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Abstract 

In this paper, we describe and compare two 
statistical parsing approaches for the hybrid 
dependency-constituency syntactic repre-
sentation used in the Quranic Arabic Tree-
bank (Dukes and Buckwalter, 2010). In our 
first approach, we apply a multi-step pro-
cess in which we use a shift-reduce algo-
rithm trained on a pure dependency prepro-
cessed version of the treebank. After pars-
ing, the dependency output is converted into 
the hybrid representation.  This is compared 
to a novel one-step parser that is able to 
learn the hybrid representation without pre-
processing. We define an extended labelled 
attachment score (ELAS) as our perfor-
mance metric for hybrid parsing, and report 
87.47% (F1 score) for the multi-step ap-
proach, and 89.03% (F1 score) for the one-
step integrated algorithm. We also consider 
the effect of using different sets of morpho-
logical features for parsing the Quran, com-
paring our results to recent work on Modern 
Standard Arabic. 

1 Introduction 

Research into statistical parsing for English has 
resulted in over a decade of high-performance 
results (Collins, 1999; Charniak, 2000), with 
most work focusing on the Penn English Tree-
bank (Marcus et al., 1993). However, adapting 
these parsing models to other languages has been 
less successful. Results from the CoNLL-X 
shared task on multilingual dependency parsing 
showed that Arabic is one of the most challeng-
ing languages to parse, due to its rich morpholo-
gy and relatively free word order (Nivre et al., 
2007b). 

In this paper we consider statistical parsing for 
Classical Arabic, the direct ancestor of Modern 
Standard Arabic (MSA). As a training and test 

data source, we use the online Quranic Arabic 
Corpus (http://corpus.quran.com). This 
website is a useful study aid for understanding 
the Quran through grammatical annotation, and 
is used by 100,000 people monthly. In contrast to 
other recent annotation efforts for MSA 
(Maamouri et al., 2004; Habash and Roth, 2009), 
Quranic Treebank annotators have cross-checked 
their analyses against historical works based on 
the traditional Arabic grammar known as i’rāb  
 Salih, 2007; Dukes et al., 2011; Dukes) (إإعراابب)
and Buckwalter, 2010). To provide annotation 
that closely follows traditional grammar, the 
treebank creators used a hybrid representation 
that supports relations between morphemes, as 
well as between phrases, clauses and sentences. 
The treebank also includes empty nodes for pro-
drop and for semantic elision. 

This representation presents several challenges 
to statistical parsing. Possible pipeline approach-
es include converting to pure constituency or to 
pure dependency as a preprocessing step. The 
alternative we pursue is using an integrated mod-
el to parse the hybrid representation. For other 
parsing tasks, integrated models have been 
shown to out-perform pipeline approaches, e.g., 
Goldberg and Tsarfaty (2008) integrate morpho-
logical and syntactic disambiguation for Hebrew, 
and report improved parsing performance. 

In the next section, we review the Treebank. 
In Section 3, we survey related work. Section 4 
describes our parsing algorithm. We present our 
parsing approaches and evaluate in Sections 5 
and 6, respectively. 

2 The Quranic Arabic Treebank 

For our parsing experiments we use version 0.5 
of the Quranic Treebank, containing 37,578 
word-forms (~ 49% of the full Quranic text), 
segmented into 47,220 tokens (Dukes and 
Buckwalter, 2010). A common scheme for en-
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coding dependency treebanks is the CoNLL-X 
format (Nivre et al., 2007b). The Quranic Tree-
bank uses an extension of this to support phrases 
and elided words. Figure 1 shows an example 
sentence illustrating common tags used in the 
treebank. The extended format adds two new 
columns: TYPE indicates the different types of 
nodes, and EXTENT defines a phrase by specify-
ing start and end terminal nodes. Head nodes, 
dependency labels, and morphological features 
are shown in separate columns. On the tree-
bank’s website, this information is represented 
visually using dependency graphs (Figure 2). 
Read from right-to-left, this graph uses a conven-
tion that dependent nodes point towards their 
heads, and edges are labelled with roles in Ara-
bic. The second Arabic word in parenthesis is an 
implied elided subject pronoun that has been 
syntactically annotated, and is not in the original 
Quranic verse. The last word on the left has been 
segmented into two tokens, resulting in a total of 
five terminal nodes in the graph. 

This hybrid representation is based on the tra-
ditional i’rāb analysis found in Salih (2007), a 
12-volume work collating previous historical 
analyses, e.g., the analysis for Figure 2 states: 

 
In this verse, ‘said’ is a perfective verb, 
whose subject is an elided pronoun of the 
form ‘he’. The noun ‘lord’ is in the nomina-
tive case and is the predicate of the demon-
strative pronoun ‘this’. The suffixed pronoun 
‘my’ attached to the noun is a possessive clit-
ic. The nominal sentence, headed by the 
demonstrative pronoun, acts as the object of 
the verb ‘said’.  

 
The example sentence shown in Figures 1 and 

2 illustrates several linguistic aspects of the 
Quranic Treebank which make it challenging for 
statistical parsing: rich morphology, phrase struc-
ture, and elision. We discuss various aspects of 
the Treebank next. 

Dependency: Although traditional Arabic 
grammar developed independently from modern 
European linguistics, it uses the concepts of 
heads (āmil) and dependents (ma’mūl fī-hi). 
Along with Panini’s grammar for Classical San-
skrit, it is considered to be one of the origins of 
modern dependency grammar (Owens, 1988; 
Bohas et al., 1990). 

Morphemes: The basic unit of analysis in tra-
ditional Arabic grammar is the morphological 
segment. Compound word-forms in Classical 
Arabic are tokenized into independent grammati-
cal units. This agrees with other recent treebank-
ing efforts for MSA such as the Columbia Arabic 
Treebank (Habash and Roth, 2009), the Prague 
Arabic Dependency Treebank (Smrž, et al., 
2008), and the Penn Arabic Treebank (Maamouri 
et al., 2004). This also compares with recent 
parsing work for other morphological rich lan-
guages. For example, Eryiğit et al. (2008) show 
that for Turkish using groups of morphemes as 

Node Type Extent Form Tag Head Dep Features 
1 T _ qaAla V _ _ PERF|LEM:qaAla|ROOT:qwl|3MS 
2 E _ Huwa PRON 1 subj _ 
3 T _ ha`*aA DEM _ _ LEM:ha`*aA|MS 
4 T _ rab~i N 3 pred LEM:rab~|ROOT:rbb|M|NOM 
5 T _ Y PRON 4 poss PRON:1S|SUFFIX 
6 P 3-5 _ NS 1 obj _ 

 
Figure 1: Example hybrid graph in extended CoNLL-X format. Node types: T = Terminal node, E = Elided word / 

Empty category, P = Phrase node; Tags: V = Verb, PRON = Pronoun, DEM = Demonstrative, N = Noun, NS = 
Nominal Sentence; Dependencies: subj = subject, pred = predicate, poss = possessive construction, obj = object. 

 (6:76:9) 
rabbī 

(is) my Lord.’ 

(6:76:8) 
hādhā 
‘This 

(6:76:7) 
qāla 

(He) said, 
 

 

Figure 2: Hybrid graph in presentation form for the 
annotated example: He said, ‘This is my Lord.’ 
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the basic unit instead of words improves parsing 
accuracy. 

However, in contrast to other Arabic treebanks 
that define their own segmentation schemes, 
morphological annotation in the Quranic Tree-
bank closely follows segmentation rules from 
i’rāb (Dukes and Habash, 2010). In addition to  
part-of-speech, the grammar describes multiple 
features for each morpheme, including person, 
gender, number, verb mood, noun case and state. 
The treebank also includes roots and lemmas. A 
root is a sequence of three or four radicals that 
are used to group words with related derivational 
morphology. The lemma is a further subdivision 
that groups forms varying only in inflectional 
morphology (Habash, 2010). In our experiments, 
we consider how different combinations of these 
rich morphological features affect the accuracy 
of statistical parsing. 

Phrases: Most dependencies in the treebank 
relate morphological segments. The treebank 
also includes dependencies between these units 
and phrases, and between pairs of phrases. In 
accordance with traditional Arabic grammar, the 
Quranic Treebank annotates five phrase types: 
nominal sentences (جملة ااسمیية), verbal sentences 
 preposition ,(جملة شرططیية) conditionals ,(جملة فعلیية)
phrases (جارر وومجروورر) and subordinate clauses ( تأوویيل
 There are simple rules for distinguishing .(مصدرر
between these phrase types in the grammar. 

Phrase nodes are used to model constituency 
structure. In a pure dependency representation, 
the grammatical relationship between a pair of 
phrases is implicit in the edge that connects the 
head words of the two phrases. In the traditional 
Arabic grammar of the Quran, phrase-level rela-
tions such as conjunction and apposition are 
made explicit in syntactic analysis. Since the 
grammatical rules that determine these phrase 
structures allow recursion, the Quranic Treebank 
includes hybrid graphs that contain multiple lev-
els of nested consistency structure. 

Elision: In the Penn English Treebank, empty 
categories are used for constructions such as null 
complementizers: ‘The man (0) I saw’, and for 
wh-movement: ‘What1 do you want (NP *T*-
1)?’. The Quranic Treebank distinguishes be-
tween morphological, syntactic and semantic 
elision. Like MSA, Classical Arabic is a pro-
drop language. A verb’s dropped subject pro-
noun is implied through its morphology. Syntac-
tic elision arises in order to satisfy constraints in 
the grammar. For example, in certain cases prep-
osition phrases are attached to nouns via an elid-
ed adjective. Semantic elision involves elided 

words, used to explain the reason for case mark-
ers in certain verses of the Quran. Dukes, Atwell 
and Sharaf (2010) provide a more detailed de-
scription of elision in the Quranic Treebank. In 
our parsing experiments in this paper, we handle 
the three types of elision separately as they form 
different edge patterns in dependency graphs. 

3 Previous Related Work 

Related computational work includes statistical 
parsing for other morphologically rich languages, 
as well as recent parsing work for hybrid repre-
sentations, and for recovering elision.  

Hebrew, another Semitic language, faces a 
similar set of challenges in comparison to pars-
ing Arabic. Both feature relatively free word or-
der and require morphological disambiguation 
for syntactic parsing. For dependency grammar, 
Goldberg and Elhadad (2010), apply a pipeline 
approach by disambiguating morphology and 
syntax in two separate steps. They report a 
84.2% labelled attachment score using gold mor-
phological disambiguation, and 76.2% when us-
ing automatic morphological analysis. 

For Arabic, Kulick et al. (2006) discuss pars-
ing the Penn Arabic Treebank using phrase struc-
ture grammar. One conclusion that can be drawn 
from their results is that parsing using a constitu-
ency representation leads to lower accuracy for 
Arabic in comparison to English. They report a 
Parseval F1-score of 74% for version 1 of the 
Penn Arabic treebank, and 88% for English using 
a similar sized corpus, trained using Bikel's par-
ser (Bikel, 2004). 

More recent work for Modern Arabic has fo-
cused on dependency grammar. Marton et al. 
(2010) use MaltParser for parsing the CATiB 
treebank, and experiment with different combi-
nations of rich morphological features. Like the 
Quranic Arabic Treebank, CATiB is also based 
on traditional Arabic grammar, although it uses a 
subset of the full traditional syntactic roles and 
only six POS tags. Another related Arabic tree-
bank that uses a dependency representation is the 
Prague Arabic Dependency Treebank (Smrž, et 
al., 2008). Hall et al. (2007) use MaltParser to 
parse ten different languages, including data 
from the Prague Arabic Treebank. They compare 
this to an ensemble system that combines six 
different strategies to boost parsing performance.  

In addition to parsing Arabic, MaltParser is 
ideally suited to parsing morphologically rich 
languages, due to its integration of flexible fea-
ture sets during training (Nivre, et al., 2007a). 
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For example, Bengoetxea and Gojenola (2010) 
use MaltParser for version 2 of Basque Depend-
ency Treebank, although to simplify the syntactic 
representation this latest version no longer in-
cludes empty nodes for ellipsis and coordination. 
Most statistical parsers do not handle elision. 
However, Gabbard et al. (2006) show that it is 
possible to fully recover Penn Treebank-style 
trees for English including empty categories, by 
training a cascade of statistical classifiers. 

For parsing hybrid representations, Hall and 
Nivre (2008) adapt MaltParser to the German 
TIGER and TüBa-D/Z treebanks, reporting a 
labelled attachment score close to 90%. Similar-
ly, Hall et al. (2007) adapt MaltParser for hybrid 
constituency-dependency parsing of the Swedish 
Talbanken05 treebank. These treebanks are hy-
brid in a different sense to the Quranic Treebank. 
For each sentence, they include dual annotation 
in both constituency and dependency grammar, 
in contrast to combining these into a single rep-
resentation. A related example is the Hindi/Urdu 
multi-representational treebank (Bhatt et al., 
2009). For the baseline experiment that we de-
scribe in section 5, we use a dependency-based 
encoding similar to the scheme Hall et al. (2007) 
use for parsing the hybrid German and Swedish 
treebanks.  

4 Hybrid Statistical Parser 

In this section we describe the Hybrid Statistical 
Parser (HSP) that we use for our parsing experi-
ments. Instead of using MaltParser, we imple-
mented a new parser in Java using a similar algo-
rithm, along with a new graphical user interface 
(Figure 3). We made this decision to allow us to 
extend the parsing architecture, and created the 
user interface to help debug the parser. As with 
previous work that uses MaltParser for other 
morphologically rich languages, we assume that 
input sentences to HSP have been tokenized and 
already annotated with part-of-speech tags and 
features. We use gold-standard tokenization and 
POS tags. 

HSP outputs both pure and hybrid dependency 
graphs. Each of these have a formal definition. 
Let (t1, ..., tn) be an input sentence that has been 
morphologically tokenized, and let R denote the 
set of dependency relations. A pure dependency 
graph is defined as G = (V, E, L), where V = {t1, 
..., tn} are the vertices formed from the input to-
kens, E ⊆ V × V are the graph’s edges, and L : E 
→ R are the edge labels. For hybrid graphs, we 
extend the set of vertices to include phrase 
nodes. Let pij = (ti, tj) denote the phrase that 
spans the tokens from ti to tj inclusively, and let 
P denote the set of all possible phrases. We de-

 
 

Figure 3: Custom Java application for HSP showing the steps in an example parsing program for Arabic. 
The various operations on the left panel are described in Section 4.1. 
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fine a hybrid dependency graph as G' = (V', E', 
L') where V' = {t1, ..., tn} ⋃ P' and P' ⊆  P. As 
before, the edges are E' ⊆ V' × V' with labels L' : 
E' → R. For elision, we further extend the set of 
vertices to include empty categories as additional 
terminal nodes. 

4.1 Parsing Algorithm 

HSP uses a shift-reduce algorithm similar to 
Nivre’s. Two data structures are used for parsing: 
a stack S for temporary storage and a queue Q to 
buffer input. In its initial configuration, the par-
ser has all input tokens placed onto the queue 
with the stack empty: Q = (t1, …, tn) and S = ∅.  
The   parser   reads from the queue and finishes 
when the queue and stack are both empty (Q = ∅  
∧   S = ∅). To construct a dependency graph, a 
sequence of operations are executed by the par-
ser, analogous to the instructions in a computer 
program. Figure 3 shows the operations used to 
parse the example sentence used previously in 
Figures 1 and 2. 

In contrast to MaltParser, HSP uses an extend-
ed instruction set. To define these operations, let 
Q = (q1, …, qA) and S = (s1, …, sB) be the state of 
the parser at an intermediate stage of the pro-
gram, and Q' and S' be the state after executing 
the next instruction. The operations are: 

 
1. SHIFT reads the next token from the queue and 

moves this to the top of the stack: Q' = (q2, 
…, qA) and S' = (q1, s1, …, sB). 
 

2. REDUCE pops the stack: S' = (s2, …, sB). 
 
3. LEFT adds an edge to the graph, with s1 as the 

head node and s2 as the dependent node. 
 
4. RIGHT adds an edge to the graph, with s2 as 

the head node and s1 as the dependent node. 
 
5. REDUCE2 pops the second node on the stack: 

S' = (s1, s3, …, sB). 
 
6. EMPTY adds an empty node e to the graph 

after s1. The elided node e is pushed onto the 
stack: S' = (e, s1, …, sB). 

 
7. SUBJECT is only applicable if s1 is a verb. An 

elided pronoun e is inserted after s1, and a 
subj edge is added with s1 as the head node, 
and e as the dependent node. e is pushed onto 
the stack: S' = (e, s1, …, sB). 

 

8. SUBGRAPH adds a phrase node p to the graph 
spanning the terminal nodes from s1 to the 
end of the subgraph with root s1. p is pushed 
onto the stack: S' = (p, s1, …, sB). 

 
Three of these instructions are parameterized. 

LEFT and RIGHT take an edge relation r ∈ R, and 
EMPTY takes a part-of-speech as a parameter. 
The last four instructions are extensions com-
pared to MaltParser. EMPTY is used to add elided 
nodes with a specific part-of-speech. SUBJECT is 
similar to the combination EMPTY then LEFT , but 
takes into consideration the morphology of the 
verb to produce a correctly inflected subject pro-
noun. REDUCE2 is useful in the situation where 
an edge should be formed between the first and 
third elements of the stack, so that the second 
element can be easily discarded. After a SUB-
GRAPH operation, it is possible to use REDUCE2 
to discard the head of the subgraph, which would 
now be at the second element of the stack. See 
the parsing run in Figure 3 for an example of 
this. Only the first four instructions listed above 
are used for pure dependency graphs. In hybrid 
mode, the parser uses all eight instructions. 

4.2 Machine Learning 

Like MaltParser, HSP uses supervised learning 
during training. For each graph in the training 
data, an oracle driven by a small set of rules is 
used to deduce the sequence of actions required 
to construct the graph. For machine learning, we 
use support vector machines, implemented by the 
Java version of LIBSVM (Chang and Lin, 2001). 
For each step in the parsing programs, a collec-
tion of SVM classifiers learn to predict the next 
operation, given the feature vector associated 
with the first few nodes at the top of the queue 
and stack. Feature selection is described in more 
detail in the next section. 

We apply the standard technique of binariza-
tion of input features in the training data, so that 
a single symbolic feature is represented using 
many binary predicates (Yamada and Matsumo-
to, 2003). To reduce learning time, the training 
set is partitioned using the part-of-speech at the 
top of the stack, and one statistical classifier is 
trained for each part-of-speech. We use the same 
LIBSVM settings that Hall and Nivre (2008) use 
for parsing the German TIGER and TüBa-D/Z 
treebanks: γ = 0.2 and r = 0 for kernel parame-
ters, C = 0.5 for penalty and ε = 1 for termina-
tion. We also use the same quadratic kernel:  

 
K(xi, xj) = (γxi

Txj + r)2. 
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5 Parsing Experiments 

We compare two approaches to parsing the tree-
bank. First, we use HSP in pure dependency 
mode and recover the hybrid representation 
through a post-processing step. The second ex-
periment uses an integrated approach that builds 
phrase structure and elided nodes during parsing. 
Both of these experiments are repeated using 
different sets of morphological features. 

5.1 Multi-step Parsing 

In our first experiment, we perform the following 
steps: 
 
1. The training data is converted to pure de-

pendency by encoding additional information 
using new complex edge labels. 

 
2. In the learning phase, we restrict HSP to using 

only the four operations that are required for 
pure dependency parsing: SHIFT, REDUCE, 
LEFT and RIGHT. 

 
3. The parser’s output is pure dependency. We 

recover the hybrid representation by reversing 
the transformations in step 1. 

 
The size of the unconverted dataset is 50,955 

tokens, including 3,775 empty categories. The 
dependency graphs in the treebank contain 9,847 
phrase nodes and 38,642 edges. After conver-
sion, all phrase nodes and empty categories were 
removed, resulting in 47,220 tokens and a total 
of 34,849 edges. The number of edges dropped 
due to collapsing edges between empty catego-
ries. 

For conversion, we use a similar process to 
Hall et al. (2007, 2008)'s approach for German 
and Swedish, but adapt this to the representation 
used for traditional Arabic grammar. During the 
conversion process, we apply graph transfor-
mations to encode information about phrase 
structure and elision: 

Phrases: Let p = (ti, tj) be a phrase node in the 
hybrid graph covering the terminal nodes from ti 
to tj inclusively. The conversion for the phrase 
node p is based on the observation that the 
phrase covers a subgraph with root ω0. If p is a 
dependent node with edge E, head h, and de-
pendency relation r, we remove E and p and add 
a new edge E' with dependent ω0, head h, and 
label +r. Similarly, if p is a head node, we add a 
new edge with label r+. For the inverse trans-
formation, +r and r+ denote expanding the 

edge’s dependent or head into a subgraph respec-
tively. The label +r+ indicates that both head and 
dependent nodes for that edge should be expand-
ed, to produce an edge between a pair of phrases. 
Figure 4 illustrates this conversion process. As 
with the dependency graphs displayed on the 
treebank's website, the convention in these dia-
grams is that dependents point towards heads. 

Elision: For verbs with elided subject pro-
nouns, we simply remove these from the con-
verted graph as they are easily recovered through 
the verb's rich morphology. To keep the trans-
formation rules simple, for syntactic elision we 
consider only the most common case where two 

 
 

Figure 4: Conversion of phrase structure. 

 

Figure 5: Conversion of syntactic elision. 
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tokens are connected via an empty category 
(Figure 5). If a depends on an elided node e with 
part-of-speech pos and relation r1, and e depends 
on b with relation r2, we remove e and the two 
edges. We add a new edge with dependent a, 
head b and complex label r1 | pos | r2. 

As we discuss in the evaluation section, the 
performance of the baseline approach to parsing 
is affected by the coverage of the conversion 
process. However, the small set of rules above 
for phrases and elision allow us to correctly re-
cover nearly all edges in the hybrid graphs 
through this process. 

5.2 Integrated Parsing 

The integrated approach is simpler because there 
are no conversion steps. We train HSP using the 
treebank’s full hybrid representation without 
preprocessing. In this experiment, we add to the 
instruction set the four parser actions that are 
required to build hybrid graphs: REDUCE2, EMP-
TY, SUBJECT and SUBGRAPH. Although in both 
cases the same set of features are available dur-
ing the training phase, the two approaches lead to 
different machine learning problems. In the first 
experiment, the parser has to learn more complex 
edge labels. In the second experiment, there are 
fewer classes for classification, and phrase struc-
ture and elision are integrated directly into the 
parsing process. 

5.3 Feature Selection 

The parser uses graph features as well as mor-
phological features, taken from the top three 
nodes on the stack and the top from the queue. 
The graph features are DEPREL, IS ROOT and IS 
EDGE. The first of these is a compound feature: 
For each relation r ∈ R, a binary predicate is set 
if the node has a dependent with that relation. IS 
ROOT is set if the node is the root of a well-
formed subgraph, and IS EDGE is set if s1 and s2 
form a previously parsed edge. 

After initial work using a subset of the data, 
we decided to use five different sets of morpho-
logical features, which we grouped together to 
simplify the number of parsing experiments 
(Figure 6). A more detailed description of these 
features is given in the treebank’s annotation 
guidelines (Dukes, Atwell and Sharaf, 2010). 
Each feature set also includes the same graph 
features. For our parsing experiments, we use 
gold-standard morphological data for the parser’s 
input. 

 

In comparison, Marton et al. (2010) show that 
for modern Arabic using predicted features or 
gold-standard morphological features for parsing 
achieves similar results. Our different feature 
sets are described below: 

POS: This baseline feature set includes the 
part-of-speech and phrase tags for the selected 
nodes. 

MORPH6: This set adds the core morphologi-
cal features that might help with parsing, based 
on domain knowledge of traditional Arabic 
grammar: VOICE, MOOD, CASE and STATE. State 
is either not-specified, definite (for the Arabic 
definite article al- prefix) or indefinite (for tan-
ween). 

MORPH9: Adds a further three morphological 
features. PRONTYPE marks a pronoun clitic as 
either an object pronoun or subject pronoun. Due 
to Arabic’s rich morphology, these different 
types of clitics are common, and they form either 
subject or object dependency relations when at-
tached to verbs. The feature SEGTYPE indicates if 
a token is a prefix, stem or suffix. The COPULA 
feature is used for a subset of copular verbs 
known as kāna wa akhwātaha (كانن ووااخوااتھها). Alt-
hough assigned the same part-of-speech tag as 
normal verbs, in traditional Arabic grammar the-
se words form subject and predicate relations 
instead of subject and object. 

LEMMA: To test the effect of lexicalization on 
the parser, this feature set adds lemmas. 

PHI: This feature set includes the so-called 
phi-features of person, gender and number. 

Features POS MORPH6 MORPH9 LEMMA PHI 

POS Y Y Y Y Y 
PHRASE Y Y Y Y Y 
VOICE - Y Y Y Y 
MOOD - Y Y Y Y 
CASE - Y Y Y Y 
STATE - Y Y Y Y 
PRONTYPE - - Y Y Y 
SEGTYPE - - Y Y Y 
COPULA - - Y Y Y 
LEMMA - - - Y Y 
PERSON - - - - Y 
GENDER - - - - Y 
NUMBER - - - - Y 

            

 
Figure 6: Morphological features used for parsing. 
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6 Evaluation 

6.1 Metrics and Methodology 

Two standard metrics for evaluating parsing per-
formance are LAS (labelled attachment score) 
for pure dependency parsing, and Parseval for 
constituency parsing. LAS is a single measure, 
while Parseval defines three measures: precision, 
recall, and F1-score, where F1-score is the har-
monic mean of precision and recall. For hybrid 
parsing, we combine both LAS and Parseval into 
a new metric which we call ELAS (extended la-
belled attachment score). We first define the two 
existing metrics in set-theoretic terms, and then 
show how they can be combined. 

In the CoNLL-X shared task on multilingual 
dependency parsing (Nivre, et al. 2007b), LAS 
was used an official accuracy metric. Let (t1, ..., 
tn) be an input sentence that has been morpholog-
ically tokenized, G = (V, E, L) be an expected 
graph from the reference data, and G' = (V', E', 
L') be the corresponding pure dependency graph 
output by the parser. Let H(t) be the expected 
head of the token t ∈ {t1, ..., tn}, or ϕ if t is head-
less. Similarly, if H(t) ≠ ϕ, let l(t) ∈ L denote the 
expected label of the edge e ∈ E from t to H(t). 
The LAS metric for the dependency parse pair 
(G, G') is then defined as the cardinality ratio: 
 
{ }

{ }φ
φ

≠

ʹ′=∧ʹ′=∧≠

)(:
)()()()()(:

tHt
tltltHtHtHt

 

 
For a pure dependency graph, this is the frac-

tion of tokens that are assigned the correct head 
node and dependency label. This token-based 
definition does not easily generalize to hybrid 
parsing since hybrid graphs can contain edges 
between phrase nodes. Therefore, we provide a 
second definition of LAS by shifting focus from 
tokens to edges. For a well-formed pure depend-
ency graph, the number of tokens with heads is 
the same as the number of edges. We define the 
edge equivalence relation e ≡ e' to be true if and 
only if e and e' both connect t to H(t) and if l(e) = 
l(e'). We then have the following edge-based def-
inition: 

LAS = 
( ){ }

E
eeEeEe ʹ′≡∈∃ʹ′∈ʹ′ :

 

 
For constituency phrase structure, the Parseval 

metric (Black et al., 1991) can also be defined 
using a similar equivalence relation. Let C de-
note the set of constituency labels. Given a sen-

tence (t1, ..., tn), we let pij = (ti, tj) be the phrase 
that spans the tokens from ti to tj inclusively with 
label c(p) ∈ C. Let P denote the set of non-
terminal phrases in a parse tree from the refer-
ence data, and P' be the corresponding set of 
phrases output by a pure constituency parser. A 
phrase p' ∈ P' is considered to be correct if there 
exists an equivalent phrase p ∈ P with the same 
label that spans the same tokens. We define the 
phrase equivalence relation p ≡ p' ⇔ ∃i, j : p = pij 
∧ p' = p'ij ∧ c(p) = c(p'). For the constituency 
parse pair (P, P') we define Parseval precision 
and recall scores as: 

 

Precision = 
( ){ }

P
ppPpPp

ʹ′

ʹ′≡∈∃ʹ′∈ʹ′ :
 

 

Recall = 
( ){ }

P
ppPpPp ʹ′≡∈∃ʹ′∈ʹ′ :

 

 
For hybrid parsing, we consider an edge in a 

parsed graph G' = (V', E', L') to be correct if it 
has an equivalent edge in the reference graph G 
= (V, E, L). Two edges are equivalent if they 
have the same edge label, and connect equivalent 
vertices. A vertex v ∈ V may represent a token, a 
phrase node or elision. We define the vertex 
equivalence relation v ≡ v' to be true when v and 
v' are both the same token. For two vertices that 
are phrases (v = p ∧ v' = p'), we use the same 
phrase equivalence relation p ≡ p' in the Parseval 
metric. For elision, two vertices are equivalent if 
they have the same POS tag and surface form. 
For two edges, e from v to H(v), and e' from v' to 
H'(v'), we define the edge equivalence relation as 
e ≡ e' ⇔  v ≡ v' ∧ H(v) ≡ H' (v')  ∧ l(e) = l(e'). We 
then define ELAS precision and recall scores as: 

 

Precision = 
( ){ }

E
eeEeEe

ʹ′

ʹ′≡∈∃ʹ′∈ʹ′ :
 

 

Recall = 
( ){ }

E
eeEeEe ʹ′≡∈∃ʹ′∈ʹ′ :

 

 
and the F1-score as the harmonic mean of preci-
sion and recall. This metric combines LAS and 
Parseval. For pure dependency graphs, ELAS 
recall is the same as vanilla labelled attachment 
score. For an edge between two phrase nodes in a 
hybrid graph, the metric uses a Parseval-like 
measure of correctness for the two phrases. 
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6.2 Results 

We use ELAS as our evaluation metric for meas-
uring the performance of HSP in both the one-
step and two-step parsing experiments. To re-
duce sample bias, we use 10-fold cross-
validation. Our F1-scores are calculated by ag-
gregating the total number of true positives and 
false positives across the ten folds, as per method 
three in Forman and Scholz (2009). 

Figure 7 shows the results for the two parsing 
approaches. Using the best performing feature 
set, HSP achieves an F1-score of 87.47% for the 
multi-step approach, and 89.03% for the inte-
grated approach. This high performance may not 
only be due to the treebank being annotated with 
rich morphological features or our choice of al-
gorithm. The Quranic text contains many exam-
ples of syntactic and stylistic repetition (Salih, 
2007). Repetition leads to an easier machine 
learning problem, as fewer non-standard cases 
are encountered during training. 

For statistical parsing, the five feature sets 
above each give different results. It is surprising 
that the POS feature set is already a good base-
line. Using no morphological features and only 
part-of-speech tags, this feature set produces 
scores of 75.54% and 76.61% for the two ap-
proaches respectively. Our explanation for this is 
the fact that the treebank uses a detailed part-of-
speech tagset, with 45 tags. However, we note 
that all five feature sets use the same graph fea-
tures defined in the previous section. Without 
these graph features, accuracy for the baseline 
POS feature set drops to only 21.64%. The graph 
features provide constraints on possible depend-
encies. For example, the DEPREL features stop 
additional edges being formed where these 
would not make sense based on examples in the 
training data, such as multiple subjects for the 
same verb. 

The next feature set MORPH6 adds voice, 
mood, case and state. The improvement over the 
POS feature set is 5.56% for the multi-step ap-
proach and 5.97% for the integrated approach. 
This is consistent with recent work for parsing 
Modern Standard Arabic. Marton et al. (2010) 
use a similar set of morphological features to 
improve parsing accuracy for CATiB (Habash 
and Roth, 2009). The next set MORPH9 similarly 
improves performance using further morphologi-
cal features. 

In comparison to parsing Modern Standard 
Arabic, the best feature set is LEMMA, which 
boosts performance by a further 1.33% and 
1.17% respectively over MORPH9. However, the 
feature set PHI that adds person, gender and 
number, surprisingly degrades performance by 
0.19% and 0.13% for the two approaches. This 
contrasts with recent work for parsing CATiB, 
where the phi-features have been shown to be 
helpful. We conclude that adding these features 
may not be statistically significant for parsing the 
Quran using 10-fold cross-validation, or that this 
last feature set possibly includes too many fea-
tures for our SVM model, given the relatively 
small size of the current version of the treebank. 

6.3 Effect of the Conversion Process 

The results above show that the integrated parser 
outperforms the multi-step parser for all of the 
five feature sets. However, it is interesting that 
the absolute difference between the two F1-
scores consistently lies in the narrow band 1.4 ± 
0.32. This suggests that the two parsers have 
similar sensitivities to feature selection. 

Another factor affecting the performance of 
the multi-step parser is the accuracy of the con-
version process from the hybrid representation to 
pure dependency, and then back to hybrid. The 
rule-based conversion algorithm outlined in sec-
tion 5.1 correctly recovers 94.81% of edges. Alt-

Feature Set 
Multi-step Parser Integrated Parser 

F1-Diff. 
Precision Recall F1-Score Precision Recall F1-Score 

        

POS 76.73 74.38 75.54 78.28 75.01 76.61 +1.07 
MORPH6 82.52 79.74 81.10 84.62 80.64 82.58 +1.48 
MORPH9 86.98 85.32 86.14 89.42 86.35 87.86 +1.72 
LEMMA 88.42 86.54 87.47 90.98 87.16 89.03 +1.56 

PHI 88.23 86.35 87.28 90.87 87.02 88.90 +1.62 
        

 
Figure 7: Extended labelled attachment scores (ELAS) for parsing the treebank using different feature sets. 
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hough it might have been possible to improve the 
accuracy of the conversion process, this would 
have required a larger set of more complex rules 
for uncommon structures, such as the few cases 
of non-projective edges in the treebank, or for 
semantic elision. 

To measure the effect of the conversion pro-
cess, we performed a further experiment. We 
excluded from the treebank all dependency 
graphs that did not have a perfect reversible con-
version to pure dependency (~ 8% of all graphs). 
We then repeated the 10-fold cross-validation 
tests using the best performing configuration for 
both approaches, the LEMMA feature set. On this 
subset of the data, the multi-step parser achieved 
an F1-score of 88.89% (89.33 precision, 88.45 
recall), and the integrated parser’s F1-score was 
90.24% (91.48 precision, 89.03 recall). The dif-
ference between the two F1-scores was +1.35, 
which lies in the same narrow band of 1.4 ± 0.32. 

These results suggest that the absence of a 
conversion process is not the largest contributing 
factor to integrated parser’s improved perfor-
mance. Although additional investigation into 
optimizing the two-step parsing algorithm could 
be further pursued, we choose not to. Instead, we 
argue that the integrated approach is not only 
simpler as there is no conversion, but is also bet-
ter suited to the hybrid representation in the tree-
bank. 

7 Conclusion and Future Work 

In this paper we presented HSP, a Hybrid Statis-
tical Parser, trained using data from the Quranic 
Treebank. This treebank is a resource for study-
ing the Quran online, and uses a hybrid represen-
tation that closely follows the traditional Arabic 
grammar known as i’rāb (إإعراابب). The treebank’s 
syntactic representation includes phrase nodes 
and elided words, and presents a special chal-
lenge to statistical parsing. 

We described two approaches to parsing using 
different sets of rich morphological features, and 
compared this to recent work for Modern Stand-
ard Arabic. Our shift-reduce algorithm is able to 
parse hybrid syntactic representations using a 
one-step process. We concluded that our novel 
integrated architecture is not only more elegant, 
but that encoding information this way also im-
proves performance, resulting in a 1.6% ELAS 
absolute increase over the multi-step baseline for 
the integrated approach. To the best of our 
knowledge, this is the first work on statistical 

parsing for the Classical Arabic language of the 
Quran. 
In the future, we plan to continue our work on 
hybrid parsing by focusing on three key areas: 
integrating morphological disambiguation into 
the parser, comparing HSP to other statistical 
parsers, and extending the parser to other related 
languages. 

Morphological disambiguation is an important 
component of our proposed architecture. In this 
paper, we focused on parsing using only gold 
standard morphological input. However, Marton 
et al. (2010) show that parsing Arabic using pre-
dicted instead of gold morphological input gives 
similar results for different feature sets. For He-
brew, Goldberg and Tsarfaty (2008) show that 
joint morphological and syntactic disambiguation 
outperforms a pipeline approach. We plan to de-
termine if the same applies to parsing the Quran. 
Another area of future work is to compare HSP 
to other statistical parsers. Since our two-step 
approach converts the hybrid representation to 
pure dependency, we could in principle parse the 
Quranic Treebank using any pure dependency 
parser. For example, MSTParser (McDonald, et 
al., 2006) could be used to compare one-step hy-
brid parsing to two-step pure dependency parsing 
using an alternative graph-based parsing algo-
rithm. 

We also plan to extend HSP to parse other 
languages and treebanks. Classical languages 
such as Quranic Arabic are sometimes easier to 
parse statistically compared to modern lan-
guages, since vocabulary size and the number of 
linguistic constructions in such languages is 
smaller. We are interested to determine if our 
approach generalizes to other classical languages 
such as Biblical Hebrew, as well as modern texts, 
beyond this particular dataset. 
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