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Abstract

Word Sense Induction (WSI) is the task of
identifying the different senses (uses) of a tar-
get word in a given text. This paper focuses
on the unsupervised estimation of the free pa-
rameters of a graph-based WSI method, and
explores the use of eight Graph Connectiv-
ity Measures (GCM) that assess the degree of
connectivity in a graph. Given a target word
and a set of parameters, GCM evaluate the
connectivity of the produced clusters, which
correspond to subgraphs of the initial (unclus-
tered) graph. Each parameter setting is as-
signed a score according to one of the GCM
and the highest scoring setting is then selected.
Our evaluation on the nouns of SemEval-2007
WSI task (SWSI) shows that: (1) all GCM es-
timate a set of parameters which significantly
outperform the worst performing parameter
setting in both SWSI evaluation schemes, (2)
all GCM estimate a set of parameters which
outperform the Most Frequent Sense (MFS)
baseline by a statistically significant amount
in the supervised evaluation scheme, and (3)
two of the measures estimate a set of parame-
ters that performs closely to a set of parame-
ters estimated in supervised manner.

1 Introduction

Using word senses instead of word forms is essential
in many applications such as information retrieval
(IR) and machine translation (MT) (Pantel and Lin,
2002). Word senses are a prerequisite for word sense
disambiguation (WSD) algorithms. However, they
are usually represented as a fixed-list of definitions
of a manually constructed lexical database. The

fixed-list of senses paradigm has several disadvan-
tages. Firstly, lexical databases often contain general
definitions and miss many domain specific senses
(Agirre et al., 2001). Secondly, they suffer from the
lack of explicit semantic and topical relations be-
tween concepts (Agirre et al., 2001). Thirdly, they
often do not reflect the exact content of the context
in which the target word appears (Veronis, 2004).
WSI aims to overcome these limitations of hand-
constructed lexicons.

Most WSI systems are based on the vector-space
model that represents each context of a target word
as a vector of features (e.g. frequency of cooccur-
ring words). Vectors are clustered and the resulting
clusters are taken to represent the induced senses.
Recently, graph-based methods have been employed
to WSI (Dorow and Widdows, 2003; Veronis, 2004;
Agirre and Soroa, 2007b).

Typically, graph-based approaches represent each
word co-occurring with the target word, within a
pre-specified window, as a vertex. Two vertices
are connected via an edge if they co-occur in one
or more contexts of the target word. This co-
occurrence graph is then clustered employing differ-
ent graph clustering algorithms to induce the senses.
Each cluster (induced sense) consists of words ex-
pected to be topically related to the particular sense.
As a result, graph-based approaches assume that
each context word is related to one and only one
sense of the target one.

Recently, Klapaftis and Manandhar (2008) argued
that this assumption might not be always valid, since
a context word may be related to more than one
senses of the target one. As a result, they pro-

36



posed the use of a graph-based model for WSI, in
which each vertex of the graph corresponds to a
collocation (word-pair) that co-occurs with the tar-
get word, while edges are drawn based on the co-
occurrence frequency of their associated colloca-
tions. Clustering of this collocational graph would
produce clusters, which consist of a set of collo-
cations. The intuition is that the produced clusters
will be less sense-conflating than those produced
by other graph-based approaches, since collocations
provide strong and consistent clues to the senses of
a target word (Yarowsky, 1995).

The collocational graph-based approach as well
as the majority of state-of-the-art WSI systems es-
timate their parameters either empirically or by em-
ploying supervised techniques. The SemEval-2007
WSI task (SWSI) participating systems UOY and
UBC-AS used labeled data for parameter estimation
(Agirre and Soroa, 2007a), while the authors of I2R,
UPV SI and UMND2 have empirically chosen val-
ues for their parameters. This issue imposes limits
on the unsupervised nature of these algorithms, as
well as on their performance on different datasets.

More specifically, when applying an unsupervised
WSI system on different datasets, one cannot be sure
that the same set of parameters is appropriate for all
datasets (Karakos et al., 2007). In most cases, a new
parameter tuning might be necessary. Unsupervised
estimation of free parameters may enhance the unsu-
pervised nature of systems, making them applicable
to any dataset, even if there are no tagged data avail-
able.

In this paper, we focus on estimating the free
parameters of the collocational graph-based WSI
method (Klapaftis and Manandhar, 2008) using
eight graph connectivity measures (GCM). Given a
parameter setting and the associated induced cluster-
ing solution, each induced cluster corresponds to a
subgraph of the original unclustered graph. A graph
connectivity measure GCMi scores each cluster by
evaluating the degree of connectivity of its corre-
sponding subgraph. Each clustering solution is then
assigned the average of the scores of its clusters. Fi-
nally, the highest scoring solution is selected.

Our evaluation on the nouns of SWSI shows
that GCM improve the worst performing parame-
ter setting by large margins in both SWSI evaluation
schemes, although they are below the best perform-

ing parameter setting. Moreover, the evaluation in
a WSD setting shows that all GCM estimate a set
of parameters which are above the Most Frequent
Sense (MFS) baseline by a statistically significant
amount. Finally our results show that two of the
measures, i.e. average degree and weighted average
degree, estimate a set of parameters that performs
closely to a set of parameters estimated in a super-
vised manner. All of these findings, suggest that
GCM are able to identify useful differences regard-
ing the quality of the induced clusters for different
parameter combinations, in effect being useful for
unsupervised parameter estimation.

2 Collocational graphs for WSI

Let bc, be the base corpus, which consists of para-
graphs containing the target word tw. The aim is
to induce the senses of tw given bc as the only in-
put. Let rc be a large reference corpus. In Klapaftis
and Manandhar (2008) the British National Corpus1

is used as a reference corpus. The WSI algorithm
consists of the following stages.

Corpus pre-processing The target of this stage is
to filter the paragraphs of the base corpus, in order to
keep the words which are topically (and possibly se-
mantically) related to the target one. Initially, tw is
removed from bc and both bc and rc are PoS-tagged.
In the next step, only nouns are kept in the para-
graphs of bc, since they are characterised by higher
discriminative ability than verbs, adverbs or adjec-
tives which may appear in a variety of different con-
texts. At the end of this pre-processing step, each
paragraph of bc and rc is a list of lemmatized nouns
(Klapaftis and Manandhar, 2008).

In the next step, the paragraphs of bc are fil-
tered by removing common nouns which are noisy;
contextually not related to tw. Given a contex-
tual word cw that occurs in the paragraphs of bc, a
log-likelihood ratio (G2) test is employed (Dunning,
1993), which checks if the distribution of cw in bc
is similar to the distribution of cw in rc; p(cw|bc) =
p(cw|rc) (null hypothesis). If this is true, G2 has a
small value. If this value is less than a pre-specified
threshold (parameter p1) the noun is removed from
bc.

1The British National Corpus (BNC) (2001, version 2). Dis-
tributed by Oxford University Computing Services.
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Target: cnn nbc Target: nbc news
nbc tv nbc tv
cnn tv soap opera
cnn radio nbc show
news newscast news newscast
radio television nbc newshour
cnn headline cnn headline
nbc politics radio tv
breaking news breaking news

Table 1: Collocations connected to cnn nbc and nbc news

This process identifies nouns that are more indica-
tive in bc than in rc and vice versa. However, in this
setting we are not interested in nouns which have
a distinctive frequency in rc. As a result, each cw
which has a relative frequency in bc less than in rc
is filtered out. At the end of this stage, each para-
graph of bc is a list of nouns which are assumed to
be contextually related to the target word tw.

Creating the initial collocational graph The tar-
get of this stage is to determine the related nouns,
which will form the collocations, and the weight of
each collocation. Klapaftis and Manandhar (2008)
consider collocations of size 2, i.e. pairs of nouns.

For each paragraph of bc of size n, collocations
are identified by generating all the possible

(
cn

2

)

combinations. The frequency of a collocation c is
the number of paragraphs in the whole SWSI corpus
(27132 paragraphs), in which c occurs.

Each collocation is assigned a weight, measuring
the relative frequency of two nouns co-occurring.
Let freqij denote the number of paragraphs in
which nouns i and j cooccur, and freqj denote the
number of paragraphs, where noun j occurs. The
conditional probability p(i|j) is defined in equation
1, and p(j|i) is computed in a similar way. The
weight of collocation cij is the average of these con-
ditional probabilities wcij = p(i|j) + p(j|i).

p(i|j) =
freqij

freqj
(1)

Finally, Klapaftis and Manandhar (2008) only ex-
tract collocations which have frequency (parame-
ter p2) and weight (parameter p3) higher than pre-
specified thresholds. This filtering appears to com-
pensate for inaccuracies in G2, as well as for low-
frequency distant collocations that are ambiguous.
Each weighted collocation is represented as a ver-

tex. Two vertices share an edge, if they co-occur in
one or more paragraphs of bc.

Populating and weighing the collocational graph
The constructed graph, G, is sparse, since the pre-
vious stage attempted to identify rare events, i.e.
co-occurring collocations. To address this problem,
Klapaftis and Manandhar (2008) apply a smooth-
ing technique, similar to the one in Cimiano et
al. (2005), extending the principle that a word is
characterised by the company it keeps (Firth, 1957)
to collocations. The target is to discover new edges
between vertices and to assign weights to all edges.

Each vertex i (collocation ci) is associated to
a vector V Ci containing its neighbouring vertices
(collocations). Table 1 shows an example of two
vertices, cnn nbc and nbc news, which are discon-
nected in G of the target word network. The example
was taken from Klapaftis and Manandhar (2008).

In the next step, the similarity between all vertex
vectors V Ci and V Cj is calculated using the Jaccard
coefficient, i.e. JC(V Ci, V Cj) = |V Ci∩V Cj |

|V Ci∪V Cj | . Two
collocations ci and cj are mutually similar if ci is the
most similar collocation to cj and vice versa.

Given that collocations ci and cj are mutually
similar, an occurrence of a collocation ck with one
of ci, cj is also counted as an occurrence with the
other collocation. For example in Table 1, if cnn nbc
and nbc news are mutually similar, then the zero-
frequency event between nbc news and cnn tv is
set equal to the joint frequency between cnn nbc
and cnn tv. Marginal frequencies of collocations
are updated and the overall result is consequently a
smoothing of relative frequencies.

The weight applied to each edge connecting ver-
tices i and j (collocations ci and cj ) is the maximum
of their conditional probabilities: p(i|j) = freqij

freqj
,

where freqi is the number of paragraphs collocation
ci occurs. p(j|i) is defined similarly.

Inducing senses and tagging In this final stage,
the collocational graph is clustered to produced the
senses (clusters) of the target word. The clustering
method employed is Chinese Whispers (CW) (Bie-
mann, 2006). CW is linear to the number of graph
edges, while it offers the advantage that it does not
require any input parameters, producing the clusters
of a graph automatically.
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Figure 1: An example undirected weighted graph.

Initially, CW assigns all vertices to different
classes. Each vertex i is processed for a number of
iterations and inherits the strongest class in its lo-
cal neighbourhood (LN) in an update step. LN is
defined as the set of vertices which share an edge
with i. In each iteration for vertex i: each class, cl,
receives a score equal to the sum of the weights of
edges (i, j), where j has been assigned to class cl.
The maximum score determines the strongest class.
In case of multiple strongest classes, one is chosen
randomly. Classes are updated immediately, mean-
ing that a vertex can inherit from its LN classes that
were introduced in the same iteration.

Once CW has produced the clusters of a target
word, each of the instances of tw is tagged with
one of the induced clusters. This process is simi-
lar to Word Sense Disambiguation (WSD) with the
difference that the sense repository has been auto-
matically produced. Particularly, given an instance
of tw in paragraph pi: each induced cluster cl is as-
signed a score equal to the number of its collocations
(i.e. pairs of words) occurring in pi. We observe that
the tagging method exploits the one sense per collo-
cation property (Yarowsky, 1995), which means that
WSD based on collocations is probably finer than
WSD based on simple words, since ambiguity is re-
duced (Klapaftis and Manandhar, 2008).

3 Unsupervised parameter tuning

In this section we investigate unsupervised ways to
address the issue of choosing parameter values. To
this end, we employ a variety of GCM, which mea-
sure the relative importance of each vertex and as-
sess the overall connectivity of the corresponding
graph. These measures are average degree, cluster
coefficient, graph entropy and edge density (Navigli
and Lapata, 2007; Zesch and Gurevych, 2007).

GCM quantify the degree of connectivity of the
produced clusters (subgraphs), which represent the

senses (uses) of the target word for a given cluster-
ing solution (parameter setting). Higher values of
GCM indicate subgraphs (clusters) of higher con-
nectivity. Given a parameter setting, the induced
clustering solution and a graph connectivity measure
GCMi, each induced cluster is assigned the result-
ing score of applying GCMi on the corresponding
subgraph of the initial unclustered graph. Each clus-
tering solution is assigned the average of the scores
of its clusters (table 6), and the highest scoring one
is selected.

For each measure, we have developed two ver-
sions, i.e. one which considers the edge weights in
the subgraph, and a second which does not. In the
following description the terms graph and subgraph
are interchangeable.

Let G = (V,E) be an undirected graph (in-
duced sense), where V is a set of vertices and E =
{(u, v) : u, v ∈ V } a set of edges connecting vertex
pairs. Each edge is weighted by a positive weight,
W : wuv → [0,∞). Figure 1 shows a small example
to explain the computation of GCM. The graph con-
sists of 8 vertices, |V | = 8, and 10 edges, |E| = 10.
Edge weights appear on edges, e.g. wab = 1

4 .

Average Degree The degree (deg) of a vertex u is
the number of edges connected to u:

deg(u) = |{(u, v) ∈ E : v ∈ V }| (2)

The average degree (AvgDeg) of a graph can be
computed as:

AvgDeg(G(V,E)) =
1
|V |

∑

u∈V

deg(u) (3)

The first row of table 2 shows the vertex degrees
of the example graph (figure 1) and AvgDeg(G) =
20
8 = 2.5.

Edge weights can be integrated into the degree
computation. Let mew be the maximum edge
weight in the graph:

mew = max
(u,v)∈E

wuv (4)

Average Weighted Degree The weighted de-
gree(w deg) of a vertex is defined as:

w deg(u) =
1
|V |

∑

(u,v)∈E

wuv

mew
(5)
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a b c d e f g h

deg(u) 2 2 3 4 3 3 2 1

wdeg(u) 5
4

1 5
2

9
4

7
4

3
2

3
2

1
4

Tu 1 1 1 1 1 2 1 0

cc(u) 1 1 1
3

1
6

1
3

2
3

1 0

WTu
3
4

1 1
4

1
4

1
2

3
2

1
4

0

wcc(u) 3
4

1 1
12

1
24

1
6

1
2

1
4

0

p(u) 1
10

1
10

3
20

1
5

3
20

3
20

1
10

1
20

en(u) ∗ 100 33 33 41 46 41 41 33 22

wp(u) 1
16

1
20

1
8

9
80

7
80

3
40

3
40

1
80

we(u) ∗ 100 25 22 38 35 31 28 28 8

Table 2: Computations of graph connectivity measures
and relevant quantities on the example graph (figure 1).

Average weighted degree (AvgWDeg), similarly to
AvgDeg, is averaged over all vertices of the graph.
In the graph of figure 1, mew = 1. The second row
of table 2 shows the weighted degrees of all vertices.
AvgWDeg(G) = 48

36 ' 1.33.

Average Cluster Coefficient The cluster coeffi-
cient (cc) of a vertex, u, is defined as:

cc(u) =
Tu

2−1ku(ku − 1)
(6)

Tu =
∑

(u,v)∈E

∑

(v,x)∈E
x 6=u

1 (7)

Tu is the number of edges between the ku neigh-
bours of u. Obviously ku = deg(u). 2−1ku(ku− 1)
would be the number of edges between the neigh-
bours of u if the graph they define was fully con-
nected. Average cluster coefficient (AvgCC) is aver-
aged over all vertices of the graph.

The computations of Tu and cc(u) on the example
graph are shown in the third and fourth rows of table
2. Consequently, AvgCC(G) = 9

16 = 0.5625.

Average Weighted Cluster Coefficient Let WTu

be the sum of edge weights between the neighbours
of u over mew. Weighted cluster coefficient (wcc)
can be computed as:

wcc(u) =
WTu

2−1ku(ku − 1)
(8)

WTu =
1

mew

∑

(u,v)∈E

∑

(v,x)∈E
x 6=u

wvx (9)

Average weighted cluster coefficient (AvgWCC) is
averaged over all vertices of the graph. The com-
putations of WTu and wcc(u) on the example graph
(figure 1) are shown in the fifth and sixth rows of
table 2 and AvgWCC(G) = 67

8∗24 ' 0.349.

Graph Entropy Entropy measures the amount of
information (alternatively the uncertainty) in a ran-
dom variable. For a graph, high entropy indicates
that many vertices are equally important and low en-
tropy that only few vertices are relevant (Navigli and
Lapata, 2007). The entropy (en) of a vertex u can be
defined as:

en(u) = −p(u) log2 p(u) (10)

The probability of a vertex, p(u), is determined by
the degree distribution:

p(u) =
{

deg(u)
2|E|

}

u∈V

(11)

Graph entropy (GE) is computed by summing all
vertex entropies and normalising by log2 |V |. The
seventh and eighth row of table 2 show the compu-
tations of p(u) and en(u) on the example graph, re-
spectively. Thus, GE ' 0.97.

Weighted Graph Entropy Similarly to previous
graph connectivity measures, the weighted entropy
(wen) of a vertex u is defined as:

we(u) = −wp(u) log2 wp(u) (12)

where: wp(u) =
{

w deg(u)
2 ∗mew ∗ |E|

}

u∈V

Weighted graph entropy (GE) is computed by sum-
ming all vertex weighted entropies and normalising
by log2 |V |. The last two rows of table 2 show the
computations of wp(u) and we(u) on the example
graph. Consequently, WGE ' 0.73.

Edge Density and Weighted Edge Density Edge
density (ed) quantifies how many edges the graph
has, as a ratio over the number of edges of a fully
connected graph of the same size:

A(V ) = 2
(|V |

2

)
(13)
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Edge density (ed) is a global graph connectivity
measure; it refers to the whole graph and not a spe-
cific vertex. Edge density (ed) and weighted edge
density (wed) can be defined as follows:

ed(G(V,E)) =
|E|

A(V )
(14)

wed(G(V,E)) =
1

A(V )

∑

(u,v)∈E

wu,v

mew
(15)

In the graph of figure 1: A(V ) = 2
(
8
2

)
= 28,

ed(G) = 10
28 ' 0.357,

∑ wu,v

mew = 6 and wed(G) =
6
28 ' 0.214.

The use of the aforementioned GCM allows the
estimation of a different parameter setting for each
target word. Table 3 shows the parameters of the col-
locational graph-based WSI system (Klapaftis and
Manandhar, 2008). These parameters affect how the
collocational graph is constructed, and in effect the
quality of the induced clusters.

4 Evaluation

4.1 Experimental setting
The collocational WSI approach was evaluated un-
der the framework and corpus of SemEval-2007
WSI task (Agirre and Soroa, 2007a). The corpus
consists of text of the Wall Street Journal corpus,
and is hand-tagged with OntoNotes senses (Hovy et
al., 2006). The evaluation focuses on all 35 nouns of
SWSI. SWSI task employs two evaluation schemes.
In unsupervised evaluation, the results are treated as
clusters of contexts and gold standard (GS) senses
as classes. In a perfect clustering solution, each in-
duced cluster contains the same contexts as one of
the classes (Homogeneity), and each class contains
the same contexts as one of the clusters (Complete-
ness). F-Score is used to assess the overall quality of
clustering. Entropy and purity are also used, com-
plementarily. F-Score is a better measure than en-
tropy or purity, since F-Score measures both homo-
geneity and completeness, while entropy and purity
measure only the former. In the second scheme, su-
pervised evaluation, the training corpus is used to
map the induced clusters to GS senses. The testing
corpus is then used to measure WSD performance
(Table 4, Sup. Recall).

The graph-based collocational WSI method is re-
ferred as Col-Sm (where “Col” stands for the “col-

Parameter Range Value
G2 threshold 5, 10, 15 p1 = 5
Collocation frequency 4, 6, 8, 10 p2 = 8
Collocation weight 0.2, 0.3, 0.4 p3 = 0.2

Table 3: Parameters ranges and values in Klapaftis and
Manandhar (2008)

locational WSI” approach and “Sm” for its ver-
sion using “smoothing”). Col-Bl (where “Bl” stands
for “baseline”) refers to the same system without
smoothing. The parameters of Col-Sm were origi-
nally estimated by cross-validation on the training
set of SWSI. Out of 72 parameter combinations, the
setting with the highest F-Score was chosen and ap-
plied to all 35 nouns of the test set. This is referred
as Col-Sm-org (where “org” stands for “original”) in
Table 4. Table 3 shows all values for each parameter,
and the chosen values, under supervised parameter
estimation2. Col-Bl-org (Table 4) induces senses as
Col-Sm-org does, but without smoothing.

In table 4, Col-Sm-w (respectively Col-Bl-w)
refers to the evaluation of Col-Sm (Col-Bl), follow-
ing the same technique for parameter estimation as
in Klapaftis and Manandhar (2008) for each target
word separately (“w” stands for “word”). Given that
GCM are applied for each target word separately,
these baselines will allow to see the performance of
GCM compared to a supervised setting.

The 1c1inst baseline assigns each instance to a
distinct cluster, while the 1c1w baseline groups all
instances of a target word into a single cluster. 1c1w
is equivalent to MFS in this setting. The fifth column
of table 4 shows the average number of clusters.

The SWSI participant systems UOY and UBC-AS
used labeled data for parameter estimation. The au-
thors of I2R, UPV SI and UMND2 have empirically
chosen values for their parameters.

The next subsection presents the evaluation of
GCM as well as the results of SWSI systems. Ini-
tially, we provide a brief discussion on the differ-
ences between the two evaluation schemes of SWSI
that will allow for a better understanding of GCM
performance.

4.2 Analysis of results and discussion
Evaluation of WSI methods is a difficult task. For
instance, 1c1inst (Table 4) achieves perfect purity

2CW performed 200 iterations for all experiments, because
it is not guaranteed to converge.
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System Unsupervised Evaluation Sup.
FSc. Pur. Ent. # Cl. Recall

Col-Sm-org 78.0 88.6 31.0 5.9 86.4
Col-Bl-org 73.1 89.6 29.0 8.0 85.6
Col-Sm-w 80.9 88.0 32.5 4.3 85.5
Col-Bl-w 78.1 88.3 31.7 5.4 84.3
UBC-AS 80.8 83.6 43.5 1.6 80.7
UPV SI 69.9 87.4 30.9 7.2 82.5
I2R 68.0 88.4 29.7 3.1 86.8
UMND2 67.1 85.8 37.6 1.7 84.5
UOY 65.8 89.8 25.5 11.3 81.6
1c1w-MFS 80.7 82.4 46.3 1 80.9
1c1inst 6.6 100 0 73.1 N/A

Table 4: Evaluation of WSI systems and baselines.

and entropy. However, F-Score of 1c1inst is low,
because the GS senses are spread among clusters,
decreasing unsupervised recall. Supervised recall of
1c1inst is undefined, because each cluster tags only
one instance. Hence, clusters tagging instances in
the test corpus do not tag any instances in the train
corpus and the mapping cannot be performed. 1c1w
achieves high F-Score due to the dominance of MFS
in the testing corpus. However, its purity, entropy
and supervised recall are much lower than other sys-
tems, because it only induces the dominant sense.

Clustering solutions that achieve high supervised
recall do not necessarily achieve high F-Score,
mainly because F-Score penalises systems for in-
ducing more clusters than the corresponding GS
classes, as 1cl1inst does. Supervised evaluation
seems to be more neutral regarding the number of
clusters, since clusters are mapped into a weighted
vector of senses. Thus, inducing a number of clus-
ters similar to the number of senses is not a require-
ment for good results (Agirre and Soroa, 2007a).
High supervised recall means high purity and en-
tropy, as in I2R, but not vice versa, as in UOY. UOY
produces many clean clusters, however these are un-
reliably mapped to senses due to insufficient train-
ing data. On the contrary, I2R produces a few clean
clusters, which are mapped more reliably.

Comparing the performance of SWSI systems
shows that none performs well in both evaluation
settings, in effect being biased against one of the
schemes. However, this is not the case for the collo-
cational WSI method, which achieves a high perfor-
mance in both evaluation settings.

Table 6 presents the results of applying the graph

System Bound Unsupervised Evaluation Sup.
type FSc. Pur. Ent. # Cl. Recall

Col-Sm MaxR 79.3 90.5 26.6 7.0 88.6
Col-Sm MinR 62.9 89.0 26.7 12.7 78.8
Col-Bl MaxR 72.9 91.8 23.2 9.6 88.7
Col-Bl MinR 57.5 89.0 26.4 14.4 76.2
Col-Sm MaxF 83.2 90.0 28.7 4.9 86.6
Col-Sm MinF 43.6 90.2 22.1 17.6 83.7
Col-Bl MaxF 81.1 90.0 28.7 5.3 81.8
Col-Bl MinF 34.1 90.5 20.5 20.4 81.5

Table 5: Upper and lower performance bounds for sys-
tems Col-Sm and Col-Bl.

connectivity measures of section 3 in order to choose
the parameter values for the collocational WSI sys-
tem, for each word separately. The evaluation is
done both for Col-Sm and Col-Bl that use and ignore
smoothing, respectively.

To evaluate the supervised recall performance
using the graph connectivity measures, we com-
puted both the upper and lower bounds of Col-Sm,
i.e. the best and worst supervised recall, respectively
(MaxR and MinR in table 5). In the former case,
we selected the parameter combination per target
word that performs best (Col-Sm, MaxR in table 5),
which resulted in 88.6% supervised recall (F-Score:
79.3%), while in the latter we selected the worst per-
forming one, which resulted in 78.8% supervised re-
call (F-Score: 62.9%). In table 6 we observe that
the supervised recall of all measures is significantly
lower than the upper bound. However, all measures
perform significantly better than the lower bound
(McNemar’s test, confidence level: 95%); the small-
est difference is 4.9%, in the case of weighted edge
density. The picture is the same for Col-Bl.

In the same vein, we computed both the upper and
lower bounds of Col-Sm in terms of F-Score, 83.2%
and 43.6%, respectively (Col-Sm, MinF and MaxF
in table 5). The performance of the system is lower
than the upper bound, for all GCM. Despite that, we
observe that all measures except edge density and
weighted edge density outperform the lower bound
by large margins.

The comparison of GCM performance against
the lower and upper bounds of Col-Sm and Col-Bl
shows that GCM are able to identify useful differ-
ences regarding the degree of connectivity of in-
duced clusters, and in effect suggest parameter val-
ues that perform significantly better than the worst
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Col-Sm Col-Bl
Unsupervised Evaluation Sup. Unsupervised Evaluation Sup.

Graph Connectivity Measure FSc Pur. Ent. # Cl. Recall FSc Pur. Ent. # Cl. Recall
Average Degree 79.2 87.2 34.2 3.9 84.8 77.5 31.3 88.4 5.7 83.8
Average Weighted Degree 77.1 87.8 32.0 5.5 84.2 75.1 28.3 89.6 8.5 83.3
Average Cluster Coefficient 72.5 88.8 28.5 9.1 83.9 68.7 24.0 90.9 12.9 83.9
Average Weighted Cluster Coefficient 65.8 88.4 28.0 9.6 84.1 68.9 22.4 91.3 13.9 83.7
Graph Entropy 67.0 89.6 25.9 12.3 83.8 68.5 22.1 91.8 14.4 84.4
Weighted Graph Entropy 72.7 89.4 28.1 9.6 84.1 72.2 23.5 91.2 12.5 84.0
Edge Density 47.8 91.8 19.4 18.4 84.8 42.0 16.9 92.8 21.9 84.1
Weighted Edge Density 53.4 90.2 23.1 15.5 83.7 42.2 17.1 92.7 21.9 83.9

Table 6: Unsupervised & supervised evaluation of the collocational WSI approach using graph connectivity measures.

case. However, they are all unable to approximate
the upper bound for both evaluation schemes, which
is also the case for the supervised estimation of pa-
rameters per target word (Col-Sm-w and Col-Bl-w).

In Table 6, we also observe that all measures
achieve higher supervised recall scores than the
MFS baseline. The increase is statistically signif-
icant (McNemar’s test, confidence level: 95%) in
all cases. This result shows that irrespective of the
number of clusters produced (low F-Score), GCM
are able to estimate a set of parameters that provides
clean clusters (low entropy), which when mapped to
GS senses improve upon the most frequent heuristic,
unlike the majority of unsupervised WSD systems.

Regarding the comparison between different
GCM, we observe that average degree and weighted
average degree for Col-Sm (Col-Bl) perform
closely to Col-Sm-w (Col-Bl-w) for both evaluation
schemes. This is due to the fact that they produce a
number of clusters similar to Col-Sm-w (Col-Bl-w),
while at the same time their distributions of clusters
over the target words’ instances are also similar.

On the contrary, the remaining GCM tend to pro-
duce larger numbers of clusters compared to both
Col-Sm-w (Col-Bl-w) and the GS, in effect being
penalised by F-Score. As it has already been men-
tioned, supervised recall is less affected by a large
number of clusters, which causes small differences
among GCM.

Determining whether the weighted or unweighted
version of GCM performs better depends on the
GCM itself. Weighted graph entropy performs in all
cases better than the unweighted version. For aver-
age cluster coefficient and edge density, we cannot
extract a safe conclusion. Unweighted average de-
gree performs better than the weighted version.

5 Conclusion and future work

In this paper, we explored the use of eight graph con-
nectivity measures for unsupervised estimation of
free parameters of a collocational graph-based WSI
system. Given a parameter setting and the associ-
ated induced clustering solution, each cluster was
scored according to the connectivity degree of its
corresponding subgraph, as assessed by a particular
graph connectivity measure. Each clustering solu-
tion was then assigned the average of its clusters’
scores, and the highest scoring one was selected.

Evaluation on the nouns of SemEval-2007 WSI
task (SWSI) showed that all eight graph connectiv-
ity measures choose parameters for which the corre-
sponding performance of the system is significantly
higher than the lower performance bound, for both
the supervised and unsupervised evaluation scheme.
Moreover, the selected parameters produce results
which outperform the MFS baseline by a statisti-
cally significant amount in the supervised evalua-
tion scheme. The best performing measures, average
degree and weighted average degree, perform com-
parably well to the set of parameters chosen by a
supervised parameter estimation. In general, graph
connectivity measures can quantify significant dif-
ferences regarding the degree of connectivity of in-
duced clusters.

Future work focuses on further exploiting graph
connectivity measures. Graph theoretic literature
proposes a variety of measures capturing graph
properties. Some of these measures might help in
improving WSI performance, while at the same time
keeping graph-based WSI systems totally unsuper-
vised.
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