or +/- or both raters score a sentence as -, it is con-
sidered an agreed judgement. Interrater agreement
results are presented in table 3.

Sentence compression results are presented in ta-
ble 3. We consider both the + and +/- results as
reasonable compressions.

The resulting percentages of reasonable compres-
sions seem to be rather low, but one should keep
in mind that these results are based on the sentence
level. One little mistake in one sentence can lead
to an inaccurate compression, although the major
part of the decisions taken in the compression pro-
cess can still be correct. This makes it very hard
to compare our results to the results presented by
Jing (2001), but we presented our results on sen-
tence evaluations as it gives a clearer idea on how
well the system would actually perform in a real life
application.

As we do not try to immitate human subtitling be-
haviour, but try to develop an equivalent approach,
our system is not evaluated in the same way as the
system deviced by Jing.

4 Conclusion

We have described a hybrid approach to sentence
compression which seems to work in general. The
combination of using statistics and filtering out in-
valid results because they are ungrammatical by us-
ing a set of rules is a feasible way for automated

sentence compression.
The way of combining the probability-estimates

of chunk removal to get a ranking in the generated
sentence alternatives is working reasonably well,
but could be improved by using more fine-grained
chunk types for data collection.

A full syntactic analysis of the input sentence
would lead to better results, as the current sentence
analysis tools have one very weak point: the han-
dling of coordinating conjunction, which leads to
chunking errors, both in the input sentence as in the
processing of the used parallel corpus. This leads to
misestimations of the compression probabilities and
creates noise in the behaviour of our system.

Making use of semantics would most probably
lead to better results, but a semantic lexicon and
semantic analysis tools are not available for Dutch,
and creating them would be out of the scope of the
current project.

In future research we will check the effects of
improved word-reduction modules, as word reduc-
tions often seem to lead to inaccurate compres-
sions. Leaving out the word-reduction module
would probably lead to an even bigger amount of
no output-cases. This will also be checked in future
research.

5 Acknowledgements
Research funded by IWT (Institute for Innovation
in Science and Technology) in the STWW pro-
gram, project ATraNoS (Automatic Transcription
and Normalisation of Speech). For more informa-
tion visit http://atranos.esat.kuleuven.ac.be/.

We would like to thank Ineke Schuurman for rat-
ing the reduced sentences.

References
G. Booij and A. van Santen. 1995. Morfologie. De

woordstructuur van het Nederlands. Amsterdam
University Press, Amsterdam, Netherlands.

T. Brants. 2000. TnT - A Statistical Part-of-Speech
Tagger. Published online at http://www.coli.uni-
sb.de/thorsten/tnt.

W. Daelemans and H. Strik. 2002. Het Neder-
lands in Taal- en Spraaktechnologie: Prioriteiten
voor Basisvoorzieningen. Technical report, Ne-
derlandse Taalunie.

B. Dewulf and G. Saerens. 2000. Stijlboek
Teletekst Ondertiteling. Technical report, VRT,
Brussel. Internal Subtitling Guidelines.

W. Haeseryn, G. Geerts, J de Rooij, and
M. van den Toorn. 1997. Algemene Neder-
landse Spraakkunst. Martinus Nijhoff Uitgevers,
Groningen.

ITC. 1997. Guidance on standards
for subtitling. Technical report,
ITC. Online at http://www.itc.org.uk/
codes guidelines/broadcasting/tv/sub sign
audio/subtitling stnds/.

H. Jing. 2001. Cut-and-Paste Text Summarization.
Ph.D. thesis, Columbia University.

F.J. Koopmans-van Beinum and M.E. van Donzel.
1996. Relationship Between Discourse Structure
and Dynamic Speech Rate. In Proceedings IC-
SLP 1996, Philadelphia, USA.

N. Oostdijk, W. Goedertier, F. Van Eynde, L. Boves,
J.P. Marters, M. Moortgat, and H. Baayen. 2002.
Experiences from the Spoken Dutch Corpus. In
Proceedings of LREC 2002, volume I, pages 340–
347, Paris. ELRA.

F. Van Eynde. 2004. Part-of-speech Tagging
en Lemmatisering. Internal manual of Cor-
pus Gesproken Nederlands, published online at
http://www.ccl.kuleuven.ac.be/Papers/
POSmanual febr2004.pdf.

V. Vandeghinste and E. Tjong Kim Sang. 2004. Us-
ing a parallel transcript/subtitle corpus for sen-
tence compression. In Proceedings of LREC
2004, Paris. ELRA.

V. Vandeghinste. 2002. Lexicon optimization:
Maximizing lexical coverage in speech recogni-
tion through automated compounding. In Pro-
ceedings of LREC 2002, volume IV, pages 1270–
1276, Paris. ELRA.

V. Vandeghinste. submitted. ShaRPa: Shallow
Rule-based Parsing, focused on Dutch. In Pro-
ceedings of CLIN 2003.

