
Spotting Overgeneration Suspects

Claire Gardent
CNRS/LORIA
Nancy, France

claire.gardent@loria.fr

Eric Kow
INRIA/LORIA/UHP

Nancy, France
eric.kow@loria.fr

Abstract

We present a method for quickly spotting overgener-
ation suspects (i.e., likely cause of overgeneration)
in hand-coded grammars. The method is applied to
a medium size Tree Adjoining Grammar (TAG) for
French and is shown to help reduce the number of
outputs by 70% almost all of it being overgenera-
tion.

1 Introduction

A generative grammar should describe all and only
the sentences of the language it describes. In prac-
tice however, most grammars both under- and over-
generate. They under-generate in that they fail to
describe all the language sentences and they over-
generate in that they licence as grammatical, strings
that are not.

In a computational setting, this theoretical short-
coming means that processing will yield either too
many or too few sentence analyses. Undergenera-
tion results in insufficient coverage (some sentences
cannot be parsed). Conversely, overgeneration leads
to an explosion of generated strings.

Here we focus on overgeneration. There are sev-
eral reasons why grammars overgenerate.

First, as is now well-known, grammar engineer-
ing is a highly complex task. It is in particular, easy
to omit or mistype a constraint thereby allowing for
an illicit combination and indirectly, an illicit string.

Second, a computational grammar is a large ob-
ject and predicting all the interactions described by
even a medium size grammar is difficult, if not im-
possible. Indeed this is why a surface realiser that
produces all the strings associated with a given se-
mantics is a valuable tool: it permits checking these
predictions on concrete cases.

Third, grammars are often compiled from more
abstract specifications and this additional layer of
abstraction introduces the risk of licensing an illicit
elementary structure. This is the case in particular in
our approach where the TAG used by the realiser is
compiled from a so-called “metagrammar” (cf. sec-
tion 2). As we shall see in section 4, this added
level of abstraction means that elementary trees are
present in the grammar that shouldn’t. These trees
may also induce overgeneration.

In this paper, we propose a method for reducing
overgeneration in a computational grammar. We
apply the proposed approach to a Tree Adjoining
Grammar for French (SEMFRAG) and show that it
results in a 70% decrease of the generation output
on a graduated test suite of 140 input semantics.

The paper is structured as follows. We start (sec-
tion 2) by presenting the computational framework
in which our experiment is based namely SEM-
FRAG, a tree adjoining grammar for French and
GENI, a surface realiser. In section 3, we then go
on to describe the methodology we propose to iden-
tify and eradicate sources of overgeneration. Sec-
tion 4 presents the results of the evaluation. Section
5 concludes with pointers for further research.

2 The computational framework

We now briefly describes the GENI surface realiser
and the SEMFRAG TAG on which we tested our de-
bugging method.

2.1 SemFraG, a TAG for French integrating
semantic information

SEMFRAG is a Feature-based lexicalised TAG
(FTAG, (VSJ88)) for French extended with seman-
tic information as described in (GK03).

41

A Feature-based TAG (FTAG, (VSJ88)) consists
of a set of (auxiliary or initial) elementary trees
and of two tree composition operations: substitu-
tion and adjunction. Initial trees are trees whose
leaves are labelled with substitution nodes (marked
with a downarrow) or terminal categories. Auxiliary
trees are distinguished by a foot node (marked with
a star) whose category must be the same as that of
the root node. Substitution inserts a tree onto a sub-
stitution node of some other tree while adjunction
inserts an auxiliary tree into a tree. In an FTAG, the
tree nodes are furthermore decorated with two fea-
ture structures (called top and bottom) which are
unified during derivation as follows. On substitu-
tion, the top of the substitution node is unified with
the top of the root node of the tree being substituted
in. On adjunction, the top of the root of the auxil-
iary tree is unified with the top of the node where
adjunction takes place; and the bottom features of
the foot node are unified with the bottom features
of this node. At the end of a derivation, the top and
bottom of all nodes in the derived tree are unified.

To associate semantic representations with natu-
ral language expressions, the FTAG is modified as
proposed in (GK03).

NPj

John

name(j,john)

S

NP↓s VPr

V

runs

run(r,s)

VPx

often VP*
often(x)

⇒ name(j,john), run(r,j), often(r)

Figure 1: Flat semantics for “John often runs”

Each elementary tree is associated with a flat se-
mantic representation1. For instance, in Figure 1,
the trees2 for John, runs and often are associated with
the semantics name(j,john), run(r,s) and often(x) re-
spectively.

The arguments of a semantic functor are repre-
sented by unification variables which occur both in
the semantic representation of this functor and on
some nodes of the associated syntactic tree. In the

1The examples given actually show a simplified version of
the flat semantics used y GENI where in particular, so-called
labels are omitted. A full specification is given in (?).

2Cx/Cx abbreviate a node with category C and a top/bottom
feature structure including the feature-value pair { index : x}.

same example, the semantic index s occurring in the
semantic representation of runs also occurs on the
subject substitution node of the associated elemen-
tary tree.

The value of semantic arguments is determined
by the unifications resulting from adjunction and
substitution. For instance, the semantic index s in
the tree for runs is unified during substitution with
the semantic indices labelling the root nodes of the
tree for John. As a result, the semantics of John often

runs is

(1) {name(j,john),run(r,j),often(r)}
The grammar used describes a core fragment for

French and contains around 6 000 elementary trees.
It covers some 35 basic subcategorisation frames
and for each of these frames, the set of argument re-
distributions (active, passive, middle, neuter, reflex-
ivisation, impersonal, passive impersonal) and of ar-
gument realisations (cliticisation, extraction, omis-
sion, permutations, etc.) possible for this frame. As
a result, it captures most grammatical paraphrases
that is, paraphrases due to diverging argument real-
isations or to different meaning preserving alterna-
tion (e.g., active/passive or clefted/non clefted sen-
tence).

2.2 SemFraG and XMG
SEMFRAG is compiled from a higher-level XMG

(eXtensible MetaGrammar) specification (CD04).
Briefly, the XMG formalism permits specifying ba-
sic classes and then combining them (by inher-
itance, conjunction and disjunction) to produce
SEMFRAG elementary trees and their associated se-
mantics (cf. (CD04; Gar06)). For instance, the
tree for an active intransitive verb taking a nomi-
nal canonical subject will result from specifying and
then conjoining classes for the canonical nominal
subject, the active verb form and the unary relation.

Importantly, the compilation process keeps track
of which classes are used to produce each elemen-
tary tree. As a result, each SEMFRAG elementary
tree is associated with the set of classes used to
produce that tree. For instance, in SEMFRAG, the
tree for the active form of intransitive verbs taking a
nominal canonical subject will be associated by the
XMG compiler with the following set of properties:

CanonicalSubject, n0Vn1, ActiveForm,
UnaryRel, NonInvertedNominalSubject

More generally, the set of classes associated by
the XMG compilation process with each elementary

42

tree (we will call this the tree properties) provides
clear linguistic information about these trees. As we
shall see in section 3, this information is extremely
useful when seeking to identify overgeneration sus-
pects i.e., elementary trees which are likely to cause
overgeneration.

2.3 The GenI surface realiser

The basic surface realisation algorithm3 used is a
bottom up, tabular realisation algorithm (Kay96)
optimised for TAGs. It follows a three step strat-
egy which can be summarised as follows. Given an
empty agenda, an empty chart and an input seman-
tics φ:

Lexical selection. Select all elementary trees
whose semantics subsumes (part of) φ. Store
these trees in the agenda. Auxiliary trees
devoid of substitution nodes are stored in a
separate agenda called the auxiliary agenda.

Substitution phase. Retrieve a tree from the
agenda, add it to the chart and try to combine it
by substitution with trees present in the chart.
Add any resulting derived tree to the agenda.
Stop when the agenda is empty.

Adjunction phase. Move the chart trees to the
agenda and the auxiliary agenda trees to the
chart. Retrieve a tree from the agenda, add it
to the chart and try to combine it by adjunction
with trees present in the chart. Add any result-
ing derived tree to the agenda. Stop when the
agenda is empty.

When processing stops, the yield of any syntacti-
cally complete tree whose semantics is φ yields an
output i.e., a sentence.

The workings of this algorithm can be illustrated
by the following example. Suppose that the input
semantics is (1). In a first step (lexical selection),
the elementary trees selected are the ones for John,

runs, often. Their semantics subsumes part of the in-
put semantics. The trees for John and runs are placed
on the agenda, the one for often is placed on the aux-
iliary agenda.

The second step (the substitution phase) con-
sists in systematically exploring the possibility of
combining two trees by substitution. Here, the tree
for John is substituted into the one for runs, and the
resulting derived tree for John runs is placed on the

3See (GK05) for more details.

agenda. Trees on the agenda are processed one by
one in this fashion. When the agenda is empty, in-
dicating that all combinations have been tried, we
prepare for the next phase.

All items containing an empty substitution node
are erased from the chart (here, the tree anchored by
runs). The agenda is then reinitialised to the content
of the chart and the chart to the content of the auxil-
iary agenda (here often). The adjunction phase pro-
ceeds much like the previous phase, except that now
all possible adjunctions are performed. When the
agenda is empty once more, the items in the chart
whose semantics matches the input semantics are
selected, and their strings printed out, yielding in
this case the sentence John often runs.

3 Reducing overgeneration
We now present the methodology we developed for
identifying and eradicating sources of overgenera-
tion. In essence, the idea is to first, manually anno-
tate the realiser output as either PASS or OVERGEN-
ERATION and to then use the annotated data to:

automatically spot the items ((sets of)
TAG elementary trees, pairs of combined
trees) which systematically occur only in
overgeneration cases.

More specifically, the procedure we defined to re-
duce overgeneration can be sketched as follows (cf.
also Figure 2).

1. Surface realisation is applied to a graduated
test suite of input semantics thus producing a
(detailed) derivation log of all the derivations
associated with each input in the testsuite

2. The outputs given by the derivation log are
(manually) classified into PASS or OVERGEN-
ERATION sentences, the overgeneration mark
indicating strings that either do not actually be-
long in the target language, or should not be
associated to the input semantics.

3. The annotated output is used to automatically
produced a suspects report which identifies
a list of suspects i.e., a list of TAG trees
or derivation steps which are likely to cause
the overgeneration because they only occur in
overgeneration cases.

4. The grammar is debugged and re-executed on
the data

43

5. The derivations results are compared with the
previous ones and any discrepancy (less or
more sentences generated) signalled.

In a sense, this is an approach that might already
be widespread in generation: produce some output,
and correct the grammar possibly with the aid of a
derivation log. Our contributions are a systematic,
incremental approach; a high level of automation,
which increases our throughput by focusing human
attention on correcting the grammar rather than the
unrelated details; and research into summarisation
of the operations log so that we can more easily
identify the source of error.

3.1 An incremental approach

First experiments with SEMFRAG showed that the
grammar strongly overgenerates both because it was
initially developed for parsing and because it is au-
tomatically compiled from an abstract specification
(cf. section 1). Indeed for some inputs, the realiser
produced over 4000 paraphrases, a large portion of
them being overgeneration. More generally, Figure
3 shows that the number of outputs for a given input
varies between 0 and 4908 with an average of 201
outputs per input (the median being 25).

To avoid having to manually annotate large
amounts of data, we relied on a graduated test suite
and proceeded through the data from simplest to
more complex. Concretely, this means that we
first eliminated overgeneration in input correspond-
ing to sentences with one finite verb (INPUT1) be-
fore moving on to inputs corresponding to sentences
with two (INPUT2) and three (INPUT3) finite verbs.
This means that as we moved from the simplest to
the more complex data, overgeneration was incre-
mentally reduced thereby diminishing the number
of output to be annotated.

Indeed this worked very well as by simply look-
ing at INPUT1 we achieved a 70% decrease in the
number of outputs for the total testsuite (cf. section
4).

3.2 Semi-automated grammar debugging

The debugging procedure described above was
implemented through a test harness interleaving
manual annotations with machine-generated output.
Three points are worth stressing. First, the suspects
report is produced automatically from the annotated
derivation log. That is, except for the derivation log
manual annotation, the identification of the suspects
information is fully automated. Second, regression

generate sentences

(re)annotate as pass/overgeneration

merge with prior annotations

summarise causes of overgeneration

debug and correct grammar

Figure 2: Test harness

testing is used to verify that corrections made to
the grammar do not affect its coverage (all PASS re-
mains PASS). Third, the harness provides a linguist
friendly environment for visualising, modifying and
running the grammar on the inputs being examined.

3.3 Listing the suspects
The derivation log produced by GENI contains de-
tailed information about each of the derivations as-
sociated with a given input. More specifically, for
each generated string, the derivation log will show
the associated derivation tree together with the tree
family, tree identifier and tree properties associated
with each elementary tree composing that derivation
tree.

Output: jean se demande si c’est
paul qui vient

demander:n8 <-(s)- venir
demander:n1 <-(s)- jean
venir:n4 <-(s)- paul

demander Tn0ClVs1int-630
CanonicalSubject
NonInvertedNominalSubject
SententialInterrogative

venir Tn0V-615
CleftSubject
NonInvertedNominalSubject

paul TproperName-45
jean TproperName-45

However, the derivation log can be both very long
and very redundant. To extract from it information
that points more directly to the likely causes of over-
generation, we first manually annotate each string

44

as pass or overgeneration. We then automatically
extract from the annotated derivation log, a much
shorter “suspects report” which identifies suspects
i.e., likely causes for overgeneration.

In essence, this suspects report lists trees, sets of
trees or derivation items that only occur in overgen-
eration cases (i.e., strings that have manually been
annotated as OVERGENERATION). Moreover, infor-
mation about the suspects is displayed in a com-
pact and informative way. Specifically, for a given
generation input, the suspects report will consist of
a (possibly empty) list of items of the following
form4:

1. Lemma

2. TreeFamily ?(all) – ?(∧ tree-property)

3. ?(TreeId∗ ? (∧ tree-property))

4. ?(TreeIdi:nodeIdj
Op←− TreeIdk)

That is, a suspect report item (SR-ITEM) indi-
cates, for a given lemma (line 1), the tree family
(line 2), the specific trees (line 3), the specific tree
properties (lines 2 and 3) and/or the specific deriva-
tion items5 (line 4) that consistently occur only in
overgeneration cases.

The suspects report is compact in that it only out-
puts information about likely suspects i.e., trees,
tree family, tree properties and/or derivation items
which consistently occur only in overgeneration
cases. Furthermore, it groups together overgener-
ation sources which share a common feature (same
tree family, same tree family and same tree proper-
ties, same derivation items). As we shall see, dis-
playing the commonalities between suspects makes
it easier for the linguist to understand the likely
cause of overgeneration (for instance, if all the trees
of a given family lead to overgeneration, then it
is likely that the grammar is not sufficiently con-
strained to block the use of this family in the partic-
ular context considered).

It is informative in that it gives detailed informa-
tion about the likely cause of overgeneration. In
particular, tree properties can be extremely useful in
understanding the commonalities between the trees
involved and thereby the likely cause of overgener-
ation.

4The ∗ is the Kleene star, ? indicates optionality.
5A derivation item of the form TreeIdi:nodeIdj

Op←−
TreeIdk:nodeIdl indicates that TreeIdk has been added to the
node nodeIdj of TreeIdi using the operation Op where Op is
either adjunction or substitution.

To better illustrate the type of information con-
tained in a suspects report, we now go through a
few examples.

Example 1: “il faut partir/? devoir partir”
Given the input semantics for e.g., il faut partir
(we must go), the suspects report tells us that the
presence in a derivation of any trees of the family
SemiAux leads to overgeneration.

consistent overgeneration for devoir
TSemiAux (all) - SemiAux

[506]

Indeed, in this context (i.e., given the input se-
mantics considered), the use of a SemiAux tree re-
sults in the production of such strings as devoir par-
tir which are grammatical but do not yield a finite
sentence as output. If desired, this particular over-
generation bug can be fixed by constraining the gen-
erator output to be a finite sentence.

Example 2: “Jean dit accepter/*C’est par Jean
qui accepte qu’être dit”. In the previous ex-
ample, the SR-ITEM indicates that all trees of a
given family lead to overgeneration but there is
only one tree in that family. A more interesting
case is when there are several such trees. For in-
stance, the SR-ITEM below indicates that all deriva-
tions involving an n0Vn1 tree anchored with dire
lead to overgeneration and that there are 6 such
trees (trees 699 . . . 750). Moreover the tree proper-
ties information indicates that all these trees share
the InfinitiveSubject Passive tree proper-
ties. Inspection of the data shows that these trees
combine with a finite form of accepter to yield
highly agrammatical strings such as c’est par Jean
qui accepte qu’être dire (instead of e.g., Jean dit
accepter. In short, the SR-ITEM indicates that the
grammar is not sufficiently constrained to block the
combination of the infinitive passive form of the
n0Vn1 trees anchored with dire with some of the
trees associated by the grammar with accepter.

input t90
Lemma: dire
Tn0Vn1 (all) - InfinitiveSubject

Passive
[699] CanonicalCAgent Passive
[746] CanonicalGenitive dePassive
[702] CleftCAgentOne Passive
[752] CleftDont dePassive
[751] CleftGenitiveOne dePassive
[750] RelativeGenitive dePassive

45

Example 3: “Jean doit partir/*C’est Jean il faut
que qui part” Sometimes overgeneration will
only occur with some of a family trees and in this
case the third line of the SR-ITEM indicates which
are those trees and which are their distinguishing
properties (i.e. the properties that always result in
overgeneration). For instance, the suspects report
for the input semantics of Jean doit partir (Jean
must leave), contains the following single SR-ITEM:

Input t30
consistent overgeneration for partir
Tn0V - CleftSubject

[604]

This indicates that all derivations including tree
604 of the n0V family anchored with partir lead
to overgeneration. Indeed such derivations license
highly ungrammatical sentences such as C’est Jean
il faut que qui part where a cleft subject tree for
partir combines with the canonical tree for il faut.
This overgeneration bug can be fixed by constrain-
ing n0V cleft subject trees to block such illicit com-
binations.

Example 4: “L’homme riche part/* riche
l’homme part” Finally, overgeneration may
sometimes be traced back to a specific derivation
item i.e., to a specific tree combination. This will
then be indicated in the last line of the trace item.
For instance, the following SR-ITEM indicates that
adjoining the adjective auxiliary tree Tn0vA-90 to
the root of a determiner tree always lead to overgen-
eration. Indeed such an adjunction results in sen-
tences where the adjective precedes the determiner
which in French is agrammatical.

Input t70
consistently overgenerating derivation
item
le:Tdet-17:n0 <-(a)- riche:Tn0vA-90

4 Results and Evaluation
4.1 Before and after figures

We have used the test harness over a period of
one week, roughly 12 consecutive man hours. Over
that period we have run over ten iterations of the test
harness, making 13 modifications to the grammar as
a result. In the process of revising this grammar,
we have studied 40 cases (under one third of the
whole suite) and manually annotated 1389 outputs
with pass/overgeneration judgements. On the whole
140 cases of the test suite, the original grammar pro-
duced 28 167 outputs (4908 for the worst case, 201

 0

 10

 20

 30

 40

 50

 60

<10 <20 <30 <40 <50 <60 <70 <80 <90 more

nu
m

 c
as

es

num paraphrases

Figure 3: Distribution of generation outputs before
and after debugging

mean, 25 median). The revised grammar produces
70% fewer likely agramatical outputs, leaving be-
hind 8434 sentences (201 worst case, 60 mean, 12
median). We believe that this reduction is especially
noteworthy given the little time we have spent in this
process.

It is very well to be cutting out overgeneration,
but only so long as we are not cutting out linguisti-
cally valid sentences along the way. The test suite
had been built semi-automatically, by parsing some
sentences and hand-picking the valid semantic rep-
resentations among the proposed outputs. As a ba-
sic sanity check, we reparsed the original sentences
with the new grammar and found that 136 out of 140
sentences were parsed successfully, 4 less than with
the original grammar. The difference was due to an
over-restrictive constraint and was easily corrected.

4.2 Typing the suspects
As mentioned above, the overall 70% overgenera-
tion reduction was achieved by a total of 13 mod-
ifications to the (meta)-grammar. Two points are
worth stressing here.

First, the small number of modification is due to
the fact that the metagrammar is a very compact de-
scription of the grammar where in particular, shared
tree fragments are factored out and used in the pro-
duction of several trees. As a result, one change to
the metagrammar usually induces a change in not
one but several (sometime hundred of) TAG trees.
For instance, a modification stated in the fragment
describing the verb spine of the active verb form
will affect all trees in the grammar that realise an
active verb form i.e., several hundreds of trees.

Second, the drastic reduction in overgeneration is
made possible by a combination of 3 factors. First,
the suspects report allows for a quick identification

46

of the overgeneration sources. Second, the meta-
grammar architecture makes it possible to gener-
alise. Suppose for instance, that a given SR-ITEM

indicates that the grammar incorrectly allows the
adjunction of a given type of auxiliary tree β to a
subject cleft tree. It might be the case that in fact,
the grammar should be modified to block the com-
bination of β with all cleft trees (not just the subject
ones). Then the metagrammar architecture makes
it possible to state the required modification at the
level of the cleft description so that in effect, all
cleft trees will be modified. In this way, the identi-
fication of an overgeneration cause linked to a spe-
cific example can be generalised to a larger class of
examples. Third, the input data was organised in
a graduated testsuite where first simple (basic) sen-
tences where considered then sentences of complex-
ity 2 (cases whose canonical verbalisation involve
two finite verbs), then sentences of complexity 3
(three finite verbs). By proceeding incrementally
through the testsuite, we ensured that early modi-
fications propagate to more complex cases.

Let us now look at the types of errors which, we
found, induce overgeneration.

Missing constraints Unsurprisingly, the main
source of overgeneration was the lack of sufficient
constraints to block illicit tree combinations. For
instance, the grammar overgenerated the string de-
voir c’est Jean qui part (instead of c’est Jean qui
doit partir) because the tree for devoir was not suf-
ficiently constrained to block adjunction on the VP
node of cleft trees. In such cases, adding the rele-
vant constraints (e.g., CEST = - on the foot node of
the devoir-tree and CEST = + on the VP node of the
cleft-tree for partir) eliminates the overgeneration.

Incomplete constraints and incorrect feature
percolation In some cases, we found that the con-
straint was only partially encoded by the grammar
in that it was correctly stated in one of the combin-
ing trees but incorrectly or not at all in the other.
Thus for instance, the adjective tree was correctly
constrained to adjoin to DET = - N-trees but the cor-
responding DET = + constraint on the root node of
determiner trees was missing. In other cases, the
feature was present but incorrectly percolated. In
both cases, the partial implementation of the con-
straint lead to a lack of unification clash and thereby
to an overgenerating combination of trees.

Illicit elementary trees A third type of errors was
linked to the fact that the grammar was produced

semi-automatically from an abstract grammar de-
scription. In some cases, the linguist had failed
to correctly foresee the implications of her descrip-
tion so that an elementary tree was produced by the
compiler that was in fact incorrect. For instance,
we had to introduce an additional constraint in the
metagrammar to rule out the formation of trees de-
scribing a transitive verb with impersonal subject (in
French, transitive verb cannot take an impersonal
subject).

Incorrect semantics A more complex type of er-
ror to deal with concern cases where the semantics
is insufficiently constrained thereby allowing for il-
licit combinations. For instance, in the imperative
form, the grammar failed to constrain the first se-
mantic argument to be YOU i.e., the hearer deno-
tation. As a result, the input for sentences such
as Jean demande si Paul part incorrectly generated
strings such as demande à Jean si Paul part. In
such cases thus, it is the semantics associated by the
metagrammar with the elementary tree that needs to
be modified.

Lexical exceptions As is well known, grammati-
cal generalisation often are subject to lexical excep-
tions. For instance, transitive verbs are generally
assumed to passivise but verbs of measure such as
to weigh are transitive and do not. As is usual in
TAG, in GENI, such exceptions are stated in the lex-
icon thereby blocking the selection of certain trees
(in this case, all the passive trees) for the lexical
items creating the exception (here the measure type
verbs). Relatedly, some of the overgeneration cases
stem from insufficient lexical information.

5 Conclusion
Debugging grammars for overgeneration need not
be slow and tedious. We have found that with a cer-
tain dose of automation – a test harness to mecha-
nise the regression-testing parts of the process, and
computer-generated summaries to identify trouble
spots – we can obtain major reductions in overgen-
eration with little effort.

Whilst these initial results are encouraging, a
more sophisticated approach should help to detect
more errors more efficiently. One shortcoming of
our current approach is that we focus mostly on
unitary sources of overgeneration: a single lexical
item, tree property or derivation operation that con-
sistently occurs in overgenerated strings. However,
grammar flaws essentially consist of unexpected in-
teractions between (at least) two items, so it would

47

seem that the most sensible place to look for mis-
takes would be where they interact. For example,
instead of identifying single items that fail, we could
look for pairs of items that consistently overgener-
ate when they co-occur. Note that this is not nec-
essarily a subset of single-source failures. A given
item X may consistently overgenerate in the pres-
ence of another item Y, but not with Z. If we were
only looking for consistent single-source failures,
we would ignore X altogether, whereas if we were
looking for pairs, we would indeed detect (X,Y).

Another shortcoming of our approach is
that it requires us to be disciplined in our
pass/overgeneration annotations. If we mis-
mark a sentence as pass, the derivation summariser
will neglect every tree property or derivation item
that occurs in that sentence, as it is only looking
for items that consistently overgenerate. Perhaps
a more robust approach would be to instead return
items that tend to occur with overgeneration.
This would make it more tolerant to imperfect
annotations.

Producing these annotations is time-consuming.
It would be worthwhile to explore some automatic
means of making pass/overgeneration judgements
on a large number of sentences, for example, us-
ing an n-gram based language model, like one that
would be employed by a speech recogniser. We
could then take the best N% of the sentences as
passes or establish a threshold of improbability, be-
low which sentences will be considered as overgen-
eration. We could also use more sophisticated tools,
a statistical parser or a symbolic one with a wide
coverage grammar in an alternate formalism. Even
a relatively liberal parser which itself overgenerates
might be useful in that (i) it may overgenerate in
different areas than our grammar (ii) anything that
it marks as a failure would be highly suspicious in-
deed.

The annotations do not need to be produced by
a full-fledged parser either. Indeed, for each sen-
tence that it produces, the surface realiser outputs
its parse tree. So another way to classify the gener-
ated strings might be through assessing not the qual-
ity of the strings themselves but of their parses. For
example, we could determine if the elementary trees
that were used to build a sentence are likely to occur
together in the same sentence. This kind of infor-
mation can be extracted from a systemic functional
grammar for instance. SFGs are largely generation-
oriented grammars which encode as a network, the

motivations behind each linguistic choice and the
linguistic choices they allow for. If we associated
each choice in the SFG network with a set of tree
properties from our TAG grammar, we would essen-
tially have an encoding of what tree properties go
together. If the sentence contains a set of tree prop-
erties for which there is no equivalent system net-
work traversal, it should be flagged as suspicious.

Our use of this test harness has so far been lim-
ited to the syntactic aspects of surface realisation.
It could also be applied to other realiser tasks such
as, for instance, morphological generation. It would
also be interesting to see to what extent the method
used here to spot overgeneration suspects could
be adapted to other linguistic formalisms such as
HPSG, LFG or CCG.

Finally, it would be interesting to investigate in
how much overgeneration reduction helps reduce
parsing ambiguity. Given a large scale symbolic
grammar, parsing will often yield several hundreds
of parses many of them are probably incorrect. We
believe that reducing overgeneration should help re-
duce the number of output parses and thereby im-
prove both parsing efficiency and the quality of the
output parses.

GENI is free (GPL) software and can be down-
loaded at http://trac.loria.fr/˜geni.

References
B. Crabbé and D. Duchier. Metagrammar redux.

In International Workshop on Constraint Solving
and Language Processing - CSLP 2004, Copen-
hagen, 2004.

C. Gardent. Integration d’une dimension seman-
tique dans les grammaires d’arbres adjoints.
TALN, 2006.

C. Gardent and L. Kallmeyer. Semantic construc-
tion in FTAG. In 10th EACL, Budapest, Hungary,
2003.

C. Gardent and E. Kow. Generating and selecting
grammatical paraphrases. In Proceedings of the
10th European Workshop on Natural Language
Generation, Aberdeen, Scotland, 2005.

M. Kay. Chart Generation. In 34th ACL, pages
200–204, Santa Cruz, California, 1996.

K. Vijay-Shanker and AK Joshi. Feature Structures
Based Tree Adjoining Grammars. Proceedings
of the 12th conference on Computational linguis-
tics, 55:v2, 1988.

48

