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Abstract
Algorithms for generating referring expressions 
typically assume that an object in a scenary can be 
identified through a set of commonly agreed 
properties. This is a strong assumption, since in 
reality properties of objects may be perceived differ-
ently among people, due to a number of factors 
including vagueness, knowledge discrepancies, and 
limited perception capabilities. Taking these discre-
pancies into account, we reinterpret concepts of 
algorithms generating referring expressions in view 
of uncertainties about the appearance of objects. Our 
model includes two complementary measures of 
likelihood in object identification, and adapted 
property selection and termination criteria. The 
approach is relevant for situations with potential 
perception problems and for scenarios with knowl-
edge discrepancies between conversants.

1 Introduction
Generating referring expressions is a traditional, standard 
task in natural language generation. Over the past two 
decades, a number of algorithms have been proposed which 
differ among each other in terms of efficiency and coverage. 
To the best of our knowledge, all algorithms share the 
assumption that objects can be identified by a description 
consisting of attribute values ascribed to these objects. 
Moreover, the results are specified in a way that implicitly 
assumes complete agreement about these properties, 
provided they are known to the audience. We feel that this 
assumption may be too strong in reality so that, for 
instance, a dialog system in which the reference generation 
algorithm is embedded is unlikely to behave adequately when 
a misunderstanding occurs due to a perception mismatch.

In this paper, we address this problem by incorporating 
measures to deal with uncertainties into a standard algorithm 
that generates referring expressions. In order to represent 
uncertainties, we propose two complementary measures 
expressing the likelihood of object identification. We define 
computation schemes for combining descriptions with 
boolean combinations of  attribute values, and we extend the 
incremental standard reference generation algorithm by 
adapting property selection and termination criteria.

This paper is organized as follows. First, we motivate our 
approach in more detail. Then we introduce our method for 
representing aspects of uncertainty. We follow by illustrating 
the propagation of uncertainty assessments for several attri-
bute values, including boolean combinations, and we give 
examples of the effects. Then we describe extensions to the 
incremental algorithm, and we discuss their impact.

2 Motivation
In the scope of this paper, we adopt the terminology origin-
ally formulated in [Dale 1988] and later used by several 
others. A referential description [Donellan 1966] serves the 
purpose of letting the hearer or reader identify a particular 
object or set of objects in a given situation. The referring 
expression to be generated is required to be a distinguishing 
description, that is a description of the enitties being referred 
to, but not to any other object in the context set. A context 
set is defined as the set of the entities the addressee is 
currently assumed to be attending to – this is similar to the 
set of entities in the focus spaces of the discourse focus stack 
in Grosz' and Sidner's [1986] theory of discourse structure. 
Moreover, the contrast set (or the set of potential 
distractors [McDonald 1981]) is defined to entail all 
elements of the context set except the intended referents.

Generating referring expressions is pursued since the 
eighties [Appelt 1985, Kronfeld 1986, Appelt and Kronfeld 
1987]. Subsequent years were characterized by a debate about 
computational efficiency versus minimality of the elements 
appearing in the resulting referring expression [Dale 1988, 
Reiter 1990, Reiter and Dale 1992]. In the mid-nineties, this 
debate seemed to be settled in favor of the incremental 
approach [Dale and Reiter 1995] – motivated by results of 
psychological experiments [Levelt 1989, Pechmann 1989], 
certain non-minimal expressions are tolerated in favor of 
adopting the fast strategy of incrementally selecting ambi-
guity-reducing attributes from a domain-dependent preference 
list. Recently, algorithms have been applied to the identifi-
cation of sets of objects rather than individuals [Bateman 
1999, Stone 2000, Krahmer, v. Erk, and Verweg 2001], and 
the repertoire of descriptions has been extended to boolean 
combinations of attributes, including negations [van Deemter 
2002]. To avoid the generation of redundant descriptions that 
is typical for incremental approaches, Gardent [2002] and 
Horacek [2003] proposed exhaustive resp. best-first searches.



All these procedures more or less share the design of the 
underlying knowledge base. Objects are conceived in terms 
of sets of attributes, each with an atomic value as its filler. 
Some models distinguish specializations of these values 
according to a taxonomic hierarchy, so that the most accu-
rate value can be replaced by one of its generalizations if 
there are reasons to assume this alternative is preferable – 
due to insufficient knowledge attributed to the audience, or 
to prevent unintended implications. A few approaches also 
deal with relations to other objects, whose representation 
differs from that of attributes only by the reference to the 
related object. Typically, a user model is assumed to guide 
the choice among available descriptors; the user model 
expresses taxonomic knowledge attributed to the user,  indic-
ating for a descriptor whether it is known to the user or not.

While a knowledge base developed and interpreted in this 
manner is adequate for generating referring expressions in 
most application-relevant settings, there may be circum-
stances in which uncertainties are prominent, so that the 
simple boolean attribution of properties to objects becomes 
problematic and may prove insufficient. Uncertainties may 
manifest themselves in at least the following three factors:

• Uncertainty about knowledge
There may not be sufficient evidence to assume that 
the user is or is not acquainted with a specific term. In 
fact, most of today's user model components assign 
some probability to statements about a user's knowl-
edge or capabilities, for example on the basis of infer-
ences obtained through a belief network [Pearl 1988].

• Uncertainty about perception capabilities
There is an increasing number of applications with 
natural language interaction where the objects of the 
discourse do not appear on the computer screen (e.g., 
ubiquitous tools guiding a user in environments such 
as airports and tourist attraction areas, e.g., [Wahlster 
2004]). In such situations, perception and recognition 
of object properties is much harder to assess; for 
example, the visibility of some object or of one of its 
parts may not be derivable with complete certainty.

• Uncertainty about conceptual agreement
While ascribing a value to an attribute is straightfor-
ward for certain categories of attributes, problems may 
occur, e.g., in connection with vagueness. This 
concept may be relevant for a number of commonly 
used properties such as size and shape, and even with 
colors, transitions between adjacent color tones may 
not be firmly categorized as one of the two candidates.

To illustrate these manifestations of uncertainty, let us 
consider a scenario with three similar dogs, one of which is 
a bassett, which is also the intended referent. In addition, 
the bassett is brownish and has a long tail. The other two 
dogs have shorter tails and their skin is also brown, but 
with some white resp. black portions. Furthermore, we 
assume that the audience has little knowledge about dog 
specifics, that is, it is not very likely that they may recog-
nize the intended referent as a bassett. We also assume that 
the tails of the dogs cannot be observed easily by the 
audience under the given local circumstances.

Hence, the three attributes “category”, “color”, and “tail 
length” each fall into one of the categories of uncertainty 
introduced above: the categorization of the intended referent 
as a bassett is associated with uncertainty about knowledge, 
the limited visibility which may not enable the spectators 
to see the tails of the dogs in each moment constitutes an 
uncertainty about perception capabilities, and the similarity 
of the dogs' colors may yield uncertainty about conceptual 
agreement, that is, it is doubtfull whether the descriptor   
“brownish” is attributed only to the intended referent or also 
to some of the other dogs in the given situation.

Apparently, these uncertainties have consequences on 
building human-adequate referring expressions, especially in 
contexts where most of the descriptors available are asso-
ciated with some kind of uncertainty. Intuitively, we would 
expect people to produce referring expressions with several 
of these descriptors, being redundant in case they are all 
recognized, but also hoping that the identification will 
succeed if the audience can identify only some part of the 
overall description in the given situation. Moreover, we 
would expect people only to use descriptors that have some 
reasonable chance of being understood.

Unfortunately, traditional generation algorithms do not 
enable us to model such a behavior, since none of the 
options available does justice to the uncertainty involved. If 
a descriptor is modeled as applying to all entities (e.g., for 
“brownish”), it will never be chosen since it yields no 
discrimination. A similar consequence is obtained when the 
capabilities of the audience are interpreted pessimistically. 
Finally, if a descriptor is assumed to be understood, it 
might be chosen without considering any of the other candi-
dates associated with uncertainty. Thus, modeling in the 
existing algorithms forces us to make crisp decisions, with 
strong impacts on the result of the algorithm. Redundant 
expressions motivated by uncertainties about recognition 
cannot be generated under any modeling alternative.

There are only a few computational approaches which 
address the problem of uncertainty about the recognition of 
referring expressions. For example, [Edmonds 1994] and 
[Heeman and Hirst 1995] describe both plan-based methods, 
where a vague and partial description is produced initially, 
which is narrowed and ultimately confirmed in the subse-
quent discourse. However, the documented examples do only 
emphasize incomplete, but never incorrect interpretations. 
An approach that fits better to our intentions is the work  
by Goodman [1987], which emphasizes reference identi-
fication and associated failures in task-oriented dialogs 
[Goodman 1986]. This case study demonstrates various 
impacts of limitations and discrepancies of expertise on 
referential identification: subjects exhibit uncertainty in 
identification, which manifests itself in tentative actions and 
changes of mind, they misinterpret descriptions (e.g., 
'outlet' interpreted as 'hole'), and they may find no 
appropriate referent at all. In the latter case, subject even 
undertake attempts to repair an otherwise uninterpretable 
description by relaxing descriptors. In the following, we 
interpret some of these findings for our model of uncer-
tainty, including a model of a repair mechanism.



3 Representing Uncertainties
Basically, our model of uncertainty combines the three kinds 
of uncertainty described in the previous section. Each of 
them is expressed in terms of a probability, associated with 
a triple consisting of an object, an attribute applicable to 
that object, and the value ascribed to this pair. The follow-
ing probabilities each express the likelihood that the user 
recognizes a description correctly from the perspectives of: 

pK The user is acquainted with the terms mentioned

pP The user can perceive the properties uttered

pA The user agrees to the applicability of the terms used 

In order to identify an intended referent successfully, all 
three factors must be assessed positively, so that the 
probability of recognition p becomes the product of these 
three probabilities. Since the individual properties refer to 
factors outside the scope of proper generation, we only deal 
with p in the scope of this paper, although it is clear that 
this assessment requires contributions from several sources.

The concept of using individual probabilities to represent 
manifestations of uncertainty is not only simple, it also fits 
to knowledge sources where data about these probabilities 
could be found. For example, user models, the potential 
sources for assessing pK, typically assign assessments to 
user capabilities on the basis of belief networks. Similar 
considerations hold for representations of vague properties, 
which fall under the concept of term agreement. These 
properties can be modeled by fuzzy logic systems [Zadeh 
1984, 1996], which allow for an interpretation in terms of a 
single probability value, representing the likelihood that a 
precise value is perceived as a given vague term. 

The association of a probability with the applicability of  
a descriptor to an object not only expresses the somehow 
direct likelihood of success of this task, but the application 
of this likelihood to several candidate objects also gives an 
indication of the likelihood of success of the overall identi-
fication goal. If a descriptor is assumed to be associated with 
several candidate objects by the audience, with certain 
degrees typically different among these objects, several cases 
can be distinguished: (1) correct identification, where the 
audience relates the description only to those objects to 
which this descriptor indeed applies, (2) misinterpretation, 
where none of these objects, but others are associated with 
the descriptor by the audience, (3) ambiguity, which is a 
combination of (1) and (2), and, finally, (4) the case of an 
uninterpretable description, where the audience does not 
relate the descriptor to any of the candidate objects. In the 
last case, people are known to make an attempt to repair 
their unsuccessful interpretation, since they assume that the 
expression communicated is indeed intended to refer to some 
object or objects in the domain of discourse, according to the 
work by Goodman. In order to simulate the effect of this 
behavior, we compute the probability of the occurrence of an 
uninterpretable description, which we call the repair 
factor, and we increase the probability of identification of 
the candidate objects (which we call our repair mechanism), 
based on the amount of the repair factor and the context of 
these objects in the overall identification task. 
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Figure 1. Repair factor for insufficient recognition of k objects

In concrete terms, if we have n objects for which a descriptor 
is recognized with probability pi for object i, the probability 
that none of the objects is recognized by a referring 
expression built from that descriptor is Π(1-pi), (1 ≤ i ≤ n). 
Although this number tends to be small if there are several 
objects to which the description matches with some reason-
able degree of confidence, the associated need for invoking a 
repair mechanism becomes increasingly urgent when further 
descriptors are added to the description built so far, as well as 
when the task is to identify multiple referents rather than a 
single one. For the case of 2 objects, the need for invoking a 
repair mechanism can be quantified by the repair factor 
2Π i=1,n(1-pi)+Σi=1,n(piΠ j=1,n(j≠i)(1-pj)). The general case, if 
needed, gets increasingly complex, as illustrated in Figure 1, 
for k objects to be identified, out of n candidates (k ≤ n). 

Thus, for the likelihood of recognition failure, a  
mechanism is required that simulates identification repair 
under these conditions. Apart from the likelihood of failure, 
repair should be guided by potential confusability of objects 
in view of some given descriptor. Hence, while we think it 
is virtually impossible to confuse an animal and a piece of 
equipment, at least under any reasonable conditions of visibi-
lity, we assume that objects of some degree of appearance 
similarity (size and shape) may potentially be confused with 
each other. Hence, we consider a potentially confusable 
object a candidate for being interpreted as an intended referent 
in case a repair of a reference failure is required. Confusion in 
this sense may be interpreted in two ways: from the 
perspective of the speaker, those objects are candidates which 
the speaker thinks the hearer could confuse. From the hearers 
perspective, those objects are candidates which the hearer 
thinks the speaker might have confused in producing a badly 
interpretable description. Since the latter constellation 
corresponds to the situation present for repair attempts, we 
model potential candidates quasi “objectively” by incorpor-
ating annotations in the knowledge base. The dependency of 
user capabilities as assessed by a user model influences these 
assessments indirectly through the probability of recognition 
attributed to the user for each descriptor-object pair.



                                                                                                                          

Determine probability of identification (D, k, O1, …, On)

O1, …, Om Objects to which descriptor D applies
Om+1, …, On Objects to which repair with D is applicable
pi, …, pm Probability that D is recognized for Oi

Objects ordered along degrees of recognition confidence:
 ∀i,j(1 ≤ i, j ≤ m): (pi > pj) → (i > j)

Rprop ← R(k, p1, …, pm), i ← 1
1. if  (i≤m) 

then Rc ← Min(Rprop/n, 1-pi), p-idi ← pi+Rc

else Rc ← Rprop/n, p-idi ← Rc 
endif
if  (i<n) 

then i ← i+1, Rprop ← Rprop - Rc, goto 1 
endif

                                                                                                                           

Figure 2. Assessing identification probabilities including repair

In order to keep the repair mechanism simple, we approxi-
mate confusability of an object by augmenting its represen-
tation with annotations of all property-value combinations 
that do not apply to it, but which could somehow be 
perceived as holding for this object. The potentially large 
amount of data created this way can be significantly reduced 
by making use of inheritance. For example, one can state 
that blue and purple (physical) objects can be confused, by 
making annotations about confusability with blue for purple 
objects, and vice-versa. This annotation is then inherited to 
all entities that are specializations of (physical) objects.

The proper repair is then simulated by collecting all 
candidates to which the descriptor in question could arguably 
apply, and by assigning these candidates a probability of 
identification through repair, according to the repair factor, 
as assessed above. There are two kinds of candidates: (1) 
those to which the descriptor is recognized with some  
probability, and (2) those to which it could apply with some 
relaxation, that is, which contains a suitable confusability 
annotation. The repair factor, which is computed according 
to the schema in Figure 1, is then evenly distributed among 
these two sets of candidates, provided the added probabilities 
of recognition and repair do not get greater than 1 for some 
object; this can only be the case if the number of  objects to 
identify is close to the number of candidates. In such a case, 
the extra amount is distributed recursively among the 
remaining candidates, always respecting the upper limit of 1. 
If the number of objects to identify even exceeds the number 
of candidates, the effect of the repair mechanism results in a 
modification of the number of objects to identify, reducing it 
to the number of available candidates. The computation of 
the probability of identification through repair is illustrated 
in Figure 2.  Three examples in Figure 3 illustrate the effect 
of the repair mechanism in quantitative terms. They empha-
size the relation between expectations about the number of 
objects to be identified and probabilities of identification. 

                                                                                                                          

For k objects to be identified out of n, judging identifi-
cation by descriptor D, which may involve repair measures
(D applies to m out of these n with probabilities pi,…,pm)

1. k=1, n=4, m=2 (p1 =0.8, p2 =0.4): Rprop = 0.12
p-id1 = 0.83, p-id2 = 0.43, p-id3 = p-id4 = 0.03

2. k=2, n=4, m=2 (p1 =0.8, p2 =0.4): Rprop = 0.96
p-id1 = 1, p-id2 = 0.6533, p-id3 = p-id4 = 0.2533

3. k=3, n=4, m=2 (p1 =0.8, p2 =0.4): Rprop = 2.1
p-id1 = 1, p-id2 = 1, p-id3 = p-id4 = 0.65

                                                                                                                           

Figure 3. Examples of assessing identification probabilities

Specifically, the increasing contributions of the repair 
facility are shown, which will be even more pronounced with 
several attributes associated with limited recognition expect-
ations. We will see this effect in context with building 
descriptor combination in the next section, as well as in the 
detailed exposition of an example in Appendix II.

4 Identifiability of Descriptor Compositions
Since a single descriptor is rarely sufficient for identifying 
one or several objects in scenarios of interesting complexity, 
boolean compositions of descriptors are generated for this 
purpose, conjunctions being required for building identifying 
expressions for single objects. Their probability of recog-
nition is a simple extension of the case of single descriptors. 
If pi is the probability of recognition of descriptor D i for 
some object O, an expression consisting of several D i  
(i=1,pn) is identified with O through recognition if all Di  are 
attributed to O. The probability of this coincidence amounts 
to the product of all probabilities Πpi (i=1,pn).  

The probability of identification through repair is 
computed by distributing the repair factor R(k,P1,…,Pm), 
where each Pj=Πpji (j=1,m;i=1,pn), among all objects quali-
fying for the repair measure. While this distribution is an 
equal one for the case of a single descriptor, apart from using 
the upper limit of 1 for the total probability, such an even 
distribution would not do full justice here. We propose to 
distribute the likelihood proportionally to the probabilities of 
recognition for each descriptor, which makes repair more 
likely applicable to those objects which are also more likely 
to be identified anyway. In order to perform this operation 
properly, “average” probabilities (ap) for only reparable 
descriptors must be estimated. Moreover, we want to favor 
repairs for objects which require fewer “average” probabilities 
for this computation, by incorporating a "scale-down factor” 
(sdf) for each additional repair. The computation schema is 
given in Figure 4. For concrete computations, we choose 0.5 
for both factors ap and sdf – see the examples in Figure 5. 
The first one demonstrates the partitioning of the repair 
factor according to the number of attributes which require 
repair. Specifically, the first three objects get the same share 
of the repair factor, while the fourth object gets only half of 
it,  since  its identification  is  the  only one  which  requires  



                                                                                                                         

Compute identification probability (D1,…,Dnp,k,O1,…,On)

O1,…,Om Objects to which all D1,…,np are applicable
Om+1,…,On Objects with repair possible for all D1,…,np

pi1,…,pinp Probability that D1,…,np is attributed to Oi

Objects ordered along degrees of identification confidence:
 ∀i,j(1≤i,j≤m): (Πl=1,nppil  > Πl=1,nppjl) → (i > j)

for i from 1 to n do 
Pi ← 1, sdfi ← 1/sdf
for j from 1 to np do

if   pij  > 0 
then Pi ← Pipij

else Pi ← Piap, sdfi ← sdfisdf 
endif

endfor
endfor
Rprop ← R(k,Pi,…,Pm), i ← 1, P ← Σi=1,nPi 

1. if  (i≤m) 
then Rc ← Min(Rprop(Pi/P),1-Pi), p-idi ← Pi+Rc

else Rc ← Rprop(Pisdfi/P), p-idi ← Rc 
endif
if  (i<n) 

then i ← i+1, Rprop ← Rprop - Rc, goto 1 
endif

                                                                                                                           

Figure 4. Identification probabilities for several descriptors

repair regarding two descriptors. The second example features 
the impact of multiple intended referents on the repair factor, 
which increases the probabilities of identification substan-
tially. The last example illustrates the compensative effect 
between comparably low probabilities of recognition and 
higher ones in connection with the requirement of using the 
repair facility. Specifically, this example demonstrates that 
the probability of identification for an object (the second 
one) that is only identifiable through the repair mechanism 
can even become higher than the probability of identification 
for an object (the second one) that does not require repair for 
being identified. However, such an effect is only possible in 
the context of descriptors applicable with some degree of 
confidence to both candidates, but strongly favoring the 
object whose identification relies on the repair mechanism 
due to mismatch with another descriptor. This is the most 
critical effect in choosing descriptors.

The incorproation of disjunctions and negations is more 
local, since this extension only generalizes the probability 
of recognition of a single property. This is because these 
operators appear only in embedded boolean combinations 
[van Deemter 2002], which are the basis for building larger 
varieties of expressions [Horacek 2004]. For disjunctions of 
two descriptors with associated probabilities p1 and p2, the 
joint probability amounts to p1+p2-p1p2, assuming indepen-
dence, which is quite normal for descriptors originating from  

                                                                                  

For k objects to be identified out of n, judging identifi-
cation by np descriptors D, at least repair possible for all
(Dj applies to object i with probability pji , ∀i≤m: pji  > 0)

1.  k=1, n=4, m=1, np=2 (p11 =0.5, p21 =0.5, p12 =0.5,
p22 =0, p13 =0, p23 =0.5, p14 =0, p24 =0): Rprop = 0.75
p-id1 = 0.464, p-id2 = 0.214, p-id3 = 0.214, p-id4 = 0.107

2. k=2, n=3, m=1, np=2 (p11 =0.5, p21 =0.6, p12 =0.6,
p22 =0.5, p13 =0, p23 =0.55): Rprop = 1.4
p-id1 = p-id2 = 0.766, p-id3 = 0.466

3. k=1, n=2, m=1, np=3 (p11 =0.5, p21 =0.5, p31 =0.5,
p12 =0.9, p22 =0.9, p32 =0): Rprop = 0.875
p-id1 = 0.331, p-id2 = 0.668

                                                                                                                          

Figure 5. Examples of assessing identification probabilities

distinct properties. For some properties, prominently those 
associated with vagueness, building disjunctions of 
descriptors originating from the same property may be 
beneficial. For example, disjunctions of similar colors or 
shapes may reduce the uncertainty through combining the 
identifiability of both. A simple way to model this constel-
lation is by assigning probabilities to the set of applicable 
values so that their sum does not exceed 1, thereby modeling 
exclusion of the co-occurrence of more than one value. 
Consequently, the associated probabilities can simply be 
added. Propagation of the “confusable” annotation is treated 
similarly – if at least one of the descriptors is marked as 
“confusable”, this also holds for the disjunction. For dealing 
with negation, the probability of identification is simply 
inverted (1-p). The treatment of the “confusable” annotation, 
however, is a bit problematic. The invertion operation needs 
modification through anticipating the amount of the repair 
factor, but this cannot be done locally. Therefore, this factor, 
rf, must be estimated in advance. For concrete computations 
we use a value of 0.1, so that ¬p for a “confusable” p 
amounts to 0.9.

5 An Algorithm Incorporating Uncertainties
In this section, we describe extensions to the algorithm by 
Dale and Reiter [1995] that take into account the measures 
addressing uncertainty introduced in previous sections. This 
reference algorithm takes an intended referent r (the generali-
zation to several referents is straightforward), the attributes P 
that describe r, and a contrast set C, and incrementally builds 
an identifying description L, if possible. The algorithm 
assumes an environment with three interface functions: 
BasicLevelValue, accessing basic level categories of objects 
[Rosch 1978], MoreSpecificValue for accessing incremen-
tally specialized values of an attribute according to a taxo-
nomic hierarchy, and UserKnows for judging whether the 
user is familiar with the attribute value of an object.

The algorithm basically iterates over the attributes P, 
according to some predetermined ordering which reflects 
preferences in the domain of application. For each attribute 



in P, a value assumed to be known to the user is determined, 
so that this value describes the intended referent and rules out 
at least one potential distractor which is still in the contrast 
set C in the iteration step considered. If such a value can be 
found, a pair consisting of the attribute and this value is 
included in the identifying description L . This step is 
repeated until the list P is exhausted or a distinguishing 
description is found, that is, the contrast set C is empty. 
Unless the distinguishing description L does not contain a 
descriptor expressible as a head noun, such a descriptor is 
added. Choosing the value of an attribute is done by an 
embedded iteration. It starts with the basic level value  attri-
buted to r, after which more specific values also attributed to 
r and assumed to be known to the user are tested for their 
discriminatory power. Finally, the least specific value that 
excludes the largest number of potential distractors and is 
known to the user is chosen. The schema of this procedure 
is given in Appendix I. The only modification we have done 
to the original version is the result of L as a non-distin-
guishing description in case of identification failure.

The algorithm by Dale and Reiter contains the principal 
operations that also other algorithms for generating referring 
expressions apply. The extension to boolean combinations 
of descriptors by van Deemter is essentially realized as an 
iteration around the Dale and Reiter algorithm, through 
building increasingly complex combinations, which other 
control regimes generate and maintain more effectively.

In order to control effects of facilities dealing with uncer-
tainty, the extended algorithm has four control parameters: 

• pmin, the minimal probability of recognition required 
for an attribute-value pair applicable to the intended 
referent, to justify its inclusion in the description, 

• ∆p1, the minimal improvement in terms of probabi-
lity of identification of the intended referent over a 
potential distractor obtained through an additional 
attribute-value pair,

• ∆p2, the minimal preference in terms of probability 
of identification of the intended referent over all poten-
tial distractors obtained through a description, and

• Complexity-limit, an upper bound on the number of 
descriptors collected in the distinguishing description.

In order to incorporate our concepts of representing 
uncertainty in this algorithm, we have to replace the inter-
face functions which access crisp data and we must modify 
yes-no decisions. These enhancements concern:

• the decision about whether a descriptor excludes a 
potential distractor (in the function RulesOut), 

• the choice of a value for an attribute (in the function 
FindBestvalue), and

• the termination of the overall procedure (in the 
function MakeReferringExpression)

Modifications of the reference algorithm are given in 
detail in the extended version in Appendix I – some lines are 
marked by labels [Ni] for references from the text. 
Expressions of the form pr(r,L) compute the probability of 
identification of referent r  through the description L , 
according to the schema described in the previous sections.

Under conditions of uncertainty, determining whether a 
descriptor excludes a potential distractor may become a 
proper decision rather than a mere computation. A clear-cut 
case is only present if the repair facility is not applicable to 
one of the members of the contrast set, so that its associated 
probability of identification amounts to 0. This condition 
replaces the criterion that the user must know that this 
descriptor does not apply to some potential distractor in the 
function RulesOut [N7]. However, it would be a rather 
restrictive strategy to accept only those descriptors which 
definitely exclude a potential distractor. In fact, none of the 
descriptors that make up the example in Appendix II yield 
such a crisp discrimination. In addition to that, a descriptor is 
also valuable if it contributes to a better identification of the 
intended referent by increasing the difference to a potential 
distractor in the associated probabilities of identification by a 
significant margin (∆p1). This criterion is added to the crisp 
criterion described above, encapsulated in the function Domi-
nate [N8], which is used for this decision instead of the 
function RulesOut [N2]. The idea is that subsequently chosen 
descriptors have comparable effects on the identification of 
some of the other potential distractors, so that the intended 
referent ultimately gains over all of them. The significance 
of this margin must be tuned in such a way that the gain 
over some potential distractors is not outweighted by a loss 
over some other potential distractors.

The suitability of a value for an attribute depends on two 
factors associated with uncertainty: the probability of recog-
nition associated with that value for the present user, and the 
effect of this value on excluding elements from the set of 
potential distractors. These two factors have adverse effects: 
while a more specific value has the potential of excluding an 
increasing number of potential distractors, its probability of 
recognition when applied to the intended referent may be 
lower than that of a less specific value. Consequently, it is 
not necessarily the case that an improved discriminatory 
power leads to a better overall effect. Hence, the choice of a 
value requires a minimal probability of recognition (pmin, 
[N6]), and calls to Dominate replace calls to RulesOut. Addi-
tional variants of descriptors can be generated by enhancing 
the interface function MoreSpecificValue, also building 
disjunctions of values excluding each other, to cover cases 
described at the end of Section 4, that is, building 
disjunctions of descriptors by composing descriptors 
(possibly vague ones) that cover adjacent value ranges. 

The third factor, the termination criterion, is adapted to 
uncertainties by enhancing it in two ways: (1) a complexity 
limit  is applied to the specifications in the description L 
[N3]; while this cut-off may serve practical considerations 
also without conditions of uncertainty (for a partitioning into 
sequences of descriptions [Horacek 2004]), it gains on rele-
vance in uncertain environments. (2) a certain degree of being 
Dominant in the probability of identification over all 
potential distractors is considered sufficient (∆p2, [N4]) rather 
than requiring the ultimate exclusion of all potential 
distractors. Finally, the conditions under which descriptors 
are selected, give rise to an optional optimization step. The 
prerequisite for this step is the distinction between 



descriptors which definitively exclude at least one potential 
distractor (Lro in the extended algorithm, [N1]) and others 
which only affect their associated probabilities of identifi-
cation, but do not make them 0. Then all subsets of the 
description built which contain at least Lro are examined 
[N5] whether they yield a better preference over all potential 
distractors in terms of their probabilities of identification 
[N9]. Through this measure, an early chosen descriptor with 
a probability of identification lower for the intended referent 
than for some potential distractors can finally be discarded, 
provided the discriminating effect on other potential 
distractors is also achieved by later chosen descriptors. In the 
example in Appendix II, all descriptors are categorized as 
optional ones, but for the one expressing the head noun – 
which is precisely the reason why it is not optional.

Altogether, the algorithm selects descriptors which either 
exclude some potential distractors definitively, makes some 
of them rely on the repair mechanism, or simply increases 
the probability of identification of the intended referent 
considerably in comparison to elements of the contrast set. 
While this selection process works reasonably in most 
cases, it may turn out as problematic when several of the 
descriptors chosen are associated with limited probabilities 
of recognition for the intended referent in comparison to 
potential distractors not completely excluded. As a conse-
quence, these potential distractors may be judged superior in 
terms of the probability of identification even though they 
rely on the repair mechanism (see example 3 in Figure 5). 
This risk can be circumvented by using a relatively high 
pmin parameter, but this measure may easily lead to the 
exclusion of an otherwise beneficial descriptor under normal 
conditions. An improvement can be obtained by the call to 
the procedure Optimize. If one of the first two descriptors 
used in example 3 in Figure 5 does not definitively exclude a 
potential distractor, the procedure Optimize tests descriptor 
combinations without it, and one of those may yield a better 
result – see also the example in Appendix II. A possible 
variations would be to allow just a single violation of the 
pmin restriction, for a descriptor with very good discrimi-
natory power.

So far, we have only elaborated changes for incorpo-
rating uncertainty concepts to the reference algorithm per se. 
Handling boolean combinations of descriptors through 
applying the reference algorithm to increasingly complex 
combinations also works with uncertainties, since all 
computations required are defined. More difficulties arise 
with ambitious control regimes, which rely on cut-off 
techniques, in addition to the complexity cut-off, such as 
dominance and value cut-offs, as introduced in [Horacek 
2004]. A complexity cut-off is already included in the 
extended reference algorithm. The two other cut-offs can be 
generalized, but this is likely to be associated with a 
significant loss of efficiency. In order for a descriptor to 
dominate another one, the dominating one must not only 
exclude all potential distractors that its competitor does, but 
it must also favor the intended referents over all potential 
distractors in terms of the associated  probabilities of identi-
fication – this requirement reduces the application frequency 

of this cut-off considerably. A value cut-off, in turn, is 
applicable to a partial solution if a solution has already been 
found, and there are no descriptor combinations untested for 
the partial solution which may yield a solution with less 
complex specifications. This condition can also be met in 
the environment associated with uncertainties. In this 
environment, however, there is another factor that has an 
impact on the quality of the solution, that is the probability 
of identification, which cannot be assessed prior to actually 
choosing a descriptor and testing its effects. 

6 Conclusion
In this paper, we have presented an approach for generating 
referential descriptions under conditions of uncertainty. The 
approach combines a proper recognition of objects associated 
with some degree of uncertainty, as well as identification 
through a repair mechanism, motivated by the need to 
identify objects even for descriptions that originally appear 
uninterpretable. On these lines, we have reinterpreted 
concepts of algorithms generating referring expressions in 
view of uncertainties about the appearance of objects. 
Incorporating measures of uncertainty in such an algorithm 
attacks strong assumptions and effects underlying most of 
the existing algorithms:

• They typically require crisp specifications concerning 
attribution of descriptors to referents and knowledge of 
the audience. Especially the connection to modern user 
models may require coarse-grained interpretations here.

• A single result is produced even if several reasonable 
variants exist, and this choice is implicitly determined 
by the preference ordering imposed on the descriptors.

• The interaction with other components of an NL gener-
ation system and an embedding dialog system is rather 
limited. Reference generation is typically conceived as 
a pure functional service, with no feedback, taking into 
account syntactic constraints, at best (e.g., [Horacek 
1997]). An embedding dialog system has no chance to 
find out possible sources for an identification failure. 

The algorithm incorporating measures to deal with uncer-
tainties provides facilities to improve this situation:

• Specifications concerning attribution of descriptors to 
referents and knowledge of the audience can be done in 
a direct fashion, requiring no interpretations.

• There are some parameters to control the choice of 
descriptors, the conciseness and expected effectiveness 
of the result, including an afterwards optimization 
which only requires re-calculation of probabilities.

• The probabilities of identification associated with the 
intended referents and those potential distractors that 
fall under the repair facility give an indication about 
the likelihood of success of the identification task and 
also about potential sources for a failure. Moreover, 
the situation about probabilities and descriptors may 
suggest variants in building surface expressions, such 
as putting emphasis on a critical descriptor.
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Appendix I: Reference Algorithm ([Dale and Reiter 1995], left) and Extended Algorithm (right)

                                                                                                                           

MakeReferringExpression (r,C,P)
L ← {} 
for each member Ai of list P do

V = FindBestValue(r,Ai,BasicLevelValue(r,Ai))
if  RulesOut(<Ai,V>) ≠ nil

then L ← L ∪ {<Ai,V>}
C ← C - RulesOut(<Ai,V>)

endif
if  C = {} then

if  <type,X> ∈ L for some X
then return L (an identifying description)
else return L ∪ {<type,BasicLevelValue(r,type)>}

endif
endif

return L (a non-identifying description)

FindBestValue (r,A,initial-value)
if  UserKnows(r,<A,initial-value>) = true

then value ←  initial-value 
else value ← no-value 

endif
if  (spec-value ←  MoreSpecificValue(r,A,value)) ≠ nil ^

(new-value ←  FindBestValue(r,A,spec-value)) ≠ nil ^
(|RulesOut(<A,new-value>)| > |RulesOut(<A,value>)|)
then value ←  new-value 

endif
return value

RulesOut (A,V)
if  V = no-value

then return nil
else return {x: x ∈ C ^ UserKnows(x,<A,V>) = false}

endif 
                                                                                                                           

                                                                                                                           

MakeReferringExpression (r,C,P)
L ← {}, Lro ← {} [N1]
for each member Ai of list P do

V = FindBestValue(r,Ai,BasicLevelValue(r,Ai))
if  Dominate(Ai,V) ≠ nil [N2]

then L ← L ∪ {<Ai,V>}
C ← C - RulesOut(<Ai,V>)
if  RulesOut(<Ai,V>) ≠ nil

then Lro ← Lro ∪ {<Ai,V>}
endif  endif
if  (C = {}) ∨ (|L| > Complexity-limit) ∨ [N3]

(∀x ∈ C: (pr(r,L) - pr(x,L)) > ∆p2) then [N4]
L ← Optimize(L,Lro) (optional) [N5]
if  <type,X> ∈ L for some X

then return L (a likely identifying description)
else return L ∪ {<type,BasicLevelValue(r,type)>}

endif  endif
return L (an unlikely identifying description)

FindBestValue (r,A,initial-value)
if  pr(r,{<A,initial-value>}) > pmin [N6]

then value ←  initial-value 
else value ← no-value 

endif
if  (spec-value ←  MoreSpecificValue(r,A,value)) ≠ nil ^

(new-value ←  FindBestValue(r,A,spec-value)) ≠ nil ^
(|Dominate(A,new-value)| > |Dominate(A,value)|)
then value ←  new-value 

endif
return value

RulesOut (A,V)
if  V = no-value then return nil

else return {x: x ∈ C ^ (pr(x,L ∪ {<A,V>}) = 0)} [N7]
endif 

Dominate (A,V)
if  V = no-value then return nil
else return {x: x ∈ C ^ ((pr(x,L ∪ {<A,V>}) = 0) ∨ 

((pr(r,L ∪ {<A,V>}) - pr(x,L ∪ {<A,V>})) - [N8]
(pr(r,L) - pr(x,L))) > ∆p1)}

endif 
Optimize (L1,L2)

Lopt ← L1, ppopt ← Min∀x ∈ C(pr(r,L1) - pr(x,L1)) [N9]
forall L (L1 ⊇ L ⊇ L2) do

pp ← Min∀x ∈ C(pr(r,L) - pr(x,L))
if  ppopt < pp then Lopt ← L, ppopt ← pp endif

endforall
return Lopt

                                                                                                                          



Appendix II: An Example of the Extended Algorithm at Work

In this section, we demonstrate the functionality of the 
extended algorithm by an example that illustrates several 
features of this algorithm. As in the discussion in Section 
2, the scenario consists of three similar dogs, one of which 
is a bassett, which is also the intended referent. In addition, 
the bassett is brownish and has a long tail. The other two 
dogs have shorter tails and their skin is also brownish, but 
with some white resp. black portions, which makes the 
descriptor 'brownish' less appropriate than for the bassett. 

To make the example suitable for our purposes, the 
audience is assumed to have little knowledge about dog 
specifics, that is, they may recognize the intended referent 
as a bassett, but this is not very likely (we assume the 
category identification has a likelihood of 30%). In 
addition, it is assumed that the tails of the dogs, specific-
ally the one of the bassett, cannot be observed easily by the 
audience (again, we assume the recognition has a likelihood 
of 30%). Both, dog category and tail length are potentially 
confusable for all dogs.  These properties and associated 
probabilities of identification as listed below.
                                                                                                                           

Objects Attributes
category color tail-length

                                                                                                                           

dog1 bassett brownish long
dog2 dog brown-white short
dog3 dog brown-black short

                                                                                                                           

Probabilities of identification (per attribute-value and object)

bassett: p(dog1) = 0.3, p(dog2) = 0.0, p(dog3) = 0.0

brownish:p(dog1) = 0.9, p(dog2) = 0.8, p(dog3) = 0.8

long-tail: p(dog1) = 0.3, p(dog2) = 0.0, p(dog3) = 0.0
                                                                                                                           

Hence, the intended referent r is {dog1}, and the contrast set 
C is {dog2, dog3}. For demonstration purposes, we choose 
the following parameterizations:

• The attributes are considered according to the ordered 
preference list P = (color, category, tail-length), which 
in some sense reflects the ease of perception of color

• We choose 5% (0.05) for ∆p1, which indicates suffi-
cient dominance, and 30% (0.3) for ∆pmin, which 
indicates sufficient identification potenial (it always 
succeeds in the example); similarly, we choose 50% 
(0.5) for ∆p2 which indicates sufficient discrimination 
(it never succeeds here, hence all descriptors are tried)

• We allow a maximum complexity of 3 descriptors, so 
that this cut-off criterion does not apply in our simple 
example, and we use the optional optimization step

• In order to compute probabilities of identification, we 
need to choose a values for the ”scale-down factor”, 
which will be 0.5, as mentioned in Section 4. Since 
no disjunctions and negations of descriptors are needed 
for our example, no further parameters are required.

We now illustrate the generation process step by step.
In the first step, “brownish” is chosen as the value of the 

attribute “color” of dog1, and its contribution to discriminate 
the intended referent from the elements of the contrast set is 
checked. To start with, its  identification potential, 0.9, is far 
higher than pmin (0.25).Since this descriptor is also applic-
able to both other dogs, dog2 and dog3, but with lower 
probability, these two objects still remain in the contrast set. 
Despite this limited discrimination, the attribute is chosen 
because it achieves more than the minimal dominance 
required: 0.9 - 0.8 equals 0.1, which is higher than ∆ p2 
(0.05). Thus, the situation after step 1 is as follows (we 
neglect the repair factor, which is as low as 0.1 x 0.2 x 0.2):

pr(dog1) = 0.9, pr(dog2) = pr(dog3) = 0.8 
∆pr = pr(dog1) - Max(pr(dog2), pr(dog3)) = 0.1 > ∆p1

In the next step, “bassett” is chosen as the value of the 
attribute “category” of dog1, and again its contribution to 
discriminate the intended referent from the elements of the 
contrast set is checked. Its  identification potential, 0.3, is 
sufficient, since it is higher than pmin (0.25). This descriptor 
is not applicable to the other dogs, dog2 and dog3. Never-
theless, they still remain in the contrast set since they poten-
tially are subject to the repair mechanism. The probabilities 
of identification are computed according to the schema in 
Figure 4: the product of the probabilities of "bassett" and 
"brownish" associated with dog1 yields 0.27. The repair 
factor, the complementing 0.73, is distributed evenly among 
all three dogs. Hence, the degree of dominance of this 
descriptor amounts to 0.27, which is higher than ∆p2 (0.05).  
Thus, the situation after step 2 is as follows:

pr(dog1) = 0.513, pr(dog2) = pr(dog3) = 0.243 
∆pr = pr(dog1) - Max(pr(dog2), pr(dog3)) = 0.27 > ∆p1

In the last step, “long” is chosen as the value of the attri-
bute “tail-length”.  Again, its  identification potential, 0.3, 
is sufficient, since it is higher than pmin (0.25). As in the 
previous step, dog2 and dog3 still remain in the contrast set 
since they potentially are subject to the repair mechanism. 
The product of the probabilities for dog1 results from the 
previous one, multiplied by 0.3, which yields 0.081. The 
repair factor, the complementing 0.919, is distributed by 
giving two parts to dog1 (the scale-down factor applies) and 
one part to each of the other dogs. Hence, the degree of 
dominance of this descriptor amounts to 0.31075, which is 
higher than ∆p2 (0.05), which gives the final situation:

pr(dog1) = 0.5405, pr(dog2) = pr(dog3) = 0.22975 
∆pr = pr(dog1) - Max(pr(dog2), pr(dog3)) = 0.31075 > ∆p1

Optimization attempts show that “bassett” only is slightly 
inferior (pr(dog1) = 0.53, pr(dog2) = pr(dog3) = 0.23, ∆pr = 
0.3), while “bassett” together with “long-tailed” is slightly 
superior (pr(dog1) = 0.545, pr(dog2) = pr(dog3) = 0.225, ∆pr 
= 0.32) to the combination of all descriptors. Hence, the 
example demonstrates benefits and risks are comparable when 
only limited discrimination is possible by each descriptor.


