
Proceedings of the Workshop on Advances in Text Input Methods (WTIM 2011), pages 43–47,
Chiang Mai, Thailand, November 13, 2011.

From pecher to pêcher… or pécher:

Simplifying French Input by Accent Prediction

Pallavi Choudhury Chris Quirk Hisami Suzuki

Microsoft Research

One Microsoft Way, Redmond WA 98052 USA
{pallavic, chrisq, hisamis}@microsoft.com

Abstract

In this paper we describe our approach to

building a French text input system, in

which no explicit typing of accents is re-

quired. This makes typing of French

available to a wider range of keyboards

and to occasional writers of the language.

Our method is built on the noisy-channel

model, and achieves 99.8% character-

level accuracy on the test data consisting

of formal and casual writing styles. This

system is part of a larger project of mak-

ing text input easier for multiple lan-

guages, including those that have

traditionally been the target of input

methods (such as Chinese and Japanese)

as well as phonetically based non-Roman

script languages (such as Greek, Russian,

and Indic languages). A demo of this sys-

tem including these languages will be

shown at the workshop.

1 Introduction

Research on input methods has so far been lim-

ited to those languages in which an input method

editor (IME) is an absolute necessity, such as

Chinese and Japanese, that are written with a

very large number of characters. However, with

the recent availability of text prediction in typing

web search queries and text on mobile devices, it

has become obvious that text input methods are a

very useful tool for many languages beyond the

traditional IME languages (e.g., McKenzie and

Tanaka-Ishii, 2007). Phonetic text input has also

become widely popular in inputting non-Roman

script languages in the last few years.

In this paper we deal with a problem of text

input for a language that has never been a target

of traditional IME: French. French uses the Ro-

man alphabet with a few additions: accented

vowels (éàèùâêîôûëïü), the consonant ‘ç’, and

the ligatures ‘œ’ and ‘æ’ Inputting these charac-

ters requires a special arrangement such as in-

stalling an international keyboard, using ALT

codes (which uses the ALT key and a three or

four digit code),
1
 cutting and pasting from an

existing text or inserting a symbol from a table.

This makes French typing especially difficult for

those who do not input French on a regular basis.

Automatic prediction of accents should make

typing faster for native speakers as well, as ac-

cented characters account for 3.64 % of French

text (computed based on our training data, to be

mentioned in Section 4.1).
2
 Therefore, our goal is

to correctly predict accents in French text within

an IME scenario: users simply type characters

without accents, and the accented characters are

restored automatically.

We implemented our French input system

based on the noisy-channel approach, which is

commonly used for transliteration. Our channel

model is trained using finite state transducers;

our motivation for this choice will be discussed

in Section 2. For language models, we use both

character- and word-based n-gram models, in

order to handle both contextual disambiguation

of the words in the lexicon (e.g., a 'has' vs. à 'to';

mais 'but' vs. maïs 'corn') as well as accent pre-

diction in out-of-vocabulary (OOV) words. We

use a beam search decoder to find the best candi-

date. The models and the decoder are described

in Section 3. We present our experimental results

on the task of French accent prediction in Section

4, and show that our best model achieves 99.8%

character-level accuracy on two test sets of dif-

ferent styles.

1 On ALT codes, see

http://french.about.com/od/writing/ss/typeaccents_7.htm.
2 Rodriguez and Diaz (2007) report that in Spanish, almost

half (46%) of the spelling errors (errors as the users type)

are accent-related, one third of which is never corrected by

the user.

43

2 Text Input as Finite State Transducer

Our IME system is built on many existing NLP

technologies. In this section, we describe a meth-

od to build an IME as a finite state transducer

chain using the OpenFST toolkit (Allauzen et al.,

2007).

Finite state transducers have been used in

transliteration for over a decade (e.g., Knight and

Graehl, 1998), since they are efficient, trainable,

and capture the necessary phenomena using a

relatively easy-to-understand mechanism. They

are a useful tool in the construction of IMEs as

well. As mentioned above, for many languages

and scripts the IME problem consists primarily

of transliteration. In this case, a possibly

weighted transducer can transform the keyboard

script to the target script. Composing this with a

target language model represented as a weighted

acceptor will lead to more appropriate results.

Another important advantage of finite state

machines is that they can represent a number of

other, non-transliterating operations: physical

typing errors (hitting neighboring keys by mis-

take), phonetic errors, and character twiddles can

be represented as single transducers, and can be

cascaded together to form a single machine that

corrects spelling as it transliterates. Prediction

can be represented by adding another machine to

the cascade: a simple machine that generates any

number of characters with a given weight. A sin-

gle state machine where the initial state is a final

state will suffice: for every character in the out-

put script, there is an arc with an epsilon input

and that character as output.

Once we have such a cascade, we can use the

expectation semiring (Eisner, 2002) to train

weights given parallel data. As usage of the IME

increases, actual input/output pairs gathered from

users can act as training data.

In a small device or a cloud service, runtime

decoding with a complex FST chain may be too

computationally expensive. However, we can

cache some of the likely user inputs to decrease

runtime computation. Likely inputs can be identi-

fied by projecting a set of common words in the

target language backwards through the FST cas-

cade offline. Say we have an IME transducer

cascade of the following form: I = misspell ∘
phonetic ∘ lm. Given a set of very likely target

words, such as the top K words according to uni-

gram counts in a representative corpus, we can

pack them into a simple finite state acceptor.

Composing this acceptor with the inverse of the

IME machine, I
-1

, will produce a finite state ma-

chine encoding all the ways to input these words,

including spelling errors, predictions, and any

other operations are included in the IME cascade.

For each of these likely inputs, we can compute

its possible IME outputs offline and store the n-

best outputs in a dictionary to avoid runtime FST

complexity. Since high-frequency words tend to

make up the majority of tokens, this can signifi-

cantly reduce the expected runtime and therefore

latency of the service. Additionally this allows us

to use a complex FST chain for only certain

common words, and fall back to a simpler FST at

runtime for less common words.

For the French input system described in the

following sections, only the basic transliteration

operations are included. We now turn to the de-

tails of our model and implementation in the next

section.

3 Building a French IME

3.1 Overall model structure

The French input system is based on a generali-

zation of the noisy-channel model. In the stand-

ard noisy-channel approach, the likelihood of a

target French text with accented characters t is

estimated by P(t|s) P(s|t) P(t), where s is the

source, unaccented sequence. The channel model

P(s|t) may be represented by a finite state trans-

ducer that converts characters, character se-

quences, or words from their unaccented and

potentially misspelled forms into correctly

spelled and accented French strings. Language

models may take many forms; we use n-gram

models over characters and words.

In the original noisy-channel model, only two

equally weighted feature functions are used: the

log probabilities from a channel model and a

language model. We generalize this model to

incorporate multiple feature functions, each with

a linear weight. Currently the model has a small

set of features. Word and character n-gram lan-

guage models estimate the fluency of the output.

For the channel model, we compute a set of like-

ly word-based replacements offline using finite

state transducers. We also allow character by

character replacements, where each unaccented

character may be replaced by itself or any ac-

cented variant, and characters not seen on the

training set are deterministically transduced to

themselves. These character replacements are

currently assigned a uniform cost of –20. In the

future we plan to gather parallel input and output

44

data, which will be useful in training a parame-

terized character replacement model.

3.2 Training

OpenFST is used to build our list of word-based

replacements offline. A finite state transducer is

used to represent the mapping from a phonetic

symbol in Roman script to its orthographic sym-

bol in the target language. For languages with

different scripts, such as Greek, this would con-

tain mappings between scripts (e.g., r ρ); in

French, the characters may acquire accents dur-

ing this step (e.g., e é) or remain unchanged

(e.g., e e). This character level transducer is

composed with a word-level unigram language

model (also represented as an FST). We shall

refer to this composition as the transliteration

transducer T. To find likely inputs in their unac-

cented Roman character form, we project T to its

input domain.

For each likely input sequence, we build an

FST to represent the input word and compose it

with T. The output of the composition lists all

possible potentially accented forms in the target

language. We thus generate a lexicon of likely

inputs in their unaccented form and their possible

accented outputs in the target language. This al-

lows us to leverage the power of an FST ap-

proach without incurring the computational cost

during runtime.

3.3 Decoder

We use a beam search decoder to find the single

best result according to the channel model, char-

acter n-gram language model, and replacement

count features. For each prefix of the input string,

we maintain the b best replacement candidates as

scored by the weighted combination of models.

We recombine hypotheses that cover the same

set of input words and are indistinguishable to

the character n-gram model because they share

the same last n–1 characters
3
.

 For presenting results to the user, the efficient

algorithm of Soong and Huang (1991) quickly

gathers the n-best outputs. We also use this n-

best list for integrating the word n-gram model.

Incorporating this model directly into search re-

quires us to score partial candidates, a somewhat

complicated process since the candidates may

only cover prefixes of words. Therefore, we re-

rank the top outputs from the system including

all other features to integrate the word n-gram

3 In practice, we recombine more aggressively following the

ideas in Li and Khudanpur (2008).

model. Although this integration might encounter

a certain amount of search error, we find that this

is seldom a problem, and the approach is both

efficient and easy to implement.

4 Experiments and Results

In this section we describe the experiments we

ran to evaluate the quality of French accent resto-

ration, which serves as the basis for the French

text input method. The input to the task is French

text without any accent, simulating the scenario

where a user types unaccented French. The out-

put is fully accented French text. We then evalu-

ate this output against correctly accented

reference French text.

4.1 Data

For building a lexicon and training both language

models, we used a collection of French corpora

consisting of 840,938,412 sentences. This collec-

tion varies in style and formality, including text

from news, parliamentary proceedings and web

scraped documents. The lexicon built from this

training corpus consists of 2,715,698 unique

words.

As mentioned above, our method of training a

channel model does not require any paired train-

ing data. However, we still need input/output

sentence pairs for evaluating our system. For

French, the creation of such paired data is easy:

we just removed the accents from the target text

corpus. Our test corpus consists of two sets of

sentences that are disjoint from the training data:

a 3,027 sentence set of news corpus from the

WMT 2009 test data (WMT2009)
4
 and a 5,000-

sentence set from the logs of request to a ma-

chine transliteration service (MTlog). The OOV-

rate of these sets against the training data is

0.44 % at the token level.

4.2 Evaluation Metric

We measured our results using character error

rate (CER), which is based on the longest com-

mon subsequence match in characters between

the reference and the best system output. This is

a standard metric used in evaluating IME sys-

tems (e.g., Mori et al., 1998; Gao et al., 2002a,b).

Let NREF be the number of characters in a refer-

ence sentence, NSYS be the character length of a

system output, and NLCS be the length of the

longest common subsequence between them.

Then the character-level recall is defined as

4 http://www.statmt.org/wmt09/

45

NLCS/NREF, and the precision as NLCS/NSYS. CER

based on recall (CER-R) and on precision (CER-

P) are then defined as 1 – recall and 1 – precision,

respectively. In transliteration scenarios where

the character lengths of the system output and the

reference may differ (e.g., a target character cor-

responds to multiple source characters), CER-R

and CER-P will be different. In the case of

French, however, the reference and the system

output are the same length in most cases (the on-

ly exceptions are the sentences that include the

ligatures ‘œ’ and ‘æ’). Therefore, we report the

results using only CER-R in the next section.

4.3 Results

Table 1 show the results of French accent resto-

ration in CER-R in two test sets, WMT2009 and

MTLog, for various beam sizes (b=3, 10 and 30).

Each row of the table refers to the different mod-

els we built and tested, with different combina-

tions of the channel model, character-based and

word-based language models. The first row (E1)

is the baseline model which only uses the chan-

nel model. The rows E2, E4 and E6 are the sys-

tems that use the channel model and a character

language model of various orders. The rows E3,

E5 and E7 are the models that additionally use

the word trigram model for rescoring the 50-best

results of E2, E4 and E6, respectively.

From the table, we can observe that the use of

a higher-order character n-gram model contrib-

utes to better accuracy consistently. Additionally,

the word trigram model provides improvement

over the character language model of any order.

For instance, the underlined word in the follow-

ing sentence is wrongly predicted as des by E6,

but is correctly predicted by E7:

Il est beaucoup plus important que les con-

gressmans se mettent d'accord, dès cette

semaine, qu'ils soutiennent ce plan et qu'ils le

consacrerons le plus tôt possible.

Regarding beam size, it is clear from the table

that a width of 10 is sufficient, as further widen-

ing does not attain any additional improvements.

In addition, the beams as narrow as 3 produce

quite competitive results. This is good news as

speed is very important for an IME application.

With a beam size of 3, it takes approximately 0.6

to 2.8 milliseconds per character depending on

the complexity of the model used; this increases

to 6.2 milliseconds per character with a beam

size of 10.

As shown in the table, CER-R is as low as

0.22% in both test sets. This is equivalent to a

character level accuracy in excess of 99.8%,

which means that there is only one mistake in

every 500 characters. We have also manually

analyzed a sample of the remaining errors of our

best model (E7) on the WMT2009 test data, and

found that some (~30%) of the errors are due to

ambiguous lexical entries (e.g., Shanghai and

Shanghaï are both in the lexicon) and voluntary

accentuation of capital letters (e.g., Etats-Unis

and États-Unis are both acceptable). The remain-

ing errors were mostly attributed to failures in

contextually disambiguating the words in the

lexicon (e.g., des/dès; a/à).

5 Conclusion

We have presented our system that performs

French accent prediction. It achieves an accuracy

of around 99.8% at the character level, which

should be of great help in French input assistance,

especially for non-native writers. Although ac-

cent prediction accuracy alone is not sufficient

for a complete IME, it serves as a foundation for

a realistic text input system.

References

Allauzen, Cyril, Michael Riley, Johan Schalkwyk,

Wojciech Skut, Mehryar Mohri. 2007. OpenFst: A

General and Efficient Weighted Finite-State Trans-

ducer Library. Workshop on Implementing Autom-

ata/Conference on Implementation and Application

of Automata, pp. 11-23.

Exp

ID

Models WMT2009 MTLog

b=3 b=10 b=30 b=3 b=10 b=30

E1 Channel Model Only (C.M) 0.4974 0.4974 0.4974 0.4907 0.4907 0.4907

E2 C.M + 4-gram char LM (4-CLM) 0.4643 0.4643 0.4643 0.4052 0.4052 0.4052

E3 C.M + 4-CLM + 3-gram word LM (3-WLM) 0.2499 0.2494 0.2494 0.2743 0.2740 0.2740

E4 C.M + 6-gram char LM (6-CLM) 0.3744 0.3751 0.3751 0.3322 0.3332 0.3332

E5 C.M + 6-CLM + 3-WLM 0.2389 0.2384 0.2384 0.2410 0.2418 0.2418

E6 C.M + 10-gram char LM (10-CLM) 0.2735 0.2751 0.2751 0.2448 0.2454 0.2456

E7 C.M + 10-CLM + 3-WLM 0.2183 0.2173 0.2173 0.2175 0.2169 0.2169

Table 1: Results (in CER-R, in %) of accent prediction on WMT2009 and MTLog

46

Eisner, Jason. 2002. Parameter estimation for proba-

bilistic finite-state transducers. In Proceedings of

ACL.

Gao, Jianfeng, Joshua Goodman, Mingjing Li and

Kai-Fu Lee. 2002a. Toward a unified approach to

statistical language modeling for Chinese. In ACM

Transactions on Asian Language Information Pro-

cessing, 1-1:3-33.

Gao, Jianfeng, Hisami Suzuki and Yang Wen. 2002b.

Exploiting headword dependency and predictive

clustering for language modeling. In Proceedings

of EMNLP, pp.248-256.

Knight, Kevin, and Jonathan Graehl. 1998. Machine

Transliteration. In Computational Linguistics

24(4).

Li, Zhifei and Sanjeev Khudanpur. 2008. A scalable

decoder for parsing-based machine translation with

equivalent language model state maintenance. In

Proceedings of ACL SSST 2008.

McKenzie, I. Scott, and Kumiko Tanaka-Ishii. 2007.

Text Entry Systems: Mobility, Accessibility, Uni-

versality. Elsevier.

Mori, Shinsuke, Masatoshi Tsuchiya, Osamu Yamaji

and Makoto Nagao. 1998. Kana-Kanji Conversion

by A Stochastic Model. SIG-NL-125-10, Infor-

mation Processing Society of Japan (in Japanese).

Rodríguez, Néstor J. and Diaz, Maria I. 2007. Word

processing in Spanish using an English keyboard:

A study of spelling errors. In: Aykin, Nuray M.

(ed.) UI-HCII 2007 - Second International Confer-

ence on Usability and Internationalization - Part II.

pp. 219-227.

Soong, Frank, and Eng-Fong Huang. 1991. A Tree-

Trellis Based Fast Search for Finding the N-Best

Sentence Hypotheses in Continuous Speech

Recognition. In ICASSP.

47

