
Proceedings of the Workshop on Multiword Expressions: from Parsing and Generation to the Real World (MWE 2011), pages 122–124,
Portland, Oregon, USA, 23 June 2011. c©2011 Association for Computational Linguistics

jMWE: A Java Toolkit for Detecting Multi-Word Expressions

Nidhi Kulkarni & Mark Alan Finlayson
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA, 02139, USA

{nidhik,markaf}@mit.edu

Abstract

jMWE is a Java library for implementing and
testing algorithms that detect Multi-Word Ex-
pression (MWE) tokens in text. It provides (1)
a detector API, including implementations of
several detectors, (2) facilities for construct-
ing indices of MWE types that may be used
by the detectors, and (3) a testing framework
for measuring the performance of a MWE de-
tector. The software is available for free down-
load.

jMWE is a Java library for constructing and test-
ing Multi-Word Expression (MWE) token detectors.
The original goal of the library was to detect tokens
(instances) of MWE types in a token stream, given a
list of types such as those that can be extracted from
an electronic dictionary such as WordNet (Fellbaum,
1998). The purpose of the library is not to discover
new MWE types, but rather find instances of a set of
given types in a given text. The library also supports
MWE detectors that are not list-based.

The functionality of the library is basic, but it is
a necessary foundation for any system that wishes
to use MWEs in later stages of language processing.
It is a natural complement to software for discover-
ing MWE types, such as mwetoolkit (Ramisch et
al., 2010) or the NSP package (Banerjee and Peder-
sen, 2003). jMWE is available online for free down-
load (Finlayson and Kulkarni, 2011a).

1 Library Facilities

Detector API The core of the library is the detector
API. The library defines a detector interface which

provides a single method for detecting MWE tokens
in a list of individual tokens; anyone interested in
taking advantage of jMWE’s testing infrastructure or
writing their own MWE token detection algorithm
need only implement this interface. jMWE pro-
vides several baseline MWE token detection strate-
gies. Also provided are detector filters, which apply
a specific constraint to, or resolve conflicts in, the
output another detector.
MWE Index jMWE also provides classes for con-
structing, storing, and accessing indices of valid
MWE types. An MWE index allows an algorithm
to retrieve a list of MWE types given a single word
token and part of speech. The index also lists how
frequently, in a particular concordance, a set of to-
kens appears as a particular MWE type rather than
as independent words. To facilitate construction
of indices, jMWE provides bindings to the MIT
Java Wordnet Interface (JWI) (Finlayson, 2008b)
and JSemcor (Finlayson, 2008a), as well as classes
which extract all MWE types from those resources
and write them to disk.
Test Harness The linchpin of jMWE’s testing in-
frastructure is a test harness that runs an MWE de-
tector over a given corpus and measures its precision
and recall. The library comes with default bindings
for running detectors over the Semcor corpus or any
other corpus that can be mounted with the JSemcor
library. Nevertheless, jMWE is not restricted to run-
ning tests over Semcor, or even restricted to using
JSemcor for interfacing with a corpus: a detector can
be run over any corpus whose MWE instances have
been marked can be analyzed, merely by implement-
ing four interfaces. Also included in the testing in-

122



frastructure are a number of error detectors, which
analyze the detailed output of the test harness to
identify common MWE token detection errors. The
library includes implementation for twelve standard
error types.

2 Detection Algorithms

Preprocessing To run an MWE detector over a text
the text must, at a minimum, be tokenized. jMWE
does not include facilities to do this; tokenization
must be done via an external library. Most detec-
tion strategies also require tokens to be tagged with
a part of speech and lemmatized. This information
is also not provided directly by jMWE, but there are
bindings in the library for using JWI and the Stan-
ford POS Tagger (Toutanova et al., 2003) to tag and
lemmatize a set of texts, provided those texts can be
accessed via the JSemcor library.

2.1 Detector Types
MWE token Detectors can be split into at least three
types: Basic Detectors, Filters, and Resolvers. Per-
formance of selected combinations of these detec-
tors are given in Table 1.

Basic Detectors that fall into this category use an
MWE index, or other source of information, to de-
tect MWE tokens in a stream of tokens. jMWE in-
cludes several implementations of basic detectors,
including the following:
(1) Exhaustive: Given a MWE type index, finds all
possible MWE tokens regardless of inflection, order,
or continuity.
(2) Consecutive: Given a MWE type index, finds all
MWE tokens whose constituent tokens occur with-
out other tokens interspersed.
(3) Simple Proper Noun: Finds all continuous se-
quences of proper noun tokens, and marks them as
proper noun MWE tokens.

Filters These MWE detectors apply a particular fil-
ter to the output of another, wrapped, detector. Only
MWE tokens from the wrapped detector that pass
the filter are returned. Examples of implemented fil-
ters are:
(1) In Order: Only returns MWE tokens whose con-
stituent tokens are in the same order as the con-
stituents listed in the MWE type’s definition.
(2) No Inflection: Removes inflected MWE tokens.

(3) Observed Inflection: Returns base form MWEs,
as well as those whose inflection has been observed
in a specified concordance.
(4) Pattern Inflection: Only return MWE tokens
whose inflection matches a pre-defined set of part
of speech patterns. We used the same rules as those
found in (Arranz et al., 2005) with two additional
rules related to Verb-Particle MWEs.

Resolvers Like filters, these wrap another MWE
detector; they resolve conflicts between identified
MWE tokens. A conflict occurs when two identified
MWE tokens share a constituent. Examples include:
(1) Longest-Match-Left-to-Right: For a set of con-
flicting MWE tokens, picks the one that starts earli-
est. If all of the conflicting MWE tokens start at the
same point, picks the longest.
(2) Observed Probability: For a set of conflicting
MWE tokens, picks the one whose constituents have
most often been observed occurring as an MWE to-
ken rather than as isolated words.
(3) Variance Minimizing: For a set of conflicting
MWE tokens, picks the MWE token with the fewest
interstitial spaces.

Detector F1 (precision/recall)
Exhaustive
+Proper Nouns

0.197F1 (0.110p/0.919r)

Consecutive
+Proper Nouns

0.631F1 (0.472p/0.950r)

Consecutive
+Proper Nouns
+No Inflection
+Longest-Match-L-to-R

0.593F1 (0.499p/0.731r)

Consecutive
+Proper Nouns
+Pattern Inflection
+More Frequent As MWE

0.834F1 (0.835p/0.832r)

Table 1: F-measures for select detectors, run over Sem-
cor 1.6 brown1 and brown2 concordances using MWEs
drawn from WordNet 1.6. The code for generating this
table is available at (Finlayson and Kulkarni, 2011b)

Acknowledgments

This work was supported in part by the AFOSR un-
der grant number A9550-05-1-0321, and DARPA
under award FA8750-10-1-0076.

123



References
Victoria Arranz, Jordi Atserias, and Mauro Castillo.

2005. Multiwords and word sense disambiguation. In
Alexander Gelbukh, editor, Proceedings of the Sixth
International Conference on Intelligent Text Process-
ing and Computational Linguistics (CICLING 2005),
volume 3406 in Lecture Notes in Computer Sci-
ence (LNCS), pages 250–262, Mexico City, Mexico.
Springer-Verlag.

Satanjeev Banerjee and Ted Pedersen. 2003. The de-
sign, implementation, and use of the ngram statistics
package. In Alexander Gelbukh, editor, Proceedings
of the Fourth International Conference on Intelligent
Text Processing and Computational Linguistics (CI-
CLING 2003), volume 2588 in Lecture Notes in Com-
puter Science (LNCS), pages 370–381, Mexico City,
Mexico. Springer-Verlag.
http://ngram.sourceforge.net.

Christiane Fellbaum. 1998. Wordnet: An Electronic Lex-
ical Database. MIT Press, Cambridge, MA.

Mark Alan Finlayson and Nidhi Kulkarni. 2011a.
jMWE:, version 1.0.0.
http://projects.csail.mit.edu/jmwe

http://hdl.handle.net/1721.1/62793.
Mark Alan Finlayson and Nidhi Kulkarni. 2011b. Source

code and data for MWE’2011 papers.
http://hdl.handle.net/1721.1/62792.

Mark Alan Finlayson. 2008a. JSemcor, version 1.0.0.
http://projects.csail.mit.edu/jsemcor.

Mark Alan Finlayson. 2008b. JWI: The MIT Java Word-
net Interface, version 2.1.5.
http://projects.csail.mit.edu/jwi.

Carlos Ramisch, Aline Villavicencio, and Christian
Boitet. 2010. Multiword expressions in the wild? the
mwetoolkit comes in handy. In Chu-Ren Huang and
Daniel Jurafsky, editors, Proceedings of the Twenty-
Third International Conference on Computational Lin-
guistics (COLING 2010): Demonstrations, volume 23,
pages 57–60, Beijing, China.
http://mwetoolkit.sourceforge.net.

Kristina Toutanova, Daniel Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network. In
Proceedings of the Human Language Technology Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics (HLT-NAACL),
pages 252–259, Edmonton, Canada.

124


