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Abstract
Many natural language processing (NLP)
tools exhibit a decrease in performance
when they are applied to data that is lin-
guistically different from the corpus used
during development. This makes it hard to
develop NLP tools for domains for which
annotated corpora are not available. This
paper explores a number of metrics that
attempt to predict the cross-domain per-
formance of an NLP tool through statis-
tical inference. We apply different sim-
ilarity metrics to compare different do-
mains and investigate the correlation be-
tween similarity and accuracy loss of NLP
tool. We find that the correlation between
the performance of the tool and the sim-
ilarity metric is linear and that the latter
can therefore be used to predict the perfor-
mance of an NLP tool on out-of-domain
data. The approach also provides a way to
quantify the difference between domains.

1 Introduction

Domain adaptation has recently turned into a
broad field of study (Bellegarda, 2004). Many re-
searchers note that the linguistic variation between
training and testing corpora is an important fac-
tor in assessing the performance of an NLP tool
across domains. For example, a tool that has been
developed to extract predicate-argument structures
from abstracts of biomedical research papers, will
exhibit a lower performance when applied to legal
texts.

However, the notion of domain is mostly arbi-
trarily used to refer to some kind of semantic area.
There is unfortunately no unambiguous measure
to assert a domain shift, except by observing the
performance loss of an NLP tool when applied
across different domains. This means that we typ-
ically need annotated data to reveal a domain shift.

In this paper we will show how unannotated data
can be used to get a clearer view on how datasets
differ. This unsupervised way of looking at data
will give us a method to measure the difference be-
tween data sets and allows us to predict the perfor-
mance of an NLP tool on unseen, out-of-domain
data.

In Section 2 we will explain our approach in
detail. In Section 3 we deal with a case study
involving basic part-of-speech taggers, applied to
different domains. An overview of related work
can be found in Section 4. Finally, Section 5 con-
cludes this paper and discusses options for further
research.

2 Approach

When developing an NLP tool using supervised
learning, annotated data with the same linguistic
properties as the data for which the tool is devel-
oped is needed, but not always available. In many
cases, this means that the developer needs to col-
lect and annotate data suited for the task. When
this is not possible, it would be useful to have a
method that can estimate the performance on cor-
pus B of an NLP tool trained on corpus A in an
unsupervised way, i.e., without the necessity to an-
notate a part of B.

In order to be able to predict in an unsupervised
way the performance of an NLP tool on different
corpora, we need a way to measure the differences
between the corpora. The metric at hand should
be independent from the annotation labels, so that
it can be easily applied on any given corpus. The
aim is to find a metric such that the correlation be-
tween the metric and the performance is statisti-
cally significant. In the scope of this article the
concept metric stands for any way of assigning a
sufficiently fine-grained label to a corpus, using
only unannotated data. This means that, in our
view, a metric can be an elaborate mixture of fre-
quency counts, rules, syntactic pattern matching or
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even machine learner driven tools. However, in the
remainder of this paper we will only look at fre-
quency based similarity metrics since these met-
rics are easily applicable and the experiments con-
ducted using these metrics were already encourag-
ing.

3 Experimental design

3.1 Corpus

We used data extracted from the British National
Corpus (BNC) (2001) and consisting of written
books and periodicals1. The BNC annotators pro-
vided 9 domain codes (i.e. wridom), making it
possible to divide the text from books and peri-
odicals into 9 subcorpora. These annotated se-
mantic domains are: imaginative (wridom1), nat-
ural & pure science (wridom2), applied science
(wridom3), social science (wridom4), world af-
fairs (wridom5), commerce & finance (wridom6),
arts (wridom7), belief & thought (wridom8), and
leisure (wridom9).

The extracted corpus contains sentences in
which every token is tagged with a part-of-speech
tag as defined by the BNC. Since the BNC has
been tagged automatically, using the CLAWS4 au-
tomatic tagger (Leech et al., 1994) and the Tem-
plate Tagger (Pacey et al., 1997), the experiments
in this article are artificial in the sense that they do
not learn real part-of-speech tags but rather part-
of-speech tags as they are assigned by the auto-
matic taggers.

3.2 Similarity metrics

To measure the difference between two corpora
we implemented six similarity metrics: Rényi2

(Rényi, 1961), Variational (L1) (Lee, 2001),
Euclidean (Lee, 2001), Cosine (Lee, 2001),
Kullback-Leibler (Kullback and Leibler, 1951)
and Bhattacharyya coefficient (Comaniciu et al.,
2003; Bhattacharyya, 1943). We selected these
measures because they are well-described and pro-
duce results for this task in an acceptable time
span.

The metrics are computed using the relative fre-
quencies of words. For example, to calculate the

1This is done by selecting texts with BNC category codes
for text type (i.e. alltyp3 (written books and periodicals)) and
for medium (i.e. wrimed1 (book), wrimed2 (periodical), and
wrimed3 (miscellaneous: published)).

2The Rényi divergence has a parameter α and Kullback-
Leibler is a special case of the Rényi divergence, viz. with
α = 1.

Rényi divergence between corpus P and corpus Q
the following formula is applied:

Rényi(P ;Q;α) = 1
(α−1) log2

(∑k p1−α
k qαk

)

pk is the relative frequency of a token k in the
first corpus P , and qk is the relative frequency of
token k in the second corpus Q. α is a free param-
eter and with α = 1 the Rényi divergence becomes
equivalent to the Kullback-Leibler divergence.

Rényi 0.99 Euclidean

LESS SIMILAR                                                                                        

MORE SIMILAR                                                                                        

social-art                                                                                          social-belief                                                                                       

social-world                                                                                        
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art-social                                                                                          
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Figure 1: A visual comparison of two similarity
metrics: Rényi with α = 0.99 and Euclidean.

Figure 1 gives an impression of the difference
between two similarity metrics: Rényi (α = 0.99)
and Euclidean. Only four domain combinations
are shown for the sake of clarity. From the graph
it can be observed that the social and imaginative
domains are the least similar in both cases. Be-
sides the different ordering, there is also a differ-
ence in symmetry. Contrary to the symmetric Eu-
clidean metric, the Rényi scores differ, depending
on whether social constitutes the test set and art
the training set, or vice versa. The dashed line on
Figure 1 (left) is a reverse score, namely for art-
social. A divergence score may diverge a lot from
its reverse score.

In practice, the best metric to choose is the met-
ric that gives the best linear correlation between
the metric and the accuracy of an NLP tool applied
across domains. We tested 6 metrics: Rényi, Vari-
ational (L1), Euclidean, Cosine, Kullback-Leibler,
and the Bhattacharyya coefficient. For Rényi, we
tested four different α-values: 0.95, 0.99, 1.05,
and 1.1. Most metrics gave a linear correlation
but for our experiments with data-driven POS tag-
ging, the Rényi metric with α = 0.99 was the best
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according to the Pearson product-moment corre-
lation. For majority this correlation was 0.91, for
Mbt 0.93, and for SVMTool 0.93.

3.3 Part-of-speech tagging

The experiments carried out in the scope of this
article are all part-of-speech (POS) tagging tasks.
There are 91 different POS labels in the BNC cor-
pus which are combinations of 57 basic labels. We
used three algorithms to assign part-of-speech la-
bels to the words from the test corpus:

Majority This algorithm assigns the POS label
that occurs most frequently in the training set for a
given word, to the word in the test set. If the word
did not occur in train, the overall most frequent tag
was used.

Memory based POS tagger (Daelemans and
van den Bosch, 2005) A machine learner that
stores examples in memory (Mbt) and uses the
kNN algorithm to assign POS labels. The default
settings were used.

SVMTool POS tagger (Giménez and Márquez,
2004) Support vectors machines in a sequential
setup are used to assign the POS labels. The de-
fault settings were used.

3.4 Results and analysis

Figure 2 shows the outcome of 72 cross-validation
experiments on the data from the British National
Corpus. The graph for the majority baseline is
shown in Figure 2a. The results for the memory
based tagger are shown in Figure 2b and the graph
for SVMTool is displayed in Figure 2c.

For every domain, the data is divided into five
parts. For all pairs of domains, each part from
the training domain is paired with each part from
the testing domain. This results in a 25 cross-
validation cross-domain experiment. A data point
in Figure 2 is the average outcome of such a 25
fold experiment. The abscissa of a data point
is the Rényi similarity score between the train-
ing and testing component of an experiment. The
α parameter was set to 0.99. We propose that
the higher (less negative) the similarity score, the
more similar training and testing data are.

The ordinate is the accuracy of the POS tagging
experiment. The dotted lines are the 95% predic-
tion intervals for every data point. These bound-
aries are obtained by linear regression using all
other data points. The interpretation of the inter-
vals is that any point, given all other data points
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(a) Majority POS tagger.
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(b) Memory based POS tagger.
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(c) SVMTool POS tagger.

Figure 2: The varying accuracy of three POS tag-
gers with varying distance between train and test
corpus of different domains.

from the graph, can be predicted with 95% cer-
tainty, to lie between the upper and lower interval
boundary at the similarity score of that point. The
average difference between the lower and the up-
per interval boundary is 4.36% for majority, 1.92%
for Mbt and 1.59% for SVMTool. This means that,
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Majority Mbt SVMTool

average accuracy 84.94 91.84 93.48
standard deviation 2.50 1.30 1.07

Table 1: Average accuracy and standard deviation on 72 cross-validation experiments.

when taking the middle of the interval as the ex-
pected accuracy, the maximum error is 0.8% for
SVMTool. Since the difference between the best
and worst accuracy score is 4.93%, using linear re-
gression means that one can predict the accuracy
three times better. For Mbt with a range of 5.84%
between best and worst accuracy and for majority
with 12.7%, a similar figure is obtained.

Table 1 shows the average accuracies of the al-
gorithms for all 72 experiments. For this article,
the absolute accuracy of the algorithms is not un-
der consideration. Therefore, no effort has been
made to improve on these accuracy scores. One
can see that the standard deviation for SVMTool
and Mbt is lower than for majority, suggesting that
these algorithms are less susceptible to domain
variation.

The good linear fit for the graphs of Figure 2
cannot be reproduced with every algorithm. For
algorithms that do not have a sufficiently strong re-
lation between training corpus and assigned class
label, the linear relation is lost. Clearly, it remains
feasible to compute an interval for the data points,
but as a consequence of the non-linearity, the pre-
dicted intervals would be similar or even bigger
than the difference between the lowest and highest
accuracy score.

In Figure 3 the experiments of Figure 2 are
reproduced using test and training sets from the
same domain. Since we used the same data sets
as for the out-of-domain experiments, we had to
carry out 20 fold cross-validation for these exper-
iments. Because of this different setup the results
are shown in a different figure. There is a data
point for every domain.

Although the average distance between test and
training set are smaller for in-domain experiments,
we still observe a linear relation for Mbt and SVM,
for majority there is still a visual hint of linearity.
For in-domain the biggest difference between test
and train set is for the leisure domain (Rényi score:
-6.0) which is very close to the smallest out-of-
domain difference (-6.3 for social sciences–world
affairs). This could mean that the random varia-
tion between test and train can approach the varia-
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(b) Memory based POS tagger.
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(c) SVMTool POS tagger.

Figure 3: The varying accuracy of three POS tag-
gers with varying distance between train and test
corpus of the same domain.
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tion between domains but this observation is made
in abstraction from the different data set sizes for
in and out of domain experiments. For majority
the average accuracy over all domains is 88.25%
(stdev: 0.87), for Mbt 94.07% (0.63), and for
SVMTool 95.06% (0.59). Which are, as expected,
higher scores than the figures in Table 1.

4 Related Work

In articles dealing with the influence of domain
shifts on the performance of an NLP tool, the
in-domain data and out-of-domain data are taken
from different corpora, e.g., sentences from movie
snippets, newspaper texts and personal weblogs
(Andreevskaia and Bergler, 2008). It can be ex-
pected that these corpora are indeed dissimilar
enough to consider them as separate domains, but
no objective measure has been used to define them
as such. The fact that the NLP tool produces
lower results for cross-domain experiments can be
taken as an indication of the presence of sepa-
rate domains. A nice overview paper on statisti-
cal domain adaptation can be found in Bellegarda
(2004).

A way to express the degree of relatedness,
apart from this well-known accuracy drop, can be
found in Daumé and Marcu (2006). They propose
a domain adaptation framework containing a pa-
rameter π. Low values of π mean that in-domain
and out-of-domain data differ significantly. They
also used Kullback-Leibler divergence to compute
the similarity between unigram language models.

Blitzer et al. (2007) propose a supervised way
of measuring the similarity between the two do-
mains. They compute the Huber loss, as a proxy
of the A-distance (Kifer et al., 2004), for every
instance that they labeled with their tool. The re-
sulting measure correlates with the adaptation loss
they observe when applying a sentiment classifi-
cation tool on different domains.

5 Conclusions and future work

This paper showed that it is possible to narrow
down the prediction of the accuracy of an NLP
tool on an unannotated corpus by measuring the
similarity between this unannotated corpus and the
corpus the tagger was trained on in an unsuper-
vised way. A prerequisite to be able to make a reli-
able prediction, is to have sufficient annotated data
to measure the correlation between the accuracy
and a metric. We observed that, in order to make a

prediction interval that is narrower than the differ-
ence between the lowest and highest accuracy on
the annotated corpora, the algorithm used, should
capture sufficient information from training.

The observation that it is feasible to make re-
liable predictions using unannotated data, can be
of help when training a system for a task in a do-
main for which no annotated data is available. As
a first step, the metric resulting in the best linear
fit between the metric and the accuracy should be
searched. If a linear relation can be established,
one can take annotated training data from the do-
main that is closest to the unannotated corpus and
assume that this will give the best accuracy score.

In this article we implemented a way to mea-
sure the similarity between two corpora. One may
decide to use such a metric to categorize the avail-
able corpora for a given task into groups, depend-
ing on their similarity. It should be noted that in
order to do this, a symmetric metric should be
used. Indeed, an asymmetric metric like the Rényi
divergence will give a different value depending
on whether the similarity between corpus P and
corpus Q is measured as Rényi(P ;Q;α) or as
Rényi(Q;P ;α).

Further research should explore the usability of
linear regression for other NLP tasks. Although
no specific adaptation to the POS tagging task was
made, it may not be straightforward to find a lin-
ear relation for more complicated tasks. For such
tasks, it may be useful to insert n-grams into the
metric. Or, if a parser was first applied to the data,
it is possible to insert syntactic features in the met-
ric. Of course, these adaptations may influence
the efficiency of the metric, but if a good linear
relation between the metric and the accuracy can
be found, the metric is useful. Another option to
make the use of the metric less task dependent is
by not using the distribution of the tokens but by
using distributions of the features used by the ma-
chine learner. Applying this more generic setup of
our experiments to other NLP tools may lead to the
discovery of a metric that is generally applicable.

Acknowledgments

This research was made possible through finan-
cial support from the University of Antwerp
(BIOGRAPH GOA-project).

35



References
Alfred V. Aho and Jeffrey D. Ullman. 1972. The

Theory of Parsing, Translation and Compiling, vol-
ume 1. Prentice-Hall, Englewood Cliffs, NJ.

Alina Andreevskaia and Sabine Bergler. 2008. When
Specialists and Generalists Work Together: Over-
coming Domain Dependence in Sentiment Tagging.
Proceedings of the 46th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (ACL-08:HLT), 290–298. As-
sociation for Computational Linguistics. Columbus,
Ohio, USA.

Jerome R. Bellegarda. 2004. Statistical language
model adaptation: review and perspectives. Speech
Communication, 42:93–108.

Anil Bhattacharyya. 1943. On a measure of divergence
between two statistical populations defined by their
probability distributions. Bulletin of the Calcutta
Mathematical Society, 35:99–109.

John Blitzer, Mark Dredze, and Fernando Pereira.
2007. Biographies, Bollywood, Boom-boxes and
Blenders: Domain Adaptation for Sentiment Clas-
sification. Proceedings of the 45th Annual Meet-
ing of the Association of Computational Linguistics,
440–447. Association for Computational Linguis-
tics. Prague, Czech Republic.

British National Corpus Consortium. 2001. The
British National Corpus, version 2 (BNC World).
Distributed by Oxford University Computing
Services on behalf of the BNC Consortium.
http://www.natcorp.ox.ac.uk (Last accessed: April
2, 2010).

Dorin Comaniciu, Visvanathan Ramesh, and Peter
Meer. 2003. Kernel-Based Object Tracking. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 25(5):564–575.

Walter Daelemans and Antal van den Bosch. 2005.
Memory-Based Language Processing. Cambridge
University Press, Cambridge, UK.
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