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Abstract 

We review lexical Association Measures 
(AMs) that have been employed by past 
work in extracting multiword expressions. 
Our work contributes to the understanding 
of these AMs by categorizing them into 
two groups and suggesting the use of rank 
equivalence to group AMs with the same 
ranking performance. We also examine 
how existing AMs can be adapted to better 
rank English verb particle constructions 
and light verb constructions. Specifically, 
we suggest normalizing (Pointwise) 
Mutual Information and using marginal 
frequencies to construct penalization 
terms.  We empirically validate the 
effectiveness of these modified AMs in 
detection tasks in English, performed on 
the Penn Treebank, which shows 
significant improvement over the original 
AMs. 

1 Introduction 

Recently, the NLP community has witnessed a 
renewed interest in the use of lexical association 
measures in extracting Multiword Expressions 
(MWEs). Lexical Association Measures 
(hereafter, AMs) are mathematical formulas 
which can be used to capture the degree of 
connection or association between constituents 
of a given phrase. Well-known AMs include 
Pointwise Mutual Information (PMI), 
Pearson’s 2χ and the Odds Ratio. These AMs 
have been applied in many different fields of 
study, from information retrieval to hypothesis 
testing. In the context of MWE extraction, many 
published works have been devoted to comparing 
their effectiveness. Krenn and Evert (2001) 
evaluate Mutual Information (MI), Dice, 
Pearson’s 2χ , log-likelihood  

ratio and the T score. In Pearce (2002), AMs 
such as Z score, Pointwise MI, cost reduction, 
left and right context entropy, odds ratio are 
evaluated. Evert (2004) discussed a wide range 
of AMs, including exact hypothesis tests such as 
the binomial test and Fisher’s exact tests, various 
coefficients such as Dice and Jaccard. Later, 
Ramisch et al. (2008) evaluated MI, 
Pearson’s 2χ and Permutation Entropy. Probably 
the most comprehensive evaluation of AMs was 
presented in Pecina and Schlesinger (2006), 
where 82 AMs were assembled and evaluated 
over Czech collocations. These collocations 
contained a mix of idiomatic expressions, 
technical terms, light verb constructions and 
stock phrases. In their work, the best 
combination of AMs was selected using machine 
learning.  

While the previous works have evaluated AMs, 
there have been few details on why the AMs 
perform as they do.  A detailed analysis of why 
these AMs perform as they do is needed in order 
to explain their identification performance, and 
to help us recommend AMs for future tasks. This 
weakness of previous works motivated us to 
address this issue. In this work, we contribute to 
further understanding of association measures, 
using two different MWE extraction tasks to 
motivate and concretize our discussion. Our goal 
is to be able to predict, a priori, what types of 
AMs are likely to perform well for a particular 
MWE class. 

We focus on the extraction of two common 
types of English MWEs that can be captured by 
bigram model: Verb Particle Constructions 
(VPCs) and Light Verb Constructions (LVCs). 
VPCs consist of a verb and one or more particles, 
which can be prepositions (e.g. put on, bolster 
up), adjectives (cut short) or verbs (make do). 
For simplicity, we focus only on bigram VPCs 
that take prepositional particles, the most 
common class of VPCs. A special characteristic 
of VPCs that affects their extraction is the 
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mobility of noun phrase complements in 
transitive VPCs. They can appear after the 
particle (Take off your hat) or between the verb 
and the particle (Take your hat off). However, a 
pronominal complement can only appear in the 
latter configuration (Take it off).  

In comparison, LVCs comprise of a verb and a 
complement, which is usually a noun phrase 
(make a presentation, give a demonstration). 
Their meanings come mostly from their 
complements and, as such, verbs in LVCs are 
termed semantically light, hence the name light 
verb. This explains why modifiers of LVCs 
modify the complement instead of the verb 
(make a serious mistake vs. *make a mistake 
seriously).  This phenomenon also shows that an 
LVC’s constituents may not occur contiguously. 

2 Classification of Association Measures 

Although different AMs have different 
approaches to measuring association, we 
observed that they can effectively be classified 
into two broad classes. Class I AMs look at the 
degree of institutionalization; i.e., the extent to 
which the phrase is a semantic unit rather than a 
free combination of words. Some of the AMs in 
this class directly measure this association 
between constituents using various combinations 
of co-occurrence and marginal frequencies. 
Examples include MI, PMI and their variants as 
well as most of the association coefficients such 
as Jaccard, Hamann, Brawn-Blanquet, and 
others. Other Class I AMs estimate a phrase’s 
MWE-hood by judging the significance of the 
difference between observed and expected 
frequencies. These AMs include, among others, 
statistical hypothesis tests such as T score, Z 
score and Pearson’s 2χ test.  

Class II AMs feature the use of context to 
measure non-compositionality, a peculiar 
characteristic of many types of MWEs, including 
VPCs and idioms. This is commonly done in one 
of the following two ways. First, non-
compositionality can be modeled through the 
diversity of contexts, measured using entropy. 
The underlying assumption of this approach is 
that non-compositional phrases appear in a more 
restricted set of contexts than compositional ones. 
Second, non-compositionality can also be 
measured through context similarity between the 
phrase and its constituents. The observation here 
is that non-compositional phrases have different 
semantics from those of their constituents. It then 

follows that contexts in which the phrase and its 
constituents appear would be different (Zhai, 
1997). Some VPC examples include carry out, 
give up. A close approximation stipulates that 
contexts of a non-compositional phrase’s 
constituents are also different. For instance, 
phrases such as hot dog and Dutch courage are 
comprised of constituents that have unrelated 
meanings. Metrics that are commonly used to 
compute context similarity include cosine and 
dice similarity; distance metrics such as 
Euclidean and Manhattan norm; and probability 
distribution measures such as Kullback-Leibler 
divergence and Jensen-Shannon divergence.  

 
Table 1 lists all AMs used in our discussion. 

The lower left legend defines the variables a, b, c, 
and d with respect to the raw co-occurrence 
statistics observed in the corpus data.  When an 
AM is introduced, it is prefixed with its index 
given in Table 1(e.g., [M2] Mutual Information) 
for the reader’s convenience.  

3 Evaluation   

We will first present how VPC and LVC 
candidates are extracted and used to form our 
evaluation data set. Second, we will discuss how 
performances of AMs are measured in our 
experiments. 

3.1 Evaluation Data 

In this study, we employ the Wall Street Journal 
(WSJ) section of one million words in the Penn 
Tree Bank. To create the evaluation data set, we 
first extract the VPC and LVC candidates from 
our corpus as described below. We note here that 
the mobility property of both VPC and LVC 
constituents have been used in the extraction 
process. 

For VPCs, we first identify particles using a 
pre-compiled set of 38 particles based on 
Baldwin (2005) and Quirk et al. (1985) 
(Appendix A). Here we do not use the WSJ 
particle tag to avoid possible inconsistencies 
pointed out in Baldwin (2005). Next, we search 
to the left of the located particle for the nearest 
verb. As verbs and particles in transitive VPCs 
may not occur contiguously, we allow an 
intervening NP of up to 5 words, similar to 
Baldwin and Villavicencio (2002) and Smadja 
(1993), since longer NPs tend to be located after 
particles.  
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Extraction of LVCs is carried out in a similar 
fashion. First, occurrences of light verbs are 
located based on the following set of seven 

frequently used English light verbs: do, get, give, 
have, make, put and take. Next, we search to the      
right of the light verbs for the nearest noun, 

AM Name Formula AM Name Formula 
M1. Joint Probability ( ) /f xy N  M2. Mutual  Information 

,

1
log ˆ

ij
ij

i j ij

f
f

N f∑  

M3. Log likelihood      
        ratio 

,
2 log ˆ

ij
ij

i j ij

f
f

f
∑  

M4. Pointwise MI (PMI) ( )
log

( ) ( )

P xy

P x P y∗ ∗
 

M5. Local-PMI ( ) PMIf xy ×  M6. PMIk ( )
log

( ) ( )

kNf xy

f x f y∗ ∗
 

M7. PMI2 2( )
log

( ) ( )

Nf xy

f x f y∗ ∗
 

M8. Mutual Dependency 2( )log
( *) (* )
P xy

P x P y
 

M9. Driver-Kroeber  

( )( )

a

a b a c+ +
 

M10. Normalized   
          expectation 

2

2

a

a b c+ +
 

M11. Jaccard a

a b c+ +
 

M12. First Kulczynski a

b c+
 

M13. Second  
         Sokal-Sneath 2( )

a

a b c+ +
 

M14. Third  
          Sokal-Sneath 

a d

b c

+

+
 

M15. Sokal-Michiner a d

a b c d

+

+ + +
 

M16. Rogers-Tanimoto 

2 2

a d

a b c d

+

+ + +
 

M17. Hamann ( ) ( )a d b c

a b c d

+ − +

+ + +
 

M18. Odds ratio ad
bc  

M19. Yule’s ω  ad bc

ad bc

−

+
 

M20. Yule’s Q ad bc
ad bc

−
+

 

M21. Brawn-     
          Blanquet max( , )

a

a b a c+ +
 

M22. Simpson 

min( , )

a

a b a c+ +
 

M23. S cost 1
2min( , )

log(1 )
1

b c

a

−
+

+
 

M24*. Adjusted S Cost 1
2max( , )

log(1 )
1

b c

a

−
+

+
 

M25. Laplace 1

 min( ,  ) 2

a

a b c

+

+ +
 

M26*. Adjusted Laplace 1

 max( ,  ) 2

a

a b c

+

+ +
 

M27. Fager  
[M9]

1
max( , )

2
b c−  

M28*. Adjusted Fager 
[M9]

1
max( , )b c

aN
−  

M29*. Normalized     
            PMIs  

PMI / NF( )α  
PMI / NFMax 

M30*. Simplified 
normalized PMI for 
VPCs 

log( )

(1 )

ad

b cα α× + − ×
 

M31*. Normalized  
           MIs 

MI / NF( )α  
MI / NFMax 

NF( )α  = ( )P xα ∗  + (1 ) ( )P yα− ∗   [0,  1]α ∈  
NFMax = max( ( ),  ( ))P x P y∗ ∗  

11 ( )a f f xy= =   12 ( )b f f xy= =    

21 ( )c f f xy= =  22 ( )d f f xy= =  

( )f x∗  
( )f x∗  

            ( )f y∗               ( )f y∗  N 

 
Table 1. Association measures discussed in this paper. Starred AMs (*) are developed in this work. 

Contingency table of a bigram (x y), recording co-
occurrence and marginal frequencies; w  stands for all 
words except w; * stands for all words; N is total 
number of bigrams. The expected frequency under the 
independence assumption is ˆ ( ) ( ) ( ) / .f xy f x f y N= ∗ ∗  
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permitting a maximum of 4 intervening words to 
allow for quantifiers (a/an, the, many, etc.), 
adjectival and adverbial modifiers, etc. If this 
search fails to find a noun, as when LVCs are 
used in the passive (e.g. the presentation was 
made), we search to the right of the light verb, 
also allowing a maximum of 4 intervening words. 
The above extraction process produced a total of 
8,652 VPC and 11,465 LVC candidates when 
run on the corpus. We then filter out candidates 
with observed frequencies less than 6, as 
suggested in Pecina and Schlesinger (2006), to 
obtain a set of 1,629 VPCs and 1,254 LVCs.  

Separately, we use the following two available 
sources of annotations: 3,078 VPC candidates 
extracted and annotated in (Baldwin, 2005) and 
464 annotated LVC candidates used in (Tan et 
al., 2006). Both sets of annotations give both 
positive and negative examples. 

Our final VPC and LVC evaluation datasets 
were then constructed by intersecting the gold-
standard datasets with our corresponding sets of 
extracted candidates. We also concatenated both 
sets of evaluation data for composite evaluation.  
This set is referred to as “Mixed”. Statistics of 
our three evaluation datasets are summarized in 
Table 2.  
 
 VPC data LVC data Mixed 
Total  
(freq  ≥ 6) 

413 100 513 

Positive  
instances 

117 
(28.33%)

28 
(28%) 

145 
(23.26%)

Table 2. Evaluation data sizes (type count, not token). 
 
While these datasets are small, our primary 

goal in this work is to establish initial 
comparable baselines and describe interesting 
phenomena that we plan to investigate over 
larger datasets in future work.  

3.2 Evaluation Metric  

To evaluate the performance of AMs, we can use 
the standard precision and recall measures, as in 
much past work.  We note that the ranked list of 
candidates generated by an AM is often used as a 
classifier by setting a threshold. However, setting 
a threshold is problematic and optimal threshold 
values vary for different AMs. Additionally, 
using the list of ranked candidates directly as a 
classifier does not consider the confidence 
indicated by actual scores. Another way to avoid 
setting threshold values is to measure precision 
and recall of only the n most likely candidates 

(the n-best method). However, as discussed in 
Evert and Krenn (2001), this method depends 
heavily on the choice of n. In this paper, we opt 
for average precision (AP), which is the average 
of precisions at all possible recall values. This 
choice also makes our results comparable to 
those of Pecina and Schlesinger (2006).  

3.3 Evaluation Results 

Figure 1(a, b) gives the two average precision 
profiles of the 82 AMs presented in Pecina and 
Schlesinger (2006) when we replicated their 
experiments over our English VPC and LVC 
datasets. We observe that the average precision 
profile for VPCs is slightly concave while the 
one for LVCs is more convex. This can be 
interpreted as VPCs being more sensitive to the 
choice of AM than LVCs. Another point we 
observed is that a vast majority of Class I AMs, 
including PMI, its variants and association 
coefficients (excluding hypothesis tests), perform 
reasonably well in our application. In contrast, 
the performances of most of context-based and 
hypothesis test AMs are very modest. Their 
mediocre performance indicates their 
inapplicability to our VPC and LVC tasks. In 
particular, the high frequencies of particles in 
VPCs and light verbs in LVCs both undermine 
their contexts’ discriminative power and skew 
the difference between observed and expected 
frequencies that are relied on in hypothesis tests.  

4 Rank Equivalence 

We note that some AMs, although not 
mathematically equivalent (i.e., assigning 
identical scores to input candidates) produce the 
same lists of ranked candidates on our datasets. 
Hence, they achieve the same average precision. 
The ability to identify such groups of AMs is 
helpful in simplifying their formulas, which in 
turn assisting in analyzing their meanings. 
 
Definition: Association measures M1 and M2 are 

rank equivalent over a set C, denoted by M1 
r

C
≡  

M2, if and only if M1(cj) > M1(ck)  M2(cj) > 
M2(ck) and M1(cj) = M1(ck)  M2(cj) = M2(ck) for 
all cj, ck belongs to C where Mk(ci) denotes the 
score assigned to ci by the measure Mk.  
 
As a corollary, the following also holds for rank 
equivalent AMs:  
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Corollary: If M1 
r

C
≡  M2 then APC(M1) = APC(M2) 

where APC(Mi) stands for the average precision 
of the AM Mi over the data set C.  
 
Essentially, M1 and M2 are rank equivalent over 
a set C if their ranked lists of all candidates taken 
from C are the same, ignoring the actual 
calculated scores1. As an example, the following 
3 AMs: Odds ratio, Yule’s ω and Yule’s Q (Table 
3, row 5), though not mathematically equivalent, 
can be shown to be rank equivalent. Five groups 
of rank equivalent AMs that we have found are 
listed in Table 3.  This allows us to replace the 
below 15 AMs with their (most simple) 
representatives from each rank equivalent group. 
 
 
 

                                                 
1 Two AMs may be rank equivalent with the exception of 
some candidates where one AM is undefined due to a zero 
in the denominator while the other AM is still well-defined. 
We call these cases weakly rank equivalent. With a 
reasonably large corpus, such candidates are rare for our 
VPC and LVC types. Hence, we still consider such AM 
pairs to be rank equivalent. 

1) [M2] Mutual Information,  
    [M3] Log likelihood ratio 
2) [M7] PMI2, [M8] Mutual Dependency,  
    [M9] Driver-Kroeber (a.k.a. Ochiai) 
3) [M10] Normalized expectation,  
    [M11] Jaccard, [M12] First Kulczynski,  

[M13]Second Sokal-Sneath  
          (a.k.a. Anderberg) 

4) [M14] Third Sokal-Sneath,  
    [M15] Sokal-Michiner, 
    [M16] Rogers-Tanimoto, [M17] Hamann 
5) [M18] Odds ratio, [M19] Yule’s ,ω       
    [M20] Yule’s Q 

Table 3. Five groups of rank equivalent AMs. 

5 Examination of Association Measures 

We highlight two important findings in our 
analysis of the AMs over our English datasets. 
Section 5.1 focuses on MI and PMI and Section 
5.2 discusses penalization terms.   

5.1 Mutual Information and Pointwise 
Mutual Information 

In Figure 1, over 82 AMs, PMI ranks 11th in 
identifying VPCs while MI ranks 35th in 
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Figure 1a. AP profile of AMs examined over our VPC data set. 
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Figure 1b. AP profile of AMs examined over our LVC data set. 

Figure 1. Average precision (AP) performance of the 82 AMs from Pecina and Schlesinger (2006), on our 
English VPC and LVC datasets. Bold points indicate AMs discussed in this paper.  

□ Hypothesis test AMs     ◊ Class I AMs, excluding hypothesis test AMs     + Context-based AMs. 
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identifying LVCs. In this section, we show how 
their performances can be improved significantly.  

Mutual Information (MI) measures the 
common information between two variables or 
the reduction in uncertainty of one variable given 
knowledge of the 
other.

,

( )MI( ; ) ( )log ( ) ( )u v

p uvU V p uv p u p v= ∗ ∗∑ . In the 

context of bigrams, the above formula can be 

simplified to [M2] MI =
,

1
log ˆN

ij
ij

i j
ij

f
f

f
∑ . While MI 

holds between random variables, [M4] Pointwise 
MI (PMI) holds between specific values: PMI(x, 

y) =
( )

log
( ) ( )

P xy

P x P y∗ ∗

( )
log

( ) ( )

Nf xy

f x f y
=

∗ ∗
. It has long 

been pointed out that PMI favors bigrams with 
low-frequency constituents, as evidenced by the 
product of two marginal frequencies in its 
denominator. To reduce this bias, a common 
solution is to assign more weight to the co-
occurrence frequency ( )f xy in the numerator by 
either raising it to some power k (Daille, 1994) or 
multiplying PMI with ( )f xy . Table 4 lists these 
adjusted versions of PMI and their performance 
over our datasets. We can see from Table 4 that 
the best performance of PMIk

 is obtained at k 
values less than one, indicating that it is better to 
rely less on ( )f xy . Similarly, multiplying 

( )f xy directly to PMI reduces the performance of 
PMI. As such, assigning more weight to ( )f xy  
does not improve the AP performance of PMI.  
 
AM VPCs LVCs Mixed
Best [M6] PMIk .547 

(k = .13) 
.573 

(k = .85) 
.544 

(k = .32)

[M4] PMI .510 .566 .515 
[M5] Local-PMI  .259 .393 .272 
[M1] Joint Prob. .170 .28 .175 
Table 4. AP performance of PMI and its variants. Best 
alpha settings shown in parentheses. 
 

Another shortcoming of (P)MI is that both 
grow not only with the degree of dependence but 
also with frequency (Manning and Schutze,&& 1999, 
p. 66). In particular, we can show that MI(X; Y) ≤ 
min(H(X), H(Y)), where H(.) denotes entropy, 
and PMI(x,y) ≤ min( log ( ),P x− ∗  log ( )P y− ∗ ). 

These two inequalities suggest that the 
allowed score ranges of different candidates vary 
and consequently, MI and PMI scores are not 
directly comparable. Furthermore, in the case of 
VPCs and LVCs, the differences among score 

ranges of different candidates are large, due to 
high frequencies of particles and light verbs. This 
has motivated us to normalize these scores 
before using them for comparison. We suggest 
MI and PMI be divided by one of the following 
two normalization factors: NF( )α = ( )P xα ∗  + 
(1 ) ( )P yα− ∗ with [0,  1]α ∈ and NFmax 
= max( ( ),  ( ))P x P y∗ ∗ . NF( )α , being dependent on 
alpha, can be optimized by setting an appropriate 
alpha value, which is inevitably affected by the 
MWE type and the corpus statistics. On the other 
hand, NFmax is independent of alpha and is 
recommended when one needs to apply 
normalized (P)MI to a mixed set of different 
MWE types or when sufficient data for 
parameter tuning is unavailable. As shown in 
Table 5, normalized MI and PMI show 
considerable improvements of up to 80%. Also, 
PMI and MI, after being normalized with NFmax, 
rank number one in VPC and LVC task, 
respectively. If one re-writes MI as = (1/ 
N) ij ij

i, j
PMIf ×∑ , it is easy to see the heavy 

dependence of MI on direct frequencies 
compared with PMI and this explains why 
normalization is a pressing need for MI.  

 
AM VPCs LVCs Mixed
MI / NF( )α  .508 

(α = .48)  
.583 

(α = .47) 
.516 

(α = .5)

MI / NFmax .508 .584 .518 
[M2] MI .273 .435 .289 

PMI / NF( )α  .592 
(α = .8)  

.554 
(α = .48)  

.588 
(α = .77)

PMI / NFmax .565 .517 .556 
[M4] PMI .510 .566 .515 

Table 5. AP performance of normalized (P)MI versus 
standard (P)MI. Best alpha settings shown in 
parentheses. 

5.2 Penalization Terms  

It can be seen that given equal co-occurrence 
frequencies, higher marginal frequencies reduce 
the likelihood of being MWEs. This motivates us 
to use marginal frequencies to synthesize 
penalization terms which are formulae whose 
values are inversely proportional to the 
likelihood of being MWEs. We hypothesize that 
incorporating such penalization terms can 
improve the respective AMs detection AP.  

Take as an example, the AMs [M21] Brawn-
Blanquet (a.k.a. Minimum Sensitivity) and [M22] 
Simpson. These two AMs are identical, except 
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for one difference in the denominator: Brawn-
Blanquet uses max(b, c); Simpson uses min(b, c). 
It is intuitive and confirmed by our experiments 
that penalizing against the more frequent 
constituent by choosing max(b, c) is more 
effective. This is further attested in AMs [M23] 
S Cost and [M25] Laplace, where we tried to 
replace the min(b, c) term with max(b, c). Table 
6 shows the average precision on our datasets for 
all these AMs.   

 
AM VPCs LVCs Mixed
[M21]Brawn-    
          Blanquet 

.478 .578 .486 

[M22] Simpson .249 .382 .260 

[M24] Adjusted  
            S Cost 

.485 .577 .492 

[M23] S cost .249 .388 .260 

[M26] Adjusted  
           Laplace 

.486 .577 .493 

[M25] Laplace .241 .388 .254 
Table 6. Replacing min() with max() in selected AMs. 

 
In the [M27] Fager AM, the penalization term 
max(b, c) is subtracted from the first term, which 
is no stranger but rank equivalent to [M7] PMI2. 
In our application, this AM is not good since the 
second term is far larger than the first term, 
which is less than 1. As such, Fager is largely 
equivalent to just –½ max(b, c). In order to make 
use of the first term, we need to replace the 
constant ½ by a scaled down version of max(b, 
c). We have approximately derived 1/ aN as a 
lower bound estimate of max(b, c) using the 
independence assumption, producing [M28] 
Adjusted Fager. We can see from Table 7 that 
this adjustment improves Fager on both datasets. 
 
AM VPCs LVCs Mixed
[M28] Adjusted  
           Fager 

.564 .543 .554 

[M27] Fager .552 .439 .525 
Table 7. Performance of Fager and its adjusted 
version. 
 

The next experiment involves [M14] Third 
Sokal Sneath, which can be shown to be rank 
equivalent to –b –c. We further notice that 
frequencies c of particles are normally much 
larger than frequencies b of verbs. Thus, this AM 
runs the risk of ranking VPC candidates based on 
only frequencies of particles. So, it is necessary 

that we scale b and c properly as in 
[M14'] bα− × – (1 ) cα− × . Having scaled the 
constituents properly, we still see that [M14'] by 
itself is not a good measure as it uses only 
constituent frequencies and does not take into 
consideration the co-occurrence frequency of the 
two constituents. This has led us to experiment 

with [MR14'']
PMI

(1 )b cα α× + − ×
. The 

denominator of [MR14''] is obtained by 
removing the minus sign from [MR14'] so that it 
can be used as a penalization term. The choice of 
PMI in the numerator is due to the fact that the 
denominator of [MR14''] is in essence similar to 
NF( )α = ( )P xα ∗  + (1 ) ( )P yα− ∗ , which has 
been successfully used to divide PMI in the 
normalized PMI experiment. We heuristically 
tried to simplify [MR14''] to the following AM 

[M30]
log( )

(1 )

ad

b cα α× + − ×
. The setting of alpha in 

Table 8 below is taken from the best alpha 
setting obtained the experiment on the 
normalized PMI (Table 5). It can be observed 
from Table 8 that [MR14'''], being 
computationally simpler than normalized PMI, 
performs as well as normalized PMI and better 
than Third Sokal-Sneath over the VPC data set. 

 
AM VPCs LVCs Mixed
PMI / NF( )α  .592 

(α =.8) 
.554 

(α =.48) 
.588 

(α =.77)

[M30]
log( )

(1 )

ad

b cα α× + − ×

.600 
(α =.8) 

.484 
(α =.48) 

.588 
(α =.77)

[M14] Third  
            Sokal Sneath  

.565 .453 .546 

Table 8. AP performance of suggested VPCs’  
penalization terms and AMs.  
 

With the same intention and method, we have 
found that while addition of marginal frequencies 
is a good penalization term for VPCs, the 
product of marginal frequencies is more suitable 
for LVCs (rows 1 and 2, Table 9). As with the 
linear combination, the product bc should also be 
weighted accordingly as (1 )b cα α− . The best alpha 
value is also taken from the normalized PMI 
experiments (Table 5), which is nearly .5. Under 
this setting, this penalization term is exactly the 
denominator of the [M18] Odds Ratio. Table 9 
below show our experiment results in deriving 
the penalization term for LVCs.  
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AM VPCs LVCs Mixed
–b –c .565 .453 .546 
1/bc .502 .532 .502 
[M18] Odds ratio .443 .567 .456 

Table 9. AP performance of suggested LVCs’  
penalization terms and AMs.  

6 Conclusions 

We have conducted an analysis of the 82 AMs 
assembled in Pecina and Schlesinger (2006) for 
the tasks of English VPC and LVC extraction 
over the Wall Street Journal Penn Treebank data.  
In our work, we have observed that AMs can be 
divided into two classes: ones that do not use 
context (Class I) and ones that do (Class II), and 
find that the latter is not suitable for our VPC and 
LVC detection tasks as the size of our corpus is 
too small to rely on the frequency of candidates’ 
contexts. This phenomenon also revealed the 
inappropriateness of hypothesis tests for our 
detection task. We have also introduced the 
novel notion of rank equivalence to MWE 
detection, in which we show that complex AMs 
may be replaced by simpler AMs that yield the 
same average precision performance. 

We further observed that certain modifications 
to some AMs are necessary. First, in the context 
of ranking, we have proposed normalizing scores 
produced by MI and PMI in cases where the 
distributions of the two events are markedly 
different, as is the case for light verbs and 
particles. While our claims are limited to the 
datasets analyzed, they show clear 
improvements: normalized PMI produces better 
performance over our mixed MWE dataset, 
yielding an average precision of 58.8% 
compared to 51.5% when using standard PMI, a 
significant improvement as judged by paired T 
test.  Normalized MI also yields the best 
performance over our LVC dataset with a 
significantly improved AP of 58.3%. 

We also show that marginal frequencies can 
be used to form effective penalization terms. In 
particular, we find that (1 )b cα α× + − × is a good 
penalization term for VPCs, while (1 )b cα α− is 
suitable for LVCs. Our introduced alpha tuning 
parameter should be set to properly scale the 
values b and c, and should be optimized per 
MWE type. In cases where a common factor is 
applied to different MWE types, max(b, c) is a 
better choice than min(b, c).  In future work, we 
plan to expand our investigations over larger, 

web-based datasets of English, to verify the 
performance gains of our modified AMs. 
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Appendix A. List of particles used in 
identifying verb particle constructions. 
about,  aback,  aboard,  above,  abroad,  across,  adrift,  
ahead,  along,  apart,  around,  aside,  astray,  away,  
back,  backward,  backwards,  behind, by, down,  
forth,  forward, forwards, in,  into,  off,  on,  out,  over,   
past,  round,  through, to, together, under, up,  upon,  
without. 
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