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Abstract

We examine various string distance mea-
sures for suitability in modeling dialect
distance, especially its perception. We find
measures superior which donotnormalize
for word length, but whichare are sensi-
tive to order. We likewise find evidence for
the superiority of measures which incor-
porate a sensitivity to phonological con-
text, realized in the form ofn-grams—
although we cannot identify which form
of context (bigram, trigram, etc.) is best.
However, we find no clear benefit in us-
ing gradual as opposed to binary segmen-
tal difference when calculating sequence
distances.

1 Introduction

We compare string distance measures for their
value in modeling dialect distances. Traditional
dialectology relies on identifying language fea-
tures which are common to one dialect area while
distinguishing it from others. It has difficulty
in dealing with partial matches of linguistic fea-
tures and with non-overlapping language patterns.
Therefore Seguy (1973) and Goebl (1982; 1984)
advocate using aggregates of linguistic features to
analyze dialectal patterns, effectively introducing
the perspective ofDIALECTOMETRY.

Kessler (1995) introduced the use of string edit
distance measure as a means of calculating the dis-
tance between the pronunciations of correspond-
ing words in different dialects. Following Seguy’s
and Goebl’s lead, he calculated this distance for
pairs of pronunciations of many words in many
Irish-speaking towns. String edit distance is sen-
sitive to the degrees of overlap of strings and al-

lows one to process large amounts of pronunci-
ation data, including that which does not follow
other isoglosses neatly. Heeringa (2004) exam-
ines several variants of edit distance applied to
Norwegian and Dutch data, focusing on measures
which involve a length normalization, and which
ignore phonological context, and demonstrating
that measures using binary segment differences
are no worse than those using feature-based mea-
sures of segment difference.

This paper inspects a range of further refine-
ments in measuring pronunciation differences.
First, we inspect the role of normalization by
length, showing that it actually worsens non-
normalized measures. Second, we compare edit
distance measures to simpler measures which ig-
nore linear order, and show that order-sensitivity
is important. Third, we inspect measures which
are sensitive to phonetic context, and show that
these, too, tend to be superior. Fourth, we com-
pare versions of string edit distance which are
constrained to respect syllable structure (always
matching vowels with vowels, etc.), and conclude
that this is mildly advantageous. Finally we com-
pare binary (i.e., same/different) treatments of the
segments in edit distance to gradual treatments of
segment differentiation, and find no indication of
the superiority of the gradual measures.

The quality of the measures is assayed primarily
through their agreement with the judgments of di-
alect speakers about which varieties are perceived
as more similar (or dissimilar) to their own. In
addition we inspect a validation technique which
purports to show how successfully a dialect mea-
sure uncovers the geographic structure in the data
(Nerbonne and Kleiweg, 2006), but this technique
yields unstable results when applied to our data.
We have perception data only for Norwegian, so
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that data figures prominently in our argument, and
we evaluate both Norwegian and German data ge-
ographically.

The results differ, and the perceptual results
(concerning Norwegian) are most easily inter-
pretable. There we find, as noted above, that
non-normalized measures are superior to normal-
ized ones, that both order and context sensitiv-
ity are worthwhile, as is the vowel/consonant dis-
tinction. The (geographic) results for German are
more complicated, but also less stable. We include
them for the sake of completeness.

In addition we note two minor contributions.
First, although some literature ends up evaluat-
ing both distance and similarity measures, because
these are not consistently each others’ inverses un-
der some normalizations (Kondrak, 2005; Inkpen
et al., 2005), we suggest a normalization based on
alignment length which guarantees that similarity
is exactly the inverse of distance, allowing us to
concentrate on distance.

Second, we note that there is no great problem
in applying edit distance to bigrams and trigrams,
even though recent literature has been sceptical
about the feasibility of this step. For example
Kessler (2005) writes:

[...] one major shortcoming [in applying
edit distance to linguistic data, WH et al]
that is rarely discussed is that the pho-
netic environment of the sounds in ques-
tion cannot be taken into account, while
still making use of the efficient dynamic
programming algorithm (p. 253).

Somewhat further Kessler writes: “Currently, the
predominant solution to this problem is to ignore
context entirely.” In fact Kondrak (2005) applies
edit distance straightforwardly usingn-gram as
basic elements. Our findings accord with Kon-
drak’s, who also found no problem in applying edit
distance usingn-grams, but we evaluate the tech-
nique in its application to dialectology.

1.1 Background

Heeringa (2004) demonstrates that edit distance
applied to comparable words (see below for ex-
amples) is a superior measure of dialect distance
when compared to unigram corpus frequency and
also that it is superior to both the frequency of pho-
netic features in corpora (a technique which Hop-
penbrouwers & Hoppenbrouwers (2001) had ad-
vocated) and to the frequency of phonetic features

taken one word at a time. Heeringa compares these
techniques using the results of a perception ex-
periment we also employ below. Heeringa shows
that word-based techniques are superior to corpus-
based techniques, and moreover, that most word-
based techniques perform about the same. We
therefore ignore measures which view corpora as
undifferentiated collections below and study only
word-based techniques.

A further question was whether to compare
words based on a binary difference between seg-
ments or whether to use instead phonetic fea-
tures to derive a more sensitive measure of seg-
ment distance. It turned out that measures us-
ing binary segment distinctions outperform the
feature-based methods (see Heeringa, pp. 184–
186), even though a number of feature systems and
comparisons of feature vectors were experimented
with. We likewise accept these results (at least for
present purposes) and focus exclusively on mea-
sures using the binary segment distinctions below.

Kondrak (2005) and Inkpen et al. (2005) present
several methods for measuring string similarity
and distance which complement Heeringa’s results
nicely. We should note, however, that these pa-
pers focus on other areas of application, viz., the
problems of identifying (i) technical names which
might be confused, (ii) linguistic cognates (words
from the same root), and (iii) translational cog-
nates (words which may be used as translational
equivalences). Inkpen et al. consider 12 different
orthographic similarity measures, including some
in which the order of segments does not play a role
(e.g., DICE), and others which use order in align-
ment (e.g. edit distance). They further consider
comparison on the basis of unigrams, bigrams, tri-
grams and “xbigrams,” which are trigrams without
the middle element. Some methods are similarity
measures, others are distance measures. We return
to this in Section 2.

1.2 This paper

In this paper we apply string distance measures
to Norwegian and German dialect data. As
noted above, we focus on word-based methods
in which segments are compared at a binary
(same/different) level. The methods we consider
will be explained in Section 2. Section 3 de-
scribes the Norwegian and German data to which
the methods are applied. In Section 4 we describe
how we evaluate the methods, namely by com-
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paring the algorithmic results to the distances as
perceived by the dialect speakers themselves. We
likewise aimed to evaluate by calculating the de-
gree to which a measure uncovers geographic co-
hesion in dialect data, but as we shall see, this
means of validation yields rather unstable results.
In Section 5 we present results for the different
methods and finally, in Section 6, we draw some
conclusions.

2 String Comparison Algorithms

In this section we describe a number of string
comparison algorithms largely following Inkpen
et al. (2005). The methods can be classified ac-
cording to different factors: representation (un-
igram, bigram, trigram, xbigram), comparison
of n-grams (binary or gradual), status of order
(with or without alignment), and type of align-
ment (free or forced alignment with respect to
the vowel/consonant distinction). We illustrate
the methods with examples, in which we compare
German and Dutch dialect pronunciations of the
wordmilk.1

2.1 Contextual sensitivity

In the German dialect of Reelkirchenmilk is pro-
nounced as [mElk@]. The bigram notation is [–m
mE El lk k@ @–] and the trigram notation is [––m
–mE mEl Elk lk@ k@– @––]. The same word is pro-
nounced as [mEl@ç] in the German dialect of Tann.
The bigram and trigram representations are [–m
mE El l@ @ç ç–] and [––m –mE mEl El@ l@ç @ç– ç––]
respectively.

In the simplest method we present in this paper,
the distance is found by calculating 1 minus twice
the number of shared segmentn-grams divided by
the total number ofn-grams in both words. Inkpen
et al. mention a bigram-based, a trigram-based
and a xbigram-based procedure, which they call
DICE, TRIGRAM and XDICE respectively. We
also consider an unigram-based procedure which
we call UNIGRAM. The two pronunciations share
four unigrams: [m,E, l] and [@]. There are5 + 5 =
10 unigram tokens in total in the two words, so the
unigram similarity is(2 × 4)/10 = 0.8, and the
distance1 − 0.8 = 0.2. The two pronunciations
share three bigrams: [–m, mE] and [El]. There are
6 + 6 = 12 bigram tokens in the two strings, so
bigram similarity is(2×3)/12 = 0.5, and the dis-
tance1 − 0.5 = 0.5. Finally, the two pronuncia-

1Our transcriptions omit diacritics for simplicity’s sake.

tions have three trigrams in common: [––m, –mE]
and [mEl] among7+7 = 14 in total, yielding a tri-
gram similarity of(2 × 3)/14 = 0.4 and distance
1− 0.4 = 0.6.

Our interest in this issue is linguistic: longer
n-grams allow comparison on the basis of phonic
context, and unigram comparisons have correctly
been criticized for ignoring this (Kessler, 2005).

2.2 Order of segments

When comparing the German dialect pronuncia-
tion of Reelkirchen [mElk@] with the Dutch dialect
pronunciation of Haarlem [mEl@k], the unigram
procedure presented above will detect no differ-
ence. One might argue that we are dealing with
a swap, but this is effectively an appeal to order.
The example is not convincing forn-gram mea-
sures,n ≥ 2, but we should prefer to separate
issues of order from issues of context sensitivity.
We use edit distance (aka Levenshtein distance)
for this purpose, and we assume familiarity with
this (Kruskal, 1999). In our use of edit distance all
operations have a cost of 1.

2.3 Normalization by length

When the edit distance is divided by the length
of the longer string, Inkpen et al. call it normal-
ized edit distance (NED). In our approach we di-
vide “raw edit distance” by alignment length. The
same minimum distance found by the edit distance
algorithm may be obtained on the basis of sev-
eral alignments which may have different lengths.
We found that the longest alignment has the great-
est number of matches. Therefore we normalize
by dividing the edit distance by the length of the
longest alignment.

We have normally employed a length normal-
ization in earlier work (Heeringa, 2004), reason-
ing that words are such fundamental linguistic
units that dialect perception was likely to be word-
based. We shall test this premise in this paper.

Marzal & Vidal (1993) show that the normal-
ized edit distance between two strings cannot be
obtained via “post-normalization”, i.e., by first
computing the (unnormalized) edit distance and
then normalizing this by the length of the cor-
responding editing path. Unnormalized edit dis-
tance satisfies the triangle inequality, which is ax-
iomatic for distances, but the quantities obtained
via post-normalization need not satisfy this ax-
iom. Marzdal & Vidal provide an alternative pro-
cedure which is guaranteed to produce genuine
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distances, satisfying all of the relevant axioms. In
their modified algorithm, one computes one min-
imum weight foreachof the possible lengths of
editing paths at each point in the computational
lattice. Once all these weights are calculated, they
are divided by their corresponding path lengths,
and the minimum quotient represents the normal-
ized edit distance.

The basic idea behind edit distance is to find the
minimum cost of changing one string into another.
Length normalization represents a deviation from
this basic idea. If a higher cost corresponds with a
longer path length so that quotient of the edit costs
divided by the path length is minimal, then Marzal
& Vidal’s procedure opts for the minimal normal-
ized length, while post-normalization seeks what
one might call “the normalized minimal length”
(see Marzal & Vidal’s example 3.1 and Figure 2,
p. 928).

Marzal & Vidal’s examples of normalized mini-
mal distances which are not also minimal normal-
ized distances all involve operation costs we nor-
mally do not employ. In particular they allowIN-
DELS (insertions and deletions) to be associated
with much lower costs than substitutions, so that
the longer paths associated with derivations in-
volving indels is more than compensated by the
length normalization. Our costs are never struc-
tured in this way, so we conjecture that our post-
normalizations do not genuinely run the risk of vi-
olating the distance axioms. We use0 for the cost
of mapping a symbol to itself,1 to map it to a dif-
ferent symbol, including the empty symbol (cov-
ering the costs of indels), and∞ for non-allowed
mappings2 We maintain therefore that (unnormal-
ized) costs higher than the minimum will never
correspond to longer alignment lengths. If this is
so, then the minimal edit cost divided by align-
ment length will also be the minimal normalized
cost. If the unnormalized edit distance is mini-
mal, we claim that the post-normalized edit dis-
tance must therefore be minimal as well.

We inspect an example to illustrate these issues.
We compare the Frisian (Grouw), [mOlk@], with
the Haarlem pronunciation [mEl@k]. The Leven-
shtein algorithm may align the pronunciations as
follows:

2For example, in some versions of edit distance, the value
∞ is assigned to the replacement of a vowel by a consonant
in order to avoid alignments which violate syllabic structure.

1 2 3 4 5 6
m O l k @
m E l @ k

1 1 1

The one pronunciation is transformed into the
other by substituting [E] for [O], by deleting [@]
after [l], and by inserting [@] after [k]. Since
each operation has a cost of 1, and the align-
ment is6 elements long, the normalized distance
is (1 + 1 + 1)/6 = 0.5. The Levenshtein dis-
tance will also find an alignment in which the
[@]’s are matched, while the [k]’s are inserted and
deleted. That alignment gives the same (normal-
ized) distance. Levenshtein distance will not find
an alignment any longer than the one shown here,
since longer alignments will not yield the mini-
mum cost. This also holds for the examples shown
below.

2.4 n-gram weights

In the dialect of the German dialect of Frohn-
hausenmilk is pronounced as [mIlj@], and in the
German of Großwechsungen as [mElIç]. If we
compare these using the techniques of Section 2.2,
using bigrams, we obtain the following:

1 2 3 4 5 6
-m mI Il lj j @ @-
-m mE El l I Ik k-

1 1 1 1 1

Sincen-grams are compared in a binary way, the
normalized distance is equal to(1 + 1 + 1 + 1 +
1)/6 = 0.83. But [mI] and [mE] (second posi-
tion) are clearly more similar to each other than
[j@] and [Ik] (fifth position). Inkpen et al. suggest
weightingn-gram differences using segment over-
lap. They provide a formula for measuring grad-
ual similarity of n-grams to be used in BI-DIST
and TRI-DIST. Since we measure distances rather
than similarity, we calculaten-gram distance as
follows:

s(x1...xn, y1...yn) = 1
n

∑n
i=1 d(xi, yi)

whered(a, b) returns1 if a andb are different, and
0 otherwise. We apply this to our example:

1 2 3 4 5 6
-m mI Il lj j @ @-
-m mE El l I Ik k-

0.5 0.5 0.5 1 0.5

obtaining(0.5+0.5+0.5+1+0.5)/6 = 3.0/6 =
0.5 distance after normalization.
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2.5 Linguistic Alignment

When comparing the Frisian (Grouw) dialect
pronunciation, [mOlk@], with that of German
Großwechsungen, [mElIç], using unigrams, we ob-
tain:

1 2 3 4 5
m O l k @
m E l I ç

1 1 1
The normalized distance is then(1 + 1 + 1)/5 =
0.6. But this is linguistically an implausible align-
ment: syllables do not align when e.g. [k] aligns
with [I], etc. We may remedy this by requir-
ing the Levenshtein algorithm to respect the dis-
tinction between vowels and consonants, requir-
ing that the alignments respect this distinction with
only three exceptions, in particular that semivow-
els [j, w] may match vowels (or consonants), that
the maximally high vowels [i, u] match conso-
nants (or vowels), and that [@] match sonorant con-
sonants (nasals and liquids) in addition to vow-
els. Disallowed matches are weighted so heav-
ily (via the cost of the substitution operation) that
the algorithm always will use alternative align-
ments, effectively preferring insertions and dele-
tions (indels) instead. Applying these restrictions,
we obtain the following, with normalized distance
(1 + 1 + 1 + 1)/6 = 0.67:

1 2 3 4 5 6
m O l k @
m E l I ç

1 1 1 1
In comparisons based on bigrams, we allow

two bigrams to match when at least one seg-
ment pair matches, the first, the second, or both.
Two trigrams match when at least the middle pair
matches. Comparing the same pronunciations as
above using bigrams without linguistic conditions,
we obtain the following alignment:

1 2 3 4 5 6
-m mO Ol lk k@ @-
-m mE El l I Iç ç-

1 1 1 1 1
0.5 0.5 0.5 1 0.5

The normalized distance is(1 + 1 + 1 + 1 +
1)/6 = 0.83 using binary bigram weights (costs),
and(0.5 + 0.5 + 0.5 + 1 + 0.5)/6 = 0.5 using
gradual weights. But the above alignment doesnot
respect the vowel/consonant distinction at the fifth
position, where neither [k] vs. [I] nor [@] vs. [ç] is
allowed. We correct this at once:

1 2 3 4 5 6 7
-m mO Ol lk k@ @-
-m mE El l I Iç ç-

1 1 1 1 1 1
0.33 0.33 0.67 1 1 1

Using binary bigram weights, the normalized dis-
tance is(1 + 1 + 1 + 1 + 1 + 1)/7 = 0.86.

The calculation based on gradual weights is a
bit more complex. Two bigrams may match even
when a non-allowed pair occurs in one of the two
positions, e.g., [k] vs. [I] at the fourth position in
the alignment immediately above. The cost of this
match should be higher (via weights) than that of
an allowed pair with different elements—e.g., the
pair [O] versus [E] at the second or third position—
but not so high that the match cannot occur.

We settle on the following scheme. Twon-
grams[x1...xn] and[y1...yn] can only match if at
least one pair(xi, yi) matches linguistically. We
weight linguistically mismatching pairs(xj , yj)
twice as high as matching (but non-identical)
pairs. Since we have at mostn − 1 matching
pairs, and at least 1 mismatching pair, we set the
most expensive match of twon-grams to1, and we
assign the weight of2/(2n − 1) to a mismatch-
ing pair, and1/(n − 1) to a matching (but non-
identical) one. Indels cost the same as the most
costly (matching)n-grams, in this case1.

In our bigram-based example, we obtain a
weight of 2/(2 × 2 − 1) = 0.67 at position
4, since the pair [k] vs. [I] is a linguistic mis-
match. At positions 2 and 3 we obtain weights
of 1/(2×2−1) = 0.33 since [O] and [E] are (non-
identical) matches. Note that a segment (vowel or
consonant) versus ‘-’ (boundary) is processed as
a mismatch. Therefore the weight at position 6 is
equal to0.33 ([k] vs. [ç]) +0.67 ([@] versus [-]),
summing to1.

2.6 Similarity vs. distance

Theoretically, similarity and distance should be
each others’ inverses. Thus in Section 2.1 we
suggested that similarity should always be(1 −
distance). This is not always straightforward when
we normalize.

Inkpen et al. use both similarity and dis-
tance measures. Similarity measures are LCSR
(Longest Common Subsequence Ratio), BI-SIM
and TRI-SIM (LCSR generalized to bigrams and
trigrams), and the corresponding distance mea-
sures are NED, BI-DIST and TRI-DIST. The mea-
sures are further distinguished in the wayn-gram
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weights are compared: as binary weights in the
similarity measures, and as gradual weights in the
distance measures. When comparing the pronun-
ciations of Frisian Hindelopen [mO@lk@] with Ger-
man Großwechsungen, [mElIç], and respecting the
linguistic alignment conditions (Section 2.5) we
obtain:

m O @ l k @
m E l I ç
0 1 1 0 1 1 1

The non-normalized similarity is equal to 2, and
the non-normalized distance is equal to 5. Inkpen
et al. normalize “by dividing the total edit cost by
the length of the longer string” which is 6 in our
example. Other possibilities are dividing by the
length of the shorter string (5), the average length
of the two strings (5.5) or the length of the align-
ment (7). Summarizing:

shorter longer average align-
string string string ment

sim. 0.4 0.33 0.36 0.29
dist. 1.0 0.83 0.91 0.71
total 1.4 1.17 1.27 1.00

Only the normalization via alignment length re-
spects the wish that we regard similarity and dis-
tance as each others’ inverses.3 We can enforce
this requirement in other approaches by first nor-
malizing and then taking the inverse, but we take
the result above to indicate that normalization via
alignment length is the most natural procedure.

3 Data Sources

The methods presented in Section 2 are applied
to Norwegian and German dialect data described
in this section. We emphasize that we measured
distances only at the level of the segmental base,
ignoring stress and tone marks, suprasegmentals
and diacritics. We in fact examined measurements
which included the effects of segmental diacritics,
which, however resulted in decreased consistency
and no apparent increase in quality.

3.1 Norwegian

The Norwegian data comes from a database com-
prising more than 50 dialect sites, compiled by
Jørn Almberg and Kristian Skarbø of the Depart-
ment of Linguistics of the University of Trond-

3We have no proof that normalization by alignment length
always allows this simple relation to similarity, but we have
examined a large number of calculations in which this always
seems to hold.

heim.4 The database includes recordingsandtran-
scriptions of the fable ‘The North Wind and the
Sun’ in various Norwegian dialects. The Norwe-
gian text consists of 58 different words, some of
which occur more than once, in which case we
seek a least expensive pairing of the different el-
ements (Nerbonne and Kleiweg, 2003, p. 349).

On the basis of the recordings, Gooskens car-
ried out a perception experiment which we de-
scribe in Section 4.1. The experiment is based
on 15 dialects, the total number of dialects avail-
able at that time (spring, 2000). Since we want to
use the results of the experiment for validating our
methods, we used the same set of 15 Norwegian
dialects. It is important to note that Gooskens pre-
sented the recordings holistically, including differ-
ences in syntax, intonation and morphology. Our
methods are restricted to words.

3.2 German

The German data comes from thePhonetischer
Atlas Deutschlandsand includes 186 dialect lo-
cations. For each location 201 words were
recorded and transcribed. The data are available
at theForschungsinstitut f̈ur deutsche Sprache -
Deutscher Sprachatlasin Marburg. The material
is from translations ofWenker-S̈atze, taken from
the famous survey by Georg Wenker in the 1879–
1887 among teachers from≈ 40.000 locations in
Germany. The transcriptions are made on the basis
of recordings made under the direction of Joachim
Göschel in the 1960’s and 1970’s in West Ger-
many (G̈oschel 1992, pp. 64–70). After the Ger-
man reunification similar surveys were conducted
in former East Germany.

The data were transcribed by four transcribers,
and each item was transcribed independently by
at least two phoneticians who subsequently con-
sulted to come to an agreement. In 2002 the data
was digitized at the University of Groningen.

4 Validation Methods

When we apply a measurement technique to a spe-
cific problem we are interested both in the con-
sistency of the measure and in its validity. The
consistency of the measurement reflects the degree
to which the independent elements in the sample
sample tend to provide the same signal. Nun-
nally (1978, p.211) recommends the generalized

4The database is available athttp://www.ling.hf.
ntnu.no/nos/ .
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form of the Spearman-Brown formula for this pur-
pose, which has come to be known as the CRON-
BACH’ Sα value. It is determined by the inter-item
correlation, i.e. the average correlation coefficient
for all of the pairs of items in the test, and the
test size. The Cronbach’sα measure rises with
the sample size, and it is therefore normally used
to determine whether samples are large enough to
provide reliable signals.

The validity of a measure, or more precisely,
the application of a measure to a particular prob-
lem is much more difficult and controversial issue
(Nunnally, 1978, Chap. 3), but the basic issue is
whether the procedures in fact measure what they
purport to measure, in our case the sort of pro-
nunciation similarity which is important in distin-
guishing similar language varieties. In examining
our measures for their validity in identifying the
sort of pronunciation similarity which plays a role
in dialectology we compare the measures to other
indications we have that pronunciations are dialec-
tally similar. We discuss these below in more de-
tail. We consider the correlation with distances as
perceived by the dialect speakers themselves (see
Section 4.1) and the local (geographic) incoher-
ence of dialect distances (see Section 4.2).

4.1 Perception

The best opportunity for examining the quality of
the measurements presents itself in the case of
Norwegian, for which we were able to obtain the
results of a perception experiment (Gooskens and
Heeringa, 2004). For each of 15 varieties a record-
ing of the fable ‘The North Wind and the Sun’ was
presented to 15 groups of Norwegian high school
pupils, one group from each of the 15 dialects sites
represented in the material. All pupils were famil-
iar with their own dialect and had lived most of
their lives in the place in question (on average 16.7
years). Each group consisted of 16 to 27 listeners.
The mean age of the listeners was 17.8 years, 52
percent were female and 48 percent male.

The 15 dialects were presented in a randomized
order, and each session was preceded by a (short)
practice run. While listening to the dialects the
listeners were asked to judge each of the 15 di-
alects on a scale from 1 (similar to native dialect)
to 10 (not similar to native dialect). This means
that each group of listeners judged the linguistic
distances between their own dialect and the 15 di-
alects, including their own dialect. In this way

we get a matrix with 15× 15 perceived linguis-
tic distances. This matrix is not completely sym-
metric. For example, the distance which the lis-
teners from Bergen perceived between their own
dialect and the dialect of Trondheim (8.55) is dif-
ferent from the distance as perceived by the listen-
ers from Trondheim to Bergen (7.84).

In order to use this material to calibrate the dif-
ferent computational measurements, we examine
the correlations between the15×15 computational
matrices with the15×15 perceptual matrix. In cal-
culating correlations we excluded the distances of
dialects with respect to themselves, i.e. the dis-
tance of Bergen to Bergen, of Bjugn to Bjugn,
etc. In computational matrices these values are al-
ways zero, in the perceptual matrix they vary, but
are normally greater than zero. This may be due
to non-geographic (social or individual) variation,
but it distorts results in a non-random way (diago-
nal distances can only be too high, never too low),
we exclude them when calculating the correlation
coefficient.

We calculated the standard Pearson product-
moment correlation coefficient, but we interpret
its significance cautiously, using the Mantel test
(Bonnet and Van de Peer, 2002). In classical tests
the assumption is made that the observations are
independent, which observations in distance ma-
trices emphatically are not. This is certainly true
for calculations of geographic distances, which are
minimally constrained to satisfy the standard dis-
tance axioms (non-negativity, symmetry, and the
triangle inequality). We have argued above (§ 2.2)
that the edit distances we employ are likewise gen-
uine distances, which means that sums of edit
distances are likewise constrained, and therefore
should not be regarded as independent observa-
tions (in the sense need for hypothesis testing).

The Mantel test raises the standards of signif-
icance a good deal— so much that it will turn
out that our small (15 × 15) matrices would need
to differ by more than0.1 in correlation coeffi-
cient in order to demonstrate significance. We will
nonetheless urge that the results should be taken
seriously as the data needed is difficult to obtain,
and the indications are fairly clear (see below).

4.2 Local Incoherence

It is fundamental to dialectology that geographi-
cally closer varieties are, in general, linguistically
more similar. Nerbonne and Kleiweg (2006) use
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this fact to select more probative measurements,
namely those measurements which maximize the
degree to which geographically close elements are
likewise seen to be linguistically similar. Given
our emphasis on distance it is slightly more con-
venient to formulate a measure ofLOCAL INCO-
HERENCEand then to examine the degree to which
various string distance measures minimize it. The
basic idea is that we begin with each measurement
sites, and inspect then linguistically most similar
sites in order of decreasing linguistic similarity to
s. We then measure how far away these linguisti-
cally most similar sites are geographically, for ex-
ample, in kilometers.Good measurements show
that linguistically similar sites are geographically
close better thanpoor measurements do.

The details of the formulation reflect the re-
sults of dialectometry that dialect distances cer-
tainly increase with geographic distance, leveling
off, however, so that geographically more remote
variety-pairs tend to have more nearly the same
linguistic distances to each other. We sort variety
pairs in order of decreasing linguistic similarity
and weight more similar ones exponentially more
than less similar ones. Given this disproportion-
ate weighting of the most similar varieties, it also
quickly becomes uninteresting to incorporate the
effects of more than a small number of geographi-
cally closest varieties. We restrict our attention to
the eight most similar linguistic varieties in calcu-
lating local incoherence.

Il =
1
n

n∑
i=1

DL
i −DG

i

DG
i

DL
i =

k∑
j=1

dLi,j · 2−0.5j

DG
i =

k∑
j=1

dGi,j · 2−0.5j

dLi,j , d
G
i,j : geo. dist. betweeni enj

dLi,1···n−1 : geo. dist. sorted by increasing ling. diff.

dGi,1···n−1 : geo. dist, sorted by increasing geo. dist.

Several remarks may be helpful in understand-
ing the proposed measurement. First, all of thedi,j
concerngeographicdistances.dLi,1···n−1 (summed
in DL

i ) range over the geographic distances, ar-
ranged, however, in increasing order oflinguistic
distance, whiledGi,1···n−1 (summed inDG

i ) ranges

over the geographic distances among the sites in
the sample, arranged in increasing order ofgeo-
graphicdistance. We examine the latter as an ideal
case. If a given measurement technique always
demonstrated that the neighbors of a given site
used the most similar varieties, thenDL

i would be
the sameDG

i , andIl would be0. Second, we have
argued above that it is appropriate to count most
similar varieties much more heavily inIl, and this
is reflected in the exponential decay in the weight-
ing, i.e., 2−0.5j wherej ranges over the increas-
ingly less similar sites. Given this weighting of
most similar varieties, we are also justified in re-
stricting the sum inDL

i =
∑k
j=1[. . .] tok = 8, and

all of the results below use this limitation, which
likewise improves efficiency.

We suppress further discussion of the calcu-
lation in the interest of saving space here, not-
ing, however, that we used two different notions
of geographic distance. When examining mea-
surements of the German data, we measured geo-
graphic distance “as the crow flies”, but since Nor-
way is very mountainous, we used (19th century)
travel distances (Gooskens, ).

5 Experiments and Results

In this section we present results based on the Nor-
wegian and German data sources in 5.1 and Sec-
tions 5.3.

For each data source we consider 40 string com-
parison algorithms. We distinguish between meth-
ods with a binary comparison ofn-grams and
those with a gradual comparison ofn-grams (see
Section 2.4). Within the category of binary meth-
ods, we distinguish between three groups. In the
first group, strings are compared just by counting
the number of commonn-grams, ignoring the or-
der of elements, see Section 2.1). In the second
group then-grams are aligned (see Section 2.2).
We call this ‘free alignment’. In the third group
we insist on the linguistically informed alignment
of n-grams (see Section 2.5), dubbing this ‘forced
alignment’. Within the category of gradual meth-
ods, we distinguish between ‘free alignment’ (see
Section 2.6) and ’forced alignment’. Finally, for
each of these methods, we consider both an un-
normalized version of the measure as well as one
normalized by length (see Section 2.3).

A measure can only be valid when it is con-
sistent, but it may be consistent without being
valid. Since consistency is a necessary condi-

58



binary gradual
no free forc. free forc.

align- align- align- align- align-
ment ment ment ment ment

uni 0.69 0.66 0.66 0.66 0.66
bi 0.70 0.69 0.69 0.66 0.68
tri 0.71 0.70 0.72 0.66 0.73
xbi 0.70 0.69 0.72 0.67 0.73

Table 1: Correlations between perceptual dis-
tances andunnormalizedstring edit distance mea-
surements among 15 Norwegian dialects. Higher
coefficients indicate better results.

tion for validity, we check the consistency of pho-
netic distance methods. For each of the meth-
ods we calculated Cronbach’sα values, which is
based on the average inter-correlation among the
words (Heeringa, 2004, pp. 170–173). A widely-
accepted threshold in social science for an accept-
ableα is 0.70 (Nunnally, 1978). After the consis-
tency check, we discuss validation results.

5.1 Norwegian Perception

In this section we first discuss results of unnormal-
ized string edit distance measures, and will com-
pare them with their normalized counterparts far-
ther onwards in this section.

The Cronbach’sα values of the unnormalized
measurements vary from 0.84 to 0.87. The Cron-
bach’sα values of the methods with ‘forced align-
ment’ are a bit lower than theα values of the other
methods. An outlier arises when using the ‘forced
alignment’ and gradual bigram distances:α=0.78,
but these all indicate that the measurements are
quite consistent.

We calculated correlations to the perceptual dis-
tances which are described in Section 4.1. Re-
sults are given in Table 1. Let’s note that the
effect size, i.e., ther value itself, is quite high,
0.66 < r < 0.73, meaning that the various dis-
tance measure are accounting for 43.6–53.3% of
the variance in the perception measurements. All
of the correlation coefficients are massively signif-
icant (p < 0.001), but given the stringency of the
Mantel test, they do not differ significantly from
one another.

The correlations are quite similar. The maxi-
mal difference we found was0.07, so that we con-
clude that none of the methods is strikingly better
or worse in operationalizing the level of pronunci-
ation difference that dialect speakers are sensitive

binary gradual
no free forc. free forc.

align- align- align- align- align-
ment ment ment ment ment

uni 0.66 0.66 0.66 0.66 0.66
bi 0.67 0.67 0.67 0.66 0.66
tri 0.68 0.68 0.70 0.66 0.70
xbi 0.68 0.68 0.70 0.69 0.70

Table 2: Correlations between perceptual dis-
tances and differentnormalizedstring edit dis-
tance measurements among 15 Norwegian di-
alects. Higher coefficients indicate better results.

to.
The small flood of numbers in Table 1 may

seem confusing. Therefore we calculated averages
per factor which are presented in Table 4. We in-
vite the reader to refer to both Table 1 and Tablee 4
in following the discussion below. Table 4 shows
systematic differences. For example, contextually
sensitive measures (bigrams, trigrams, and xbi-
grams) are usually better (and never worse) than
unigram measures. The differences among the
different means of operationalizing context (bi-
grams, trigrams and xbigrams) seem unremark-
able, however. Third, measures which are sensi-
tive to linear order are slightly worse than those
which are not (variants of DICE) on average5.
But when comparing the first column in Table 1
with the others, we see that the highest correla-
tions (0.73) are found among the order sensitive
methods. Fourth, forcing alignment to respect
vowel/consonant differences yields a modest im-
provement in scores. Fifth, we see no clear ad-
vantage in measurements which weightn-grams
more sensitively to those binary comparison meth-
ods which distinguish only same and different.

Sixth, and most surprisingly, we can compare
Table 1 which provides the correlation of edit dis-
tances which werenotnormalized for length, with
Table 2, which provides the results of the mea-
surements whichwerenormalized. For some nor-
malized measurements the Cronbach’sα value are
minimally higher (0.01). But comparison of the
correlation coefficients shows that normalization
never improves measurements, and often leads to a
deterioration. In Table 4 averages for the normal-
ized measurements are given. Normalized mea-

5When using the unnormalized versions of the ‘DICE’
family, the distance is just equal to the number of non-shared
n-grams.
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binary gradual
no free forc. free forc.

align- align- align- align- align-
ment ment ment ment ment

uni 0.41 0.37 0.37 0.37 0.37
bi 0.37 0.35 0.37 0.36 0.35
tri 0.37 0.33 0.35 0.36 0.35
xbi 0.36 0.35 0.35 0.37 0.35

Table 3: Local incoherence values based on travel
distances for theunnormalizedstring edit dis-
tance measurements between 15 Norwegian di-
alects. The lower the local incoherence value, the
better the measurement technique.

surements display the same systematic differences
that unnormalized measurements show, except for
the differences between methods which consider
the order of segments and methods which do not.
Measures which are sensitive to linear order are
slightly better than those which are not (variants
of DICE).

5.2 Norwegian Geographic Sensitivity

As we mentioned in Section 4.2, Norway is very
rugged. Therefore we based our local incoher-
ence values on travel distances rather than on ge-
ographic distances “as the crow flies”. We com-
puted local incoherence values for both unnormal-
ized and normalized string edit distance measure-
ments. The comparison confirms the findings of
Section 5.1: unnormalized methods always per-
form better than normalized ones. The unnormal-
ized results are presented in Table 3.

Recall that lower local incoherence values
should reflect better measurement techniques.
When we examine the table as a whole, we note
again that the various techniques are not hugely
different—they perform with similar degrees of
success.

In Table 4, we find average local incoherence
values for the factors under investigation. We find
first that contextually sensitive measures (bigrams,
trigrams, and xbigrams) are again superior to un-
igram methods, and second, measures which are
sensitive to linear order are superior to the DICE-
like methods (unnormalized versions). Third, lin-
guistically informed alignments, which respect the
vowel/consonant distinction, perform better than
uninformed (“free”) alignment (for the normalized
versions). Fourth, the average values do not sug-

gest any benefit to the gradual weighting ofn-
grams in comparison with the binary weighting.
Most surprisingly, normalization again appears to
have a deleterious effect on the probity of the mea-
surements.

We must stress again that these finer interpreta-
tions results require confirmation with a larger set
of sites.

5.3 German Geographic Sensitivity

When checking the consistency of the German
measurements we find Cronbach’sα values of
0.95 and 0.96 for all methods without alignment
or with ’free alignment’ and for all unigram based
methods. The higher Cronbach’sα levels for this
data set reflect the fact that it is larger. We find
lowerα values of 0.83–0.85 for the methods with
‘forced alignment’. This accords with the consis-
tency results for the Norwegian measurements.

When using bigrams,α is equal to0.80 (binary,
normalized),0.51 (gradual, normalized),0.74 (bi-
nary, unnormalized) and0.45 (gradual, unnormal-
ized). These low values are striking, and we found
no explanation for them, but they suggest that we
should not attach much significance to this combi-
nation of measurement properties. On average, the
unnormalizedα’s are the same as the normalized
α’s.

Since consistency values are higher than0.70
(with one exception), we validated the methods by
calculating the geographic local incoherence val-
ues. We would have preferred to use perceptions,
but we have no such data in the German case.

Since we found unnormalized string edit dis-
tance measurements superior to normalized ones
in the Sections 5.1 and 5.2, we focus in this sec-
tion on the unnormalized methods. Unnormalized
results are shown in Table 5.

Recall that the lower the local incoherence
value, the better the measurement technique. We
include this table for the sake of completeness, but
it is clear that the results do not jibe with the re-
sults obtained from the Norwegian data. Unigram-
based processing appears to be superior, and con-
text inferior; order-sensitive processing is inferior
to order-insensitive processing, and linguistically
informed (“forced”) alignment appears to offer no
advantage.

We leave the contrast between the Norwegian
and German results as a puzzle to be addressed in
future work, but it should be clear that we have
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Factor Correlation with Local Number of
perception incoherence measurements

raw normalized raw normalized
no order 0.70 0.67 0.38 0.45 4
order 0.69 0.68 0.36 0.46 16
unnormalized 0.69 0.36 20
normalized 0.68 0.43 20
binary 0.69 0.68 0.36 0.43 8
gradual 0.68 0.67 0.36 0.43 8
free 0.67 0.67 0.36 0.43 8
forced 0.70 0.68 0.36 0.42 8
unigram 0.67 0.66 0.38 0.45 5
bigram 0.68 0.67 0.36 0.45 5
trigram 0.70 0.68 0.35 0.42 5
xbigram 0.70 0.69 0.36 0.41 5

Table 4: Average correlations between perceptual distances andraw, i.e., unnormalizedstring edit dis-
tance measurements among 15 Norwegian dialects. Higher coefficients and lower local incoherence
values indicate better results.

binary gradual
no free forc. free forc.

align- align- align- align- align-
ment ment ment ment ment

uni 0.94 0.88 0.87 0.88 0.87
bi 1.00 0.98 2.09 0.92 5.71
tri 1.09 1.05 2.45 0.93 2.09
xbi 0.96 0.95 2.45 0.98 2.45

Table 5: Local incoherence values based on geo-
graphic distances for for theunnormalizedstring
edit distance measurements 186 German dialects.
The lower the local incoherence value, the better
the measurement technique.

rather more confidence in the Norwegian than in
the German results. This is due on the one had to
the availability of independently behavioral data
we can use to independently validate our compu-
tations, but also to the more stable set of values we
see in the case of the Norwegian data. Exactlywhy
the German data is so much more variable is also
a question we must postpone to future work.

6 Conclusions and Prospects

In this paper we examined a range of string com-
parison algorithms by applying them to Norwe-
gian and German dialect comparison. The Nor-
wegian results suggest that sensitivity to linguis-
tic context in the form ofn-grams, and to linguis-
tic structure in alignment improves measurement

techniques, but they do not confirm the value of
differential weighting forn-grams. The results
mostly suggest that sensitivity to order of seg-
ments improves the measurements.

The larger German data likewise is unfortu-
nately more recalcitrant (as are other data sets we
have examined, but in which we have less confi-
dence). A disadvantage of the German data may
be that several transcribers were involved, work-
ing over a period of twenty years, and that two
types of surveys were used, having different or-
ders of sentences. There may be subtle differences
in pronunciation as a result of subjects’ becoming
more relaxed or more impatient in the course of a
survey interview.

On the other hand, the Norwegian data set is
small (15 dialect sites). Our conclusions rely on
assumptions of its quality and transcriber consis-
tency, but this warrants further examination. We
also cannot exclude the possibility that optimal
measurements depend on features of the language
and/or data set.

It is tempting to wish to redo this study using a
large, antiseptically clean data set, transcribed reli-
ably by a minimal number of phoneticians, but the
more important practical direction may be to try
to understand which properties of data sets are im-
portant in selecting variants of pronunciation dis-
tance measures. Atlases of material on language
varieties simply are not always clean and reliable,
and if we wish to contribute to their analysis, we
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must keep this in mind.

Acknowledgments

We are grateful to Therese Leinonen, Jens Moberg
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Österreichische Akademie der Wissenschaften,
Wien.

Hans Goebl. 1984.Dialektometrische Studien: An-
hand italoromanischer, r̈atoromanischer und gal-
loromanischer Sprachmaterialien aus AIS und ALF.
3 Vol. Max Niemeyer, T̈ubingen.

Charlotte Gooskens. Traveling time as a predictor of
linguistic distance.Dialectologia et Geolinguistica.
submitted, 3/2004.

Charlotte Gooskens and Wilbert Heeringa. 2004. Per-
ceptual evaluation of Levenshtein dialect distance
measurements using Norwegian dialect data.Lan-
guage Variation and Change, 16(3):189–207.

Joachim G̈oschel. 1992. Das Forschungsinstitut für
Deutsche Sprache “Deutscher Sprachatlas. Wis-
senschaftlicher Bericht, Das Forschungsinstitut für
Deutsche Sprache, Marburg.

Wilbert Heeringa. 2004.Measuring Dialect Pronunci-
ation Differences using Levenshtein Distance. Ph.D.
thesis, Rijksuniversiteit Groningen.

Cor Hoppenbrouwers and Geer Hoppenbrouwers.
2001. De indeling van de Nederlandse streektalen:
Dialecten van 156 steden en dorpen geklasseerd vol-
gens de FFM (feature frequentie methode). Konin-
klijke Van Gorcum, Assen.

Diana Inkpen, O. Frunza, and Grzegorz Kondrak.
2005. Automatic Identification of Cognates and

False Friends in French and English. In Galia An-
gelova, Kalina Bontcheva, Ruslan Mitkov, Nicolas
Nicolov, and Nicolai Nicolov, editors,International
Conference Recent Advances in Natural Language
Processing, pages 251–257, Borovets.

Brett Kessler. 1995. Computational dialectology in
Irish Gaelic. InProc. of the European ACL, pages
60–67, Dublin.

Brett Kessler. 2005. Phonetic comparision algo-
rithms. Transactions of the Philological Society,
103(2):243–260.

Grzegorz Kondrak. 2005. N-gram similarity and dis-
tance. InProceedings of the Twelfth International
Conference on String Processing and Information
Retrieval (SPIRE 2005), pages 115–126, Buenos
Aires, Argentina.

Joseph Kruskal. 1999. An overview of sequence com-
parison. In David Sankoff and Joseph Kruskal, edi-
tors,Time Warps, String Edits and Macromolecules:
The Theory and Practice of Sequence Comparison,
pages 1–44. CSLI, Stanford.11983.

Andrés Marzal and Enrique Vidal. 1993. Computation
of normalized edit distance and applications.IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 15(9):926–932.

John Nerbonne and Peter Kleiweg. 2003. Lexical vari-
ation in LAMSAS. Computers and the Humani-
ties, 37(3):339–357. Special Iss. on Computational
Methods in Dialectometry ed. by John Nerbonne and
William Kretzschmar, Jr.

John Nerbonne and Peter Kleiweg. 2006. Toward a
dialectological yardstick.Quantitative Linguistics,
13. accepted.

Jum C. Nunnally. 1978. Psychometric Theory.
McGraw-Hill, New York.
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