
Proceedings of the 12th International Conference on Parsing Technologies, pages 92–103,
October 5-7, 2011, Dublin City University. c© 2011 Association for Computational Linguistics

One-Step Statistical Parsing of Hybrid
Dependency-Constituency Syntactic Representations

Kais Dukes
Institute for Artificial Intelligence

University of Leeds, United Kingdom
sckd@leeds.ac.uk

Nizar Habash
Center for Computational Learning Systems

Columbia University, New York, USA
habash@ccls.columbia.edu

Abstract

In this paper, we describe and compare two
statistical parsing approaches for the hybrid
dependency-constituency syntactic repre-
sentation used in the Quranic Arabic Tree-
bank (Dukes and Buckwalter, 2010). In our
first approach, we apply a multi-step pro-
cess in which we use a shift-reduce algo-
rithm trained on a pure dependency prepro-
cessed version of the treebank. After pars-
ing, the dependency output is converted into
the hybrid representation. This is compared
to a novel one-step parser that is able to
learn the hybrid representation without pre-
processing. We define an extended labelled
attachment score (ELAS) as our perfor-
mance metric for hybrid parsing, and report
87.47% (F1 score) for the multi-step ap-
proach, and 89.03% (F1 score) for the one-
step integrated algorithm. We also consider
the effect of using different sets of morpho-
logical features for parsing the Quran, com-
paring our results to recent work on Modern
Standard Arabic.

1 Introduction

Research into statistical parsing for English has
resulted in over a decade of high-performance
results (Collins, 1999; Charniak, 2000), with
most work focusing on the Penn English Tree-
bank (Marcus et al., 1993). However, adapting
these parsing models to other languages has been
less successful. Results from the CoNLL-X
shared task on multilingual dependency parsing
showed that Arabic is one of the most challeng-
ing languages to parse, due to its rich morpholo-
gy and relatively free word order (Nivre et al.,
2007b).

In this paper we consider statistical parsing for
Classical Arabic, the direct ancestor of Modern
Standard Arabic (MSA). As a training and test

data source, we use the online Quranic Arabic
Corpus (http://corpus.quran.com). This
website is a useful study aid for understanding
the Quran through grammatical annotation, and
is used by 100,000 people monthly. In contrast to
other recent annotation efforts for MSA
(Maamouri et al., 2004; Habash and Roth, 2009),
Quranic Treebank annotators have cross-checked
their analyses against historical works based on
the traditional Arabic grammar known as i’rāb
 Salih, 2007; Dukes et al., 2011; Dukes) (إإعراابب)
and Buckwalter, 2010). To provide annotation
that closely follows traditional grammar, the
treebank creators used a hybrid representation
that supports relations between morphemes, as
well as between phrases, clauses and sentences.
The treebank also includes empty nodes for pro-
drop and for semantic elision.

This representation presents several challenges
to statistical parsing. Possible pipeline approach-
es include converting to pure constituency or to
pure dependency as a preprocessing step. The
alternative we pursue is using an integrated mod-
el to parse the hybrid representation. For other
parsing tasks, integrated models have been
shown to out-perform pipeline approaches, e.g.,
Goldberg and Tsarfaty (2008) integrate morpho-
logical and syntactic disambiguation for Hebrew,
and report improved parsing performance.

In the next section, we review the Treebank.
In Section 3, we survey related work. Section 4
describes our parsing algorithm. We present our
parsing approaches and evaluate in Sections 5
and 6, respectively.

2 The Quranic Arabic Treebank

For our parsing experiments we use version 0.5
of the Quranic Treebank, containing 37,578
word-forms (~ 49% of the full Quranic text),
segmented into 47,220 tokens (Dukes and
Buckwalter, 2010). A common scheme for en-

92

coding dependency treebanks is the CoNLL-X
format (Nivre et al., 2007b). The Quranic Tree-
bank uses an extension of this to support phrases
and elided words. Figure 1 shows an example
sentence illustrating common tags used in the
treebank. The extended format adds two new
columns: TYPE indicates the different types of
nodes, and EXTENT defines a phrase by specify-
ing start and end terminal nodes. Head nodes,
dependency labels, and morphological features
are shown in separate columns. On the tree-
bank’s website, this information is represented
visually using dependency graphs (Figure 2).
Read from right-to-left, this graph uses a conven-
tion that dependent nodes point towards their
heads, and edges are labelled with roles in Ara-
bic. The second Arabic word in parenthesis is an
implied elided subject pronoun that has been
syntactically annotated, and is not in the original
Quranic verse. The last word on the left has been
segmented into two tokens, resulting in a total of
five terminal nodes in the graph.

This hybrid representation is based on the tra-
ditional i’rāb analysis found in Salih (2007), a
12-volume work collating previous historical
analyses, e.g., the analysis for Figure 2 states:

In this verse, ‘said’ is a perfective verb,
whose subject is an elided pronoun of the
form ‘he’. The noun ‘lord’ is in the nomina-
tive case and is the predicate of the demon-
strative pronoun ‘this’. The suffixed pronoun
‘my’ attached to the noun is a possessive clit-
ic. The nominal sentence, headed by the
demonstrative pronoun, acts as the object of
the verb ‘said’.

The example sentence shown in Figures 1 and

2 illustrates several linguistic aspects of the
Quranic Treebank which make it challenging for
statistical parsing: rich morphology, phrase struc-
ture, and elision. We discuss various aspects of
the Treebank next.

Dependency: Although traditional Arabic
grammar developed independently from modern
European linguistics, it uses the concepts of
heads (āmil) and dependents (ma’mūl fī-hi).
Along with Panini’s grammar for Classical San-
skrit, it is considered to be one of the origins of
modern dependency grammar (Owens, 1988;
Bohas et al., 1990).

Morphemes: The basic unit of analysis in tra-
ditional Arabic grammar is the morphological
segment. Compound word-forms in Classical
Arabic are tokenized into independent grammati-
cal units. This agrees with other recent treebank-
ing efforts for MSA such as the Columbia Arabic
Treebank (Habash and Roth, 2009), the Prague
Arabic Dependency Treebank (Smrž, et al.,
2008), and the Penn Arabic Treebank (Maamouri
et al., 2004). This also compares with recent
parsing work for other morphological rich lan-
guages. For example, Eryiğit et al. (2008) show
that for Turkish using groups of morphemes as

Node Type Extent Form Tag Head Dep Features
1 T _ qaAla V _ _ PERF|LEM:qaAla|ROOT:qwl|3MS
2 E _ Huwa PRON 1 subj _
3 T _ ha`*aA DEM _ _ LEM:ha`*aA|MS
4 T _ rab~i N 3 pred LEM:rab~|ROOT:rbb|M|NOM
5 T _ Y PRON 4 poss PRON:1S|SUFFIX
6 P 3-5 _ NS 1 obj _

Figure 1: Example hybrid graph in extended CoNLL-X format. Node types: T = Terminal node, E = Elided word /

Empty category, P = Phrase node; Tags: V = Verb, PRON = Pronoun, DEM = Demonstrative, N = Noun, NS =
Nominal Sentence; Dependencies: subj = subject, pred = predicate, poss = possessive construction, obj = object.

 (6:76:9)
rabbī

(is) my Lord.’

(6:76:8)
hādhā
‘This

(6:76:7)
qāla

(He) said,

Figure 2: Hybrid graph in presentation form for the
annotated example: He said, ‘This is my Lord.’

93

the basic unit instead of words improves parsing
accuracy.

However, in contrast to other Arabic treebanks
that define their own segmentation schemes,
morphological annotation in the Quranic Tree-
bank closely follows segmentation rules from
i’rāb (Dukes and Habash, 2010). In addition to
part-of-speech, the grammar describes multiple
features for each morpheme, including person,
gender, number, verb mood, noun case and state.
The treebank also includes roots and lemmas. A
root is a sequence of three or four radicals that
are used to group words with related derivational
morphology. The lemma is a further subdivision
that groups forms varying only in inflectional
morphology (Habash, 2010). In our experiments,
we consider how different combinations of these
rich morphological features affect the accuracy
of statistical parsing.

Phrases: Most dependencies in the treebank
relate morphological segments. The treebank
also includes dependencies between these units
and phrases, and between pairs of phrases. In
accordance with traditional Arabic grammar, the
Quranic Treebank annotates five phrase types:
nominal sentences (جملة ااسمیية), verbal sentences
 preposition ,(جملة شرططیية) conditionals ,(جملة فعلیية)
phrases (جارر وومجروورر) and subordinate clauses (تأوویيل
 There are simple rules for distinguishing .(مصدرر
between these phrase types in the grammar.

Phrase nodes are used to model constituency
structure. In a pure dependency representation,
the grammatical relationship between a pair of
phrases is implicit in the edge that connects the
head words of the two phrases. In the traditional
Arabic grammar of the Quran, phrase-level rela-
tions such as conjunction and apposition are
made explicit in syntactic analysis. Since the
grammatical rules that determine these phrase
structures allow recursion, the Quranic Treebank
includes hybrid graphs that contain multiple lev-
els of nested consistency structure.

Elision: In the Penn English Treebank, empty
categories are used for constructions such as null
complementizers: ‘The man (0) I saw’, and for
wh-movement: ‘What1 do you want (NP *T*-
1)?’. The Quranic Treebank distinguishes be-
tween morphological, syntactic and semantic
elision. Like MSA, Classical Arabic is a pro-
drop language. A verb’s dropped subject pro-
noun is implied through its morphology. Syntac-
tic elision arises in order to satisfy constraints in
the grammar. For example, in certain cases prep-
osition phrases are attached to nouns via an elid-
ed adjective. Semantic elision involves elided

words, used to explain the reason for case mark-
ers in certain verses of the Quran. Dukes, Atwell
and Sharaf (2010) provide a more detailed de-
scription of elision in the Quranic Treebank. In
our parsing experiments in this paper, we handle
the three types of elision separately as they form
different edge patterns in dependency graphs.

3 Previous Related Work

Related computational work includes statistical
parsing for other morphologically rich languages,
as well as recent parsing work for hybrid repre-
sentations, and for recovering elision.

Hebrew, another Semitic language, faces a
similar set of challenges in comparison to pars-
ing Arabic. Both feature relatively free word or-
der and require morphological disambiguation
for syntactic parsing. For dependency grammar,
Goldberg and Elhadad (2010), apply a pipeline
approach by disambiguating morphology and
syntax in two separate steps. They report a
84.2% labelled attachment score using gold mor-
phological disambiguation, and 76.2% when us-
ing automatic morphological analysis.

For Arabic, Kulick et al. (2006) discuss pars-
ing the Penn Arabic Treebank using phrase struc-
ture grammar. One conclusion that can be drawn
from their results is that parsing using a constitu-
ency representation leads to lower accuracy for
Arabic in comparison to English. They report a
Parseval F1-score of 74% for version 1 of the
Penn Arabic treebank, and 88% for English using
a similar sized corpus, trained using Bikel's par-
ser (Bikel, 2004).

More recent work for Modern Arabic has fo-
cused on dependency grammar. Marton et al.
(2010) use MaltParser for parsing the CATiB
treebank, and experiment with different combi-
nations of rich morphological features. Like the
Quranic Arabic Treebank, CATiB is also based
on traditional Arabic grammar, although it uses a
subset of the full traditional syntactic roles and
only six POS tags. Another related Arabic tree-
bank that uses a dependency representation is the
Prague Arabic Dependency Treebank (Smrž, et
al., 2008). Hall et al. (2007) use MaltParser to
parse ten different languages, including data
from the Prague Arabic Treebank. They compare
this to an ensemble system that combines six
different strategies to boost parsing performance.

In addition to parsing Arabic, MaltParser is
ideally suited to parsing morphologically rich
languages, due to its integration of flexible fea-
ture sets during training (Nivre, et al., 2007a).

94

For example, Bengoetxea and Gojenola (2010)
use MaltParser for version 2 of Basque Depend-
ency Treebank, although to simplify the syntactic
representation this latest version no longer in-
cludes empty nodes for ellipsis and coordination.
Most statistical parsers do not handle elision.
However, Gabbard et al. (2006) show that it is
possible to fully recover Penn Treebank-style
trees for English including empty categories, by
training a cascade of statistical classifiers.

For parsing hybrid representations, Hall and
Nivre (2008) adapt MaltParser to the German
TIGER and TüBa-D/Z treebanks, reporting a
labelled attachment score close to 90%. Similar-
ly, Hall et al. (2007) adapt MaltParser for hybrid
constituency-dependency parsing of the Swedish
Talbanken05 treebank. These treebanks are hy-
brid in a different sense to the Quranic Treebank.
For each sentence, they include dual annotation
in both constituency and dependency grammar,
in contrast to combining these into a single rep-
resentation. A related example is the Hindi/Urdu
multi-representational treebank (Bhatt et al.,
2009). For the baseline experiment that we de-
scribe in section 5, we use a dependency-based
encoding similar to the scheme Hall et al. (2007)
use for parsing the hybrid German and Swedish
treebanks.

4 Hybrid Statistical Parser

In this section we describe the Hybrid Statistical
Parser (HSP) that we use for our parsing experi-
ments. Instead of using MaltParser, we imple-
mented a new parser in Java using a similar algo-
rithm, along with a new graphical user interface
(Figure 3). We made this decision to allow us to
extend the parsing architecture, and created the
user interface to help debug the parser. As with
previous work that uses MaltParser for other
morphologically rich languages, we assume that
input sentences to HSP have been tokenized and
already annotated with part-of-speech tags and
features. We use gold-standard tokenization and
POS tags.

HSP outputs both pure and hybrid dependency
graphs. Each of these have a formal definition.
Let (t1, ..., tn) be an input sentence that has been
morphologically tokenized, and let R denote the
set of dependency relations. A pure dependency
graph is defined as G = (V, E, L), where V = {t1,
..., tn} are the vertices formed from the input to-
kens, E ⊆ V × V are the graph’s edges, and L : E
→ R are the edge labels. For hybrid graphs, we
extend the set of vertices to include phrase
nodes. Let pij = (ti, tj) denote the phrase that
spans the tokens from ti to tj inclusively, and let
P denote the set of all possible phrases. We de-

Figure 3: Custom Java application for HSP showing the steps in an example parsing program for Arabic.
The various operations on the left panel are described in Section 4.1.

95

fine a hybrid dependency graph as G' = (V', E',
L') where V' = {t1, ..., tn} ⋃ P' and P' ⊆ P. As
before, the edges are E' ⊆ V' × V' with labels L' :
E' → R. For elision, we further extend the set of
vertices to include empty categories as additional
terminal nodes.

4.1 Parsing Algorithm

HSP uses a shift-reduce algorithm similar to
Nivre’s. Two data structures are used for parsing:
a stack S for temporary storage and a queue Q to
buffer input. In its initial configuration, the par-
ser has all input tokens placed onto the queue
with the stack empty: Q = (t1, …, tn) and S = ∅.
The parser reads from the queue and finishes
when the queue and stack are both empty (Q = ∅
∧ S = ∅). To construct a dependency graph, a
sequence of operations are executed by the par-
ser, analogous to the instructions in a computer
program. Figure 3 shows the operations used to
parse the example sentence used previously in
Figures 1 and 2.

In contrast to MaltParser, HSP uses an extend-
ed instruction set. To define these operations, let
Q = (q1, …, qA) and S = (s1, …, sB) be the state of
the parser at an intermediate stage of the pro-
gram, and Q' and S' be the state after executing
the next instruction. The operations are:

1. SHIFT reads the next token from the queue and

moves this to the top of the stack: Q' = (q2,
…, qA) and S' = (q1, s1, …, sB).

2. REDUCE pops the stack: S' = (s2, …, sB).

3. LEFT adds an edge to the graph, with s1 as the

head node and s2 as the dependent node.

4. RIGHT adds an edge to the graph, with s2 as

the head node and s1 as the dependent node.

5. REDUCE2 pops the second node on the stack:

S' = (s1, s3, …, sB).

6. EMPTY adds an empty node e to the graph

after s1. The elided node e is pushed onto the
stack: S' = (e, s1, …, sB).

7. SUBJECT is only applicable if s1 is a verb. An

elided pronoun e is inserted after s1, and a
subj edge is added with s1 as the head node,
and e as the dependent node. e is pushed onto
the stack: S' = (e, s1, …, sB).

8. SUBGRAPH adds a phrase node p to the graph
spanning the terminal nodes from s1 to the
end of the subgraph with root s1. p is pushed
onto the stack: S' = (p, s1, …, sB).

Three of these instructions are parameterized.

LEFT and RIGHT take an edge relation r ∈ R, and
EMPTY takes a part-of-speech as a parameter.
The last four instructions are extensions com-
pared to MaltParser. EMPTY is used to add elided
nodes with a specific part-of-speech. SUBJECT is
similar to the combination EMPTY then LEFT , but
takes into consideration the morphology of the
verb to produce a correctly inflected subject pro-
noun. REDUCE2 is useful in the situation where
an edge should be formed between the first and
third elements of the stack, so that the second
element can be easily discarded. After a SUB-
GRAPH operation, it is possible to use REDUCE2
to discard the head of the subgraph, which would
now be at the second element of the stack. See
the parsing run in Figure 3 for an example of
this. Only the first four instructions listed above
are used for pure dependency graphs. In hybrid
mode, the parser uses all eight instructions.

4.2 Machine Learning

Like MaltParser, HSP uses supervised learning
during training. For each graph in the training
data, an oracle driven by a small set of rules is
used to deduce the sequence of actions required
to construct the graph. For machine learning, we
use support vector machines, implemented by the
Java version of LIBSVM (Chang and Lin, 2001).
For each step in the parsing programs, a collec-
tion of SVM classifiers learn to predict the next
operation, given the feature vector associated
with the first few nodes at the top of the queue
and stack. Feature selection is described in more
detail in the next section.

We apply the standard technique of binariza-
tion of input features in the training data, so that
a single symbolic feature is represented using
many binary predicates (Yamada and Matsumo-
to, 2003). To reduce learning time, the training
set is partitioned using the part-of-speech at the
top of the stack, and one statistical classifier is
trained for each part-of-speech. We use the same
LIBSVM settings that Hall and Nivre (2008) use
for parsing the German TIGER and TüBa-D/Z
treebanks: γ = 0.2 and r = 0 for kernel parame-
ters, C = 0.5 for penalty and ε = 1 for termina-
tion. We also use the same quadratic kernel:

K(xi, xj) = (γxi

Txj + r)2.

96

5 Parsing Experiments

We compare two approaches to parsing the tree-
bank. First, we use HSP in pure dependency
mode and recover the hybrid representation
through a post-processing step. The second ex-
periment uses an integrated approach that builds
phrase structure and elided nodes during parsing.
Both of these experiments are repeated using
different sets of morphological features.

5.1 Multi-step Parsing

In our first experiment, we perform the following
steps:

1. The training data is converted to pure de-

pendency by encoding additional information
using new complex edge labels.

2. In the learning phase, we restrict HSP to using

only the four operations that are required for
pure dependency parsing: SHIFT, REDUCE,
LEFT and RIGHT.

3. The parser’s output is pure dependency. We

recover the hybrid representation by reversing
the transformations in step 1.

The size of the unconverted dataset is 50,955

tokens, including 3,775 empty categories. The
dependency graphs in the treebank contain 9,847
phrase nodes and 38,642 edges. After conver-
sion, all phrase nodes and empty categories were
removed, resulting in 47,220 tokens and a total
of 34,849 edges. The number of edges dropped
due to collapsing edges between empty catego-
ries.

For conversion, we use a similar process to
Hall et al. (2007, 2008)'s approach for German
and Swedish, but adapt this to the representation
used for traditional Arabic grammar. During the
conversion process, we apply graph transfor-
mations to encode information about phrase
structure and elision:

Phrases: Let p = (ti, tj) be a phrase node in the
hybrid graph covering the terminal nodes from ti
to tj inclusively. The conversion for the phrase
node p is based on the observation that the
phrase covers a subgraph with root ω0. If p is a
dependent node with edge E, head h, and de-
pendency relation r, we remove E and p and add
a new edge E' with dependent ω0, head h, and
label +r. Similarly, if p is a head node, we add a
new edge with label r+. For the inverse trans-
formation, +r and r+ denote expanding the

edge’s dependent or head into a subgraph respec-
tively. The label +r+ indicates that both head and
dependent nodes for that edge should be expand-
ed, to produce an edge between a pair of phrases.
Figure 4 illustrates this conversion process. As
with the dependency graphs displayed on the
treebank's website, the convention in these dia-
grams is that dependents point towards heads.

Elision: For verbs with elided subject pro-
nouns, we simply remove these from the con-
verted graph as they are easily recovered through
the verb's rich morphology. To keep the trans-
formation rules simple, for syntactic elision we
consider only the most common case where two

Figure 4: Conversion of phrase structure.

Figure 5: Conversion of syntactic elision.

97

tokens are connected via an empty category
(Figure 5). If a depends on an elided node e with
part-of-speech pos and relation r1, and e depends
on b with relation r2, we remove e and the two
edges. We add a new edge with dependent a,
head b and complex label r1 | pos | r2.

As we discuss in the evaluation section, the
performance of the baseline approach to parsing
is affected by the coverage of the conversion
process. However, the small set of rules above
for phrases and elision allow us to correctly re-
cover nearly all edges in the hybrid graphs
through this process.

5.2 Integrated Parsing

The integrated approach is simpler because there
are no conversion steps. We train HSP using the
treebank’s full hybrid representation without
preprocessing. In this experiment, we add to the
instruction set the four parser actions that are
required to build hybrid graphs: REDUCE2, EMP-
TY, SUBJECT and SUBGRAPH. Although in both
cases the same set of features are available dur-
ing the training phase, the two approaches lead to
different machine learning problems. In the first
experiment, the parser has to learn more complex
edge labels. In the second experiment, there are
fewer classes for classification, and phrase struc-
ture and elision are integrated directly into the
parsing process.

5.3 Feature Selection

The parser uses graph features as well as mor-
phological features, taken from the top three
nodes on the stack and the top from the queue.
The graph features are DEPREL, IS ROOT and IS
EDGE. The first of these is a compound feature:
For each relation r ∈ R, a binary predicate is set
if the node has a dependent with that relation. IS
ROOT is set if the node is the root of a well-
formed subgraph, and IS EDGE is set if s1 and s2
form a previously parsed edge.

After initial work using a subset of the data,
we decided to use five different sets of morpho-
logical features, which we grouped together to
simplify the number of parsing experiments
(Figure 6). A more detailed description of these
features is given in the treebank’s annotation
guidelines (Dukes, Atwell and Sharaf, 2010).
Each feature set also includes the same graph
features. For our parsing experiments, we use
gold-standard morphological data for the parser’s
input.

In comparison, Marton et al. (2010) show that
for modern Arabic using predicted features or
gold-standard morphological features for parsing
achieves similar results. Our different feature
sets are described below:

POS: This baseline feature set includes the
part-of-speech and phrase tags for the selected
nodes.

MORPH6: This set adds the core morphologi-
cal features that might help with parsing, based
on domain knowledge of traditional Arabic
grammar: VOICE, MOOD, CASE and STATE. State
is either not-specified, definite (for the Arabic
definite article al- prefix) or indefinite (for tan-
ween).

MORPH9: Adds a further three morphological
features. PRONTYPE marks a pronoun clitic as
either an object pronoun or subject pronoun. Due
to Arabic’s rich morphology, these different
types of clitics are common, and they form either
subject or object dependency relations when at-
tached to verbs. The feature SEGTYPE indicates if
a token is a prefix, stem or suffix. The COPULA
feature is used for a subset of copular verbs
known as kāna wa akhwātaha (كانن ووااخوااتھها). Alt-
hough assigned the same part-of-speech tag as
normal verbs, in traditional Arabic grammar the-
se words form subject and predicate relations
instead of subject and object.

LEMMA: To test the effect of lexicalization on
the parser, this feature set adds lemmas.

PHI: This feature set includes the so-called
phi-features of person, gender and number.

Features POS MORPH6 MORPH9 LEMMA PHI

POS Y Y Y Y Y
PHRASE Y Y Y Y Y
VOICE - Y Y Y Y
MOOD - Y Y Y Y
CASE - Y Y Y Y
STATE - Y Y Y Y
PRONTYPE - - Y Y Y
SEGTYPE - - Y Y Y
COPULA - - Y Y Y
LEMMA - - - Y Y
PERSON - - - - Y
GENDER - - - - Y
NUMBER - - - - Y

Figure 6: Morphological features used for parsing.

98

6 Evaluation

6.1 Metrics and Methodology

Two standard metrics for evaluating parsing per-
formance are LAS (labelled attachment score)
for pure dependency parsing, and Parseval for
constituency parsing. LAS is a single measure,
while Parseval defines three measures: precision,
recall, and F1-score, where F1-score is the har-
monic mean of precision and recall. For hybrid
parsing, we combine both LAS and Parseval into
a new metric which we call ELAS (extended la-
belled attachment score). We first define the two
existing metrics in set-theoretic terms, and then
show how they can be combined.

In the CoNLL-X shared task on multilingual
dependency parsing (Nivre, et al. 2007b), LAS
was used an official accuracy metric. Let (t1, ...,
tn) be an input sentence that has been morpholog-
ically tokenized, G = (V, E, L) be an expected
graph from the reference data, and G' = (V', E',
L') be the corresponding pure dependency graph
output by the parser. Let H(t) be the expected
head of the token t ∈ {t1, ..., tn}, or ϕ if t is head-
less. Similarly, if H(t) ≠ ϕ, let l(t) ∈ L denote the
expected label of the edge e ∈ E from t to H(t).
The LAS metric for the dependency parse pair
(G, G') is then defined as the cardinality ratio:

{ }

{ }φ
φ

≠

ʹ′=∧ʹ′=∧≠

)(:
)()()()()(:

tHt
tltltHtHtHt

For a pure dependency graph, this is the frac-

tion of tokens that are assigned the correct head
node and dependency label. This token-based
definition does not easily generalize to hybrid
parsing since hybrid graphs can contain edges
between phrase nodes. Therefore, we provide a
second definition of LAS by shifting focus from
tokens to edges. For a well-formed pure depend-
ency graph, the number of tokens with heads is
the same as the number of edges. We define the
edge equivalence relation e ≡ e' to be true if and
only if e and e' both connect t to H(t) and if l(e) =
l(e'). We then have the following edge-based def-
inition:

LAS =
(){ }

E
eeEeEe ʹ′≡∈∃ʹ′∈ʹ′ :

For constituency phrase structure, the Parseval

metric (Black et al., 1991) can also be defined
using a similar equivalence relation. Let C de-
note the set of constituency labels. Given a sen-

tence (t1, ..., tn), we let pij = (ti, tj) be the phrase
that spans the tokens from ti to tj inclusively with
label c(p) ∈ C. Let P denote the set of non-
terminal phrases in a parse tree from the refer-
ence data, and P' be the corresponding set of
phrases output by a pure constituency parser. A
phrase p' ∈ P' is considered to be correct if there
exists an equivalent phrase p ∈ P with the same
label that spans the same tokens. We define the
phrase equivalence relation p ≡ p' ⇔ ∃i, j : p = pij
∧ p' = p'ij ∧ c(p) = c(p'). For the constituency
parse pair (P, P') we define Parseval precision
and recall scores as:

Precision =
(){ }

P
ppPpPp

ʹ′

ʹ′≡∈∃ʹ′∈ʹ′ :

Recall =
(){ }

P
ppPpPp ʹ′≡∈∃ʹ′∈ʹ′ :

For hybrid parsing, we consider an edge in a

parsed graph G' = (V', E', L') to be correct if it
has an equivalent edge in the reference graph G
= (V, E, L). Two edges are equivalent if they
have the same edge label, and connect equivalent
vertices. A vertex v ∈ V may represent a token, a
phrase node or elision. We define the vertex
equivalence relation v ≡ v' to be true when v and
v' are both the same token. For two vertices that
are phrases (v = p ∧ v' = p'), we use the same
phrase equivalence relation p ≡ p' in the Parseval
metric. For elision, two vertices are equivalent if
they have the same POS tag and surface form.
For two edges, e from v to H(v), and e' from v' to
H'(v'), we define the edge equivalence relation as
e ≡ e' ⇔ v ≡ v' ∧ H(v) ≡ H' (v') ∧ l(e) = l(e'). We
then define ELAS precision and recall scores as:

Precision =
(){ }

E
eeEeEe

ʹ′

ʹ′≡∈∃ʹ′∈ʹ′ :

Recall =
(){ }

E
eeEeEe ʹ′≡∈∃ʹ′∈ʹ′ :

and the F1-score as the harmonic mean of preci-
sion and recall. This metric combines LAS and
Parseval. For pure dependency graphs, ELAS
recall is the same as vanilla labelled attachment
score. For an edge between two phrase nodes in a
hybrid graph, the metric uses a Parseval-like
measure of correctness for the two phrases.

99

6.2 Results

We use ELAS as our evaluation metric for meas-
uring the performance of HSP in both the one-
step and two-step parsing experiments. To re-
duce sample bias, we use 10-fold cross-
validation. Our F1-scores are calculated by ag-
gregating the total number of true positives and
false positives across the ten folds, as per method
three in Forman and Scholz (2009).

Figure 7 shows the results for the two parsing
approaches. Using the best performing feature
set, HSP achieves an F1-score of 87.47% for the
multi-step approach, and 89.03% for the inte-
grated approach. This high performance may not
only be due to the treebank being annotated with
rich morphological features or our choice of al-
gorithm. The Quranic text contains many exam-
ples of syntactic and stylistic repetition (Salih,
2007). Repetition leads to an easier machine
learning problem, as fewer non-standard cases
are encountered during training.

For statistical parsing, the five feature sets
above each give different results. It is surprising
that the POS feature set is already a good base-
line. Using no morphological features and only
part-of-speech tags, this feature set produces
scores of 75.54% and 76.61% for the two ap-
proaches respectively. Our explanation for this is
the fact that the treebank uses a detailed part-of-
speech tagset, with 45 tags. However, we note
that all five feature sets use the same graph fea-
tures defined in the previous section. Without
these graph features, accuracy for the baseline
POS feature set drops to only 21.64%. The graph
features provide constraints on possible depend-
encies. For example, the DEPREL features stop
additional edges being formed where these
would not make sense based on examples in the
training data, such as multiple subjects for the
same verb.

The next feature set MORPH6 adds voice,
mood, case and state. The improvement over the
POS feature set is 5.56% for the multi-step ap-
proach and 5.97% for the integrated approach.
This is consistent with recent work for parsing
Modern Standard Arabic. Marton et al. (2010)
use a similar set of morphological features to
improve parsing accuracy for CATiB (Habash
and Roth, 2009). The next set MORPH9 similarly
improves performance using further morphologi-
cal features.

In comparison to parsing Modern Standard
Arabic, the best feature set is LEMMA, which
boosts performance by a further 1.33% and
1.17% respectively over MORPH9. However, the
feature set PHI that adds person, gender and
number, surprisingly degrades performance by
0.19% and 0.13% for the two approaches. This
contrasts with recent work for parsing CATiB,
where the phi-features have been shown to be
helpful. We conclude that adding these features
may not be statistically significant for parsing the
Quran using 10-fold cross-validation, or that this
last feature set possibly includes too many fea-
tures for our SVM model, given the relatively
small size of the current version of the treebank.

6.3 Effect of the Conversion Process

The results above show that the integrated parser
outperforms the multi-step parser for all of the
five feature sets. However, it is interesting that
the absolute difference between the two F1-
scores consistently lies in the narrow band 1.4 ±
0.32. This suggests that the two parsers have
similar sensitivities to feature selection.

Another factor affecting the performance of
the multi-step parser is the accuracy of the con-
version process from the hybrid representation to
pure dependency, and then back to hybrid. The
rule-based conversion algorithm outlined in sec-
tion 5.1 correctly recovers 94.81% of edges. Alt-

Feature Set
Multi-step Parser Integrated Parser

F1-Diff.
Precision Recall F1-Score Precision Recall F1-Score

POS 76.73 74.38 75.54 78.28 75.01 76.61 +1.07
MORPH6 82.52 79.74 81.10 84.62 80.64 82.58 +1.48
MORPH9 86.98 85.32 86.14 89.42 86.35 87.86 +1.72
LEMMA 88.42 86.54 87.47 90.98 87.16 89.03 +1.56

PHI 88.23 86.35 87.28 90.87 87.02 88.90 +1.62

Figure 7: Extended labelled attachment scores (ELAS) for parsing the treebank using different feature sets.

100

hough it might have been possible to improve the
accuracy of the conversion process, this would
have required a larger set of more complex rules
for uncommon structures, such as the few cases
of non-projective edges in the treebank, or for
semantic elision.

To measure the effect of the conversion pro-
cess, we performed a further experiment. We
excluded from the treebank all dependency
graphs that did not have a perfect reversible con-
version to pure dependency (~ 8% of all graphs).
We then repeated the 10-fold cross-validation
tests using the best performing configuration for
both approaches, the LEMMA feature set. On this
subset of the data, the multi-step parser achieved
an F1-score of 88.89% (89.33 precision, 88.45
recall), and the integrated parser’s F1-score was
90.24% (91.48 precision, 89.03 recall). The dif-
ference between the two F1-scores was +1.35,
which lies in the same narrow band of 1.4 ± 0.32.

These results suggest that the absence of a
conversion process is not the largest contributing
factor to integrated parser’s improved perfor-
mance. Although additional investigation into
optimizing the two-step parsing algorithm could
be further pursued, we choose not to. Instead, we
argue that the integrated approach is not only
simpler as there is no conversion, but is also bet-
ter suited to the hybrid representation in the tree-
bank.

7 Conclusion and Future Work

In this paper we presented HSP, a Hybrid Statis-
tical Parser, trained using data from the Quranic
Treebank. This treebank is a resource for study-
ing the Quran online, and uses a hybrid represen-
tation that closely follows the traditional Arabic
grammar known as i’rāb (إإعراابب). The treebank’s
syntactic representation includes phrase nodes
and elided words, and presents a special chal-
lenge to statistical parsing.

We described two approaches to parsing using
different sets of rich morphological features, and
compared this to recent work for Modern Stand-
ard Arabic. Our shift-reduce algorithm is able to
parse hybrid syntactic representations using a
one-step process. We concluded that our novel
integrated architecture is not only more elegant,
but that encoding information this way also im-
proves performance, resulting in a 1.6% ELAS
absolute increase over the multi-step baseline for
the integrated approach. To the best of our
knowledge, this is the first work on statistical

parsing for the Classical Arabic language of the
Quran.
In the future, we plan to continue our work on
hybrid parsing by focusing on three key areas:
integrating morphological disambiguation into
the parser, comparing HSP to other statistical
parsers, and extending the parser to other related
languages.

Morphological disambiguation is an important
component of our proposed architecture. In this
paper, we focused on parsing using only gold
standard morphological input. However, Marton
et al. (2010) show that parsing Arabic using pre-
dicted instead of gold morphological input gives
similar results for different feature sets. For He-
brew, Goldberg and Tsarfaty (2008) show that
joint morphological and syntactic disambiguation
outperforms a pipeline approach. We plan to de-
termine if the same applies to parsing the Quran.
Another area of future work is to compare HSP
to other statistical parsers. Since our two-step
approach converts the hybrid representation to
pure dependency, we could in principle parse the
Quranic Treebank using any pure dependency
parser. For example, MSTParser (McDonald, et
al., 2006) could be used to compare one-step hy-
brid parsing to two-step pure dependency parsing
using an alternative graph-based parsing algo-
rithm.

We also plan to extend HSP to parse other
languages and treebanks. Classical languages
such as Quranic Arabic are sometimes easier to
parse statistically compared to modern lan-
guages, since vocabulary size and the number of
linguistic constructions in such languages is
smaller. We are interested to determine if our
approach generalizes to other classical languages
such as Biblical Hebrew, as well as modern texts,
beyond this particular dataset.

Acknowledgments
The authors would like to thank the three anon-
ymous reviewers who provided invaluable feed-
back to improve the quality of this paper. We
thank Eric Atwell at Institute for Artificial Intel-
ligence, University of Leeds for reviewing this
paper and providing numerous useful sugges-
tions. We also acknowledge the hard work of the
volunteer collaborators involved in online anno-
tation of the Quranic Treebank.

101

References
Kepa Bengoetxea and Koldo Gojenola. 2010. Appli-

cation of Different Techniques to Dependency
Parsing of Basque. In Proceedings of the
NAACL/HLT Workshop on Statistical Parsing of
Morphologically Rich Languages (SPMRL 2010),
Los Angeles, California.

Rajesh Bhatt, Bhuvana Narasimhan, Martha Palmer,
Owen Rambow, Dipti Misra Sharma and Fei Xia.
2009. Multi-Representational and Multi-Layered
Treebank for Hindi/Urdu. In Proceedings of the
Third Linguistic Annotation Workshop at the con-
ference of the Association for Computational Lin-
guistics (ACL-IJCNLP), Suntec, Singapore.

Daniel Bikel. 2004. On the Parameter Space of Lexi-
calized Statistical Parsing Models. PhD thesis, De-
partment of Computer and Information Sciences.
University of Pennsylvania.

Ezra Black et al. 1991. A Procedure for Quantitatively
Comparing the Syntactic Coverage of English
Grammars. In Proceedings of the February 1991
DARPA Speech and Natural Language Workshop.

Georges Bohas, Jean-Patrick Guillaume, and Djamel
Eddin Kouloughli. 1990. The Arabic linguistic tra-
dition. Arabic Thought and Culture. Routledge.

Chih-Chung Chang and Chih-Jen Lin. 2001.
LIBSVM: A Library for Support Vector Machines.
Technical Report, Department of Computer Sci-
ence and Information Engineering, National Tai-
wan University.

Eugene Charniak. 2000. A Maximum-entropy-
inspired Parser. In Proceedings of the 1st Annual
Meeting of the North American Chapter of the ACL
(NAACL), Seattle.

Michael Collins. 1999. Head-driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania.

Kais Dukes, Eric Atwell and Nizar Habash. 2011.
Supervised Collaboration for Syntactic Annotation
of Quranic Arabic. To appear in Language Re-
sources and Evaluation Journal (LREJ): Special
Issue on Collaboratively Constructed Language
Resources.

Kais Dukes, Eric Atwell and Abdul-Baquee Sharaf.
2010. Syntactic annotation guidelines for the
Quranic Arabic Dependency Treebank. In Pro-
ceedings of the Language Resources and Evalua-
tion Conference (LREC). Valletta, Malta.

Kais Dukes and Timothy Buckwalter. 2010. A De-
pendency Treebank of the Quran using Traditional
Arabic Grammar. In Proceedings of the 7th inter-
national conference on Informatics and Systems
(INFOS). Cairo, Egypt.

Kais Dukes and Nizar Habash. 2010. Morphological
Annotation of Quranic Arabic. In Proceedings of
the Language Resources and Evaluation Confer-
ence (LREC). Valletta, Malta.

Gülsen Eryiğit, Joakim Nivre and Kemal Oflazer.
2008. Dependency Parsing of Turkish. Computa-
tional Linguistics.

George Forman and Martin Scholz. 2009. Apples-to-
apples in Cross-validation Studies: Pitfalls in Clas-
sifier Performance Measurement. HP technical Re-
ports, HPL-2009-359.

Ryan Gabbard, Seth Kulick, and Mitchell Marcus.
2006. Fully parsing the Penn Treebank. In Pro-
ceedings of the Human Language Technology Con-
ference of the NAACL, New York.

Yoav Goldberg and Michael Elhadad. 2010. Easy-
First Dependency Parsing of Modern Hebrew. In
Proceedings of the NAACL/HLT Workshop on Sta-
tistical Parsing of Morphologically Rich Lan-
guages (SPMRL 2010), Los Angeles, California.

Yoav Goldberg and Reut Tsarfaty. 2008. A Single
Generative Model for Joint Morphological Seg-
mentation and Syntactic Parsing. In Proceedings of
ACL-HLT. Columbus, Ohio.

Nizar Habash and Ryan Roth. 2009. CATiB: The Co-
lumbia Arabic Treebank. In Proceedings of the
ACL-IJCNLP 2009 Conference Short Papers. Sun-
tec, Singapore, August.

Nizar Habash. 2010. Introduction to Arabic Natural
Language Processing. Morgan & Claypool Pub-
lishers.

Johan Hall, Jens Nilsson, Joakim Nivre, Gülsen Ery-
iğit, Beáta Megyesi, Mattias Nilsson, and Markus
Saers. 2007. Single Malt or Blended? A Study in
Multilingual Parser Optimization. In Proceedings
of EMNLP-CoNLL.

Johan Hall and Joakim Nivre. 2008. A Dependency-
driven Parser for German Dependency and Con-
stituency Representations. In Proceedings of the
ACL Workshop on Parsing German (PaGe08), Co-
lumbus, Ohio.

Johan Hall, Joakim Nivre and Jens Nilsson. 2007. A
Hybrid Constituency-dependency Parser for Swe-
dish. In Proceedings of NODALIDA, Tartu, Esto-
nia.

Seth Kulick, Ryan Gabbard, and Mitchell Marcus.
2006. Parsing the Arabic Treebank: Analysis and
Improvements. In Proceedings of Treebanks and
Linguistic Theories Conference. Prague, Czech
Republic.

Mohamed Maamouri, Ann Bies, Timothy Buckwalter,
and Wigdan Mekki. 2004. The Penn Arabic Tree-
bank: Building a Large-scale Annotated Arabic
Corpus. In Proceedings of the NEMLAR Confer-

102

ence on Arabic Language Resources and Tools.
Cairo, Egypt.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a Large Annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics.

Yuval Marton, Nizar Habash, and Owen Rambow.
2010. Improving Arabic Dependency Parsing with
Lexical and Inflectional Morphological Features.
In Proceedings of the NAACL/HLT Workshop on
Statistical Parsing of Morphologically Rich Lan-
guages (SPMRL 2010), Los Angeles, California.

Ryan McDonald, Kevin Lerman, and Fernando Perei-
ra. 2006. Multilingual Dependency Analysis with a
Two-stage Discriminative Parser. In Proceedings
of CoNLL. New York.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Cha-
nev, Gülşen Eryiğit, Sandra Kübler, Svetoslav
Marinov, and Erwin Marsi. 2007a. MaltParser: A
Language Independent System for Data-driven De-
pendency Parsing. Natural Language Engineering.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan
McDonald, Jens Nilsson, Sebastian Riedel and
Deniz Yuret. 2007b. The CoNLL 2007 Shared
Task on Dependency Parsing. In Proceedings of
EMNLP-CoNLL.

Jonathan Owens. 1988. The Foundations of Grammar:
An Introduction to Medieval Arabic Grammatical
Theory. Amsterdam Studies in the Theory and His-
tory of Linguistic Science. John Benjamins.

Bahjat Salih. 2007. al-i'rāb al-mufassal li-kitāb allāh
al-murattal (‘A Detailed Grammatical Analysis of
the Recited Quran using i'rāb’). Dar Al-Fikr, Bei-
rut.

Otakar Smrž, Viktor Bielický, Iveta Kourilová, Jakub
Kráčmar, Jan Hajic, and Petr Zemánek. 2008. Pra-
gue Arabic Dependency Treebank: A Word on the
Million Words. In Proceedings of the Workshop on
Arabic and Local Languages (LREC 2008). Mar-
rakech, Morocco.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical Dependency Analysis with Support Vector
Machines. In Proceedings of International Confer-
ence on Parsing Technologies (IWPT 2003).

103

