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Abstract 

Human annotation for Co-reference Resolu-

tion (CRR) is labor intensive and costly, and 

only a handful of annotated corpora are cur-

rently available. However, corpora with 

Named Entity (NE) annotations are widely 

available. Also, unlike current CRR systems, 

state-of-the-art NER systems have very high 

accuracy and can generate NE labels that are 

very close to the gold standard for unlabeled 

corpora.  We propose a new set of metrics col-

lectively called CONE for Named Entity Co-

reference Resolution (NE-CRR) that use a 

subset of gold standard annotations, with the 

advantage that this subset can be easily ap-

proximated using NE labels when gold stan-

dard CRR annotations are absent. We define 

CONE B
3
 and CONE CEAF metrics based on 

the traditional B
3
 and CEAF metrics and show 

that CONE B
3
 and CONE CEAF scores of any 

CRR system on any dataset are highly corre-

lated with its B
3
 and CEAF scores respectively. 

We obtain correlation factors greater than 0.6 

for all CRR systems across all datasets, and a 

best-case correlation factor of 0.8. We also 

present a baseline method to estimate the gold 

standard required by CONE metrics, and show 

that CONE B
3
 and CONE CEAF scores using 

this estimated gold standard are also correlated 

with B
3
 and CEAF scores respectively. We 

thus demonstrate the suitability of CONE 

B
3
and CONE CEAF for automatic evaluation 

of NE-CRR. 

1 Introduction 

Co-reference resolution (CRR) is the problem of 

determining whether two entity mentions in a 

text refer to the same entity in real world or not. 

Noun Phrase CRR (NP-CRR) considers all noun 

phrases as entities, while Named Entity CRR 

restricts itself to noun phrases that describe a 

Named Entity. In this paper, we consider the task 

of Named Entity CRR (NE-CRR) only. Most, if 

not all, recent efforts in the field of CRR have 

concentrated on machine-learning based ap-

proaches. Many of them formulate the problem 

as a pair-wise binary classification task, in which 

possible co-reference between every pair of men-

tions is considered, and produce chains of co-

referring mentions for each entity as their output. 

One of the most important problems in CRR is 

the evaluation of CRR results. Different evalua-

tion metrics have been proposed for this task. B-

cubed (Bagga and Baldwin, 1998) and CEAF 

(Luo, 2005) are the two most popular metrics; 

they compute Precision, Recall and F1 measure 

between matched equivalent classes and use 

weighted sums of Precision, Recall and F1 to 

produce a global score. Like all metrics, B
3
 and 

CEAF require gold standard annotations; howev-

er, gold standard CRR annotations are scarce, 

because producing such annotations involves a 

substantial amount of human effort since it re-

quires an in-depth knowledge of linguistics and a 

high level of understanding of the particular text. 

Consequently, very few corpora with gold stan-

dard CRR annotations are available (NIST, 2003; 

MUC-6, 1995; Agirre, 2007). By contrast, gold 

standard Named Entity (NE) annotations are easy 

to produce; indeed, there are many NE annotated 

corpora of different sizes and genres. Similarly, 

there are few CRR systems and even the best 

scores obtained by them are only in the region of 

F1 = 0.5 - 0.6. There are only four such CRR 

systems freely available, to the best of our know-

ledge (Bengston and Roth, 2007; Versley et al., 

2008; Baldridge and Torton, 2004; Baldwin and 

Carpenter, 2003). In comparison, there are nu-

merous Named Entity recognition (NER) sys-

tems, both general-purpose and specialized, and 

many of them achieve scores better than F1 = 

0.95 (Ratinov and Roth, 2009; Finkel et al., 
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2005). Although these facts can be partly attri-

buted to the ‘hardness’ of CRR compared to 

NER, they also reflect the substantial gap be-

tween NER and CRR research. In this paper, we 

present a set of metrics, collectively called 

CONE, that leverage widely available NER sys-

tems and resources and tools for the task of eva-

luating co-reference resolution systems. The ba-

sic idea behind CONE is to predict a CRR sys-

tem’s performance for the task of full NE-CRR 

on some dataset using its performance for the 

subtask of named mentions extraction and group-

ing (NMEG) on that dataset. The advantage of 

doing so is that measuring NE-CRR performance 

requires the co-reference information of all men-

tions of a Named Entity, including named men-

tions, nominal and pronominal references, while 

measuring the NMEG performance only requires 

co-reference information of named mentions of a 

NE, and this information is relatively easy to ob-

tain automatically even in the absence of gold 

standard annotations. We compute correlation 

between CONE B
3
, B

3
, CONE CEAF and CEAF 

scores for various CRR systems on various gold-

standard annotated datasets and show that the 

CONE B
3
 and B

3
 scores are highly correlated for 

all such combinations of CRR systems and data-

sets, as are CONE CEAF and CEAF scores, with 

a best-case correlation of 0.8. We produce esti-

mated gold standard annotations for the Enron 

email corpus, since no actual gold standard CRR 

annotations exist for it, and then use CONE B
3
 

and CONE CEAF with these estimated gold 

standard annotations to compare the performance 

of various NE-CRR systems on this corpus. No 

such comparison has been previously performed 

for the Enron corpus. 

We adopt the same terminology as in (Luo, 

2005): a mention refers to each individual phrase 

and an entity refers to the equivalence class or 

co-reference chain with several mentions. This 

allows us to note some differences between NE-

CRR and NP-CRR. NE-CRR involves indentify-

ing named entities and extracting their co-

referring mentions; equivalences classes without 

any NEs are not considered. NE-CRR is thus 

clearly a subset of NP-CRR, where all co-

referring mentions and equivalence classes are 

considered. However, we focus on NE-CRR be-

cause it is currently a more active research area 

than NP-CRR and a better fit for target applica-

tions such as text forensics and web mining, and 

also because it is more amenable to the automatic 

evaluation approach that we propose. 

The research questions that motivate our work 

are:  

(1) Is it possible to use only NER resources to 

evaluate NE-CRR systems? If so, how is this 

problem formulated?  

(2) How does one perform evaluation in a way 

that is accurate and automatic with least hu-

man intervention?  

(3) How does one perform evaluation on large 

unlabeled datasets?  

We show that our CONE metrics achieve good 

results and represent a promising first step to-

ward answering these questions.  

 

The rest of the paper is organized as follows. We 

present related work in the field of automatic 

evaluation methods for natural language 

processing tasks in Section 2. In Section 3, we 

give an overview of the standard metrics current-

ly used for evaluating co-reference resolution. 

We define our new metrics CONE B
3
 and CONE 

CEAF in Section 4. In section 5, we provide ex-

perimental results that illustrate the performance 

of CONE B
3
 and CONE CEAF compared to B

3
 

and CEAF respectively. In Section 6, we give an 

example of the application of CONE metrics by 

evaluating NE-CRR systems on an unlabeled 

dataset, and discuss possible drawbacks and ex-

tensions of these metrics. Finally, in section 7 we 

present our conclusions and ideas for future 

work.  

2 Related Work 

There has been a substantial amount of research 

devoted to automatic evaluation for natural lan-

guage processing, especially tasks involving lan-

guage generation. The BLEU score (Papineni et 

al., 2002) proposed for evaluating machine trans-

lation results is the best known example of this. 

It uses n-gram statistics between machine gener-

ated results and references. It inspired the 

ROUGE metric (Lin and Hovy, 2003) and other 

methods (Louis and Nenkova, 2009) to perform 

automatic evaluation of text summarization. Both 

these metrics have show strong correlation be-

tween automatic evaluation results and human 

judgments. The two metrics successfully reduce 

the need for human judgment and help speed up 

research by allowing large-scale evaluation. 

Another example is the alignment entropy (Per-

vouchine et al., 2009) for evaluating translitera-

tion alignment. It reduces the need for alignment 

gold standard and highly correlates with transli-

teration system performance. Thus it is able to 
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serve as a good metric for transliteration align-

ment. We contrast our work with (Stoyanov et al., 

2009), who show that the co-reference resolution 

problem can be separated into different parts ac-

cording to the type of the mention. Some parts 

are relatively easy to solve. The resolver per-

forms equally well in each part across datasets. 

They use the statistics of mentions in different 

parts with test results on other datasets as a pre-

dictor for unseen datasets, and obtain promising 

results with good correlations. We approach the 

problem from a different perspective. In our 

work, we show the correlation between the 

scores on traditional metrics and scores on our 

CONE metrics, and show how to automatically 

estimate the gold standard required by CONE 

metrics. Thus our method is able to predict the 

co-reference resolution performance without 

gold standard at all. We base our new metrics on 

the standard B
3
 and CEAF metrics used for com-

puting CRR scores. (Vilian et al., 1995; Bagga 

and Baldwin, 1998; Luo, 2005). B
3
 and CEAF 

are believed to be more discriminative and inter-

pretable than earlier metrics and are widely 

adopted especially for machine-learning based 

approaches.  

 

3 Standard Metrics: B
3
 and CEAF 

We now provide an overview of the standard B
3
 

and CEAF metrics used to evaluate CRR sys-

tems. Both metrics assume that a CRR system 

produces a set of equivalence classes {O} and 

assigns each mention to only one class. Let Oi be 

the class to which the i
th
 mention was assigned 

by the system. We also assume that we have a set 

of correct equivalence classes {G} (the gold 

standard). Let Gi be the gold standard class to 

which the i
th
 mention should belong. Let Ni de-

note the number of mentions in Oi which are also 

in Gi – the correct mentions. B
3
 computes the 

presence rate of correct mentions in the same 

equivalent classes. The individual precision and 

recall score is defined as follows: 

|| i

i
i

O

N
P   

|| i

i
i

G

N
R   

Here |Oi| and |Gi| are the cardinalities of sets Oi 

and Gi.   

The final precision and recall scores are: 
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Here, in the simplest case the weight wi is set to 

1/n, equal for all mentions. 

CEAF (Luo, 2005) produces the optimal 

matching between output classes and true classes 

first, with the constraint that one true class, Gi, 

can be mapped to at most one output class, say 

Of(i) and vice versa. This can be solved by the 

KM algorithm (Kuhn, 1955; Munkres, 1957) for 

maximum matching in a bipartite graph. CEAF 

then computes the precision and recall score as 

follows: 
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We use the terms Mi,j from CEAF to re-write B
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its formulas then reduce to: 
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We can see that B
3
 simply iterates through all 

pairs of matchings instead of considering the one 

to one mappings as CEAF does. Thus, B
3
 com-

putes the weighted sum of the F-measures for 

each individual mention which helps alleviate the 

bias in the pure link-based F-measure, while 

CEAF computes the same as B
3
 but enforces at 

most one matched equivalence class for every 

class in the system output and gold standard out-

put. 

4 CONE B
3
 and CONE CEAF Metrics:  

We now formally define the new CONE B
3
 and 

CONE CEAF metrics that we propose for 

automatic evaluation of NE-CRR systems. 

      Let G denote the set of gold standard 

annotations and O denote the output of an NE-

CRR system. Let Gi denote the equivalent class 

of entity i in the gold standard and Oj denote the 

equivalence class for entity j in the system output.  

Also let Gij denote the j
th
 mention in the 

equivalence class of entity i in the gold standard 

and Oij denote the j
th
 mention in the system 

output. 

As described earlier, the standard B
3
 and CEAF 

metrics evaluate scores using G and O and can 

be thought of as functions of the form B
3
(G, O). 

and CEAF(G, O) respectively. Let us use 

Score(G, O) to collectively refer to both these 
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functions. An equivalence class Gi in G may 

contain three types of mentions: named mentions 

g
NM

ij, nominal mentions g
NO

ij, and pronominal 

mentions g
PR

ij. Similarly, we can define o
NM

ij, 

o
NO

ij and o
PR

ij for a class Oi in O. Now for each 

gold standard equivalence class Gi and system 

output equivalence class Oi, we define the 

following sets G
NM

i  and  O
NM

i: 

iij
NM

ij
NM

i
NM GggGi  },{,  

iij
NM

ij
NM

i
NM OooOi  },{,

 
In other words, G

NM
i and O

NM
i are the subsets of 

Gi and Oi containing all named mentions and no 

mentions of any other type.  

Let G
NM

 denote the set of all such equivalance 

classes G
NM

i and O
NM

 denote the set of all 

equivalence classes O
NM

i. It is clear that G
NM

 and 

O
NM

 are pruned versions of the gold standard 

annotations and system output respectively. 

We now define CONE B
3
 and CONE CEAF as 

follows: 

CONE B
3
 = B

3
(G

NM
, O

NM
) 

CONE CEAF = CEAF(G
NM

, O
NM

) 

 

Following our previous notation, we denote 

CONE B
3
 and CONE CEAF collectively as 

Score(G
NM

, O
NM

). We observe that Score(G
NM

, 

O
NM

) measures a NE-CRR system’s  

performance for the NE-CRR subtask of named 

mentions extraction and grouping (NMEG). We 

find that Score(G
NM

, O
NM

) is highly correlated 

with Score(G, O) for all the freely available NE-

CRR systems over various datasets. This 

provides the neccessary  justification for the use 

of Score(G
NM

, O
NM

).  

We use SYNERGY (Shah et al., 2010), an 

ensemble NER system that combines the UIUC 

NER (Ritanov and Roth, 2009) and Stanford 

NER (Finkel et al., 2005) systems, to produce 

G
NM

 and O
NM

 from G and O by  selecting named 

mentions. However, any other good NER system 

would serve the same purpose. 

We see that while standard evaluation metrics 

require the use of G, i.e. the full set of NE-CRR 

gold standard annotations including named, 

nominal and pronimal mentions, CONE metrics 

require only G
NM

, i.e. gold standard annotations 

consisting of named mentions only. The key 

advantage of using CONE metrics is that G
NM

 

can be automatically approximated using an 

NER system with a good degree of accuracy. 

This is because state-of-the-art NER systems 

achieve near-optimal performance, exceeding F1 

= 0.95 in many cases, and after obtaining their 

output, the task of estimating G
NM

 reduces to 

simply clustering it to seperate mentions of 

diffrerent real-world entities. This clustering can 

be thought of as a form of named entity matching, 

which is not a very hard problem. There exist 

systems that perform such matching in a 

sophisticated manner with a high degree of 

accuracy. We use simple heuristics such as exact 

matching, word matches, matches between in-

itials, etc. to design such a matching system 

ourselves and use it to obtain estimates of G
NM

, 

say G
NM-approx

. We then calculate CONE B
3
 and 

CONE CEAF scores using G
NM-approx

 instead of 

G
NM

; in other words, we perform fully automatic 

evaluation of NE-CRR systems by using 

Score(G
NM-approx

, O
NM

) instead of Score(G
NM

, 

O
NM

). In order to show the validity of this 

evaluation, we calculate the correlation between 

the Score(G
NM-approx

, O
NM

) and Score(G, O) for  

different NE-CRR systems across different 

datasets and find that they are indeed correlated. 

CONE thus makes automatic evaluation of NE-

CRR systems possible. By leveraging the widely 

available named entity resources, it reduces the 

need for gold standard annotations in the 

evaluation process. 

4.1 Analysis 

There are two major kinds of errors that affect 

the performance of NE-CRR systems for the full 

NE-CRR task: 

 Missing Named Entity (MNE): If a named 

mention is missing from the system output, 

it is very likely that its nearby nominal and 

anaphoric mentions will be lost, too 

 Incorrectly grouped Named Entity (IGNE): 

Even if the named mention is correctly iden-

tified with its nearby nominal and anaphoric 

mentions to form a chain, it is still possible 

to misclassify the named mentions and its 

co-reference chain 

Consider the following example of these two 

types of errors. Here, the alphabets represent the 

named mentions and numbers represent other 

type of mentions: 

 

Gold standard, G: (A, B, C, 1, 2, 3, 4) 

Output from System 1, O1: (A, B, 1, 2, 3) 

Output from System 2, O2: (A, C, 1, 2, 4), (B, 3) 

O1 shows an example of an MNE error, while 

O2 shows an example of an IGNE error.  

 

Both these types of errors are in fact rooted in 

named mention extraction and grouping 

(NMEG). Therefore, we hypothesize that they 

must be preserved in a NE-CRR system’s output 
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for the subtask of named mentions extraction and 

grouping (NMEG) and will be reflected in the 

CONE B
3
 and CONE CEAF metrics that eva-

luate scores for this subtask. Consider the follow-

ing extension of the previous example:  

 

G
NM

: (A, B, C) 

O1
NM

: (A, B) 

O2
NM

: (A, C), (B) 

 

We observe that the MNE error in O1 is pre-

served in O1
NM

, and the IGNE error in O2 is pre-

served in O2
NM

. Empirically we sample several 

output files in our experiments and observe the 

same phenomena. Therefore, we argue that it is 

possible to capture the two major kinds of errors 

described by considering only G
NM

 and O
NM

 in-

stead of G and O.  

 

We now provide a more detailed theoretical 

analysis of the CONE metrics. For a given NE-

CRR system and dataset, consider the system 

output O and gold standard annotation G. Let P 

and R indicate precision and recall scores ob-

tained by evaluating O against G, using CEAF. If 

we replace both G and O with their subsets G
NM

 

and O
NM

 respectively, such that G
NM

 and O
NM

 

contain only named mentions, we can modify the 

equations for precision and recall for CEAF to 

derive the following equations for precision P
NM

 

and recall R
NM

 for CONE CEAF: 
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The corresponding equations for CONE B
3
 Pre-

cision are: 
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In order to support the hypothesis that CONE 

metrics evaluated using (G
NM

, O
NM

) represent an 

effective substitute for standard metrics that use 

(G, O), we compute entity level correlation be-

tween the corresponding CONE and standard 

metrics. For example, in the case of CEAF / 

CONE CEAF Precision, we calculate correlation 

between the following quantities: 


}{

)(,

NM

ifi
NM

NM

SSum

M
P


 and 
}{

)(,

SSum

M
P

ifi
 

We perform this experiment with the LBJ and 

BART CRR systems on the ACE Phase 2 corpus. 

We illustrate the correlation results in Figure 1.  

 

Figure 1. Correlation between 
NMP


and P


 - 

Entity Level CEAF Precision 

From Figure 1, we can see that the two 

measures are highly correlated. In fact, we find 

that the Pearson’s correlation coefficient (Soper 

et al., 1917; Cohen, 1988) is 0.73. The points 

lining up on the x-axis and y=1.0 represent very 

small equivalence classes and are a form of noise; 

their removal doesn’t affect this coefficient. To 

show that this strong correlation is not a 

statistical anomaly, we also compute entity-level 

correlation using (Gi - G
NM

i, Oj - O
NM

j) and (Gi, 

Oj) instead of (G
NM

i, O
NM

j) and (Gi, Oj) and find 

that the coefficient drops to 0.03, which is 

obviously not correlated at all.  

We now know 
NMP


and P


 are highly correlated. 

Assume the correlation is linear, with the 

following equation: 

  i
NM

i PP
 

where α and β are the linear regression 

parameters. 

Thus 

   nPnPPP NM

i

i
NM

i

i      

Here, n is the number of equivalence classes.    

We conclude that the overall CEAF Precision 

and CONE CEAF Precision should be highly 
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correlated too. We repeat this experiment with 

CEAF / CONE CEAF Recall, B
3
 / CONE B

3
 

Precision and B
3
 / CONE B

3
 Recall and obtain 

similar results, allowing us to conclude that these 

sets of measures should also be highly correlated. 

We note here some generally accepted 

terminology regarding correlation: If two 

quantities have a Pearson’s correlation 

coefficient greater than 0.7, they are considered  

"strongly correlated", if their correlation is 

between 0.5 and 0.7, they are considered "highly 

correlated", if it is between 0.3 and 0.5, they are 

considered "correlated", and otherwise they are 

considered "not correlated".  

It is important to note that like all automatic 

evaluation metrics, CONE B
3
 and CONE CEAF 

too can be easily ‘cheated’, e.g. a NE-CRR sys-

tem that performs NER and named entity match-

ing well but does not even detect and classify 

anaphora or nominal mentions would nonethe-

less score highly on these metrics. A possible 

solution to this problem would be to create gold 

standard annotations for a small subset of the 

data, call these annotations G’, and report two 

scores: B
3 

/ CEAF (G’), and CONE B
3
 / CONE 

CEAF (G
NM-approx

). Discrepancies between these 

two scores would enable the detection of such 

‘cheating’. A related point is that designers of 

NE-CRR systems should not optimize for CONE 

metrics alone, since by using G
NM-approx 

(or G
NM

 

where gold standard annotations are available), 

these metrics are obviously biased towards 

named mentions. This issue can also be ad-

dressed by having gold standard annotations G’ 

for a small subset. One could then train a system 

by optimizing both B
3
 / CEAF (G’) and CONE 

B
3
 / CONE CEAF (G

NM-approx
). This can be 

thought of as a form of semi-supervised learning, 

and may be useful in areas such as domain adap-

tation, where we could use some annotated test-

set in a standard domain, e.g. newswire as the 

smaller set and an unlabeled large testset from 

some other domain, such as e-mail or biomedical 

documents. An interesting future direction is to 

monitor the effectiveness of our metrics over 

time. As co-reference resolution systems evolve 

in strength, our metrics might be less effective, 

however this could be a good indicator to discri-

minate on different subtasks the improvements 

gained by the co-reference resolution systems. 

5 Experimental Results 

We present experimental results in support of the 

validity and effectiveness of CONE metrics. As 

mentioned earlier, we used the following four 

publicly available CRR systems: UIUC’s LBJ 

system (L), BART from JHU Summer Workshop 

(B), LingPipe from Alias-i (LP), and OpenNLP 

(OP) (Bengston and Roth, 2007; Versley et al., 

2008; Baldridge and Torton, 2004; Baldwin and 

Carpenter, 2003). All these CRR systems per-

form Noun Phrase co-reference resolution (NP-

CRR), not NE-CRR. So, we must first eliminate 

all equivalences classes that do not contain any 

named mentions. We do so using the SYNERGY 

NER system to separate named mentions from 

unnamed ones. Note that this must not be con-

fused with the use of SYNERGY to produce G
NM

 

and O
NM

 from G and O respectively. For that task, 

all equivalence classes in G and O already con-

tain at least one named mention and we remove 

all unnamed mentions from each class. This 

process effectively converts the NP-CRR results 

of these systems into NE-CRR ones. We use the 

ACE Phase 2 NWIRE and ACE 2005 English 

datasets. We avoid using the ACE 2004 and 

MUC6 datasets because the UIUC LBJ system 

was trained on ACE 2004 (Bengston and Roth, 

2008), while BART and LingPipe were trained 

on MUC6. There are 29 files in the test set of 

ACE Phrase 2 and 81 files in ACE 2005, sum-

ming up to 120 files with around 50,000 tokens 

with 5000 valid co-reference mentions. Tables 1 

and 2 show the Pearson’s correlation coefficients  

between CONE metric scores of the type 

Score(G
NM

, O
NM

) and standard metric scores of 

the type Score(G, O) for combinations of various 

CRR systems and datasets.  

  B3/CONE B3  CEAF/CONE CEAF 

  P R F1 P R F1 

L 0.82 0.71 0.7 0.81 0.71 0.77 

B 0.85 0.5 0.66 0.71 0.61 0.68 

LP 0.84 0.66 0.67 0.74 0.71 0.73 

OP 0.31 0.57 0.61 0.79 0.72 0.79 

Table 1. G
NM

: Correlation on ACE Phase 2 

  B3/CONE B3  CEAF/CONE CEAF 

  P R F1 P R F1 

L 0.6 0.62 0.62 0.75 0.61 0.68 

B 0.74 0.82 0.84 0.72 0.68 0.67 

LP 0.91 0.65 0.73 0.44 0.57 0.53 

OP 0.48 0.77 0.8 0.54 0.67 0.65 

Table 2. G
NM

: Correlation on ACE 2005 

 

We observe from Tables 1 and 2 that CONE B
3
 

and CONE CEAF scores are highly correlated 
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with B
3
 and CEAF scores respectively, and this 

holds true for Precision, Recall and F1 scores, for 

all combinations of CRR systems and datasets. 

This justifies our assumption that a system’s per-

formance for the subtask of NMEG is a good 

predictor of its performance for the full task of 

NE-CRR. These correlation coefficients are 

graphically illustrated in Figures 2 and 3. 

We now use our baseline named entity matching 

method to automatically generate estimated gold 

standard annotations G
NM-approx

 and recalculate 

CONE CEAF and CONE B
3
 scores using G

NM-

approx
 instead of G

NM
. Tables 3 and 4 show the 

correlation coefficients between the new CONE 

scores and the standard metric scores. 

 

  B3/CONE B3  CEAF/CONE CEAF 

  P R F1 P R F1 

L 0.31 0.23 0.22 0.33 0.55 0.56 

B 0.71 0.44 0.43 0.61 0.63 0.71 

LP 0.57 0.43 0.49 0.36 0.25 0.31 

OP 0.1 0.6 0.64 0.35 0.53 0.53 

Table 3. G
NM-approx

: Correlation on ACE Phase 2  

  B3/CONE B3  CEAF/CONE CEAF 

  P R F1 P R F1 

L 0.33 0.32 0.42 0.22 0.34 0.36 

B 0.25 0.66 0.65 0.2 0.45 0.37 

LP 0.19 0.33 0.34 0.77 0.68 0.72 

OP 0.26 0.66 0.67 0.28 0.42 0.38 

Table 4. G
NM-approx

: Correlation on ACE Phase 2 

We observe from Tables 3 and 4 that these corre-

lation factors are encouraging, but not as good as 

those in Tables 1 and 2. All the corresponding 

CONE B
3
 and CONE CEAF scores are corre-

lated, but very few are highly correlated. We 

should note however that our baseline system to 

create G
NM-approx

 uses relatively simple clustering 

methods and heuristics. It is easy to observe that 

a sophisticated named entity matching system 

would produce a G
NM-approx

 that better approx-

imates G
NM

 than our baseline method, and CONE 

B
3
 and CONE CEAF scores calculated using this 

G
NM-approx

 would be more correlated with stan-

dard B
3
 and CEAF scores.  

We note from the above results that correlations 

scores are very similar across different systems 

and datasets. In order to formalize this assertion, 

we calculate correlation scores in a system-

independent and data-independent manner. We 

combine all the data points across all four differ-

ent systems and plot them in Figure 2 and 3 for 

ACE Phase 2 NWIRE corpus and in Figure 4 and 

5 for ACE 2005 corpus respectively. We illu-

strate only F1 scores; the results for precision 

and recall are similar. 

 
Figure 2. Correlation between B

3
 F1 and CONE 

B
3
 F1 for all systems on ACE 2 

 
Figure 3. Correlation between CEAF F1 and 

CONE CEAF F1 for all systems on ACE 2 

 

Figure 2 reflects a Pearson’s correlation coeffi-

cient of 0.70, suggesting that all the B
3
 F1 and 

CONE B
3
 F1 scores for different systems are 

highly correlated and that CONE B
3
 F1 does not 

bias towards any particular system. Figure 3 re-

flects a Pearson’s correlation coefficient of 0.83, 

providing similar evidence for the system-

independence of correlation between CEAF F1 

and CONE CEAF F1 scores. Figures 4 and 5 

corresponding to ACE 2005 reflect similar corre-

lation coefficients of 0.89 and 0.82, and thus 

support the idea that the correlations between B
3
 

F1 and CONE B
3
 F1, as well as between CEAF 

F1and CONE CEAF F1, are dataset-independent 

in addition to being system-independent.  
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Figure 4. Correlation between B

3
 F1 and CONE 

B
3
 F1 for all systems on ACE 2005 

 

 
Figure 5. Correlation between CEAF F1 and 

CONE CEAF F1 for all systems on ACE 2005 

6 Application and Discussion  

To illustrate the applicability of CONE metrics, 

we consider the Enron e-mail corpus. It is of a 

different genre than the newswire corpora that 

CRR systems are usually trained on, and no CRR 

gold standard annotations exist for it. Conse-

quently, no CRR systems have been evaluated on 

it so far. We used CONE B
3
 and CONE CEAF to 

evaluate and compare the NE-CRR performance 

of various CRR systems on a subset of the Enron 

e-mail corpus (Klimt and Yang, 2004) that was 

cleaned and stripped of spam messages. We re-

port the results in Table 5. 

 

  CONE B
3
  CONE CEAF 

  P R F1 P R F1 

L 0.43 0.21 0.23 0.31 0.17 0.21 

B 0.26 0.18 0.2 0.26 0.16 0.2 

LP 0.61 0.51 0.53 0.58 0.53 0.54 

OP 0.19 0.03 0.05 0.11 0.02 0.04 

Table 5. G
NM-approx

 Scores on Enron corpus 

 

We find that LingPipe is the best of all the sys-

tems we considered, and LBJ is slightly ahead of 

BART in all measures. We suspect that since 

LingPipe is a commercial system, it may have 

extra training resources in the form of non-

traditional corpora. Nevertheless, we believe our 

method is robust and scalable for large corpora 

without NE-CRR gold standard annotations. 

 

7 Conclusion and Future Work 

We propose the CONE B
3
 and CONE CEAF me-

trics for automatic evaluation of Named Entity 

Co-reference Resolution (NE-CRR). These me-

trics measures a NE-CRR system’s performance 

on the subtask of named mentions extraction and 

grouping (NMEG) and use it to estimate the sys-

tem’s performance on the full task of NE-CRR. 

We show that CONE B
3
 and CONE CEAF 

scores of various systems across different data-

sets are strongly correlated with their standard B
3
 

and CEAF scores respectively. The advantage of 

CONE metrics compared to standard ones is that 

instead of the full gold standard data G, they only 

require a subset G
NM

 of named mentions which 

even if not available can be closely approximated 

by using a state-of-the-art NER system and clus-

tering its results. Although we use a simple base-

line algorithm for producing the approximate 

gold standard G
NM-approx

, CONE B
3
 and CONE 

CEAF scores of various systems obtained using 

this G
NM-approx

 still prove to be correlated with 

their standard B
3
 and CEAF scores obtained us-

ing the full gold standard G. CONE metrics thus 

reduce the need of expensive labeled corpora. 

We use CONE B
3
 and CONE CEAF to evaluate 

the NE-CRR performance of various CRR sys-

tems on a subset of the Enron email corpus, for 

which no gold standard annotations exist and no 

such evaluations have been performed so far. In 

the future, we intend to use more sophisticated 

named entity matching schemes to produce better 

approximate gold standards G
NM-approx

. We also 

intend to use the CONE metrics to evaluate NE-

CRR systems on new datasets in domains such as 

chat, email, biomedical literature, etc. where very 

few corpora with gold standard annotations exist. 
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