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Abstract

Understanding mental states in narratives is an important aspect
of human language comprehension. By “mental states” we refer to
beliefs, states of knowledge, points of view, and suppositions, all of
which may change over time. In this paper, we propose an approach
for automatically extracting and understanding multiple mental states
in stories. Our model consists of two parts: (1) a parser that takes
an English sentence and translates it to some semantic operations; (2)
a mental-state inference engine that reads in the semantic operations
and produces a situation model that represents the meaning of the
sentence. We present the performance of the system on a corpus of
children stories containing both fictional and non-fictional texts.

1 Introduction

Natural language involves statements that carry distinct world-views. By
world-views we refer to states of belief, supposition, intention, advice, per-
ceived reality, as well as situations expressed by tenses in natural language
such as past, present and future. In this paper, we call these world-views
“mental states”. Mental states are common phenomena. They span various
domains of natural language. Sentence (1a) and sentence (1b) are examples
drawn from two different domains: online news articles and fairy tales.

(1) a. The police believe the thieves were trying to steal a solar panel
from Sarah’s tin roof.1

1Excerpt from BBC online news: http://news.bbc.co.uk/1/hi/world/africa/

7609872.stm
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b. She (little red-cap) was surprised to find the cottage-door standing
open.2

Both of these two sentences involve multiple mental states, which may be
nested in one another. Sentence (1a) involves the police’s belief and the
intention of the thieves in the police’s belief; sentence (1b) contains little
red-cap’s old belief and her updated belief, both of which may be different
from the reality. Since the information in mental states is rich and often
important, we need some processing technique to extract that information
and understand it.

There are two problems in extracting and understanding mental states.
First, extracting mental states from text requires recognizing linguistic pat-
terns of mental states. Related problems such as subjectivity recognition
have been studied intensively in the natural language processing commu-
nity. The problem covers various aspects of the “private state frame” [10],
including recognizing private states, the sources of private states, the in-
tensity and types of attitudes, among many others. Second, mental states
extracted from natural language need to be encoded in some representation
form and can be retrieved for further inference. There exists many systems
that implements nested evolving beliefs (e.g. [1]), but they generally lacked
the ability to draw inference directly from natural language.

In this paper, we propose an approach to extract and represent mental
states based on different mental contexts such as one’s belief, intention and
supposition. Our approach utilizes the mental spaces theory [4] in cognitive
linguistics. Our goal for the mental state extraction step is to identify space-
builders that establish new mental contexts (or spaces) or the ones that refer
to an existing mental context. The main body of our space-builders consists
of agent and psych-term pairs such as “the police believe” (refers to the
police’s belief context) and “little red-cap was surprised” (refers to multiple
belief contexts of little red-cap)3. Different objects and propositions are then
bundled in these mental contexts. In the mental state understanding step,
the mental contexts are instantiated and maintained in a context network,
where inference rules are applied within and across those contexts.

The rest of this paper is organized as follows. Section 2 provides a
high-level overview of our implemented mental state understanding system.

2Excerpt from “The Little Red-Cap” in Margaret Hunt’s translation of the Grimms
Fairy Tales. In some other translations, the story is also called “Little Red Riding Hood”.

3Fauconnier (1985) covers a much broader set of space-builders including prepositional
phrases (“from her point of view”), connectives (“if ... then ...”), and subject-verb com-
binations (“she thinks”). Our current system only deals with the last category.
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Figure 1: Overview of the mental state understanding system

Simple examples will be presented to demonstrate the input and output
of the system. Section 3 and section 4 introduces our parser for mental
state extraction and the inference engine for mental state representation,
respectively. Section 5 discusses evaluation results on fictional and non-
fictional children stories.

2 System Overview

2.1 System Components

Similar to many story comprehension systems (e.g. [8]), our system con-
sists of two parts. A parser combines several natural language processing
components to extract useful information from raw text. The information
is then integrated and filled into psych-term-argument templates to gener-
ate an intermediate semantic form called mental operation. The inference
engine translates mental operations into a situation model represented by a
semantic network. During this process, it fills in non-literal semantic infor-
mation and maintains the situation model by a set of inference rules. Figure
1 shows the general structure of the system.

2.2 Example Output

To provide a general idea of what the system does, we temporarily treat it
as a black box and use concrete examples to demonstrate its function. The
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input to the system is a piece of raw English text. The system processes
one sentence at a time and outputs a situation model which represents the
mental states of the characters appeared in the story.

Figure 2(a) and 2(b) show the semantic networks generated by our sys-
tem given input sentences (1a) and (1b), respectively. As shown in the
figure, our semantic representation of mental states is a set of mental con-
texts attached to different characters. Any inference or retrieval is done with
respect to a specific context. Figure 2(a) shows a structured representation
of the nested mental states in sentence (1a). We read the representation as:
In the police’s belief, there is the thieves’ intention, in which the thieves try
to steal a solar panel from Sarah’s tin roof. Figure 2(b) shows a situation
where little red-cap’s mental image of the reality changes.

(a) The semantic representation of (1a). (b) The semantic representation of (1b).

Figure 2: The output models. Arrows with big solid heads represent “sub-
context” relation. Arrows with dotted lines represent “in-context” relation.
Arrows with solid lines represent “property” relation. Double-headed arrows
represent “equals” relation.

According to these models, our system can generate and answer yes-no ques-
tions like4:

(2) a. Question: Do the police believe that the thieves were trying to steal
a solar panel from Sarah’s tin roof?
Answer: Yes.

b. Question: In reality, were the thieves trying to steal a solar panel
from Sarah’s tin roof?

4The questions are generated in the form of Scone language (a language used in the
Scone knowledge-base), not English. We translate Scone language into English for the
purpose of illustration.
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Answer: Not sure5.

c. Question: Before little red-cap was surprised, did she think that
the cottage door was open?
Answer: No.

d. Question: Does little red-cap think the cottage door is open now?
Answer: Yes.

3 Integrated Parser

The parsing procedure consists of three stages: pre-processing, psych-term-
argument parsing, and statement building.

3.1 Pre-processing

The pre-processing component consists of a sentence detector, a tokenizer,
a chunker, and an anaphora annotator. We use the OpenNLP6 toolkit to
perform the first three tasks. Then we apply an in-house anaphora annota-
tor to annotate pronouns in the text. The anaphora annotator implements
a modified version of Strube’s S-List and his coreference algorithm [9]. The
S-List is a datastructure that maintains a list of sorted candidate entities for
anaphora resolution. Following Strube, a set of ranking constraints is used
for modeling readers’ attentions. The constraints include the reader-old and
reader-new discourse entitie labels (“brand new”, “unused”, and “evoked”).
Our features used for anaphora resolution include number/gender agree-
ments, binding constraints, types of nouns (proper or common) and partial
string matching. Our implementation is mostly developed on children sto-
ries, in which there are many instances where the gender information for
a proper noun is missing. For example, the program does not know little
red-cap’s gender the first time it sees the name in the story. But we allow
that information to be filled in as the annotator reads the text. Also, some
common features such as animacy and named entity class are not included
in our feature set because they do not adapt well to this kind of narratives.

3.2 Psych-term-argument Parsing

The goal for the psych-term-argument parsing process is to produce flat
mental operations (as opposed to structured mental operations which will be

5“Not sure” means “neither ’yes’ nor ’no’ ”.
6http://opennlp.sourceforge.net/
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generated by the statement builder). After pre-processing, the ASSERT [7]
semantic role labeler is used to annotate each sentence with PropBank [6] ar-
gument labels. The most frequently used argument labels include TARGET
(for psych-terms), ARG0 (for agents), ARG1 (for patients or propositions),
ARG2 (for patients or propositions when ARG1 is absent), ARG-MOD (for
modal verbs) and ARG-NEG (for negations).

Although every sentence is processed, the system only looks for those
that contain the pre-defined psych-terms. The set of psych-terms are cho-
sen from a larger set of mental expressions drawn automatically from the
WordNet along the synset (sets of synonyms) links. The seed words used
for collecting mental expressions from the WordNet contains 6 mental verbs:
“think”, “want”, “pretend”, “confess”, “surprise” and “realize”. For each
mental expression returned by WordNet, we restrict the next search depth
to 3. Using this method, WordNet returns 238 different verbs and phrases,
among which we choose 42 psych-terms that are relatively less ambiguous
for our initial system development. The 42 psych-terms also include modal
verbs such as “will” and “must”. These psych-terms are matched to the
text annotated by ASSERT. Parses like (3a) and (3b) are then extracted7.

(3) a. 0: [ARG0 The police] [TARGET believe ] [ARG1 the thieves were
trying to steal a solar panel from Sarah ’s tin roof]

b. 0: The police believe [ARG0 the thieves] were [TARGET trying ]
[ARG1 to steal a solar panel from Sarah ’s tin roof]

A set of grammar rules are used to map the target verbs and their arguments
to mental operations like (4a) and (4b). At the implementation level, the
mental operations are Lisp functions to be evaluated by the mental state
inference engine.

(4) a. (new-single-modal {The police} ’( (new-statement {the thieves were
trying to steal a solar panel from Sarah ’s tin roof})) {belief})

b. (new-single-modal {the thieves} ’((new-statement {to steal a solar
panel from Sarah ’s tin roof})) {intention})

3.3 Building Statement Structures

The psych-term-argument parsing components generate a set of mental op-
erations. However, not all of these operations ought to be evaluated by the

7We have 2 statement checking rules to correct possible ASSERT output errors on
propositions.
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inference engine. In general, mental operations generated from complemen-
tizer phrases should not be evaluated. Instead, they should be passed to
their parent operations as proposition arguments. For example, mental op-
eration (4b) comes from the complemetizer phrase “the thieves were trying
to steal a solar panel from Sarah’s tin roof”. If this operation is evaluated
in the inference engine, we will not get the same semantic representation as
in Figure 2. Instead, the system will erroneously judge the proposition “the
thieves were trying to steal a solar panel from Sarah’s tin roof” to be true
in reality, while the correct representation is to make it true in the police’s
belief. To avoid such errors, (4b) is passed to its parent mental operation
(4a) and made an argument of (4a), which ensures that (4b) will be evalu-
ated under the police’s belief. The product of this process is a structured
mental operation (5). And finally, only (5) is sent to the inference engine.
In summary, the goal of the statement builder is to build and evaluate the
correct mental operations.

(5)

(new-single-modal {The police} ’( (new-single-modal {the thieves}
’((new-statement {to steal a solar panel from Sarah ’s tin roof}))
{intention})) {belief})

To build a structured mental operation, each candidate mental operation
is stored in a list. A topological sort is performed based on the complemen-
tizer phrase relationships among different mental operations. Such relations
are found through argument span check. That is, if some arguments of oper-
ation 1 are all found in operation 2’s proposition argument, we will assume
operation 1 is operation 2’s child operation. After the topological sort, the
head of the list stores the element mental operations which do not have
children operations, and the tail of the list stores the mental operation that
covers the whole sentence. Then the operations are fed into their parent
operations one by one along the list. Finally, those operations that have no
parents are sent to the inference engine.

4 Mental State Inference Engine

In this section, we briefly explain the structure and mechanisms of the mental
state inference engine.

67



4.1 Context Activation Mechanism

The mental state inference engine is built on top of the Scone knowledge-
base (KB) system. Scone is designed to be a practical KB with emphasis on
its efficiency of the most commonly used operations for search and inference.
Regarding these goals, Scone provides default reasoning with exceptions. As
we have shown, Scone can be viewed as a semantic network representation,
with nodes representing entities and links representing relations or state-
ments tied to these entities. At a higher level, the types in Scone may be
viewed as frames or descriptions. A multi-context and context activation
mechanism is designed into Scone using the marker-passing algorithm [3].
In this paper, a context is used to represent the state of mental attitudes. In
Scone, the context nodes are treated as the other nodes in that they are also
tied into their own inheritance hierarchy using “sub-context” links. How-
ever, the “sub-context” relation represented by inheritance is a mechanical
one. The relation between the two contexts is neither “is-a” nor “part-of”,
but something more like “is a clone of, modulo explicit changes”. Contexts
can also be used to represent the state of a changing world at different times.
Each of the contexts represents a mental attitude at a specific time; it begins
as a clone of the state in the previous time-step, and then we can add or
remove a few items if necessary.

4.2 Mental Context Representation

In general, the mental context model tracks the changes of the mental state
[2]. At each time point, it builds a mental context network that represents
nested mental states. The input to the model is a list of mental context
operations extracted from text. Each of the operations corresponds to one
psych-term. The complex semantics of a psych-term is factored into a set
of atomic operations on single mental contexts through semantic decom-
position. These contexts are organized into a hierarchical structure, which
constitutes a simplified representation of human memory.

The semantics of psych-terms are projected onto the context network
through semantic decomposition8. For example, one sense of the word “pre-
tend” can be represented as “X is not present in reality and person P1’s
belief, but P1 wants person P2 to believe it” (these semantic definitions
are restricted to mental contexts). This example involves several contexts:
the reality, the belief of P1, the intention of P1, the belief of P2 under the
intention of P1, as well as the before context and the after context of “pre-

8Recent work on verb entailment can be found in [5].
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tend”. Note that the mental operations are higher order, so there can be
other psych-terms (e.g. “want”) embedded the definition of “pretend”.

Mental operations update the mental context network in two aspects.
First, they build a context inheritance chain which represents the evolution
of a single mental context at different time steps. For example, in the “Little
Red-Cap” story, little red-cap has different belief contexts at different time.
By default, each of the newly updated versions of one’s belief would inherit
from his/her most recent belief. Second, the mental operations are used
to build a hierarchical context structure which organizes multiple types of
mental context according to events and agents. Figure 2 illustrates three
basic aspects of the context structure:

1. By default, the mental contexts inherit from a general knowledge con-
text which represents the general background knowledge of a story.

2. Mental contexts can be organized by events. A typical mental event
has an agent whose mental contexts are changed as an effect of the
event. Each psych-term would be mapped to one of the mental events.
When we retrieve an event, a set of related contexts of that event would
also be retrieved.

3. The mental contexts are environment-sensitive. For example, the
thieves’ real intention can be different from the police’s belief of their
intention.

In our representation, different instances of the mental contexts are
organized in a dynamic context structure. We could then constrain the
behaviors of different mental contexts under different mental events using
inter-contextual rules. Once a mental event (e.g. “little red-cap was sur-
prised”) triggers, the related mental contexts would check and modify their
own structures and contents based on the new information. Usually this
self-adjustment can be achieved by a realization of a difference between the
external world and the belief, assumption or expectation. According to this,
newly updated mental contexts would be constructed.

5 Evaluation Results

We use 513 children stories from Project LISTEN’s9 reading tutor story
database for system evaluation. This corpus contains 213 fictional articles

9http://www.cs.cmu.edu/̃listen
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and 300 non-fictional (or informational) articles. From these, our system ex-
tracts 1181 mental state expressions in fictions and 413 in non-fictions. Af-
ter the parsing stage, 60.80% of the fictional and 62.71% of the non-fictional
mental state expressions are fully parsed (i.e. there is no empty arguments
for the mental operations) and sent to the inference engine. After processing
of the mental operations, the system automatically generates 1437 yes-no
questions and answers for fictional texts, and 518 for non-fictional texts.
The question-answer pairs are generated by traversing newly visited mental
contexts and statements/objects bundled in those contexts immediately af-
ter each mental operation is evaluated. These questions and answers are all
in similar forms as the examples demonstrated in section 2.2.

We do a careful evaluation on 431 questions for fictional texts and 155
for non-fictional text that are randomly selected from the question-answer
pool. Since both the questions and answers come from the situation model
stored in the system, an error occurred in either the question or the answer
counts for an incorrect example.

Table 1 shows the error rates of each error category for both fictional
and non-fictional stories. The second column (“argument error”) gives the
percentage of incorrect question-answer pairs caused by wrong arguments
in the mental operations. This type of error comes from a misinterpreta-
tion of the ASSERT output. For example, we assume that ARG1 indicates
a proposition for psych-terms if it is not a noun phrase. But “she [TAR-
GET wanted ] [ARG1 so much]” is an exception of this assumption. The
third column (“statement error”) gives the percentage of incorrect examples
(usually questions) caused by incomplete or unnecessary statements in the
mental contexts. This type of errors results from inaccurate ASSERT out-
puts that are not captured by our statement checking rules. Space-builder
error (the fourth column) refers to the cases in which the mental contexts
are not correctly constructed (this results in incorrect answers). This usu-
ally happens when there is a mental space that has been neglected by our
system. For example, when given sentence “Dig for it if you want the gold”,
our system would only look at “you want the gold” and treat it as a valid
statement, without noticing that it is embedded in an if-clause which in-
dicates another mental space. Ambiguity error (the fifth column) refers to
errors cause by the lexical ambiguity of psych-terms (e.g. the word “will” in-
dicates future tense in “Pilly will go to school tomorrow”, but not in “Some
sharks will eat just about anything”). Negation error (the sixth column)
occurs when there is a negation that has been neglected (this results in an
incorrect answer). For example “It will do him no good, neither will it help
anybody else” means “It will not help anybody else”. But this negation is
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Table 1: Evaluation Results
Argument Statement Space- Ambiguity Negation Total

Errors Errors Builder Errors Errors Errors
Errors

Fictions 6.26% 8.12% 8.35% 4.64% 4.64% 26.68%
Non-Fics 1.29% 2.58% 7.10% 7.74% 1.29% 19.35%

not captured by our system. Note that since the five types of errors listed in
Table 1 are not mutually exclusive, the error rates in each row of the table
do not sum up to the total error rate of question-answer pairs generated by
the system. Anaphora error has been counted separately since this type of
error alone has a significant effect on system performance, and the anaphora
annotator is relatively independent with our task compared to the other in-
house components. During evaluation, we only apply anaphora resolution
to pronouns (the word “it” is not counted). In the same question-answer
pool, we observe the anaphora error rate of 19.49% on fictions and 17.42%
on non-fictions.

6 Conclusion

This paper presents an implemented system that understands mental states
expressed in narratives. The system extracts and processes mental states
by mapping psych-terms and their arguments to mental contexts stored in
a situation model. The system is evaluated by automatically generated
question-answer pairs. Future directions include extending the system to a
broader set of psych-terms and patterns to cover more mental states from
natural language. Meanwhile, we will explore the two-way interaction be-
tween the parser and the inference engine to refine the overall processing
accuracy.
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