
Proceedings of the 13th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL), pages 50–59,
Seoul, South Korea, 5-6 July 2012. c©2012 Association for Computational Linguistics

An Unsupervised Approach to User Simulation: toward Self-Improving
Dialog Systems

Sungjin Lee1,2 and Maxine Eskenazi1
1Language Technologies Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania

2Computer Science and Engineering, Pohang University of Science and Technology, South Korea
{sungjin.lee, max}@cs.cmu.edu1, junion@postech.ac.kr2

Abstract

This paper proposes an unsupervised ap-
proach to user simulation in order to automati-
cally furnish updates and assessments of a de-
ployed spoken dialog system. The proposed
method adopts a dynamic Bayesian network
to infer the unobservable true user action from
which the parameters of other components are
naturally derived. To verify the quality of the
simulation, the proposed method was applied
to the Let’s Go domain (Raux et al., 2005)
and a set of measures was used to analyze the
simulated data at several levels. The results
showed a very close correspondence between
the real and simulated data, implying that it is
possible to create a realistic user simulator that
does not necessitate human intervention.

1 Introduction

For the past decade statistical approaches to dialog
modeling have shown positive results for optimizing
a dialog strategy with real data by applying well-
understood machine learning methods such as rein-
forcement learning (Henderson et al., 2008; Thom-
son and Young, 2010; Williams and Young, 2007b).
User simulation is becoming an essential component
in developing and evaluating such systems. In this
paper we describe an unsupervised process to au-
tomatically develop user simulators. The motiva-
tion for this comes from the fact that many systems
are presently moving from being simple lab simu-
lations to actual deployed systems with real users.
These systems furnish a constant flow of new data
that needs to be processed in some way. Our goal is
to minimize human intervention in processing this

data. Previously, data had to be hand-annotated, a
slow and costly process. Recently crowdsourcing
has made annotation faster and less expensive, but
all of the data still has to be processed and time
must be spent in creating the annotation interface
and tasks, and in quality control. Our goal is to pro-
cess the metadata (e.g. user actions, goals, error ty-
pology) in an unsupervised manner. And our method
eliminates the need for human transcription and an-
notation by inferring the user goal from grounding
information. We also consider user actions as la-
tent variables which are inferred based on observa-
tions from Automatic Speech Recognition (ASR).
We used the above inferred user actions paired with
the observed actions to build an error model. Since
the focus of this work is placed on improving and
evaluating the dialog strategy, error simulation can
be carried out at the semantic level. This eliminates
the need for transcription, which would have neces-
sitated an error simulation at the surface level. The
end result here will be a system that has as little hu-
man intervention as possible.

This paper is structured as follows. Section 2 de-
scribes previous research and the novelty of our ap-
proach. Section 3 elaborates on our proposed un-
supervised approach to user simulation. Section 4
explains the experimental setup. Section 5 presents
and discusses the results. Finally, Section 6 con-
cludes with a brief summary and suggestions for fu-
ture research.

2 Related Work

Previous user simulation studies can be roughly cat-
egorized into rule-based methods (Chung, 2005;

50



Lopez-Cozar et al., 2006; Schatzmann et al., 2007a)
and data-driven methods (Cuayahuitl et al., 2005;
Eckert et al., 1997; Jung et al., 2009; Levin et al.,
2000; Georgila et al., 2006; Pietquin, 2004). Rule-
based methods generally allow for more control over
their designs for the target domain while data-driven
methods afford more portability from one domain to
another and are attractive for modeling user behav-
ior based on real data. Although development costs
for data-driven methods are typically lower than
those of rule-based methods, previous data-driven
approaches have still required a certain amount of
human effort. Most intention-level models take a
semantically annotated corpus to produce user in-
tention without introducing errors (Cuayahuitl et al.,
2005; Jung et al., 2009). Surface-level approaches
need transcribed data to train their surface form and
error generating models (Jung et al., 2009; Schatz-
mann et al., 2007b). A few studies have attempted to
directly simulate the intention, surface, and error by
applying their statistical methods on the recognized
data rather than on the transcribed data (Georgila et
al., 2006; Schatzmann et al., 2005). Although such
approaches can avoid human intervention, the sole
incorporation of erroneous user action can propa-
gate those errors to the higher-level discourse fea-
tures which are computed from them, and thus could
result in less realistic user behavior. In this work, the
true user action is treated as a hidden variable and,
further, its associated dialog history is also viewed as
latent so that the uncertainty of the true user action
is properly controlled in a principled manner. Syed
and Williams (2008) adopted the Expectation Max-
imization algorithm for parameter learning for a la-
tent variable model. But their method still requires a
small amount of transcribed data to learn the obser-
vation confusability, and it suffers from overfitting
as a general property of maximum likelihood. To
address this problem, we propose a Bayesian learn-
ing method, which requires no transcribed data.

3 Unsupervised Approach to User
Simulation

Before describing each component in detail, we
present the overall process of user simulation with
an example in the Let’s Go domain in Figure 1. To
begin a dialog, the user simulator first sets the user

Figure 1: The overall process of user simulation in the
Let’s Go domain, where users call the spoken dialog sys-
tem to get bus schedule information for Pittsburgh

goal by sampling the goal model. Then the user sim-
ulator engages in a conversation with the dialog sys-
tem until the termination model ends it. At each
turn, the termination model randomly determines
whether the dialog will continue or not. If the dia-
log continues, the user model generates user actions
at the predicate level with respect to the given user
goal and system action. Having the user actions, the
error template model transforms some user actions
into other actions if necessary and determines which
action will receive an incorrect value. After that, the
error value model substantiates the values by draw-
ing a confusable value if specified to be incorrect or
by using the goal value. Finally, a confidence score
will be attached to the user action by sampling the
confidence score model which conditions on the cor-
rectness of the final user action.

3.1 Goal Model
The goal model is the first component to be de-
fined in terms of the working flow of the user sim-
ulator. In order to generate a plausible user goal
in accordance with the frequency at which it ap-
pears in a real situation, the dialog logs are parsed
to look for the grounding information1 that the users
have provided. Since the representation of a user
goal in this study is a vector of constraints required
by a user, for example [Route:61C, Source:CMU,

1Specifically, we used explicitly confirmed information by
the system for this study

51



Destination:AIRPORT, Time:6 PM], each time we
encounter grounding information that includes the
constraints used in the backend queries, this is added
to the user goal. If two actions contradict each other,
the later action overwrites the earlier one. Once all
of the user goals in the data have been gathered,
a discrete distribution over the user goal is learned
using a maximum likelihood estimation. Because
many variables later in this paper are discrete, a gen-
eral notation of a conditional discrete distribution is
expressed as follows:

p(xi|xpa(i),θ) =
∏

k,k′
θ
δ(pa(i),k)δ(xi,k

′)
k,k′ (1)

where k represents the joint configuration of all the
parents of i and δ(·, ·) denotes Kronecker delta. Note
that

∑
k′ θk,k′ = 1. Given this notation, the goal

model Λ can be written in the following form:

g ∼ p(g|Λ) =
∏

k

λ
δ(g,k)
k (2)

3.2 User Model
Having generated a user goal, the next task is to infer
an appropriate user action for the given goal and sys-
tem action. This is what the user model does. Since
one of key properties of our unsupervised approach
is that the true user actions are not observable, the
user model should maintain a belief over the dia-
log state by taking into consideration the observed
user actions. Inspired by (Williams et al., 2005),
to keep the complexity of the user model tractable,
a dynamic Bayesian network is adopted with sev-
eral conditional independence assumptions, giving
rise to the graphical structure which is shown in Fig-
ure 2. Unlike belief tracking in a dialog system, the
user goal in a user simulation is pre-determined be-
fore the beginning of the dialog. As with most pre-
vious studies, this property allows the user model
to deal with a predicate-level action consisting of a
speech act and a concept (e.g. [Inform(Source), In-
form(Time)]) and is only concerned about whether a
given field is specified or not in the user goal (e.g.
Bus:Unspecified, Source:Specified). This abstract-
level handling enables the user model to employ ex-
act inference algorithms such as the junction tree
algorithm (Lauritzen and Spiegelhalter, 1988) for
more efficient reasoning over the graphical structure.

Figure 2: The graphical structure of the dynamic
Bayesian network for the user model. g denotes the user
goal and st,ut,ht,ot represents the system action, the
user action, the dialog history, and the observed user ac-
tion for each time slice, respectively. The shaded items
are observable and the transparent ones are latent.

The joint distribution for this model is given by

p(g,S,H,U,O|Θ)

= p(h0|π)
∏

t

p(ut|g, st,ht−1,φ)

· p(ht|ht−1,ut,η)p(ot|ut, ζ)

(3)

where a capital letter stands for the set of
corresponding random variables, e.g., U =
{u1, . . . ,uN}, and Θ = {π,φ,η, ζ} denotes the
set of parameters governing the model2.

For a given user goal, the user model basically
performs an inference to obtain a marginal distribu-
tion over ut for each time step from which it can
sample the probability of a user action in a given
context:

ut ∼ p(ut|g, st1,ut−11 ,Θ) (4)

where st1 denotes the set of system actions from time
1 to time t and ut−11 is the set of previously sampled
user actions from time 1 to time t− 1.

3.2.1 Parameter Estimation
As far as parameters are concerned, ζ is a determin-
istic function that yields a fraction of an observed
confidence score in accordance with the degree of
agreement between ut and ot:

p(ot|ut) = CS(ot) ·
( |ot ∩ ut|
|ot ∪ ut|

)p
+ ε (5)

2Here, uniform prior distributions are assigned on g and S

52



where CS(·) returns the confidence score of the as-
sociated observation and p is a control variable over
the strength of disagreement penalty3. In addition, π
and η are deterministically set by simple discourse
rules, for example:

p(ht = Informed|ht−1,ut) =
{

1 if ht−1 = Informed or ut = Inform(·),
0 otherwise.

(6)

The only parameter that needs to be learned in the
user model, therefore, is φ and it can be estimated
by maximizing the likelihood function (Equation 7).
The likelihood function is obtained from the joint
distribution (Equation 3) by marginalizing over the
latent variables.

p(g,S,O|Θ) =
∑

H,U

p(g,S,H,U,O|Θ) (7)

Since direct maximization of the likelihood func-
tion will lead to complex expressions with no
closed-form solutions due to the latent variables, the
Expectation-Maximization (EM) algorithm is an ef-
ficient framework for finding maximum likelihood
estimates.

As it is well acknowledged, however, that over-
fitting can arise as a general property of maximum
likelihood, especially when only a small amount of
data is available, a Bayesian approach needs to be
adopted. In a Bayesian model, any unknown pa-
rameter is given a prior distribution and is absorbed
into the set of latent variables, thus it is infeasible
to directly evaluate the posterior distribution of the
latent variables and the expectations with respect to
this distribution. Therefore a deterministic approx-
imation, called mean field theory (Parisi, 1988), is
applied.

In mean field theory, the family of posterior distri-
butions of the latent variables is assumed to be par-
titioned into disjoint groups:

q(Z) =
M∏

i=1

qi(Zi) (8)

where Z = {z1, . . . , zN} denotes all latent variables
including parameters and Zi is a disjoint group.

3For this study, p was set to 1.0

Amongst all distributions q(Z) having the form of
Equation 8, we then seek the member of this family
for which the divergence from the true posterior dis-
tribution is minimized. To achieve this, the follow-
ing optimization with respect to each of the qi(Zi)
factors is to be performed in turn (Bishop, 2006):

ln q∗j (Zj) = Ei 6=j
[
ln p(X,Z)

]
+ const (9)

where X = {x1, . . . ,xN} denotes all observed vari-
ables and Ei 6=j means an expectation with respect to
the q distributions over all groups Zi for i 6= j.

Now, we apply the mean field theory to the user
model. Before doing so, we need to introduce the
prior over the parameter φ which is a product of
Dirichlet distributions4.

p(φ) =
∏

k

Dir(φk|α0
k)

=
∏

k

C(α0
k)
∏

l

φ
α0
k−1

k,l

(10)

where k represents the joint configuration of all of
the parents and C(α0

k) is the normalization constant
for the Dirichlet distribution. Note that for symme-
try we have chosen the same parameter α0

k for each
of the components.

Next we approximate the posterior distribution,
q(H,U,φ) using a factorized form, q(H,U)q(φ).
Then we first apply Equation 9 to find an expression
for the optimal factor q∗(φ):

ln q∗(φ) = EH,U

[
ln p(g,S,H,U,O,Θ)

]
+ const

= EH,U

[∑

t

ln p(ut|g, st,ht−1,φ)

]

+ ln p(φ) + const

=
∑

t

∑

i,j,k,l

(
EH,U

[
δi,j,k,l

]
lnφi,j,k,l

)

+
∑

i,j,k,l

(αoi,j,k,l − 1) lnφi,j,k,l + const

=
∑

i,j,k,l

((
EH,U[ni,j,k,l] + (αoi,j,k,l − 1)

)

· lnφi,j,k,l
)

+ const

(11)
4Note that priors over parameters for deterministic distribu-

tions (e.i., π,η,and ζ) are not necessary.

53



where δi,j,k,l denotes δ(g, i)δ(st, j)δ(ht−1, k)
δ(ut, l) and ni,j,k,l is the number of times where
g = i, st = j,ht−1 = k, and ut = l. This leads
to a product of Dirichlet distributions by taking the
exponential of both sides of the equation:

q∗(φ) =
∏

i,j,k

Dir(φi,j,k|αi,j,k),

αi,j,k,l = α0
i,j,k,l + EH,U[ni,j,k,l]

(12)

To evaluate the quantity EH,U[ni,j,k,l], Equation 9
needs to be applied once again to obtain an op-
timal approximation of the posterior distribution
q∗(H,U).

ln q∗(H,U) = Eφ

[
ln p(g,S,H,U,O,Θ)

]
+ const

= Eφ

[∑

t

ln p(ut|g, st,ht−1,φ)

+ ln p(ht|ht−1,ut)

+ ln p(ot|ut)
]

+ const

=
∑

t

(
Eφ

[
ln p(ut|g, st,ht−1,φ)

]

+ ln p(ht|ht−1,ut)

+ ln p(ot|ut)
)

+ const

(13)

where Eφ

[
ln p(ut|g, st,ht−1,φ)

]
can be obtained

using Equation 12 and properties of the Dirichlet
distribution:

Eφ

[
ln p(ut|g, st,ht−1,φ)

]

=
∑

i,j,k,l

δi,j,k,lEφ

[
lnφi,j,k,l

]

=
∑

i,j,k,l

δi,j,k,l(ψ(αi,j,k,l)− ψ(α̂i,j,k))

(14)

where ψ(·) is the digamma function with α̂i,j,k =∑
l αi,j,k,l. Because computing EH,U[ni,j,k,l] is

equivalent to summing each of the marginal poste-
rior probabilities q∗(ht−1,ut) with the same con-
figuration of conditioning variables, this can be
done efficiently by using the junction tree algorithm.
Note that the expression on the right-hand side for
both q∗(φ) and q∗(H,U) depends on expectations

computed with respect to the other factors. We
will therefore seek a consistent solution by cycling
through the factors and replacing each in turn with a
revised estimate.

3.3 Error Model
The purpose of the error model is to alter the user
action to reflect the prevalent speech recognition and
understanding errors. The error generation process
consists of three steps: the error model first gen-
erates an error template then fills it with erroneous
values, and finally attaches a confidence score.

Given a user action, the error model maps it into a
distorted form according to the probability distribu-
tion of the error template model Ω:

T (u) ∼ p(T (u)|u) =
∏

k,k′
ω
δ(u,k)δ(T (u),k′)
k,k′ (15)

where T (·) is a random function that maps a pred-
icate of the user action to an error template, e.g.
T (Inform(Time)) → Inform(Route:incorrect). To
learn the parameters, the hidden variable ut is sam-
pled using Equation 4 for each observation ot in the
training data and the value part of each observation
is replaced with a binary value representing its cor-
rectness with respect to the user goal. This results in
a set of complete data on which the maximum like-
lihood estimates of Ω are learned.

With the error template provided, next, the error
model fills it with incorrect values if necessary fol-
lowing the distribution of the error value model Λ
which is separately defined for each concept, other-
wise it will keep the correct value:

C(v) ∼ p(C(v)|v) =
∏

k,k′
λδ(v,k)δ(C(v),k

′) (16)

where C(·) is a random function which maps a cor-
rect value to a confusable value, e.g. C(Forbes) →
Forward. As with the error template model, the pa-
rameters of the error value model are also easily
trained on the dataset of all pairs of a user goal value
and the associated observed value. Because no er-
ror values can be observed for a given goal value, an
unconditional probability distribution is also trained
as a backoff.

Finally, the error model assigns a confidence
score by sampling the confidence score model Γ

54



which is separately defined for each concept:

s ∼ p(s|c) =
∏

k,k′
γδ(c,k)δ(s,k

′) (17)

where s denotes the confidence score and c repre-
sents the correctness of the value of the user action
which is previously determined by the error tem-
plate model. Since two decimal places are used to
describe the confidence score, the confidence score
model is represented with a discrete distribution.
This lends itself to trivial parameter learning similar
to other models by computing maximum likelihood
estimates on the set of observed confidence scores
conditioned on the correctness of the relevant val-
ues.

In sum, for example, having a user action
[Inform(Source:Forbes), Inform(Time:6 PM)] go
through the sequence of aforementioned models
possibly leads to [Inform(Source:Forward), In-
form(Route:6C)].

3.4 Termination Model

Few studies have been conducted to estimate the
probability that a dialog will terminate at a certain
turn in the user simulation. Most existing work
attempts to treat a termination initiated by a user
as one of the dialog actions in their user models.
These models usually have a limited dialog history
that they can use to determine the next user action.
This Markov assumption is well-suited to ordinary
dialog actions, each generally showing a correspon-
dence with previous dialog actions. It is not diffi-
cult, however, to see that more global contexts (e.g.,
cumulative number of incorrect confirmations) will
help lead a user to terminate a failed dialog. In ad-
dition, the termination action occurs only once at
the end of a dialog unlike the other actions. Thus,
we do not need to put the termination action into
the user model. In order to easily incorporate many
global features involving an entire dialog (Table 1)
into the termination model, the logistic regression
model is adapted. At every turn, before getting into
the user model, we randomly determine whether a
dialog will stop according to the posterior probabil-
ity of the termination model given the current dialog
context.

Feature Description
NT Number of turns
RIC Ratio of incorrect confirmations

RICW Ratio of incorrect confirmations
within a window

RNONU Ratio of non-understanding

RNONUW Ratio of non-understanding
within a window

ACS Averaged confidence score

ACSW Averaged confidence score
within a window

RCOP Ratio of cooperative turns

RCOPW Ratio of cooperative turns
within a window

RRT C Ratio of relevant system turns
for each concept

RRTW C Ratio of relevant system turns
for each concept within a window

NV C Number of values appeared for
each concept

Table 1: A description of features used for a logistic
regression model to capture the termination probability.
The window size was set to 5 for this study.

4 Experimental Setup

4.1 Data

To verify the proposed method, three months of data
from the Let’s Go domain were split into two months
of training data and one month of test data. Also,
to take the error level into consideration, we classi-
fied the data into four groups according to the aver-
aged confidence score and used each group of data
to build a different error model for each error level.
For comparison purposes, simulated data was gen-
erated for both training and test data by feeding the
same context of each piece of data to the proposed
method. Due to the characteristics of the bus sched-
ule information domain, there are a number of cases
where no bus schedule is available, such as requests
for uncovered routes and places. Such cases were
excluded for clearer interpretation of the result, giv-
ing us the data sets described in Table 2.

4.2 Measures

To date, a variety of evaluation methods have been
proposed in the literature (Cuayahuitl et al., 2005;
Jung et al., 2009; Georgila et al., 2006; Pietquin and

55



Training data Test data
Number of dialogs 1,275 669
Number of turns 9,645 5,103

Table 2: A description of experimental data sets.

Hastie, 2011; Schatzmann et al., 2005; Williams,
2007a). Nevertheless, it remains difficult to find
a suitable set of evaluation measures to assess the
quality of the user simulation. We have chosen
to adopt a set of the most commonly used mea-
sures. Firstly, expected precision (EP), expected re-
call (ER) and F-Score offer a reliable method for
comparing real and simulated data even though it
is not possible to specify the levels that need to be
satisfied to conclude that the simulation is realistic.
These are computed by comparison of the simulated
and real user action for each turn in the corpus:

EP = 100 ∗ Number of identical actions
Number of simulated actions

(18)

ER = 100 ∗ Number of identical actions
Number of real actions

(19)

F-Score = 100 ∗ 2 ∗ EP ∗ ER
EP + ER

(20)

Next, several descriptive statistics are employed to
show the closeness of the real and simulated data
in a statistical sense. The distribution of different
user action types, turn length and confidence score
can show constitutional similarity. It is still possible,
however, to be greatly different in their interdepen-
dence and cause quite different behavior at the dia-
log level even though there is a constitutional sim-
ilarity. Therefore, the dialog-level statistics such as
dialog completion rate and averaged dialog length
were also computed by running the user simulator
with the Let’s Go dialog system.

5 Results

As mentioned in Section 4.2, expected precision and
recall were measured. Whereas previous studies
only reported the scores computed in the predicate
level, i.e. speech act and concept, we also measured
the scores based on the output of the error template
model which is the predicate-level action with an
indicator of the correctness of the associated value
(Figure 1). The result (Table 3) shows a moderate

Training data Test data
Error Mark w/o w/ w/o w/

EP 58.13 45.12 54.44 41.86
ER 58.40 45.33 54.61 41.99

F-Score 58.27 45.22 54.52 41.93

Table 3: Expected precision, expected recall and F-Score

balance between agreement and variation which is
a very desirable characteristic of a user simulator
since a simulated user is expected not only to resem-
ble real data but also to cover diverse unseen behav-
ior to a reasonable extent. As a natural consequence
of the increased degree of freedom, the scores con-
sidering error marking are consistently lower. In ad-
dition, the results of test data are slightly lower than
those of training data, as expected, yet a suitable bal-
ance remains.

Next, the comparative distributions of different
actions between real and simulated data are pre-
sented for both training and test data (Figure 3).
The results are also based on the output of the er-
ror template model to further show how errors are
distributed over different actions. The distributions
of simulated data either from training or test data
show a close match to the corresponding real dis-
tributions. Interestingly, even though the error ratio
of the test data is noticeably different from that of
the training data, the proposed method is still able
to generate similar results. This means the vari-
ables and their conditional probabilities of the pro-
posed method were designed and estimated properly
enough to capture the tendency of user behavior with
respect to various dialog contexts. Moreover, the
comparison of the turn length distribution (Figure 4)
indicates that the simulated data successfully repli-
cated the real data for both training and test data.
The results of confidence score simulation are pre-
sented in Figure 55. For both training and test data,
the simulated confidence score displays forms that
are very similar to the real ones.

Finally, to confirm the resemblance on the dialog
level, the comparative results of dialog completion
rate and averaged dialog length are summarized in
Table 4. As shown in the dialog completion result,
the simulated user is a little harder than the real user

5Due to the space limitation, the detailed illustrations for
each action type are put in Appendix A.

56



Figure 3: A comparison of the distribution of different
actions between real and simulated data for both training
and test data

Figure 4: A comparison of the distribution of turn length
between real and simulated data for both training and test
data

to accomplish the purpose. Also, the variation of the
simulated data as far as turn length is concerned was
greater than that of the real data, although the aver-
aged lengths were similar to each other. This might
indicate the need to improve the termination model.
The proposed method for the termination model is
confined to incorporating only semantic-level fea-
tures but a variety of different features would, of
course, cause the end of a dialog, e.g. system de-
lay, acoustic features, spatial and temporal context,
weather and user groups.

6 Conclusion

In this paper, we presented a novel unsupervised ap-
proach for user simulation which is especially de-
sirable for real deployed systems. The proposed

Figure 5: A comparison of the distribution of confidence
score between real and simulated data for both training
and test data

Real Simulated
DCR (%) 59.68 55.04

ADL mean std. mean std.
Success 10.62 4.59 11.08 5.10

Fail 7.75 6.20 7.75 8.64
Total 9.46 5.48 9.50 7.12

Table 4: A comparison of dialog completion rate (DCR)
and averaged dialog length (ADL) which is presented ac-
cording to the dialog result.

method can cover the whole pipeline of user sim-
ulation on the semantic level without human inter-
vention. Also the quality of simulated data has been
demonstrated to be similar to the real data over a
number of commonly employed metrics. Although
the proposed method does not deal with simulat-
ing N-best ASR results, the extension to support
N-best results will be one of our future efforts, as
soon as the Let’s Go system uses N-best results.
Our future work also includes evaluation on improv-
ing and evaluating dialog strategies. Furthermore, it
would be scientifically more interesting to compare
the proposed method with a supervised approach us-
ing a corpus with semantic transcriptions. On the
other hand, as an interesting application, the pro-
posed user model could be exploited as a part of be-
lief tracking in a spoken dialog system since it also
considers a user action to be hidden.

57



Acknowledgments

We would like to thank Alan Black for helpful com-
ments and discussion. This work was supported by
the second Brain Korea 21 project.

References
C. Bishop, 2006. Pattern Recognition and Machine

Learning. Springer.
G. Chung, 2004. Developing a Flexible Spoken Dialog

System Using Simulation. In Proceedings of ACL.
H. Cuayahuitl, S. Renals, O. Lemon, H. Shimodaira,

2005. Humancomputer dialogue simulation using hid-
den Markov models. In Proceedings of ASRU.

W. Eckert, E. Levin, R. Pieraccini, 1997. User modeling
for spoken dialogue system evaluation. In Proceed-
ings of ASRU.

K. Georgila, J. Henderson, O. Lemon, 2006. User simu-
lation for spoken dialogue systems: Learning and eval-
uation. In Proceedings of Interspeech.

J. Henderson, O. Lemon, K. Georgila, 2008. Hybrid Re-
inforcement / Supervised Learning of Dialogue Poli-
cies from Fixed Datasets. Computational Linguistics,
34(4):487-511

S. Jung, C. Lee, K. Kim, M. Jeong, G. Lee, 2009.
Data-driven user simulation for automated evaluation
of spoken dialog systems. Computer Speech and Lan-
guage, 23(4):479–509.

S. Lauritzen and D. J. Spiegelhalter, 1988. Local Com-
putation and Probabilities on Graphical Structures and
their Applications to Expert Systems. Journal of
Royal Statistical Society, 50(2):157–224.

E. Levin, R. Pieraccini, W. Eckert, 2000. A stochastic
model of humanmachine interaction for learning di-
alogstrategies. IEEE Transactions on Speech and Au-
dio Processing, 8(1):11-23.

R. Lopez-Cozar, Z. Callejas, and M. McTear, 2006. Test-
ing the performance of spoken dialogue systems by
means of an articially simulated user. Articial Intel-
ligence Review, 26(4):291-323.

G. Parisi, 1988. Statistical Field Theory. Addison-
Wesley.

O. Pietquin, 2004. A Framework for Unsupervised
Learning of Dialogue Strategies. Ph.D. thesis, Faculty
of Engineering.

O. Pietquin and H. Hastie, 2011. A survey on metrics
for the evaluation of user simulations. The Knowledge
Engineering Review.

A. Raux, B. Langner, D. Bohus, A. W Black, and M.
Eskenazi, 2005. Let’s Go Public! Taking a Spoken
Dialog System to the Real World. In Proceedings of
Interspeech.

J. Schatzmann, K. Georgila, S. Young, 2005. Quantita-
tive evaluation of user simulation techniques for spo-
ken dialogue systems. In Proceedings of SIGdial.

J. Schatzmann, B. Thomson, K. Weilhammer, H. Ye, S.
Young, 2007. Agenda-based user simulation for boot-
strapping a POMDP dialogue system. In Proceedings
of HLT/NAACL.

J. Schatzmann, B. Thomson, S. Young, 2007. Error
simulation for training statistical dialogue systems. In
Proceedings of ASRU.

U. Syed and J. Williams, 2008. Using automatically
transcribed dialogs to learn user models in a spoken
dialog system. In Proceedings of ACL.

B. Thomson and S. Young, 2010. Bayesian update
of dialogue state: A POMDP framework for spoken
dialogue systems. Computer Speech & Language,
24(4):562-588.

J. Williams, P. Poupart, and S. Young, 2005. Factored
Partially Observable Markov Decision Processes for
Dialogue Management. In Proceedings of Knowledge
and Reasoning in Practical Dialogue Systems.

J. Williams, 2007. A Method for Evaluating and Com-
paring User Simulations: The Cramer-von Mises Di-
vergence. In Proceedings of ASRU.

J. Williams and S. Young, 2007. Partially observable
Markov decision processes for spoken dialog systems.
Computer Speech & Language, 21(2):393-422.

58



Appendices

Appendix A. Distribution of confidence score for each concept

Figure 6: A comparison of the distribution of confidence score between real and simulated data for the training data

Figure 7: A comparison of the distribution of confidence score between real and simulated data for the test data

59


