
Workshop on TextGraphs, at HLT-NAACL 2006, pages 73–80,
New York City, June 2006. c©2006 Association for Computational Linguistics

Chinese Whispers - an Efficient Graph Clustering Algorithm

and its Application to Natural Language Processing Problems

Chris Biemann

University of Leipzig, NLP Department
Augustusplatz 10/11

04109 Leipzig, Germany
biem@informatik.uni-leipzig.de

Abstract

We introduce Chinese Whispers, a
randomized graph-clustering algorithm,
which is time-linear in the number of
edges. After a detailed definition of the
algorithm and a discussion of its strengths
and weaknesses, the performance of
Chinese Whispers is measured on Natural
Language Processing (NLP) problems as
diverse as language separation,
acquisition of syntactic word classes and
word sense disambiguation. At this, the
fact is employed that the small-world
property holds for many graphs in NLP.

1 Introduction

Clustering is the process of grouping together
objects based on their similarity to each other. In
the field of Natural Language Processing (NLP),
there are a variety of applications for clustering.
The most popular ones are document clustering in
applications related to retrieval and word clustering
for finding sets of similar words or concept
hierarchies.

Traditionally, language objects are
characterized by a feature vector. These feature
vectors can be interpreted as points in a
multidimensional space. The clustering uses a
distance metric, e.g. the cosine of the angle
between two such vectors. As in NLP there are
often several thousand features, of which only a
few correlate with each other at a time – think
about the number of different words as opposed to
the number of words occurring in a sentence –
dimensionality reduction techniques can greatly

reduce complexity without considerably losing
accuracy.

An alternative representation that does not deal
with dimensions in space is the graph

representation. A graph represents objects (as
nodes) and their relations (as edges). In NLP, there
are a variety of structures that can be naturally
represented as graphs, e.g. lexical-semantic word
nets, dependency trees, co-occurrence graphs and
hyperlinked documents, just to name a few.

Clustering graphs is a somewhat different task
than clustering objects in a multidimensional
space: There is no distance metric; the similarity
between objects is encoded in the edges. Objects
that do not share an edge cannot be compared,
which gives rise to optimization techniques. There
is no centroid or ‘average cluster member’ in a
graph, permitting centroid-based techniques.

As data sets in NLP are usually large, there is a
strong need for efficient methods, i.e. of low
computational complexities. In this paper, a very
efficient graph-clustering algorithm is introduced
that is capable of partitioning very large graphs in
comparatively short time. Especially for small-
world graphs (Watts, 1999), high performance is
reached in quality and speed. After explaining the
algorithm in the next section, experiments with
synthetic graphs are reported in section 3. These
give an insight about the algorithm’s performance.
In section 4, experiments on three NLP tasks are
reported, section 5 concludes by discussing
extensions and further application areas.

2 Chinese Whispers Algorithm

In this section, the Chinese Whispers (CW)
algorithm is outlined. After recalling important
concepts from Graph Theory (cf. Bollobás 1998),
we describe two views on the algorithm. The

73

second view is used to relate CW to another graph
clustering algorithm, namely MCL (van Dongen,
2000).

We use the following notation throughout this
paper: Let G=(V,E) be a weighted graph with
nodes (vi)∈V and weighted edges (vi, vj, wij) ∈E
with weight wij. If (vi, vj, wij)∈E implies (vj, vi,
wij)∈E, then the graph is undirected. If all weights
are 1, G is called unweighted.

The degree of a node is the number of edges a
node takes part in. The neighborhood of a node v
is defined by the set of all nodes v’ such that
(v,v’,w)∈E or (v’,v,w)∈E; it consists of all nodes
that are connected to v.

The adjacency matrix AG of a graph G with n
nodes is an n×n matrix where the entry aij denotes
the weight of the edge between vi and vj , 0
otherwise.
The class matrix DG of a Graph G with n nodes is
an n×n matrix where rows represent nodes and
columns represent classes (ci)∈C. The value dij at
row i and column j represents the amount of vi as
belonging to a class cj. For convention, class
matrices are row-normalized; the i-th row denotes
a distribution of vi over C. If all rows have exactly
one non-zero entry with value 1, DG denotes a hard

partitioning of V, soft partitioning otherwise.

2.1 Chinese Whispers algorithm

CW is a very basic – yet effective – algorithm to
partition the nodes of weighted, undirected graphs.
It is motivated by the eponymous children’s game,
where children whisper words to each other. While
the game’s goal is to arrive at some funny
derivative of the original message by passing it
through several noisy channels, the CW algorithm
aims at finding groups of nodes that broadcast the
same message to their neighbors. It can be viewed
as a simulation of an agent-based social network;
for an overview of this field, see (Amblard 2002).

The algorithm is outlined in figure 1:

initialize:

 forall vi in V: class(vi)=i;

while changes:

 forall v in V, randomized order:

 class(v)=highest ranked class

 in neighborhood of v;

Figure 1: The Chinese Whispers algorithm

Intuitively, the algorithm works as follows in a
bottom-up fashion: First, all nodes get different
classes. Then the nodes are processed for a small
number of iterations and inherit the strongest class
in the local neighborhood. This is the class whose
sum of edge weights to the current node is
maximal. In case of multiple strongest classes, one
is chosen randomly. Regions of the same class
stabilize during the iteration and grow until they
reach the border of a stable region of another class.
Note that classes are updated immediately: a node
can obtain classes from the neighborhood that were
introduced there in the same iteration.

Figure 2 illustrates how a small unweighted
graph is clustered into two regions in three
iterations. Different classes are symbolized by
different shades of grey.

Figure 2: Clustering an 11-nodes graph with CW in
two iterations

It is possible to introduce a random mutation
rate that assigns new classes with a probability
decreasing in the number of iterations as described
in (Biemann & Teresniak 2005). This showed
having positive effects for small graphs because of
slower convergence in early iterations.

The CW algorithm cannot cross component
boundaries, because there are no edges between
nodes belonging to different components. Further,
nodes that are not connected by any edge are
discarded from the clustering process, which
possibly leaves a portion of nodes unclustered.

Formally, CW does not converge, as figure 3
exemplifies: here, the middle node’s neighborhood

0.

1.

2.

74

consists of a tie which can be decided in assigning
the class of the left or the class of the right nodes in
any iteration all over again. Ties, however, do not
play a major role in weighted graphs.

Figure 3: The middle node gets the grey or the
black class. Small numbers denote edge weights.

Apart from ties, the classes usually do not

change any more after a handful of iterations. The
number of iterations depends on the diameter of
the graph: the larger the distance between two
nodes is, the more iterations it takes to percolate
information from one to another.

The result of CW is a hard partitioning of the
given graph into a number of partitions that
emerges in the process – CW is parameter-free. It
is possible to obtain a soft partitioning by assigning
a class distribution to each node, based on the
weighted distribution of (hard) classes in its
neighborhood in a final step.

The outcomes of CW resemble those of Min-

Cut (Wu & Leahy 1993): Dense regions in the
graph are grouped into one cluster while sparsely
connected regions are separated. In contrast to
Min-Cut, CW does not find an optimal hierarchical
clustering but yields a non-hierarchical (flat)
partition. Furthermore, it does not require any
threshold as input parameter and is more efficient.

Another algorithm that uses only local contexts
for time-linear clustering is DBSCAN as, described
in (Ester et al. 1996), needing two input parameters
(although the authors propose an interactive
approach to determine them). DBSCAN is
especially suited for graphs with a geometrical
interpretation, i.e. the objects have coordinates in a
multidimensional space. A quite similar algorithm
to CW is MAJORCLUST (Stein & Niggemann
1996), which is based on a comparable idea but
converges slower.

2.2 Chinese Whispers as matrix operation

As CW is a special case of Markov-Chain-
Clustering (MCL) (van Dongen, 2000), we spend a
few words on explaining it. MCL is the parallel
simulation of all possible random walks up to a

finite length on a graph G. The idea is that random
walkers are more likely to end up in the same
cluster where they started than walking across
clusters. MCL simulates flow on a graph by
repeatedly updating transition probabilities
between all nodes, eventually converging to a
transition matrix after k steps that can be
interpreted as a clustering of G. This is achieved by
alternating an expansion step and an inflation step.
The expansion step is a matrix multiplication of
MG with the current transition matrix. The inflation
step is a column-wise non-linear operator that
increases the contrast between small and large
transition probabilities and normalizes the column-
wise sums to 1. The k matrix multiplications of the
expansion step of MCL lead to its time-complexity
of O(k⋅n²).

It has been observed in (van Dongen, 2000),
that only the first couple of iterations operate on
dense matrices – when using a strong inflation
operator, matrices in the later steps tend to be
sparse. The author further discusses pruning
schemes that keep only some of the largest entries
per column, leading to drastic optimization
possibilities. But the most aggressive sort of
pruning is not considered: only keeping one single
largest entry. Exactly this is conducted in the basic
CW process. Let maxrow(.) be an operator that
operates row-wise on a matrix and sets all entries
of a row to zero except the largest entry, which is
set to 1. Then the algorithm is denoted as simple as
this:

D
0
 = In

for t=1 to iterations

 D
t-1

= maxrow(D
t-1
)

 D
t
 = D

t-1
AG

Figure 4: Matrix Chinese Whispers process. t is
time step, In is the identity matrix of size n×n, AG is
the adjacency matrix of graph G.

By applying maxrow(.), Dt-1 has exactly n

non-zero entries. This causes the time-complexity
to be dependent on the number of edges, namely
O(k⋅|E|). In the worst case of a fully connected
graph, this equals the time-complexity of MCL.

A problem with the matrix CW process is that it
does not necessarily converge to an iteration-
invariant class matrix D, but rather to a pair of
oscillating class matrices. Figure 5 shows an
example.

 1

 1 1

 1

 2 2

75

Figure 5: oscillating states in matrix CW for an
unweighted graph

This is caused by the stepwise update of the

class matrix. As opposed to this, the CW algorithm
as outlined in figure 1 continuously updates D after
the processing of each node. To avoid these
oscillations, one of the following measures can be
taken:
• Random mutation: with some probability, the

maxrow-operator places the 1 for an otherwise
unused class

• Keep class: with some probability, the row is
copied from Dt-1 to Dt

• Continuous update (equivalent to CW as
described in section 2.1.)

While converging to the same limits, the
continuous update strategy converges the fastest
because prominent classes are spread much faster
in early iterations.

3 Experiments with synthetic graphs

The analysis of the CW process is difficult due to
its nonlinear nature. Its run-time complexity
indicates that it cannot directly optimize most
global graph cluster measures because of their NP-
completeness (Šíma and Schaeffer, 2005).
Therefore we perform experiments on synthetic
graphs to empirically arrive at an impression of our
algorithm's abilities. All experiments were
conducted with an implementation following
figure 1. For experiments with synthetic graphs,
we restrict ourselves to unweighted graphs, if not
stated explicitly.

3.1 Bi-partite cliques

A cluster algorithm should keep dense regions
together while cutting apart regions that are
sparsely connected. The highest density is reached
in fully connected sub-graphs of n nodes, a.k.a. n-

cliques. We define an n-bipartite-clique as a graph
of two n-cliques, which are connected such that
each node has exactly one edge going to the clique
it, does not belong to.

Figures 5 and 6 are n-partite cliques for n=4,10.

Figure 6: The 10-bipartite clique.

We clearly expect a clustering algorithm to cut

the two cliques apart. As we operate on
unweighted graphs, however, CW is left with two
choices: producing two clusters or grouping all
nodes into one cluster. This is largely dependent on
the random choices in very early iterations - if the
same class is assigned to several nodes in both
cliques, it will finally cover the whole graph.
Figure 7 illustrates on what rate this happens on n-
bipartite-cliques for varying n.

Figure 7: Percentage of obtaining two clusters
when applying CW on n-bipartite cliques

It is clearly a drawback that the outcome of CW

is non-deterministic. Only half of the experiments
with 4-bipartite cliques resulted in separation.
However, the problem is most dramatic on small
graphs and ceases to exist for larger graphs as
demonstrated in figure 7.

3.2 Small world graphs

A structure that has been reported to occur in an
enormous number of natural systems is the small

world (SW) graph. Space prohibits an in-depth
discussion, which can be found in (Watts 1999).
Here, we restrict ourselves to SW-graphs in
language data. In (Ferrer-i-Cancho and Sole,
2001), co-occurrence graphs as used in the
experiment section are reported to possess the
small world property, i.e. a high clustering co-
efficient and short average path length between

76

arbitrary nodes. Steyvers and Tenenbaum (2005)
show that association networks as well as semantic
resources are scale-free SW-graphs: their degree
distribution follows a power law. A generative
model is provided that generates undirected, scale-
free SW-graphs in the following way: We start
with a small number of fully connected nodes.
When adding a new node, an existing node v is
chosen with a probability according to its degree.
The new node is connected to M nodes in the
neighborhood of v. The generative model is
parameterized by the number of nodes n and the
network's mean connectivity, which approaches
2M for large n.

Let us assume that we deal with natural systems
that can be characterized by small world graphs. If
two or more of those systems interfere, their
graphs are joined by merging some nodes,
retaining their edges. A graph-clustering algorithm
should split up the resulting graph in its previous
parts, at least if not too many nodes were merged.

We conducted experiments to measure CW's
performance on SW-graph mixtures: We generated
graphs of various sizes, merged them by twos to a
various extent and measured the amount of cases
where clustering with CW leads to the
reconstruction of the original parts. When
generating SW-graphs with the Steyvers-
Tenenbaum model, we fixed M to 10 and varied n
and the merge rate r, which is the fraction of nodes
of the smaller graph that is merged with nodes of
the larger graph.

Figure 8: Rate of obtaining two clusters for mix-
tures of SW-graphs dependent on merge rate r.

Figure 8 summarizes the results for equisized

mixtures of 300, 3,000 and 30,000 nodes and
mixtures of 300 with 30,000 nodes.

It is not surprising that separating the two parts
is more difficult for higher r. Results are not very

sensitive to size and size ratio, indicating that CW
is able to identify clusters even if they differ
considerably in size – it even performs best at the
skewed mixtures. At merge rates between 20% and
30%, still more then half of the mixtures are
separated correctly and can be found when
averaging CW’s outcome over several runs.

3.3 Speed issues

As formally, the algorithm does not converge, it is
important to define a stop criterion or to set the
number of iterations. To show that only a few
iterations are needed until almost-convergence, we
measured the normalized Mutual Information
(MI)1 between the clustering in the 50th iteration
and the clusterings of earlier iterations. This was
conducted for two unweighted SW-graphs with
1,000 (1K) and 10,000 (10K) nodes, M=5 and a
weighted 7-lingual co-occurrence graph (cf.
section 4.1) with 22,805 nodes and 232,875 edges.
Table 1 indicates that for unweighted graphs,
changes are only small after 20-30 iterations. In
iterations 40-50, the normalized MI-values do not
improve any more. The weighted graph converges
much faster due to fewer ties and reaches a stable
plateau after only 6 iterations.

Iter 1 2 3 5 10 20 30 40 49

1K 1 8 13 20 37 58 90 90 91
10K 6 27 46 64 79 90 93 95 96
7ling 29 66 90 97 99.5 99.5 99.5 99.5 99.5
Table 1: normalized Mutual Information values for
three graphs and different iterations in %.

4 NLP Experiments

In this section, some experiments with graphs
originating from natural language data are
presented. First, we define the notion of co-
occurrence graphs, which are used in sections 4.1
and 4.3: Two words co-occur if they can both be
found in a certain unit of text, here a sentence.
Employing a significance measure, we determine
whether their co-occurrences are significant or
random. In this case, we use the log-likelihood
measure as described in (Dunning 1993). We use
the words as nodes in the graph. The weight of an

1 defined for two random variables X and Y as (H(X)+H(Y)-
H(X,Y))/max(H(X),H(Y)) with H(X) entropy. A value of 0
denotes indepenence, 1 is perfect congruence.

77

edge between two words is set to the significance
value of their co-occurrence, if it exceeds a certain
threshold. In the experiments, we used sig-
nificances from 15 on. The entirety of words that
are involved in at least one edge together with
these edges is called co-occurrence graph (cf.
Biemann et al. 2004).

In general, CW produces a large number of
clusters on real-world graphs, of which the
majority is very small. For most applications, it
might be advisable to define a minimum cluster
size or something alike.

4.1 Language Separation

This section shortly reviews the results of
(Biemann and Teresniak, 2005), where CW was
first described. The task was to separate a
multilingual corpus by languages, assuming its
tokenization in sentences.

The co-occurrence graph of a multilingual
corpus resembles the synthetic SW-graphs: Every
language forms a separate co-occurrence graph,
some words that are used in more than one
language are members of several graphs,
connecting them. By CW-partitioning, the graph is
split into its monolingual parts. These parts are
used as word lists for word-based language
identification. (Biemann and Teresniak, 2005)
report almost perfect performance on getting 7-
lingual corpora with equisized parts sorted apart as
well as highly skewed mixtures of two languages.

In the process, language-ambiguous words are
assigned to only one language, which did not hurt
performance due to the high redundancy of the
task. However, it would have been possible to use
the soft partitioning to acquire a distribution over
languages for each word.

4.2 Acquisition of Word Classes

For the acquisition of word classes, we use a
different graph: the second-order graph on
neighboring co-occurrences. To set up the graph, a
co-occurrence calculation is performed which
yields significant word pairs based on their
occurrence as immediate neighbors. This can be
perceived as a bipartite graph, figure 9a gives a toy
example. Note that if similar words occur in both
parts, they form two distinct nodes.

This graph is transformed into a second-order
graph by comparing the number of common right

and left neighbors for two words. The similarity
(edge weight) between two words is the sum of
common neighbors. Figure 9b depicts the second-
order graph derived from figure 9a and its
partitioning by CW. The word-class-ambiguous
word “drink” (to drink the drink) is responsible for
all intra-cluster edges. The hypothesis here is that
words sharing many neighbors should usually be
observed with the same part-of-speech and get
high weights in the second order graph. In figure 9,
three clusters are obtained that correspond to
different parts-of-speech (POS).

 (a) (b)

Figure 9: Bi-partite neighboring co-occurrence
graph (a) and second-order graph on neighboring
co-occurrences (b) clustered with CW.

To test this on a large scale, we computed the

second-order similarity graph for the British
National Corpus (BNC), excluding the most
frequent 2000 words and drawing edges between
words if they shared at least four left and right
neighbors. The clusters are checked against a
lexicon that contains the most frequent tag for each
word in the BNC. The largest clusters are
presented in table 2 .

size tags:count sample words

18432 NN:17120
AJ: 631

secret, officials, transport,
unemployment, farm, county,
wood, procedure, grounds, ...

4916 AJ: 4208
V: 343

busy, grey, tiny, thin, sufficient,
attractive, vital, ...

4192 V: 3784
AJ: 286

filled, revealed, experienced,
learned, pushed, occurred, ...

3515 NP: 3198
NN: 255

White, Green, Jones, Hill, Brown,
Lee, Lewis, Young, ...

2211 NP: 1980
NN: 174

Ian, Alan, Martin, Tony, Prince,
Chris, Brian, Harry, Andrew,

 1

 1

 1 1

 2

 2

 4

 2

 2

 1
1

 1
1

 1

1

left right

78

Christ, Steve, ...
1855 NP: 1670

NN: 148
Central, Leeds, Manchester,
Australia, Yorkshire, Belfast,
Glasgow, Middlesbrough, ...

Table 2: the largest clusters from partitioning the
second order graph with CW.

In total, CW produced 282 clusters, of which 26

exceed a size of 100. The weighted average of
cluster purity (i.e. the number of predominant tags
divided by cluster size) was measured at 88.8%,
which exceeds significantly the precision of 53%
on word type as reported by Schütze (1995) on a
related task. How to use this kind of word clusters
to improve the accuracy of POS-taggers is outlined
in (Ushioda, 1996).

4.3 Word Sense Induction

The task of word sense induction (WSI) is to find
the different senses of a word. The number of
senses is not known in advance, therefore has to be
determined by the method.

Similar to the approach as presented in (Dorow
and Widdows, 2003) we construct a word graph.
While there, edges between words are drawn iff
words co-occur in enumerations, we use the co-
occurrence graph. Dorow and Widdows construct a
graph for a target word w by taking the sub-graph
induced by the neighborhood of w (without w) and
clustering it with MCL. We replace MCL by CW.
The clusters are interpreted as representations of
word senses.

To judge results, the methodology of (Bordag,
2006) is adopted: To evaluate word sense
induction, two sub-graphs induced by the
neighborhood of different words are merged. The
algorithm's ability to separate the merged graph
into its previous parts can be measured in an
unsupervised way. Bordag defines four measures:

• retrieval precision (rP): similarity of the
found sense with the gold standard sense

• retrieval recall (rR): amount of words that
have been correctly assigned to the gold
standard sense

• precision (P): fraction of correctly found
disambiguations

• recall (R): fraction of correctly found
senses

We used the same program to compute co-
occurrences on the same corpus (the BNC).
Therefore it is possible to directly compare our

results to Bordag’s, who uses a triplet-based
hierarchical graph clustering approach. The
method was chosen because of its appropriateness
for unlabelled data: without linguistic pre-
processing like tagging or parsing, only the
disambiguation mechanism is measured and not
the quality of the preprocessing steps. We provide
scores for his test 1 (word classes separately) and
test 3 (words of different frequency bands). Data
was obtained from BNC's raw text; evaluation was
performed for 45 test words.

% (Bordag, 2006) Chinese Whispers

POS P R rP rR P R rP rR

N 87.0 86.7 90.9 64.2 90.0 79.5 94.8 71.3

V 78.3 64.3 80.2 55.2 77.6 67.1 87.3 57.9

A 88.6 71.0 88.0 65.4 92.2 61.9 89.3 71.9

Table 3: Disambiguation results in % dependent on
word class (nouns, verbs, adjectives)

% (Bordag, 2006) Chinese Whispers

freq P R rP rR P R rP rR

high 93.7 78.1 90.3 80.7 93.7 72.9 95.0 73.8
med 84.6 85.2 89.9 54.6 80.7 83.8 91.0 55.7

low 74.8 49.5 71.0 41.7 74.1 51.4 72.9 56.2

Table 4: Disambiguation results in % dependent on
frequency

Results (tables 3 and 4) suggest that both

algorithms arrive at about equal overall
performance (P and R). Chinese Whispers
clustering is able to capture the same information
as a specialized graph-clustering algorithm for
WSI, given the same input. The slightly superior
performance on rR and rP indicates that CW leaves
fewer words unclustered, which can be
advantageous when using the clusters as clues in
word sense disambiguation.

5 Conclusion

Chinese Whispers, an efficient graph-clustering
algorithm was presented and described in theory
and practice. Experiments with synthetic graphs
showed that for small graphs, results can be
inconclusive due to its non-deterministic nature.
But while there exist plethora of clustering
approaches that can deal well with small graphs,
the power of CW lies in its capability of handling
very large graphs in reasonable time. The

79

application field of CW rather lies in size regions,
where other approaches’ solutions are intractable.

On the NLP data discussed, CW performs
equally or better than other clustering algorithms.
As CW – like other graph clustering algorithms –
chooses the number of classes on its own and can
handle clusters of different sizes, it is especially
suited for NLP problems, where class distributions
are often highly skewed and the number of classes
(e.g. in WSI) is not known beforehand.

To relate the partitions, it is possible to set up a
hierarchical version of CW in the following way:
The nodes of equal class are joined to hyper-nodes.
Edge weights between hyper-nodes are set
according to the number of inter-class edges
between the corresponding nodes. This results in
flat hierarchies.

In further works it is planned to apply CW to
other graphs, such as the co-citation graph of
Citeseer, the co-citation graph of web pages and
the link structure of Wikipedia.

Acknowledgements

Thanks go to Stefan Bordag for kindly
providing his WSI evaluation framework. Further,
the author would like to thank Sebastian Gottwald
and Rocco Gwizdziel for a platform-independent
GUI implementation of CW, which is available for
download from the author’s homepage.

References

F. Amblard. 2002. Which ties to choose? A survey of

social networks models for agent-based social

simulations. In Proc. of the 2002 SCS International
Conference On Artificial Intelligence, Simulation
and Planning in High Autonomy Systems, pp.253-
258, Lisbon, Portugal.

C. Biemann, S. Bordag, G. Heyer, U. Quasthoff, C.
Wolff. 2004. Language-independent Methods for

Compiling Monolingual Lexical Data, Proceedings
of CicLING 2004, Seoul, Korea and Springer LNCS
2945, pp. 215-228, Springer, Berlin Heidelberg

B. Bollobás. 1998. Modern graph theory, Graduate
Texts in Mathematics, vol. 184, Springer, New York

S. Bordag. 2006. Word Sense Induction: Triplet-Based

Clustering and Automatic Evaluation. Proceedings of
EACL-06. Trento

C. Biemann and S. Teresniak. 2005. Disentangling from

Babylonian Confusion – Unsupervised Language

Identification. Proceedings of CICLing-2005,
Mexico City, Mexico and Springer LNCS 3406, pp.
762-773

S. van Dongen. 2000. A cluster algorithm for graphs.
Technical Report INS-R0010, National Research
Institute for Mathematics and Computer Science in
the Netherlands, Amsterdam.

T. Dunning. 1993. Accurate Methods for the Statistics

of Surprise and Coincidence, Computational
Linguistics 19(1), pp. 61-74

M. Ester, H.-P. Kriegel, J. Sander and X. Xu. 1996. A

Density-Based Algorithm for Discovering Clusters in

Large Spatial Databases with Noise. In Proceedings
of the 2nd Int. Conf. on Knowledge Discovery and
Datamining (KDD'96) Portland, USA, pp. 291-316.

B. Dorow and D. Widdows. 2003. Discovering Corpus-

Specific Word Senses. In EACL-2003 Conference
Companion (research notes and demos), pp. 79-82,
Budapest, Hungary

R. Ferrer-i-Cancho and R.V. Sole. 2001. The small

world of human language. Proceedings of The Royal
Society of London. Series B, Biological Sciences,
268(1482):2261-2265

H. Schütze. 1995. Distributional part-of-speech

tagging. In EACL 7, pages 141–148

J. Šíma and S.E. Schaeffer. 2005. On the np-

completeness of some graph cluster measures.
Technical Report cs.CC/0506100, arXiv.org e-Print
archive, http://arxiv.org/.

B. Stein and O. Niggemann. 1999. On the Nature of

Structure and Its Identification. Proceedings of
WG'99, Springer LNCS 1665, pp. 122-134, Springer
Verlag Heidelberg

M. Steyvers, J. B. Tenenbaum. 2005. The large-scale

structure of semantic networks: statistical analyses

and a model of semantic growth. Cognitive Science,
29(1).

Ushioda, A. (1996). Hierarchical clustering of words

and applications to NLP tasks. In Proceedings of the
Fourth Workshop on Very Large Corpora, pp. 28-41.
Somerset, NJ, USA

D. J. Watts. 1999. Small Worlds: The Dynamics of

Networks Between Order and Randomness, Princeton
Univ. Press, Princeton, USA

Z. Wu and R. Leahy (1993): An optimal graph theoretic

approach to data clustering: Theory and its

application to image segmentation. IEEE
Transactions on Pattern Analysis and Machine
Intelligence

80

