
The 7th Workshop on the Innovative Use of NLP for Building Educational Applications, pages 295–301,
Montréal, Canada, June 3-8, 2012. c©2012 Association for Computational Linguistics

Helping Our Own: NTHU NLPLAB System Description

Jian-Cheng Wu+, Joseph Z. Chang*, Yi-Chun Chen+, Shih-Ting Huang+, Mei-Hua Chen*,

Jason S. Chang+

 * Institute of Information Systems and Applications, NTHU, HsinChu, Taiwan, R.O.C. 30013
+ Department of Computer Science, NTHU, HsinChu, Taiwan, R.O.C. 30013

{wujc86, bizkit.tw, pieyaaa, koromiko1104, chen.meihua,

jason.jschang}@gmail.com

Abstract

Grammatical error correction has been an active

research area in the field of Natural Language

Processing. In this paper, we integrated four

distinct learning-based modules to correct

determiner and preposition errors in leaners’

writing. Each module focuses on a particular

type of error. Our modules were tested in

well-formed data and learners’ writing. The

results show that our system achieves high

recall while preserves satisfactory precision.

1. Introduction

Researchers have demonstrated that prepositions

and determiners are the two most frequent error

types for language learners (Leacock et al, 2010).

According to Swan and Smith (2001), preposition

errors might result from L1 interference. Chen and

Lin (2011) also reveal that prepositions are the

most perplexing problem for Chinese-speaking

EFL learners mainly because there are no clear

preposition counterparts in Chinese for learners to

refer to. On the other hand, Swan and Smith (2001)

predict that the possibility of determiner errors

depends on learners’ native language. The

Cambridge Learners Corpus illustrates that

learners of Chinese, Japanese, Korean, and Russian

might have a poor command of determiners.

In view of the fact that a large number of

grammatical errors appear in non-native speakers’

writing, more and more research has been directed

towards the automated detection and correction of

such errors to help improve the quality of that

writing (Dale and Kilgarriff, 2010). In recent years,

preposition error detection and correction has

especially been an area of increasingly active

research (Leacock et al, 2010). The HOO 2012

shared task also focuses on error detection and

correction in the use of prepositions and

determiners (Dale et al., 2012).

Many studies have been done at correcting

errors using hybrid modules: implementing distinct

modules to correct errors of different types. In

other word, instead of using a general module to

correct any kind of errors, using different modules

to deal with different error types seems to be more

effective and promising. In this paper, we propose

four distinct modules to deal with four kinds of

determiner and preposition errors (inserting

missing determiner, replacing erroneous

determiner, inserting missing preposition, and

replacing erroneous prepositions). Four

learning-based approaches are used to detect and

correct the errors of prepositions and determiners.

In this paper, we describe our methods in the

next section. Section 3 reports the evaluation

results. Then we conclude this paper in Section 4.

2. System Description

2.1 Overview

In this sub-section, we give a general view of our

system. Figure 1 shows the architecture of the

integrated error detection and error correction

system. The input of the system is a sentence in a

learner’s writing. First, the data is pre-processed

using the GeniaTagger tool (Tsuruoka et al., 2005),

which provides the base forms, part-of-speech tags,

chunk tags and named entity tags. The tag result of

295

the sample sentence “This virus affects the defense

system.” is shown in Table 1. The determiner error

detection module then directly inserts the missing

determiners and deletes the unnecessary

determiners. Meanwhile, the error determiners are

replaced with predicted answers by the determiner

error correction module. After finishing the

determiner error correction, the preposition error

detection and correction module detects and

corrects the preposition errors of the modified

input sentence.

In the following subsections, we first introduce

the training and testing of the determiner error

detection and correction modules (Section 3.2).

Then in section 3.3 we focus on the training and

testing of the preposition error detection and

correction modules.

Figure 1. System Architecture (Run-Time)

Word Base form POS Chunk NE

This This DT B-NP O
virus virus NN I-NP O
affects affect VBZ B-VP O

the the DT B-NP O

defence defence NN I-NP O

system system NN I-NP O

. . . O O

Table 1. The tag result of sample sentence.

2.2 Determiners

In this section, we investigate the performance of

two maximum entropy classifiers (Ratnaparkhi,

1997), one for determining whether a noun phrase

has a determiner or not and the other for selecting

the appropriate determiner if one is needed.

 From the British National Corpus (BNC), we

extract 22,552,979 noun phrases (NPs). For

determining which features are useful for this task,

all NPs are divided into two sets, 20 million cases

as a training set and the others as a validation set.

For the classifier (named the DetClassifier

hereafter) trained for predicting whether a NP has a

determiner or not, the label set contains two labels:

“Zero” and “DET.” On the other hand, for the

classifier (named the SelClassifier hereafter) which

predicts appropriate determiners, the label set

contains 9 labels: the, a, an, my, your, our, one,

this, their. (In the training data, there are 7,249,218

cases with those labels.)

Both of the classifiers use contextual and

syntactic information as features to predict the

labels. The features include single features such as

the headword of the NP, the part of speech (PoS)

of the headword, the words and PoSs in the

chunks before or after the NP (pre-NP, post-NP),

and all words and PoSs in the NP (excluding the

determiner if there was one), etc. We also combine

the single features to form more specific features

for better performance.

At run time, the given data are also tagged and

all features for each NP in the data are extracted

for classification. For testing, all determiners at the

beginning of the NPs are ignored if they exist. At

first, the DetClassifier is used to determine

whether a NP needs a determiner or not. If the

classifier predicts that the NP should not have a

determiner but it does, there is an “UD”

(Unnecessary determiner) type mistake. In contrast,

Preposition Error

Choice

Determiner Error

Detection

Determiner

Choice

Preposition Error

Detection

Input

sentence

Tagger & Parser

Determiner

Preposition

Output

296

if the classifier predicts that the NP should have a

determiner but it does not, there is a “MD” type

mistake. For both “MD” (Missing determiner) and

“RD” (Replace determiner) mistake types, we

would use the SelClassifier to predict which

determiner is more appropriate for the given NP.

2.3 Prepositions

2.3.1 Preposition Error Detection

In solving other problems in natural language

processing, supervised training methods suffers

from the difficulty of acquiring manually labeled

data. This may not be the case with grammatical

language error correction. Although high quality

error learner’s corpora are not currently available

to the public to provide negative cases, any

ordinary corpus can used as positive cases at

training time.

In our method, we use an ordinary corpus to

train a Conditional Random Field (CRF) tagger to

identify the presence of a targeted lexical category.

The input of the tagger is a sentence with all words

in the targeting lexical category removed. The

tagger will tag every word with a positive or

negative tag, predicting the presence of a word in

the targeted lexical category. In this paper, we

choose the top 13 most frequent prepositions: of, to,

in, for, on, with, as, at, by, from, about, like, since.

Conditional Random Field

The sequence labeling is the task of assigning

labels from a finite set of categories sequentially to

a set of observation sequences. This problem is

encountered not only in the field of computational

linguistics, but also many others, including

bioinformatics, speech recognition, and pattern

recognition.

Traditionally sequence labeling problems are

solved using the Hidden Markov Model (HMM).

HMM is a directed graph model in which every

outcome is conditioned on the corresponding

observation node and only the previous outcomes.

Conditional Random Field (CRF) is considered

the state-of-the-art sequence labeling algorithm.

One of the major differences of CRF is that it is

modeled as a undirected graph. CRF also obeys the

Markov property, with respect to the undirected

graph, every outcome is conditioned on its

neighboring outcomes and potentially the entire

observation sequence.

Figure 2. Simplified view of HMM and CRF

Supervised Training

Obtaining labeled training data is relatively easy

for this task, that is, it requires no human labeler.

For this task, we will use this method to target the

lexical category preposition. To produce training

data, we simply use an ordinary English corpus

and use the presence of prepositions as the

outcome, and remove all prepositions. For example,

the sentence

“Miss Hardbroom ’s eyes bored into Mildred

like a laser-beam the moment

they came into view .”

will produce

“Miss _Hardbroom _’s _eyes _bored +Mildred

_like _a _laser-beam _the _moment _they

_came +view .”

where the underscores indicate no preposition

presence and the plus signs indicate otherwise.

Combined with additional features described in

following sections, we use the CRF model to train

a preposition presence detection tagger. Features

additional to the words in the sentence are their

corresponding lemmas, part-of-speech tags, upper

or lower case, and word suffix.

At runtime, we first remove all prepositional

words in the user input sentence, generate

additional features, and use the trained tagger to

predict the presence of prepositions in the altered

sentence. By comparing the tagged result with the

original sentence, the system can output insertion

and/or deletion of preposition suggestions.

The process of generating features is identical to

producing the training set. To generate

297

part-of-speech tag features at runtime, one simple

approach is to use an ordinary POS tagger to

generate POS tags to the tokens in the altered

sentences, i.e. English sentences without any

prepositions. A more sophisticated approach is to

train a specialized POS tagger to tag English

sentences with their prepositions removed. A

state-of-the-art part-of-speech tagger can achieve

around 95% precision. In our implementation, we

find that using an ordinary POS tagger to tag

altered sentences yield near 94% precision,

whereas a specialized POS tagger performed

around 1% higher precision.

We used a small portion of the British National

Corpus (BNC) to train and evaluate our tagger (1M

and 10M tokens, i.e. words and punctuation marks).

The British National Corpus contains over 100

million words of both written (90%) and spoken

(10%) British English. The written part of the BNC

is sampled from a wide variety of sources,

including newspapers, journals, academic books,

fictions, letter, school and university essays. A

separate portion of the BNC is selected to evaluate

the performance of the taggers. The test set

contains 322,997 tokens (31,916 sentences).

2.3.2 Preposition Error Correction

Recently, the problem of preposition error

correction has been viewed as a word sense

disambiguation problem and all prepositions are

considered as candidates of the intended senses. In

previous studies, well-formed corpora and learner

corpora are both used in training the classifiers.

However, due to the limited size of learner corpora,

it is difficult to use the learner corpora to train a

classifier. A more feasible approach is to use a

large well-formed corpus to train a model in

choosing prepositions. Similar to the determiner

error correction, we choose the maximum entropy

model as our classifier to choose appropriate

prepositions underlying certain contexts. In order

to cover a large variety of genres in learners’

writing, we use a balanced well-formed corpus, the

BNC, to train a maximum entropy model.

Our context features include four feature

categories which are introduced as follows.
 Word feature (f1): Word features include a

window of five content words to the left and

right with their positions.

 Head feature (f2): We select two head words

in the left and right of prepositions with their

relative orders as head features. For example,

in Table 2, we select the first head word, face,

with its relative order, Rh1, as one of the

head features of preposition, to. More

specifically, “Rh1=face” denotes first head

word, face, right of the preposition, to.

 Head combine feature (f3): Combine any

two head features described above to get six

features. For example, L1R2 denotes two

head words surrounding the preposition.

 Phrase combine feature (f4): Combine the

head words of noun phrase and verb phrase

where the preposition is between the phrases.

For example, V_N feature denotes the head

words of verb phrase and noun phrase where

the preposition is followed by noun phrase

and is preceded by verb phrase.

Word Feature

(f1)

Lw1=leaving, Rw1=face,

Rw2= chronic, Rw3= condition

Head Feature

(f2)

Lh1=them, Lh2=leaving,

Rh1=face, Rh2=condition

Head Combine

Feature (f3)

L1L2= them_leaving,

L1R1= them_face,

L1R2= them_condition, …

Phrase Combine

Feature (f4)

N_N= them_condition,

V_N= leaving_condition,

N_V= them_face,

V_V= leaving_face

Table 2. Features example for leaving them to face this

chronic condition

At run time, we extract the features of each

preposition in learners’ writings and ask the model

to predict the preposition. The preposition error

detection model described in section 2.3.1 first

removes all prepositions from test sentences and

then marks the “presence” and “absence” labels in

every blank of a sentence. For each blank labeled

“presence”, the correction model predicts the

preposition which best fits the blank underlying the

contexts. The correction model does not predict

when the blanks are labeled “absence”. Although

some blanks labeled “absence” may still

correspond to prepositions, we decide to reduce

some recall score to ensure the accuracy of the

results.

298

3. Experimental Results

In this section, we present the experimental results

of the determiner and preposition modules

respectively.

3.1 Determiners

Table 3 shows the performance of the

DetClassifier of individual feature and Table 4

shows the performance of the SelClassifier. We

also wonder how the size of training data

influences the performance of the models. Table 5

and 6 show the precision of modes of different

sizes of training data with the best feature “whole

words in NP and last word of pre-NP.” Because the

performance converges while using more than 5

million training cases, we use only 1 million

training cases to investigate the performance of

using multiple features. When using all features,

the precision increases from 84.8% to 85.8% for

DetClassifier, and from 39.8% to 56.0% for

SelClassifier.

We also implement another data-driven model

for determiner selection (including zero) by using

the 5gram of Web 1T corpus. The basic concept of

the model is to use the frequency of determiners

which fit the context of the given test data to

choose the determiner candidates. If the frequency

of the determiner using in the given NP is lower

than other candidate determiners, we would use the

most frequent one as the suggestion. However,

according to our observation during testing, we

find that the model tends to cause false alarms. To

reduce the probability of false alarm, we set a high

threshold for the ratio f1/f2 where f1 is the frequency

of the used determiner and f2 is the frequency of

the most frequent determiner. The suggestion is

accepted only when the ratio exceeds the threshold.

The major limitation of the proposed method is

that some errors are ignored due to parsing errors.

For example, the given data “the them” should be

considered as one NP with the “UD” type error.

However, the parser would give the chunk result

“the [B-NP] them [B-NP]” and the error would not

be recognized. It might need some rules to handle

these exceptions. Another weakness of the

proposed methods is that the less frequently used

determiners are usually considered as errors and

suggested to be replaced with more frequently used

ones. For example, possessives such as ‘my’

and ’your’, are usually replaced with “the.” We

need to integrate more informative features to

improve performance.

Features Precision

head/PoS 79.1%

word/PoS of pre-NP 70.0%

word/PoS of all words in NP 85.9%

PoS of all words in NP 77.8%

word/PoS of post-NP 71.8%

whole words in NP 87.2%

last word/PoS of pre-NP and head/PoS 92.3%

whole words in NP and last word of

pre-NP

96.8%

Table 3. Precision of features used in the DetClassifier

Features Precision

head/PoS 55.2%

word/PoS of pre-NP 49.5%

word/PoS of all words in NP 53.9%

PoS of all words in NP 45.3%

word/PoS of post-NP 46.1%

whole words in NP 60.4%

last word/PoS of pre-NP and head/PoS 65.3%

whole words in NP and last word of

pre-NP

70.8%

Table 4. Precision of features used in the SelClassifier

Size Precision

1,000,000 84.8%

5,000,000 96.8%

10,000,000 96.8%

15,000,000 96.8%

20,000,000 96.8%

Table 5. Precision of different training size for the

DetClassifier

Size Precision

1,000,000 39.8%

3,000,000 43.2%

5,000,000 44.5%

7,000,000 61.6%

7,249,218 70.8%

Table 6. Precision of different training size for the
 SelClassifier

299

3.2 Prepositions

Two sets of evaluation were carried out for

detection. First, we use a randomly-selected

portion of the BNC containing 1 million tokens to

train our tokenizer targeting the 34 highest

frequency prepositions. Second, we use a larger

training corpus containing 10 million tokens, also

randomly selected from the BNC, and target a

smaller set of the 13 highest frequency

prepositions, due to the fact that these 13

prepositions can cover over 90% of the preposition

errors found in the development set.

We evaluate the trained taggers using two

different metrics. First we evaluate the overall

tagging precision, which is defined as

Poverall = # of correctly tagged words / # of

all words

Ppresence = # correctly tagged PRESENCE / #

all words labeled with PRESENCE

Since most answer tags are Non-presence,

Poverall is not informative, we therefore focus on

Ppresense, and further evaluate the recall of presence,

defined as:

Rpresence = # correctly tagged PRESENCE / #

word should be tagged with PRESENCE

We then evaluate on Precision and Recall of the

PRESENCE tag using different probabilities to

threshold the CRF tagging results. Then we show

the result of two evaluation sets. On the left is the

tagger train with 1 million tokens, targeting 34

prepositions. On the right is the tagger trained with

10 million tokens, targeting 13 prepositions. Only

the latter tagger is used for producing the

submitted runs.

We used the development data released as part

of HOO 2012 Shared Task as the gold standard for

the evaluation of our preposition correction module.

In order to observe the effect of different feature

sets in training, we first extracted the MT and RT

instances marked by the gold standard and then ask

the correction module to correct these prepositions

directly. Table 7 shows the precision of the models

trained on different feature sets. The definition of

precision is the same as the definition in the HOO

2012 Shared Task. The results shows that the

model trained using four feature sets achieved

higher precision.

Features Precision

MT RT MT+RT

f1 43.62% 39.15% 40.48%

f1+f2 52.58% 43.47% 46.18%

f1+f2+f3 55.20% 46.77% 49.27%

f1+f2+f3+f4 55.11% 47% 49.41%

Table 7. The feature selection and accuracy of the

preposition correction module.

In addition to the evaluation on the effect of

different feature sets, we also conducted an

evaluation done on the development data of HOO

2012 Shared Task to observe the performance of

the correction model when combined with the

detection model. The correction model corrected

three different types of preposition errors, MT, RT

and MT+RT simultaneously (Table 8).

 MT RT MT+RT

Precision 1.16% 3.80% 4.96%

Recall 29.86% 41.14% 37.79%

Table 8. Precision and recall scores of the correction

modules when combined with the detection module.

Note that when we only corrected the

preposition errors marked MT by preposition error

detection module, the precision and recall are both

lower than that of RT. The amount of false alarm

instances of detection module in MT seems to be

too high, thus in this paper, we won’t correct the

instance marked MT to insure the higher precision

of overall preposition correction.

4. Conclusion

In this paper, we integrate four learning-based

methods in determiner and preposition error

detection and correction. The integrated system

simply parses and tags the test sentences and then

corrects determiners and prepositions step by step.

The training of our system relies on well-formed

corpora and thus seems to be easier to

re-implement it. The large well-formed corpus

might also insure higher recall.

In the future, we plan to integrate the system in

a more flexible way. The detection modules could

300

pass probabilities to the correction modules. The

correction modules thus could decide whether to

correct the instances or not. In addition, we plan to

reduce the false alarm rate of the detection module.

Besides, a more considerable evaluation would be

conducted in the near future.

Acknowledgements

We would acknowledge the funding support

from the Project (NSC 100-2627-E-007-001)

and the help of the participants. Thanks also go to

the comments of anonymous reviewers on this

paper.

References

Mei-Hua Chen and Maosung Lin, 2011. Factors and

Analyses of Common Miscollocations of College

Students in Taiwan. Studies in English Language and

Literature, 28, pp. 57-72.

Martin Chodorow, Joel R. Tetreault, and Na-Rae Han.

2007. Detection of grammatical errors involving

prepositions. In Proceedings of the Fourth

ACL-SIGSEM Workshop on Prepositions, pp.

25-30.

Robert Dale and Adam Kilgarriff. 2010. Helping Our

Own: Text massaging for computational linguistics

as a new shared task. In Proceedings of the 6th

International Natural Language Generation

Conference, pp. 261–266.

Robert Dale, Ilya Anisimoff and George Narroway

(2012) HOO 2012: A Report on the Preposition and

Determiner Error Correction Shared Task. In

Proceedings of the Seventh Workshop on Innovative

Use of NLP for Building Educational Applications.

Rachele De Felice and Stephen G. Pulman. 2007.

Automatically acquiring models of preposition use.

In Proceedings of the Fourth ACL-SIGSEM

Workshop on Prepositions, pp. 45-50.

Claudia Leacock, Martin Chodorow, Michael Gamon,

and Joel Tetreault. 2010. Automated Grammatical

Error Detection for Language Learners. Synthesis

Lectures on Human Language Technologies. Morgan

and Claypool.

Adwait Ratnaparkhi. 1997. A linear observed time

statistical parser based on maximum entropy models.

In Proceedings of the Second Conference on

Empirical Methods in Natural Language Processing,

Brown University, Providence, Rhode Island.

Michael Swan and Bernard Smith, editors. Learner

English: A teacher’s guide to interference and other

problems. Cambridge University Press, 2 edition,

2001. DOI: 10.1017/CBO9780511667121 19, 23, 91

Tsuruoka Y, Tateishi Y, Kim JD, Ohta T, McNaught J,

Ananiadou S, Tsujii J. 2005. Developing a robust

part-of-speech tagger for biomedical text. In

Advances in Informatics, 10th Panhellenic

Conference on Informatics; 11-13 November 2005

Volos, Greece. Springer; pp. 382-392.

301

