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Abstract

Temporal uncertainty in raw data can impede
the inference of temporal and causal relation-
ships between events and compromise the out-
put of data-to-text NLG systems. In this paper,
we introduce a framework to reason with and
represent temporal uncertainty from the raw
data to the generated text, in order to provide a
faithful picture to the user of a particular situ-
ation. The model is grounded in experimental
data from multiple languages, shedding light
on the generality of the approach.

1 Introduction

Natural Language Generation (NLG) systems which
take raw data as input often need to transform it by
performing operations such as inference, abstraction
or approximation. However, in many domains, input
data is riddled with uncertainty or inaccuracy. For
example, a patient database may contain records of
interventions which were entered well after they ac-
tually occurred (Gatt et al., 2009). This problem is
particularly acute in systems where the temporal di-
mension of the data is important; it is exacerbated by
the lack of a principled way of handling temporal in-
formation in existing database management systems
(Terenziani et al., 2005).

Temporal uncertainty – that is, uncertainty about
the precise time at which an event occurred – can
affect NLG systems at the data processing and doc-
ument planning stages, since it affects temporal
and/or causal relationships between events. It also
impacts microplanning and realisation, since deci-
sions must be made as to whether a proposition is

to be simply asserted or modalised to express some
degree of epistemic (un)certainty. Simply asserting
a proposition will normally give rise to the presup-
position that the state of affairs described is known
for certain (Karttunen, 1972); conversely, modalis-
ing the proposition impacts its truth conditions (Pa-
pafragou, 2006).

In this paper, we argue that temporal uncertainty
should be explicitly communicated, and we focus on
the use of modalised propositions to acheive this1,
taking a multilingual perspective. Our aim is to ad-
dress two empirical questions. The first concerns the
(non-linguistic) representation and quantification of
uncertainty: given the raw data about an event, as
well as general knowledge that enables a limited
amount of reasoning about a situation, we are in-
terested in quantifying the degree of ‘subjective’ un-
certainty about the time of an event and the resulting
degree of uncertainty about the temporal relations
between it and other events (e.g x happened before
y). We propose a formalism to handle this, showing
that its predictions have a good correspondence to
human intuitions. Our second question concerns the
way in which modal expressions can be grounded in
subjective uncertainty arising from raw data. We de-
scribe an experimental design that enables us both to
quantify subjective uncertainty in a given situation,
and to map from subjective uncertainty to modal ex-
pressions. Our experiments are conducted in three
different languages which, though culturally fairly

1In what follows, our use of the term ‘modality’ refers to
the semantic or ‘notional’ category (Kratzer, 1981). As Kratzer
argues, this can be expressed in a variety of ways, ranging from
modal auxiliaries to adverbs of possibility, among others.
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close (insofar as they are European), are typolog-
ically diverse. In this way, we seek both to vali-
date our methodology using data from multiple lan-
guages, and to investigate the implications that dif-
ferences between languages can have for a proper
account of modality in NLG.

We begin with an overview of related work (Sec-
tion 2), followed by a description of the reasoning
formalism (Section 3), and the experiment and re-
sults (Section 4). We conclude in Section 5 with
some pointers to future work.

2 Epistemic uncertainty in language

The expression of uncertainty is usually achieved
through modal expressions, which are concerned
with the degree of possibility or necessity associated
with a particular proposition. Modality, which is of-
ten associated (and in some languages, conflated)
with the category of Irrealis, can be characterised in
terms of assertion (Palmer, 2001): an unmodalised
proposition is simply asserted (thereby presuppos-
ing certainty about the matter); its modalised coun-
terpart is not, or only with some qualification as to
the degree of evidence that the speaker has for it.

We are primarily interested in how the resources
that a language makes available to express epistemic
modality can be harnessed to express temporal un-
certainty in data-to-text systems, thus avoiding mis-
leading the reader. While the importance of this
problem has been pointed out in recent work (Portet
et al., 2009; Gatt et al., 2009), modality lacks a prin-
cipled treatment in NLG (but see Klabunde (2007)).
As Klabunde notes, NLG systems which use modals
in their output (Elhadad, 1995; Reiter et al., 2003)
do not seem to select these expressions in a princi-
pled way. The following example illustrates some
of the difficulties in dealing with epistemic modal-
ity, especially from a cross-linguistic perspective:

(1) A bank robbery occurred yesterday afternoon. An investigator
is trying to reconstruct the scene from eye-witness reports. He
knows for certain that the robbers were inside the bank for no
more than 45 minutes. He also knows for certain that the police
took 30 minutes to arrive on the scene after being alerted. He
has also interviewed some eye-witnesses. Here is what they
said: The robbers entered the bank at 16:00. The police were
alerted some time between 16:15 and 16:45.

Consider now the proposition The police were on
the scene before the robbers left the bank. In this

scenario, the certainty of this proposition is affected
by the fact that the event of the police being alerted
occurs within an uncertain interval. From an NLG
perspective, we would like to be able to (a) quan-
tify the degree of certainty associated with the oc-
currence time of the two events, as well as their tem-
poral relation; and (b) choose the right expression to
express this. A prerequisite for both these tasks is a
computationally tractable account of how modal ex-
pressions are grounded in temporal data, which also
supports fine-grained choices, such as that between
may and possibly.

However, it is unlikely that a model of
such choices can be built completely language-
independently, since modality exhibits considerable
cross-linguistic variation (Palmer, 2001). Languages
like English and French would commonly modalise
a proposition using modal auxiliaries (2a) or adver-
bials (2b). Whether the two systems (auxiliaries and
adverbials) are equivalent with respect to the degree
of uncertainty they express is an empirical question,
one that has a direct impact on the lexicalisation
strategies used by an NLG system.

(2) (a) La
the.fsg

police
police

pourrait/doit
may.3pl/must.3pl

avoir
have

été
be.3sg.ps

sur
on

les
def.pl

lieux
scene.pl

avant que
before

les
the.pl

voleurs
robber.pl

quittent
leave.3pl.ps

la
the.fsg

banque.
bank

‘The police may/must have been on the scene before the
robbers left the bank.’

(b) La
the.fsg

police
police

était
be.3sg.ps

surement/peut-être
definitely/possibly

sur
on

les
def.pl

lieux
scene

avant que
before

les
the.pl

voleurs
robber.pl

quittent
leave.3pl.pl

la
the.fsg

banque.
bank

‘(Possibly) the police were (definitely) on the scene
before the robbers left the bank.’

The above example suggests certain similarities
between English and French, despite their different
genetic classification (Anglo-Saxon vs. Romance).
The difficulties increase when other language fam-
ilies are considered. We will also consider a Euro-
pean language which comes from a third language
family, namely Maltese (Semitic), where the modal
auxilaries that have been identified (Vanhove et al.,
2009) tend to be more restricted in their use. For
example, the auxiliary seta’ (can.3sgm.pfv; ’could
have’) can be used to express epistemic possibility
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or likelihood, but this is only possible with the im-
perfective form and is more frequently rendered in a
construction involving clausal subordination using li
(‘that’), a form that is also commonly used with ad-
verbs like bilfors (e.g. bilfors li; lit. ‘by force that’,
i.e. ‘definitely’) and żgur (‘certainly’) (3a). One ad-
verbial that normally occurs without explicit subor-
dination of the matrix VP is the Romance-derived
forsi (‘maybe/perhaps’) (3b). However, current de-
scriptive work on these modals does not give a clear
picture of the difference in the distribution of these
expressions and suggests that some of them may be
highly restricted in their use.

(3) (a) Il-pulizija
the-police

jista’ jkun/bilfors/żgur
could be/definitely/certainly

li
that

kienu
be.pl.ps

fuq
on

ix-xena
the-scene

qabel ma
before

l-h̄allelin
the-robber.pl

telqu
leave.pl.ps

mill-bank.
from.the-bank

‘The police may have/definitely/certainly left the scene
before the robbers left the bank.’

(b) Il-pulizija
the-police

forsi
possibly

kienu
be.3pl.ps

fuq
on

ix-xena
the-scene

qabel ma
before

l-h̄allelin
the-robber.pl

telqu
leave.3pl.ps

mill-bank.
from.the-bank

‘Possibly the police were on the scene before the robbers
left the bank.’

The examples from the three languages under
consideration serve to illustrate a subset of the
grammatically diverse expressions that different lan-
guages make available to express epistemic uncer-
tainty, as well some possible differences that may
arise among them despite their cultural proximity
(insofar as all three are European languages). A con-
sideration of languages which are even more diverse
– historically, culturally and typologically – would
presumably shed light on even greater differences
in modal systems and their interaction with the ex-
pression of time, in line with recent work that ques-
tions the existence of absolute ‘universals’ across
languages (Evans and Levinson, 2009). An investi-
gation of such cross-linguistic differences is beyond
the scope of the present paper, though the method-
ology illustrated in the following sections is not re-
stricted to particular languages.

Neither of the two questions we have raised –
that of representing and quantifying uncertainty, and
that of mapping from this to the right modal ex-
pression in a particular language – has been treated

exhaustively in the NLG literature. To our knowl-
edge, the only recent approach to handling modals in
NLG is Klabunde (2007), who focuses on the gen-
eration of deontic modals (those related to obliga-
tion, rather than epistemic certainty) in the CAN sys-
tem, which advises students about university courses
(Klabunde, 2005; Klabunde, 2007). Klabunde’s ap-
proach is based on the influential possible worlds
framework proposed by Kratzer (Kratzer, 1977;
Kratzer, 1981; Portner, 2009), in which the truth of
a modalised proposition is evaluated against a (con-
textually determined) set of relevant possible worlds
or situations, ordered by their accessibility from the
current world or situation. In an epistemic context,
this set contains the worlds which are compatible to
some degree with the propositions which constitute
the underlying ‘evidence’ for the statement.

Most semantic work on modality has been based
on this framework (but see Papafragou (1998) for
a relevance-theoretic account, and Sweetser (1990)
for a cognitive-functionalist account). Neither of
these theories is straightforwardly applicable to the
type of problem illustrated in (1). Intuitively, the
temporal uncertainty of the proposition in the exam-
ple, which arises due to an event having a fuzzy tem-
poral interval, would be evaluated on a continuous
scale: given the knowledge that something occurred
between times t1 and t2, a person may feel more
certain of the occurrence towards the middle of the
interval, less so as one approaches its start or end. If
a continuous certainty scale is what is required, it is
difficult to see how approaches based on a treatment
of propositions as (crisp) sets of possible worlds can
be applied. Nor is it immediately obvious, were
the problem amenable to such a treatment, that this
is the most cognitively plausible or computationally
tractable way of representing uncertainty, relying as
it does on an exhaustive consideration of alternative
situations (Johnson-Laird, 1978). In the following
section, we consider an alternative proposal.

3 Temporal representation and reasoning

The formalism used to represent and reason with
events and relations between events is based on
the Metric Temporal Constraint Network (TCN)
(Dechter et al., 1991) approach.

This approach differs from purely qualitative ap-
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proaches — such as the one based on Allen’s
thirteen mutually exclusive binary relations (Allen,
1983)— as it considers only metric-based temporal
relations (e.g., ‘Mary left 10 minutes before James
arrived’ as opposed to ‘Mary left before James ar-
rived’) and represents events as time-points rather
than intervals The time-point metric approach is ca-
pable of representing intervals through start and end
points and can translate most qualitative intervals or
point relations into metric relations (e.g., a before b
can be reformulated as b−a ∈ [1,∞)) though recud-
ing the expressiveness of the interval relations (see
Vilain et al. (1987)). Moreover, there are numerous
algorithms to compute the consistency of a TCN net-
work efficiently, depending on the allowed experes-
sivity, though expressive power and computational
tractability tend to be inversely related. Other in-
teresting properties of TCNs are that they can be
used to represent numerical temporal information
that can then be queried or used to model expert
knowledge (Palma et al., 2006; Gao et al., 2009).
For more information about temporal reasoning and
the aforementioned formalisms the reader is refer-
eed to (Zhou and Hripcsaka, 2007; Artikis et al.,
2010).

In the TCN formalism, temporal representation
relies on time points and time is considered as a lin-
early ordered discrete set of instants (t0 < t1 <
· · · < ti < . . . ) where ∀i ∈ N, ti+1−ti = ∆t. ∆t is
a constant that represents the sampling period (e.g.
1 microsecond, 1 month, 1 century). We assume that
temporal information is composed of instantaneous
events and finite durative events. An instantaneous
event or event a is a tuple 〈t, o〉, where t ∈ N and
o ∈ O. t is the known date of occurrence of the
event and o represents some structured data corre-
sponding to this event (e.g. database record, infer-
ence, user input). Among other things, o can corre-
spond to a type (concept) in a knowledge repository
such as an ontology O. A durative event or interval
A is a tuple 〈as, ae, c, o〉, where as (resp. ae) is an
instantaneous event representing the start (resp. end)
of the durative event, c is a numerical constraint such
that ae − as ∈ (0, c] and o is the description of the
durative event.

Briefly, a TCN N consists of a set of instan-
taneous events (a, b, c) with constraints between
them. Each constraint T between a and b is repre-

sented by a set of binary constraints ({I1, . . . , In} =
{[ts1, te1], . . . , [tsn, ten]}) that represent the tempo-
ral knowledge about a situation. For instance, the
set of facts in example (1), can be represented by the
TCN depicted in Figure 1 where all durative events
are translated into pairs of events (e.g. ‘were inside
the bank’→ ‘robbers enter’ and ‘robbers leave’) and
all temporal relations are translated into binary tem-
poral constraints (e.g., ‘for no more than 45 min-
utes’→ [1, 45]). This also applies to absolute times,
which are represented with respect to the origin of
the day.

origin

robbers

enter

robbers

leave

police

alerted

police

arrived

[16:00,16:00]

[16:15,16:45]

[1,45]

[30,30]

[1,∞)

Figure 1: Robbers example represented as a TCN.

In the TCN approach, reasoning is seen as a tem-
poral constraint satisfaction problem (TCSP), which
consists in finding a solution that satisfies a set of
inequalities (e.g., ts1 ≤ b − a ≤ te1 ∨ · · · ∨ tsn ≤
b− a ≤ ten). Briefly, this consists in applying algo-
rithms that solve the shortest path problem to gener-
ate the minimal network (i.e., the network with the
tightest constraints). If one constraint is not satisfied
then no solution exists and the network is inconsis-
tent. For instance, if one wants to test the assertion
The police were on the scene before the robbers left
the bank, this constraint can be integrated into the
network (before → [1,∞); see the dashed edge in
Figure 1) and the consistency checking algorithm
will find no solution, because the latest possible de-
parture time of the robbers is 16:45 and the earliest
police presence is 16:45, which is not strictly be-
fore the robbers’ departure. While such reasoning is
perfectly correct, it might not correspond to the in-
tuitive answer a human would give. A human reader
is likely to take much more liberty with the interpre-
tation of the reported temporal facts, particularly if
it is a report made by another person. For instance,
the statement that the police took 30 minutes to ar-
rive might result in some allowance being made for
their arriving after 29 minutes, or after 31. A slight
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change in the interpretation of the constraints would
lead to very different results. To better capture these
intuitions, it is possible to represent each temporal
constraint as a fuzzy set (Zadeh, 1965).

There are several implementations of Fuzzy Tem-
poral Constraint Networks (FTCNs) (Barro et al.,
1994; Vila and Godo, 1994; Campos et al., 2002).
We will focus on the one implemented in the Fuzzy-
TIME engine (Barro et al., 1994; Campos et al.,
2002). FuzzyTIME is a general purpose engine that
can represent intervals as well as instants and all
common qualitative and quantitative temporal rela-
tions between them. All definitions are translated
into metric relations between time points on which
the reasoning is performed. In this approach, a bi-
nary constraint between two events is defined by
a normalised, unimodal possibility distribution π
which restricts the temporal distance between two
events. Recall that in possibility theory (Dubois et
al., 2003), the uncertainty about a temporal relation
r between two events a and b can be evaluated by
the two dual measures of possibility Π and necessity
(also called certainty) N , as follows:

Π(ra,b) = πr(b− a) (4)

N(ra,b) = 1−Π(r̄a,b) (5)

Where πr(b − a) ∈ [0, 1] is the possibility distri-
bution of the temporal distance between the events
a and b, representing the degree to which these two
events are possibly linked via relation r, and r̄a,b is
the complement of ra,b. The necessity of the relation
r between a and b can be summarised as follows:
ra,b is certain only if no relation contradicting ra,b

(i.e., r̄a,b) is possible.
An example FTCN is represented in Figure 2

where the arrival time of the police is translated into
a possibility distribution expressing the following
interpretation : it is completely possible that the po-
lice took 30 minutes to arrive, less possible that they
took 28-30 minutes or 30-32 minutes, and impossi-
ble otherwise. All other constraints are represented
as a uniform possibility distribution (e.g., the con-
straint [1, 45] is translated into a possibility distribu-
tion for which any value in its range is completely
possible).

In FTCN, the solutions to the network can sat-
isfy the constraints only to a certain degree σ, given

origin

robbers

enter

robbers

leave

police

alerted

police

arrived

[16:00,16:00]

[16:15,16:45]

[1,∞)

1

28 30 32

1

1 45

Figure 2: Robbers example represented as a FTCN.

that temporal constraints may be fuzzy. In Fuzzy-
TIME, an algorithm that combines exhaustively all
constraints is applied to obtain the minimal network
(i.e., in which the constraints have the smallest pos-
sible degree of imprecision) (Barro et al., 1994). For
instance, incorporating the assertion The police were
on the scene before the robbers left the bank. with
∆t = 1 minute leads to a network consistent with
only .5 possibility and 0 necessity (because the ‘af-
ter’ relation is completely possible).

This model therefore offers us the possibility of
quantifying the possibility and necessity of an event,
given a formalisation of the background knowledge.
Thus, this formalism can handle the first of the
two problems pointed out in the previous section,
namely, to quantify temporal uncertainty of events
in a fine-grained manner. Our next question is how
these values can be mapped to linguistic expressions
by an NLG system.

4 Experiment

In this section, we describe an experiment whose
aims were (1) to validate the possibility-theoretic
formalism against human data, by comparing un-
certainty computations to human subjective evalu-
ations based on the same scenarios; (2) to map sub-
jective certainty judgements to the classes of modal
expressions in French, Maltese and English intro-
duced in Section 2, thereby also testing whether the
formalism itself can adequately capture subjective
uncertainty judgements by speakers of different lan-
gauges. The experiment replicated the one reported
by Portet and Gatt (2010), with some differences in
the choice of materials, and with the crucial differ-
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ence that it was carried out on three groups of native
speakers of the three languages under consideration.
Furthermore, we go beyond their analysis in com-
paring the possibility-theoretic formalism to human
judgements.

English French Maltese
must doit bilfors
may pourrait jista’ jkun
possbily peut-être forsi
definitely sûrement żgur

Table 1: Modal expressions used in the experiment.

Design and procedure The experiment exposed
participants to scenarios such as those in example (1)
through a web interface; this is partially displayed
in Figure 3. Each scenario presented some back-
ground information, and then presented two proposi-
tions about two different key events (shown in bold-
face in (1). Key events always contained either an
exact or fuzzy temporal expression, which could re-
fer to the clock time of an event (e.g. at 16:00, be-
tween 16:00 and 16:45) or to its date (e.g. in 1890,
between 1890 and 1895), depending on the scenario.
The scenarios were designed to make it explicit that
the events themselves actually happened for certain
and that uncertainty was only related to their timing.
After reading a scenario, participants performed two
tasks:
1. Judgement: Participants were given a proposi-
tion involving a simple event or a temporal rela-
tion between two events, and were asked to judge
their subjective certainty about the proposition on a
scale (Figure 3, top). To elicit these subjective cer-
tainty judgements, we used a slider representing the
Ψ-scale developed by Raufaste et al. (2003). This
combines both possibility and necessity into a sin-
gle scale, which ranges from ‘impossible’ (Ψ = 0)
to ‘completely certain’ (Ψ = 1). From this Ψ mea-
sure, the corresponding possibility (Π) and necessity
(N ) values can easily be reconstructed using (6) and
(7) below.

Π(P ) =
{

2×Ψ if Ψ ≤ 0.5
1 if Ψ > 0.5

(6)

N(P ) =
{

0 if Ψ ≤ 0.5
2×Ψ− 1 if Ψ > 0.5

(7)

2. Expression choice: For each scenario, partici-
pants were also presented with a list of 6 different
versions of the proposition they had judged in ran-
dom order and asked to choose the one that they felt
best reflected their degree of certainty (Figure 3, bot-
tom). The list invariably included the original un-
modalised proposition (hereafter referred to as the
default case), as well as a negated version. These
were intended to cover the cases of complete cer-
tainty about the truth of a proposition (by hypothe-
sis, in the conditions with no uncertainty), or about
its falsity (hence, certainty that the proposition is
false). Apart from these, there were 4 versions con-
taining the expressions exemplified for the three lan-
guages in examples (2) and (3) and summarised in
Table 1. Note that the expressions are grouped to-
gether in this Table based on the authors’ intuitions
for convenience of presentation; whether or not the
expressions in the three languages correspond pre-
cisely is one of the empirical questions we seek to
address.
The experimental scenarios represented combina-
tions of two within-participants factors. Uncertainty
(3 levels) manipulated the amount of temporal un-
certainty in scenario, where either both key events
were given an exact time (e.g. at 16:00), or one had
a fuzzy temporal interval (e.g. between 16:00 and
16:45) or both did. Proposition Type (4 levels) ma-
nipulated the type of proposition whose subjective
certainty participants were asked to judge, namely:
a simple proposition describing either of the two key
events alone (e.g. the robbers left the bank at 16:45);
or a compound proposition describing a temporal re-
lation between them using one of the temporal con-
nectives before, after, or during. This design yields
3×4 = 12 conditions. We added a thirteenth condi-
tion, in order to balance the design by ensuring that,
for every level of uncertainty, there was a simple
proposition describing either the first key event or
the second. There was also a third, between-groups
factor, namely Language (Maltese/English/French).
Thus, our experiment had a mixed 3 (Uncertainty)
×4 (Proposition Type) ×3 (Language) design.

Materials and participants Thirteen scenarios
were constructed; each one had a version in En-
glish, Maltese and French. Within each language,
each one had 13 different versions corresponding to
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Figure 3: Partial screenshot of the experiment interface

each of the 13 conditions. The scenarios were ro-
tated through a latin square to create 13 versions of
the experiment in each language, where each sce-
nario appeared in each condition exactly once across
the 13 versions. The present analysis is based on
data from 3 different groups of 13 native speakers of
each language. Within each group, each participant
did one of the versions of the experiment.

4.1 Results
We first test the effects of Uncertainty and Proposi-
tion Type on subjective uncertainty judgements us-
ing the Ψ scale and compare the subjective judge-
ments made by experimental participants to the out-
put of the reasoning engine on the same scenarios.
We then attempt to model statistically the mapping
from subjective uncertainty to choice of linguistic
expressions.

4.1.1 Subjective uncertainty
Table 2 summarises the mean Ψ ratings over-

all and within each language, as a function of the
different levels of Proposition Type. At a glance,
there is a clear tendency for subjective certainty to
decrease as scenarios introduce more temporal un-
certainty, as expected. However Proposition Type
seems to affect ratings less drastically. To test these
intuitions, we used a linear mixed effects analy-
sis, with our three factors (Uncertainty, Proposition
Type and Language) as fixed effects, and partici-
pants and items as random effects, with mean Ψ
value as dependent variable. Our strategy was to
fit a simple model first, and compare it to increas-

ingly complex models, using a log likelihood test for
goodness of fit. Table 3 summarises models and in-
dicates whether they are different from the simplest
one (Model 0).2

Model Fixed effects Random effects Fit p
0 Uncertainty item NA NA
1 Uncert. participant 0 1
2 Uncert. participant + item 0.916 > .3
3 Uncert. + Lang. item 3.31 > .06
4 Uncert. + Prop. + Lang. item 3.98 > .3
5 Uncert. × Prop. + Lang. item 4.32 > .2
6 Uncert. × Prop. × Lang. item 5.45 > .4

Table 3: Linear mixed effects models. Goodness of fit
tests compare models to Model 0 using−2 log likelihood

Model 0 is a simple model incorporating only Un-
certainty as fixed effect, with item as random effect.
This was found to have a high goodness of fit rela-
tive to a model with only the intercept and no effects
(log λ = 152.4). The linear mixed effects analy-
sis for this model showed a strong main effect of
Uncertainty on Ψ values (t = 4.887, p < .001).
No subsequent model provided a better fit: Model
1, which incorporates participant as the only ran-
dom effect, and Model 2, which incorporates both
item and participant, are no better, suggesting that
the variance among participants was marginal, un-
like that of items (scenarios). The impact of differ-
ent scenarios is likely due to the difference between
those where event times were dates and those us-
ing clock times – the former are inherently ‘fuzzier’
since they involve a larger temporal interval.

Once item was established as the only significant
random effect, we tested several other models in-

2The χ2 values in the table are the −2LL values.
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No uncertainty 1 uncertain proposition 2 uncertain propositions
after before during simple after before during simple after before during

en 0.543 (0.48) 0.672 (0.44) 0.505 (0.50) 0.706 (0.43) 0.217 (0.34) 0.340 (0.43) 0.594 (0.41) 0.159 (0.34) 0.183 (0.36) 0.106 (0.28) 0.604 (0.47)
fr 0.554 (0.48) 0.672 (0.44) 0.411 (0.49) 0.728 (0.41) 0.375 (0.39) 0.311 (0.45) 0.562 (0.44) 0.051 (0.17) 0.185 (0.38) 0.315 (0.44) 0.502 (0.47)

mt 0.736 (0.36) 0.743 (0.38) 0.492 (0.47) 0.656 (0.42) 0.308 (0.38) 0.346 (0.46) 0.434 (0.46) 0.186 (0.33) 0.360 (0.48) 0.255 (0.42) 0.454 (0.47)
overall 0.614 (0.43) 0.696 (0.41) 0.471 (0.48) 0.697 (0.42) 0.298 (0.37) 0.332 (0.43) 0.530 (0.43) 0.1325 (0.30) 0.241 (0.41) 0.2225 (0.39) 0.522 (0.46)

Table 2: Mean Ψ values across languages and conditions (standard deviation in parentheses)

corporating more fixed effect combinations. The
main effect of Uncertainty persisted, but Model 3
found only a marginal main effect of language (t =
1.818, p = .06) and Model 4 showed no main effect
of Proposition Type (t = 0.811, p > .4). None of
the interactions (Models 5 and 6) yielded a better fit.
This replicates the finding of Portet and Gatt (2010),
who also found no effect of Proposition Type and no
interactions. Perhaps more strikingly, there was no
significant difference among participants across the
three different languages, suggesting that suggesting
that, in our data, the language used to describe sce-
narios didn’t affect uncertainty judgements much.
Note that this does not imply that linguistic expres-
sions across languages do not differ, only that for
a given set of facts associated with a scenario, the
level of subjective uncertainty was independent of
the language in which that scenario was described.

r p
fr .45 < .001
en .55 < .001
mt .42 < .001
overall .62 < .001

Table 4: Correlations between computed and elicited Ψ
judgements.

This finding is encouraging, as it suggests that,
to the extent that the reasoning formalism described
in Section 3 adequately matches human judgements,
it can be used to compute possibility and necessity
values (though not their mapping to expressions) in-
dependently of the target language in which a given
scenario is described. To test this, we computed the
Π and N values for each scenario using the rea-
soning engine described in Section 3, making two
assumptions: (i) if a scenario stated that an event
occurred at a specific time (or within a fuzzy inter-
val), the event was represented with that time or in-
terval as its start time; (ii) we assumed that, over a
given fuzzy interval, the possibility distribution for
an event was uniform, that is, if an event was stip-

ulated as having started between t0 and t1, it was
equally possible/necessary during any subinterval of
[t0, t1]. From the computed values for Π and N
the value of Ψ was derived and correlated to the
mean Ψ value obtained from participants. Table 4
summarises the correlations for each language, and
overall. All correlations were positive and highly
significant, and higher when averaged over all lan-
guages. The value of r = .62 for the ‘overall’ cor-
relation suggests that we can account for approxi-
mately (.622 =) roughly 40% of the variance in the
data. While this is not perfect, it does suggest that
the model is on the right track.

4.1.2 Choice of linguistic expression
To address our second question, we attempted to

predict the choice of expression made by partici-
pants from their subjective uncertainty ratings. This
was done for each language separately. Means and
frequencies are displayed in Table 5.

In all three languages, the table suggests a clus-
tering of expressions, with higher Π and N for the
default, must and definitely cases, and lower values
for may and possibly. However, there are also diver-
gences: in French, the counterpart for definitely has
a much lower N than in English or Maltese. French
may and possibly also have lower Π values. Mal-
tese Π values for may and possibly are also closer to
those for other expressions than they are in French
or English, although the correspondingN values are
similar.

Since our aim is ultimately to develop a function
that can map from a particular level of subjective un-
certainty to a modal expression in a given language,
we modelled these results using a multinomial lo-
gistic regression (essentially, a Maximum Entropy
model). This amounts to treating our problem as a
classification problem: given a scenario and a tem-
poral relation, with associated Π andN values, what
linguistic expression do these values map to? Our
model used the default as the reference category,
to which others are compared. We simplified the
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English French Maltese
Π N Π N Π N

default (27) 0.96 0.82 default (50) 0.97 0.92 default (39) 1 0.76
must (20) 1 0.92 doit (10) 1 0.81 bilfors li (18) 0.94 0.82
definitely (27) 1 0.94 sûrement (19) 0.96 0.49 żgur (26) 0.98 0.78
may (54) 0.86 0.09 pourrait (38) 0.71 0.09 jista’ jkun li (55) 0.95 0.14
possibly (28) 0.90 0.11 peut-être (35) 0.73 0.04 forsi (20) 0.90 0.16
negation (23) 0.58 0.04 negation (17) 0.24 0 negation (12) 0.29 0

Table 5: Mean Π and N values by phrase choice. Frequency of each choice is in parentheses.

modelling process by dividing the subjective Π and
N ratings into four intervals at increments of 0.25
(i.e. the new coding grouped together Π < .025,
0.25 ≥ Π < 0.5 etc), effectively recoding the pre-
dictor variables into categorical ones.

For both English and French, the model incor-
porating both Π and N yielded an excellent good-
ness of fit (English: model χ2 = 265.03, p < .001;
French: χ2 = 205.46, p < .001). However, this was
not the case for Maltese, where the combined model
was not significantly better than a model contain-
ing only the intercept. For this language, a model
with only N as predictor turned out to be better
(χ2 = 134.87, p < .001). This is relatively un-
surprising, considering that the possibility values for
the Maltese data are quite consistently high, with the
exception of the negated expressions. This may re-
flect a genuine difference between Maltese and the
other two languages under consideration; however,
given that the samples used in the present study were
relatively small, further testing will be required to
establish the reliability of this finding.

4.1.3 Lexical choice of modals in NLG
A regression model such as the one developed

above can be used to classify particular instances
(combinations of Π and N values), to identify the
best modal expression to use to express the temporal
uncertainty. To take an example suppose the rea-
soning engine predicts Π = 1 and N = 0 for the
proposition the police were on the scene before the
robbers left the bank. The model for English pre-
dicts no change in the likelihood of choosing the de-
fault expression (i.e. the unmodalised proposition)
where possibility values are high, all other things
being equal. However, in the present case, the low
necessity value substantially decreases the odds as-
sociated with the default. In this case, therefore,

the model would swing the choice in favour of that
expression whose probability increases, relative to
the default, as necessity decreases. In this case, the
most likely such expression is possibly. The model
would work in the same way for the other two lan-
guages under consideration. Furthermore, given that
our results suggest that the actual uncertainty ratings
for scenarios are independent of language (Section
4.1.1), we hypothesise that extending the model to
other languages would not require substantial alter-
ations to the reasoning formalism described in Sec-
tion 3, but only to the specific classification model.

5 Conclusions

This paper presented a formalism to reason with
temporal uncertainty and a model to map from
uncertainty to modal expressions in different lan-
guages. Our data shows that subjective uncertainty
varies as a function of the temporal uncertainty as-
sociated with events in a scenario; moreover, sub-
jective uncertainty correlates well with the values
computed by our model. Although we find no ev-
idence of a strong effect of participant variation in
our data, in future work we plan to investigate to
what extent subjective uncertainty differs between
participants using larger samples, as previous work
has shown that individual reasoning strategies may
differ (Benferhat et al., 2005).

We also described a logistic regression model to
predict the best expression in a particular language
given a specific degree of subjective uncertainty.
The experimental data suggests that there are sub-
stantial differences between the sets of expressions
tested for the three languages. More data from more
participants will be required to validate it and this is
our aim in the medium term, in addition to extending
our model to cover more linguistic expressions.
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