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Abstract

Semantic change has mostly been studied by historical linguists and typically at the scale of centuries.

Here we study semantic change at a finer-grained level, the decade, making use of recent newspaper cor-

pora. We detect semantic change candidates by observing context shifts which can be triggered by topic

salience or may be independent from it. To discriminate these phenomena with accuracy, we combine

variation filters with a series of indices which enable building a coherent and flexible semantic change

detection model. The indices include widely adaptable tools such as frequency counts, co-occurrence

patterns and networks, ranks, as well as model-specific items such as a variability and cohesion mea-

sure and graphical representations. The research uses ACOM, a co-occurrence based geometrical model,

which is an extension of the Semantic Atlas. Compared to other models of semantic representation, it

allows for extremely detailed analysis and provides insight as to how connotational drift processes unfold.

1 Introduction
Semantic change has long been analyzed and theorized upon in historical linguistics. Its abstract and

ungraspable nature made its detection a difficult task for computational semantics, despite the many tools

available from various models of lexical treatment. Most extant theories are based on manual analysis of

century long semantic drifts. From these works we inherit various typologies and repertories of causes

of change (e.g., Bloomfield (1933)). However these types of analyses may not be suited to the large scale

production of text in our societies. Not only has the quantity of produced text rocketed but its diffusion

and speed of transmission has radically increased. In this context, recent studies have yielded promising

results, showing that computational models of semantics can deal with assessed semantic change exam-

ples as well as detect candidates in corpora. Among them, some include topic salience as an index and

others do not, as they rather try to quantify semantic change with reliable measures. In an era of infor-

mation overflow, topic change takes on a new linguistic value, as it may be responsible for extremely

quick paced semantic change, which can be ephemeral or become fixed. Topic salience might as well

be a sociologically induced or press phenomenon with no semantic impact at all. However when both

topic salience and connotational drift take place, a semantic phenomenon may be at stake. Our analysis

is anchored in this process. We shall briefly introduce other approaches, explain our methods and the

structure of our detection prototype (in progress) as well as give preliminary results before concluding

with a discussion.

2 Measuring semantic change : previous work
To measure semantic change, one has to evaluate the semantics of a lexical item at a given point. To

do so, semantic similarity measures in vector spaces or geometrical spaces may be used to compare the
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item with its own occurrences at later points. This method has been applied in Sagi et al. (2009), where

semantic density was calculated as the average angle between vectors in a semantic space. The variabil-

ity of that density was observed for the same lexical item at different points in time. Density measures

were applied to a series of acknowledged semantic change cases, in the Project Gutenberg Corpus, a

historical corpus of English organized by documents. Results mostly include broadening and narrowing

cases. The same method yielded results on the difference between nominal and verbal types of change,

showing that verbs were more likely to change than nouns (Sagi (2010)).

Cook and Stevenson (2010) also used assessed cases from the historical linguistics literature. They

detected changes in the semantic orientation of words (or polarity shifts) namely amelioration and pejo-

ration. They then applied this methodology to detect possible un-assessed candidates. They used three

English corpora as corpus slices, covering approximately a four century time-span.

Volatility has also been assessed by Holz and Teresniak (2010), who adapted a measure from economet-

rics to quantify semantic change in a time sliced corpus. The volatility measure relied on the computation

of the rank series for every co-occurent term and on the coefficient of variation of all co-occurrent terms

(Holz and Teresniak (2010)). The method was applied to search words in modern corpora in German and

English (the Wortschatz and the New York Times). The strong point of this measure is that it is indepen-

dent from word frequency, however it does not provide detailed analysis about the underlying semantic

processes.

3 Methods
Of the three cited works, our approach is closer to that of Holz and Teresniak (2010) in that both

their work and ours are conducted on very recent corpora. We are currently conducting short diachrony

detection, analysis and representation on a modern press corpus in French (the newspapers Le Monde,

1997-2007). We use the ACOM model (Ji et al. (2003)) an extension of the Semantic Atlas Model (Ploux

et al. (2010)) that uses factor analysis to provide geometrical representations of word co-occurrence in

corpus (both models are freely available on http://dico.isc.cnrs.fr/eng/index.html).

The model relies on cliques, which are organized subsets of co-occurrent words, from which clustering

can be made. To extract co-occurrent words, we apply ACOM on a time-sliced corpus. For each slice

t, a word-association table is constructed using all headwords (see Ploux et al. (2010) for a complete

methodological description). Each headword W i
t (1≤i≤N , where N is the total number of types in the

corpus slice) has children (cjs) that are arranged in descending order of co-occurrence with W i
t

1:

W i
t : c1; c2; . . . ; cn

We apply two factors to filter this table: α where 0≤α≤1 to eliminate the rarely co-occurring children

of W i
n :

W i
t : c1; c2; . . . ; ck

where k = nα and n is the original number of children of W i
t , and β where β(0≤ β ≤1) to cut off rarely

co-occurring of children of cj :

(cmj : g1; g2; . . . ; gl(1≤j≤k; l = mβ))

On the basis of that table, cliques are calculated. The notion of clique is taken from graph theory (on

graph therory see for ex. Golumbic (2004)). Mathematically, cliques are maximum connected sub-

graphs. In our case, the nodes are contexonyms. Then, correspondence factor analysis is applied (Ben-

zécri (1980)) and the χ2 distance is calculated between pairs of cliques to obtain a multidimensional

space. A hierarchical clustering algorithm clusters cliques in thematic sets at several degrees of detail.

Clusters show broad topic shifts whereas the cliques show fine-grained sub-organisation. Therefore the

model allows for very detailed analysis as well as topical analysis. It also provides a graphic visualization

for the semantics of a word. With the time-sliced corpus, we may extract maps for each subpart of the

1Children with co-occurrences under a 10,000th of the global frequency of the headword W
i

t are removed to reduce noise.
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corpus and compare the spaces generated for the same word at different points in time, to complete the

analysis.

3.1 Structure of the detection prototype

Currently our model is structured as follows: the corpus is transformed into a time-sliced ACOM

database, with word frequencies and co-occurence frequencies. We apply an adjustable standard de-

viation filter to extract significant frequency and co-occurrence frequency variations as well as co-

occurrence network variations. (The co-occurrence window is adjustable to the sentence, paragraph

or other window sizes). If we only detect frequency variation, there is a suspicion that the headword

might undergo context variation later, but it could also be an ephemeral press or fashion phenomenon

with no semantic impact. However if we detect both significant frequency variations and co-occurrence

variations, there is a higher chance that the context variations are a reflection of semantic variation. At

this stage we apply indices based on rank variation, clique analysis and clique-term variation analysis

(described in Boussidan et al. (2010)) as well as manual analysis to determine the nature of the change.

The next step to verify that the item has undergone semantic change is its stabilization over time. This

detection path highlights short diachronic change. We may also detect significant co-occurence varia-

tions with no significant headword frequency variation, in which case we may apply directly the indices

to check whether the context shifts reveal an anchored meaning shift. If the indices highlight a meaning

shift, the former is necessarily much more subtle than the short diachronic change that we detected pre-

viously. It might be the reflection of a longer term process of which the trigger might not be contained

in the given corpus.

4 Preliminary results

4.1 Testing examples

To conceive a detection model, we first conducted experiments using attested examples or using

words that we selected after manually observing that a shift was taking place. By testing these examples,

we could extract data about how the model would render them so as to use it to create detection indices

and parameters. Among these was the French word malbouffe (literally "bad grub" or "junk food"), a

neology selected from a previously established list of new dictionary entries (Martinez (2009)). The

corpus showed how the different spellings of the words alternated before yielding the current one. Anal-

ysis of the co-occurrence networks showed that one of the most important co-occurrent words, Bové, the

name of a French political actor, had almost the same co-occurrence network as malbouffe. From this

observation and after comparing definitions and previous contexts of use, we could infer that this person

gave the word malbouffe its new meaning, by superimposing political values on it, on top of its dietetic

values. Co-occurrence networks therefore allowed us to analyse the process of meaning shift. The full

analysis of this example may be found in Boussidan et al. (2009).

We also tested a more subtle connotational drift with the word mondialisation ("globalization"), which

undergoes clear contextual change in the corpus. The word first appeared in contexts defined by the

political, economical and intellectual positions it brings about, with strong co-occurrents such as défi

(“challenge”), progrès (“progress") or menace (“threat”). It then drifted into a complete network of

words related to one single French political movement of anti-globalization in 2001. Therefore the use

of mondialisation gained a new connotation, whereas its synonym globalisation ("globalization") re-

mained quite neutral politically. The analysis of this example revealed that some terms were used as

pivots, providing linkage between the existing cliques and the new ones. Pivots therefore provided a

good tool to observe meaning re-organisation. The full analysis of this example may be found in Boussi-

dan et al. (2010) and the corresponding dynamic representation on http://dico.isc.cnrs.fr/

en/diachro.html.

4.2 Semantic change detection

On the basis of these preliminary examples, we designed a semantic change detection prototype.

Testing examples brought to light the difficulty of discriminating press-related topic salience with no
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semantic impact from topic salience with a semantic impact. Detection is conducted in three stages. The

first stage relies on frequency variation to extract topic variations of context in the corpus. For instance

by setting the filter to retain words for which the coefficient of variation2 is higher than 0.5, we obtain a

list of words that may be classified into three loose semantic sets and a fourth set grouping all indepen-

dent items. These semantic sets include words related to:

• war, terrorism and violence

• technology

• illness

By adjusting the settings we mayalso include more subtle topic variations if needed or conversely, looser

ones. The second stage involves co-occurrence variation so as to extract the changes in semantic networks

and thus in connation, for a lexical item. For instance, we detected that the word logiciel ("software")

underwent a frequency co-occurrence peak with libre ("free") in January 2001. The expression logiciel

libre stands for "freeware" and has been renamed gratuiciel or graticiel (a blending of gratuit, "free"

with logiciel, "software") in Quebec. We therefore detect a new compositional expression that coins a

French equivalent to the word freeware used until then.

Another example of connotational drift is the word navigation ("navigation") which is only attested

in the TLFI3 and the Dictionnaire Historique de la Langue Française (Rey et al. (1998)), under the mean-

ing relating to transport, firstly on seas and rivers and then via plane or spaceship. However, between

1997 and 2001 the word takes on a new major meaning in internet search, meaning "browsing". This is

aparent when looking at the co-occurrence patterns of navigation with words related to technology and

comparing them with co-occurrences of words related to transport. The technology words show peaks

between 1997 and 2001 and then lower frequencies until 2007, whereas the transport words show stable

use all the way through the corpus. The new use of navigation, however is almost obsolete now in spoken

speech -or at least it has gone out of fashion- but the semantics of navigation have clearly integrated an

additional domain and broadened. A simple search of French results on Google provides 5,500,000 doc-

uments for navigation internet, among which are a lot of recent ones. However the meaning to search the

internet grew from the name of a specific web navigator: the Netscape Navigator which was widespread

in the 1990s but is no longer supported nowadays.

Both previous stages provide us with candidates to semantic change. The last stage is the stabilization

of a connotational drift, whether it is a broadening, a narrowing, a domain shift or other. We are currently

working on this last index. We often find that when a word undergoes semantic change, it goes through

a phase of onomasiological competition in which other possible candidates may in turn become the new

bearers of certain meanings. For navigation for instance, the word surf was a competitor, however both

words now sound obsolete. It may be that none of them wins the competition, in which case the concept

has become so deeply anchored in language and society that it does not need naming any more.

5 Discussion and Future Work
Since semantic phenomena, whether synchronic or diachronic, are very much corpus specific, it is

difficult to conceive of a large scale universal detection method for them. However, tools may be built

to be highly flexible in order to allow users to adjust settings to adapt to the corpus they deal with. This

flexibility may encompass genre and stylistic variations when working with the same language as well

as adaptation to a completely different language. We are considering global evaluations of the corpora’s

stylistics to avoid the detection of corpus specfic phenomena instead of broader language phenomena.

2The coefficient of variation is the ratio of the standard deviation to the mean
3http://atilf.atilf.fr/tlf.htm
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Ideally the model should also be able to deal with timescale differences.The precise adjustment of these

settings is part of our future research avenues along with incorporating an index for stabilization. This

last filter is particularly difficult to create when dealing with ongoing phenomena. We may sometimes

need to wait a few years to be able to establish whether a semantic change has stabilized.

To summarize, we are currently developing a filtering tool to extract candidates to semantic change on

the basis of topic salience variation in corpus and co-occurrence network variation. Our approach shed

light on the emergence of these phenomena at a very detailed level. Preliminary results showed that the

tool was succesful at extracting those candidates; however it is not yet advanced enough to discriminate

between context changes that affect a word without semantic impact and those that do have a semantic

impact. This aspect constitutes our current research perspective.
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