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Abstract 

In this paper we describe our approach to 

building a French text input system, in 

which no explicit typing of accents is re-

quired. This makes typing of French 

available to a wider range of keyboards 

and to occasional writers of the language. 

Our method is built on the noisy-channel 

model, and achieves 99.8% character-

level accuracy on the test data consisting 

of formal and casual writing styles. This 

system is part of a larger project of mak-

ing text input easier for multiple lan-

guages, including those that have 

traditionally been the target of input 

methods (such as Chinese and Japanese) 

as well as phonetically based non-Roman 

script languages (such as Greek, Russian, 

and Indic languages). A demo of this sys-

tem including these languages will be 

shown at the workshop.  

1 Introduction 

Research on input methods has so far been lim-

ited to those languages in which an input method 

editor (IME) is an absolute necessity, such as 

Chinese and Japanese, that are written with a 

very large number of characters. However, with 

the recent availability of text prediction in typing 

web search queries and text on mobile devices, it 

has become obvious that text input methods are a 

very useful tool for many languages beyond the 

traditional IME languages (e.g., McKenzie and 

Tanaka-Ishii, 2007). Phonetic text input has also 

become widely popular in inputting non-Roman 

script languages in the last few years.  

In this paper we deal with a problem of text 

input for a language that has never been a target 

of traditional IME: French. French uses the Ro-

man alphabet with a few additions: accented 

vowels (éàèùâêîôûëïü), the consonant ‘ç’, and 

the ligatures ‘œ’ and ‘æ’ Inputting these charac-

ters requires a special arrangement such as in-

stalling an international keyboard, using ALT 

codes (which uses the ALT key and a three or 

four digit code),
1
 cutting and pasting from an 

existing text or inserting a symbol from a table. 

This makes French typing especially difficult for 

those who do not input French on a regular basis. 

Automatic prediction of accents should make 

typing faster for native speakers as well, as ac-

cented characters account for 3.64 % of French 

text (computed based on our training data, to be 

mentioned in Section 4.1).
2
 Therefore, our goal is 

to correctly predict accents in French text within 

an IME scenario: users simply type characters 

without accents, and the accented characters are 

restored automatically.  

We implemented our French input system 

based on the noisy-channel approach, which is 

commonly used for transliteration. Our channel 

model is trained using finite state transducers; 

our motivation for this choice will be discussed 

in Section 2. For language models, we use both 

character- and word-based n-gram models, in 

order to handle both contextual disambiguation 

of the words in the lexicon (e.g., a 'has' vs. à 'to'; 

mais 'but' vs. maïs 'corn') as well as accent pre-

diction in out-of-vocabulary (OOV) words. We 

use a beam search decoder to find the best candi-

date. The models and the decoder are described 

in Section 3. We present our experimental results 

on the task of French accent prediction in Section 

4, and show that our best model achieves 99.8% 

character-level accuracy on two test sets of dif-

ferent styles.  

                                                           
1 On ALT codes, see 

http://french.about.com/od/writing/ss/typeaccents_7.htm.  
2 Rodriguez and Diaz (2007) report that in Spanish, almost 

half (46%) of the spelling errors (errors as the users type) 

are accent-related, one third of which is never corrected by 

the user.  
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2 Text Input as Finite State Transducer  

Our IME system is built on many existing NLP 

technologies. In this section, we describe a meth-

od to build an IME as a finite state transducer 

chain using the OpenFST toolkit (Allauzen  et al., 

2007).  

Finite state transducers have been used in 

transliteration for over a decade (e.g., Knight and 

Graehl, 1998), since they are efficient, trainable, 

and capture the necessary phenomena using a 

relatively easy-to-understand mechanism. They 

are a useful tool in the construction of IMEs as 

well. As mentioned above, for many languages 

and scripts the IME problem consists primarily 

of transliteration. In this case, a possibly 

weighted transducer can transform the keyboard 

script to the target script. Composing this with a 

target language model represented as a weighted 

acceptor will lead to more appropriate results.  

Another important advantage of finite state 

machines is that they can represent a number of 

other, non-transliterating operations: physical 

typing errors (hitting neighboring keys by mis-

take), phonetic errors, and character twiddles can 

be represented as single transducers, and can be 

cascaded together to form a single machine that 

corrects spelling as it transliterates. Prediction 

can be represented by adding another machine to 

the cascade: a simple machine that generates any 

number of characters with a given weight. A sin-

gle state machine where the initial state is a final 

state will suffice: for every character in the out-

put script, there is an arc with an epsilon input 

and that character as output. 

Once we have such a cascade, we can use the 

expectation semiring (Eisner, 2002) to train 

weights given parallel data. As usage of the IME 

increases, actual input/output pairs gathered from 

users can act as training data. 

In a small device or a cloud service, runtime 

decoding with a complex FST chain may be too 

computationally expensive. However, we can 

cache some of the likely user inputs to decrease 

runtime computation. Likely inputs can be identi-

fied by projecting a set of common words in the 

target language backwards through the FST cas-

cade offline.  Say we have an IME transducer 

cascade of the following form: I = misspell ∘ 
phonetic ∘ lm. Given a set of very likely target 

words, such as the top K words according to uni-

gram counts in a representative corpus, we can 

pack them into a simple finite state acceptor. 

Composing this acceptor with the inverse of the 

IME machine, I
-1

, will produce a finite state ma-

chine encoding all the ways to input these words, 

including spelling errors, predictions, and any 

other operations are included in the IME cascade. 

For each of these likely inputs, we can compute 

its possible IME outputs offline and store the n-

best outputs in a dictionary to avoid runtime FST 

complexity. Since high-frequency words tend to 

make up the majority of tokens, this can signifi-

cantly reduce the expected runtime and therefore 

latency of the service. Additionally this allows us 

to use a complex FST chain for only certain 

common words, and fall back to a simpler FST at 

runtime for less common words. 

For the French input system described in the 

following sections, only the basic transliteration 

operations are included. We now turn to the de-

tails of our model and implementation in the next 

section.  

3 Building a French IME 

3.1 Overall model structure 

The French input system is based on a generali-

zation of the noisy-channel model. In the stand-

ard noisy-channel approach, the likelihood of a 

target French text with accented characters t is 

estimated by P(t|s)   P(s|t) P(t), where s is the 

source, unaccented sequence. The channel model 

P(s|t) may be represented by a finite state trans-

ducer that converts characters, character se-

quences, or words from their unaccented and 

potentially misspelled forms into correctly 

spelled and accented French strings. Language 

models may take many forms; we use n-gram 

models over characters and words. 

In the original noisy-channel model, only two 

equally weighted feature functions are used: the 

log probabilities from a channel model and a 

language model. We generalize this model to 

incorporate multiple feature functions, each with 

a linear weight. Currently the model has a small 

set of features. Word and character n-gram lan-

guage models estimate the fluency of the output. 

For the channel model, we compute a set of like-

ly word-based replacements offline using finite 

state transducers. We also allow character by 

character replacements, where each unaccented 

character may be replaced by itself or any ac-

cented variant, and characters not seen on the 

training set are deterministically transduced to 

themselves. These character replacements are 

currently assigned a uniform cost of –20. In the 

future we plan to gather parallel input and output 
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data, which will be useful in training a parame-

terized character replacement model. 

3.2 Training 

OpenFST is used to build our list of word-based 

replacements offline. A finite state transducer is 

used to represent the mapping from a phonetic 

symbol in Roman script to its orthographic sym-

bol in the target language. For languages with 

different scripts, such as Greek, this would con-

tain mappings between scripts (e.g., r   ρ); in 

French, the characters may acquire accents dur-

ing this step (e.g., e   é) or remain unchanged 

(e.g., e   e). This character level transducer is 

composed with a word-level unigram language 

model (also represented as an FST). We shall 

refer to this composition as the transliteration 

transducer T. To find likely inputs in their unac-

cented Roman character form, we project T to its 

input domain.  

For each likely input sequence, we build an 

FST to represent the input word and compose it 

with T. The output of the composition lists all 

possible potentially accented forms in the target 

language. We thus generate a lexicon of likely 

inputs in their unaccented form and their possible 

accented outputs in the target language. This al-

lows us to leverage the power of an FST ap-

proach without incurring the computational cost 

during runtime. 

3.3 Decoder 

We use a beam search decoder to find the single 

best result according to the channel model, char-

acter n-gram language model, and replacement 

count features. For each prefix of the input string, 

we maintain the b best replacement candidates as 

scored by the weighted combination of models. 

We recombine hypotheses that cover the same 

set of input words and are indistinguishable to 

the character n-gram model because they share 

the same last n–1 characters
3
. 

 For presenting results to the user, the efficient 

algorithm of Soong and Huang (1991) quickly 

gathers the n-best outputs. We also use this n-

best list for integrating the word n-gram model. 

Incorporating this model directly into search re-

quires us to score partial candidates, a somewhat 

complicated process since the candidates may 

only cover prefixes of words. Therefore, we re-

rank the top outputs from the system including 

all other features to integrate the word n-gram 
                                                           
3 In practice, we recombine more aggressively following the 

ideas in Li and Khudanpur (2008). 

model. Although this integration might encounter 

a certain amount of search error, we find that this 

is seldom a problem, and the approach is both 

efficient and easy to implement.  

4 Experiments and Results 

In this section we describe the experiments we 

ran to evaluate the quality of French accent resto-

ration, which serves as the basis for the French 

text input method. The input to the task is French 

text without any accent, simulating the scenario 

where a user types unaccented French. The out-

put is fully accented French text. We then evalu-

ate this output against correctly accented 

reference French text.  

4.1 Data  

For building a lexicon and training both language 

models, we used a collection of French corpora 

consisting of 840,938,412 sentences. This collec-

tion varies in style and formality, including text 

from news, parliamentary proceedings and web 

scraped documents. The lexicon built from this 

training corpus consists of 2,715,698 unique 

words.  

As mentioned above, our method of training a 

channel model does not require any paired train-

ing data. However, we still need input/output 

sentence pairs for evaluating our system. For 

French, the creation of such paired data is easy: 

we just removed the accents from the target text 

corpus. Our test corpus consists of two sets of 

sentences that are disjoint from the training data: 

a 3,027 sentence set of news corpus from the 

WMT 2009 test data (WMT2009)
4
 and a 5,000-

sentence set from the logs of request to a ma-

chine transliteration service (MTlog). The OOV-

rate of these sets against the training data is 

0.44 % at the token level.  

4.2 Evaluation Metric 

We measured our results using character error 

rate (CER), which is based on the longest com-

mon subsequence match in characters between 

the reference and the best system output. This is 

a standard metric used in evaluating IME sys-

tems (e.g., Mori et al., 1998; Gao et al., 2002a,b). 

Let NREF be the number of characters in a refer-

ence sentence, NSYS be the character length of a 

system output, and NLCS be the length of the 

longest common subsequence between them. 

Then the character-level recall is defined as 

                                                           
4 http://www.statmt.org/wmt09/ 
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NLCS/NREF, and the precision as NLCS/NSYS. CER 

based on recall (CER-R) and on precision (CER-

P) are then defined as 1 – recall and 1 – precision, 

respectively. In transliteration scenarios where 

the character lengths of the system output and the 

reference may differ (e.g., a target character cor-

responds to multiple source characters), CER-R 

and CER-P will be different. In the case of 

French, however, the reference and the system 

output are the same length in most cases (the on-

ly exceptions are the sentences that include the 

ligatures ‘œ’ and ‘æ’). Therefore, we report the 

results using only CER-R in the next section.  

4.3 Results 

Table 1 show the results of French accent resto-

ration in CER-R in two test sets, WMT2009 and 

MTLog, for various beam sizes (b=3, 10 and 30). 

Each row of the table refers to the different mod-

els we built and tested, with different combina-

tions of the channel model, character-based and 

word-based language models. The first row (E1) 

is the baseline model which only uses the chan-

nel model. The rows E2, E4 and E6 are the sys-

tems that use the channel model and a character 

language model of various orders. The rows E3, 

E5 and E7 are the models that additionally use 

the word trigram model for rescoring the 50-best 

results of E2, E4 and E6, respectively.  

From the table, we can observe that the use of 

a higher-order character n-gram model contrib-

utes to better accuracy consistently. Additionally, 

the word trigram model provides improvement 

over the character language model of any order. 

For instance, the underlined word in the follow-

ing sentence is wrongly predicted as des by E6, 

but is correctly predicted by E7:  

Il est beaucoup plus important que les con-

gressmans se mettent d'accord, dès cette 

semaine, qu'ils soutiennent ce plan et qu'ils le 

consacrerons le plus tôt possible. 

Regarding beam size, it is clear from the table 

that a width of 10 is sufficient, as further widen-

ing does not attain any additional improvements. 

In addition, the beams as narrow as 3 produce 

quite competitive results. This is good news as 

speed is very important for an IME application. 

With a beam size of 3, it takes approximately 0.6 

to 2.8 milliseconds per character depending on 

the complexity of the model used; this increases 

to 6.2 milliseconds per character with a beam 

size of 10.  

As shown in the table, CER-R is as low as 

0.22% in both test sets. This is equivalent to a 

character level accuracy in excess of 99.8%, 

which means that there is only one mistake in 

every 500 characters. We have also manually 

analyzed a sample of the remaining errors of our 

best model (E7) on the WMT2009 test data, and 

found that some (~30%) of the errors are due to 

ambiguous lexical entries (e.g., Shanghai and 

Shanghaï are both in the lexicon) and voluntary 

accentuation of capital letters (e.g., Etats-Unis 

and États-Unis are both acceptable). The remain-

ing errors were mostly attributed to failures in 

contextually disambiguating the words in the 

lexicon (e.g., des/dès; a/à).   

5 Conclusion 

We have presented our system that performs 

French accent prediction. It achieves an accuracy 

of around 99.8% at the character level, which 

should be of great help in French input assistance, 

especially for non-native writers. Although ac-

cent prediction accuracy alone is not sufficient 

for a complete IME, it serves as a foundation for 

a realistic text input system.  
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