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Abstract 

Grammatical error correction has been an active 

research area in the field of Natural Language 

Processing. In this paper, we integrated four 

distinct learning-based modules to correct 

determiner and preposition errors in leaners’ 

writing. Each module focuses on a particular 

type of error. Our modules were tested in 

well-formed data and learners’ writing. The 

results show that our system achieves high 

recall while preserves satisfactory precision. 

1. Introduction 

Researchers have demonstrated that prepositions 

and determiners are the two most frequent error 

types for language learners (Leacock et al, 2010). 

According to Swan and Smith (2001), preposition 

errors might result from L1 interference. Chen and 

Lin (2011) also reveal that prepositions are the 

most perplexing problem for Chinese-speaking 

EFL learners mainly because there are no clear 

preposition counterparts in Chinese for learners to 

refer to. On the other hand, Swan and Smith (2001) 

predict that the possibility of determiner errors 

depends on learners’ native language. The 

Cambridge Learners Corpus illustrates that 

learners of Chinese, Japanese, Korean, and Russian 

might have a poor command of determiners.  

In view of the fact that a large number of 

grammatical errors appear in non-native speakers’ 

writing, more and more research has been directed 

towards the automated detection and correction of 

such errors to help improve the quality of that 

writing (Dale and Kilgarriff, 2010). In recent years, 

preposition error detection and correction has 

especially been an area of increasingly active 

research (Leacock et al, 2010). The HOO 2012 

shared task also focuses on error detection and 

correction in the use of prepositions and 

determiners (Dale et al., 2012).  

Many studies have been done at correcting 

errors using hybrid modules: implementing distinct 

modules to correct errors of different types. In 

other word, instead of using a general module to 

correct any kind of errors, using different modules 

to deal with different error types seems to be more 

effective and promising. In this paper, we propose 

four distinct modules to deal with four kinds of 

determiner and preposition errors (inserting 

missing determiner, replacing erroneous 

determiner, inserting missing preposition, and 

replacing erroneous prepositions). Four 

learning-based approaches are used to detect and 

correct the errors of prepositions and determiners.   

In this paper, we describe our methods in the 

next section. Section 3 reports the evaluation 

results. Then we conclude this paper in Section 4.  

2. System Description 

2.1 Overview 

In this sub-section, we give a general view of our 

system. Figure 1 shows the architecture of the 

integrated error detection and error correction 

system. The input of the system is a sentence in a 

learner’s writing. First, the data is pre-processed 

using the GeniaTagger tool (Tsuruoka et al., 2005), 

which provides the base forms, part-of-speech tags, 

chunk tags and named entity tags. The tag result of 
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the sample sentence “This virus affects the defense 

system.” is shown in Table 1. The determiner error 

detection module then directly inserts the missing 

determiners and deletes the unnecessary 

determiners. Meanwhile, the error determiners are 

replaced with predicted answers by the determiner 

error correction module. After finishing the 

determiner error correction, the preposition error 

detection and correction module detects and 

corrects the preposition errors of the modified 

input sentence.  

In the following subsections, we first introduce 

the training and testing of the determiner error 

detection and correction modules (Section 3.2). 

Then in section 3.3 we focus on the training and 

testing of the preposition error detection and 

correction modules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. System Architecture (Run-Time) 

 

 

Word Base form POS Chunk NE 

This This DT B-NP O 
virus virus NN I-NP O 
affects affect VBZ B-VP O 

the the DT B-NP O 

defence defence NN I-NP O 

system system NN I-NP O 

. . . O O 

Table 1. The tag result of sample sentence. 

2.2 Determiners 

In this section, we investigate the performance of 

two maximum entropy classifiers (Ratnaparkhi, 

1997), one for determining whether a noun phrase 

has a determiner or not and the other for selecting 

the appropriate determiner if one is needed.  

 From the British National Corpus (BNC), we 

extract 22,552,979 noun phrases (NPs). For 

determining which features are useful for this task, 

all NPs are divided into two sets, 20 million cases 

as a training set and the others as a validation set.  

For the classifier (named the DetClassifier 

hereafter) trained for predicting whether a NP has a 

determiner or not, the label set contains two labels: 

“Zero” and “DET.” On the other hand, for the 

classifier (named the SelClassifier hereafter) which 

predicts appropriate determiners, the label set 

contains 9 labels: the, a, an, my, your, our, one, 

this, their. (In the training data, there are 7,249,218 

cases with those labels.) 

Both of the classifiers use contextual and 

syntactic information as features to predict the 

labels. The features include single features such as 

the headword of the NP, the part of speech (PoS) 

of the headword, the words and  PoSs in the 

chunks before or after the NP (pre-NP, post-NP), 

and all words and PoSs in the NP (excluding the 

determiner if there was one), etc. We also combine 

the single features to form more specific features 

for better performance. 

At run time, the given data are also tagged and 

all features for each NP in the data are extracted 

for classification. For testing, all determiners at the 

beginning of the NPs are ignored if they exist. At 

first, the DetClassifier is used to determine 

whether a NP needs a determiner or not. If the 

classifier predicts that the NP should not have a 

determiner but it does, there is an “UD” 

(Unnecessary determiner) type mistake. In contrast, 
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if the classifier predicts that the NP should have a 

determiner but it does not, there is a “MD” type 

mistake. For both “MD” (Missing determiner) and 

“RD” (Replace determiner) mistake types, we 

would use the SelClassifier to predict which 

determiner is more appropriate for the given NP.  

2.3 Prepositions 

2.3.1 Preposition Error Detection 

In solving other problems in natural language 

processing, supervised training methods suffers 

from the difficulty of acquiring manually labeled 

data. This may not be the case with grammatical 

language error correction. Although high quality 

error learner’s corpora are not currently available 

to the public to provide negative cases, any 

ordinary corpus can used as positive cases at 

training time. 

In our method, we use an ordinary corpus to 

train a Conditional Random Field (CRF) tagger to 

identify the presence of a targeted lexical category. 

The input of the tagger is a sentence with all words 

in the targeting lexical category removed. The 

tagger will tag every word with a positive or 

negative tag, predicting the presence of a word in 

the targeted lexical category. In this paper, we 

choose the top 13 most frequent prepositions: of, to, 

in, for, on, with, as, at, by, from, about, like, since. 

Conditional Random Field 

The sequence labeling is the task of assigning 

labels from a finite set of categories sequentially to 

a set of observation sequences. This problem is 

encountered not only in the field of computational 

linguistics, but also many others, including 

bioinformatics, speech recognition, and pattern 

recognition. 

Traditionally sequence labeling problems are 

solved using the Hidden Markov Model (HMM). 

HMM is a directed graph model in which every 

outcome is conditioned on the corresponding 

observation node and only the previous outcomes. 

Conditional Random Field (CRF) is considered 

the state-of-the-art sequence labeling algorithm. 

One of the major differences of CRF is that it is 

modeled as a undirected graph. CRF also obeys the 

Markov property, with respect to the undirected 

graph, every outcome is conditioned on its 

neighboring outcomes and potentially the entire 

observation sequence. 

 

 

Figure 2. Simplified view of HMM and CRF 

 

Supervised Training 

Obtaining labeled training data is relatively easy 

for this task, that is, it requires no human labeler. 

For this task, we will use this method to target the 

lexical category preposition. To produce training 

data, we simply use an ordinary English corpus 

and use the presence of prepositions as the 

outcome, and remove all prepositions. For example, 

the sentence  

 

“Miss Hardbroom ’s eyes bored into Mildred 

like    a    laser-beam    the    moment    

they    came into view .” 

 

will produce  

 

“Miss _Hardbroom _’s _eyes _bored +Mildred 

_like _a _laser-beam _the _moment _they 

_came  +view .”  

 

where the underscores indicate no preposition 

presence and the plus signs indicate otherwise. 

Combined with additional features described in 

following sections, we use the CRF model to train 

a preposition presence detection tagger. Features 

additional to the words in the sentence are their 

corresponding lemmas, part-of-speech tags, upper 

or lower case, and word suffix. 

At runtime, we first remove all prepositional 

words in the user input sentence, generate 

additional features, and use the trained tagger to 

predict the presence of prepositions in the altered 

sentence. By comparing the tagged result with the 

original sentence, the system can output insertion 

and/or deletion of preposition suggestions. 

The process of generating features is identical to 

producing the training set. To generate 
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part-of-speech tag features at runtime, one simple 

approach is to use an ordinary POS tagger to 

generate POS tags to the tokens in the altered 

sentences, i.e. English sentences without any 

prepositions. A more sophisticated approach is to 

train a specialized POS tagger to tag English 

sentences with their prepositions removed. A 

state-of-the-art part-of-speech tagger can achieve 

around 95% precision. In our implementation, we 

find that using an ordinary POS tagger to tag 

altered sentences yield near 94% precision, 

whereas a specialized POS tagger performed 

around 1% higher precision. 

We used a small portion of the British National 

Corpus (BNC) to train and evaluate our tagger (1M 

and 10M tokens, i.e. words and punctuation marks). 

The British National Corpus contains over 100 

million words of both written (90%) and spoken 

(10%) British English. The written part of the BNC 

is sampled from a wide variety of sources, 

including newspapers, journals, academic books, 

fictions, letter, school and university essays. A 

separate portion of the BNC is selected to evaluate 

the performance of the taggers. The test set 

contains 322,997 tokens (31,916 sentences). 

 

2.3.2 Preposition Error Correction 

Recently, the problem of preposition error 

correction has been viewed as a word sense 

disambiguation problem and all prepositions are 

considered as candidates of the intended senses. In 

previous studies, well-formed corpora and learner 

corpora are both used in training the classifiers. 

However, due to the limited size of learner corpora, 

it is difficult to use the learner corpora to train a 

classifier. A more feasible approach is to use a 

large well-formed corpus to train a model in 

choosing prepositions. Similar to the determiner 

error correction, we choose the maximum entropy 

model as our classifier to choose appropriate 

prepositions underlying certain contexts. In order 

to cover a large variety of genres in learners’ 

writing, we use a balanced well-formed corpus, the 

BNC, to train a maximum entropy model.  

Our context features include four feature 

categories which are introduced as follows.  
 Word feature (f1): Word features include a 

window of five content words to the left and 

right with their positions. 

 Head feature (f2): We select two head words 

in the left and right of prepositions with their 

relative orders as head features. For example, 

in Table 2, we select the first head word, face, 

with its relative order, Rh1, as one of the 

head features of preposition, to. More 

specifically, “Rh1=face” denotes first head 

word, face, right of the preposition, to. 

 Head combine feature (f3): Combine any 

two head features described above to get six 

features. For example, L1R2 denotes two 

head words surrounding the preposition. 

 Phrase combine feature (f4): Combine the 

head words of noun phrase and verb phrase 

where the preposition is between the phrases. 

For example, V_N feature denotes the head 

words of verb phrase and noun phrase where 

the preposition is followed by noun phrase 

and is preceded by verb phrase. 
   

 
Word Feature 

(f1) 

Lw1=leaving, Rw1=face,  

Rw2= chronic, Rw3= condition 

Head Feature 

(f2) 

Lh1=them, Lh2=leaving, 

Rh1=face, Rh2=condition 

Head Combine 

Feature (f3) 

L1L2= them_leaving,  

L1R1= them_face,  

L1R2= them_condition, … 

Phrase Combine 

Feature (f4) 

N_N= them_condition,  

V_N= leaving_condition,  

N_V= them_face,  

V_V= leaving_face 

Table 2. Features example for leaving them to face this 

chronic condition 

At run time, we extract the features of each 

preposition in learners’ writings and ask the model 

to predict the preposition. The preposition error 

detection model described in section 2.3.1 first 

removes all prepositions from test sentences and 

then marks the “presence” and “absence” labels in 

every blank of a sentence. For each blank labeled 

“presence”, the correction model predicts the 

preposition which best fits the blank underlying the 

contexts. The correction model does not predict 

when the blanks are labeled “absence”. Although 

some blanks labeled “absence” may still 

correspond to prepositions, we decide to reduce 

some recall score to ensure the accuracy of the 

results. 
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3. Experimental Results 

In this section, we present the experimental results 

of the determiner and preposition modules 

respectively.   

3.1 Determiners 

Table 3 shows the performance of the 

DetClassifier of individual feature and Table 4 

shows the performance of the SelClassifier. We 

also wonder how the size of training data 

influences the performance of the models. Table 5 

and 6 show the precision of modes of different 

sizes of training data with the best feature “whole 

words in NP and last word of pre-NP.” Because the 

performance converges while using more than 5 

million training cases, we use only 1 million 

training cases to investigate the performance of 

using multiple features.  When using all features, 

the precision increases from 84.8% to 85.8% for 

DetClassifier, and from 39.8% to 56.0% for 

SelClassifier. 

We also implement another data-driven model 

for determiner selection (including zero) by using 

the 5gram of Web 1T corpus. The basic concept of 

the model is to use the frequency of determiners 

which fit the context of the given test data to 

choose the determiner candidates. If the frequency 

of the determiner using in the given NP is lower 

than other candidate determiners, we would use the 

most frequent one as the suggestion. However, 

according to our observation during testing, we 

find that the model tends to cause false alarms. To 

reduce the probability of false alarm, we set a high 

threshold for the ratio f1/f2 where f1 is the frequency 

of the used determiner and f2 is the frequency of 

the most frequent determiner. The suggestion is 

accepted only when the ratio exceeds the threshold.  

The major limitation of the proposed method is 

that some errors are ignored due to parsing errors. 

For example, the given data “the them” should be 

considered as one NP with the “UD” type error. 

However, the parser would give the chunk result 

“the [B-NP] them [B-NP]” and the error would not 

be recognized. It might need some rules to handle 

these exceptions. Another weakness of the 

proposed methods is that the less frequently used 

determiners are usually considered as errors and 

suggested to be replaced with more frequently used 

ones. For example, possessives such as ‘my’ 

and ’your’, are usually replaced with “the.” We 

need to integrate more informative features to 

improve performance. 

 
Features Precision 

head/PoS 79.1% 

word/PoS of pre-NP 70.0% 

word/PoS of all words in NP 85.9% 

PoS of all words in NP 77.8% 

word/PoS of post-NP 71.8% 

whole words in NP 87.2% 

last word/PoS of pre-NP and head/PoS 92.3% 

whole words in NP and last word of 

pre-NP 

96.8% 

Table 3. Precision of features used in the DetClassifier 

 
Features Precision 

head/PoS 55.2% 

word/PoS of pre-NP 49.5% 

word/PoS of all words in NP 53.9% 

PoS of all words in NP 45.3% 

word/PoS of post-NP 46.1% 

whole words in NP 60.4% 

last word/PoS of pre-NP and head/PoS 65.3% 

whole words in NP and last word of 

pre-NP 

70.8% 

Table 4. Precision of features used in the SelClassifier 

 
Size Precision 

1,000,000 84.8% 

5,000,000 96.8% 

10,000,000 96.8% 

15,000,000 96.8% 

20,000,000 96.8% 

Table 5. Precision of different training size for the 

DetClassifier 

 
Size Precision 

1,000,000 39.8% 

3,000,000 43.2% 

5,000,000 44.5% 

7,000,000 61.6% 

7,249,218 70.8% 

Table 6. Precision of different training size for the  
 SelClassifier 
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3.2 Prepositions 

Two sets of evaluation were carried out for 

detection. First, we use a randomly-selected 

portion of the BNC containing 1 million tokens to 

train our tokenizer targeting the 34 highest 

frequency prepositions. Second, we use a larger 

training corpus containing 10 million tokens, also 

randomly selected from the BNC, and target a 

smaller set of the 13 highest frequency 

prepositions, due to the fact that these 13 

prepositions can cover over 90% of the preposition 

errors found in the development set. 

We evaluate the trained taggers using two 

different metrics. First we evaluate the overall 

tagging precision, which is defined as 

 

Poverall   =  # of correctly tagged words  / # of 

all words  

Ppresence =  # correctly tagged PRESENCE / #  

all words labeled with PRESENCE 

 
Since most answer tags are Non-presence, 

Poverall is not informative, we therefore focus on 

Ppresense, and further evaluate the recall of presence, 

defined as: 

 

Rpresence = # correctly tagged PRESENCE  / # 

word should be tagged with PRESENCE  

 

We then evaluate on Precision and Recall of the 

PRESENCE tag using different probabilities to 

threshold the CRF tagging results. Then we show 

the result of two evaluation sets. On the left is the 

tagger train with 1 million tokens, targeting 34 

prepositions. On the right is the tagger trained with 

10 million tokens, targeting 13 prepositions. Only 

the latter tagger is used for producing the 

submitted runs. 

We used the development data released as part 

of HOO 2012 Shared Task as the gold standard for 

the evaluation of our preposition correction module. 

In order to observe the effect of different feature 

sets in training, we first extracted the MT and RT 

instances marked by the gold standard and then ask 

the correction module to correct these prepositions 

directly. Table 7 shows the precision of the models 

trained on different feature sets. The definition of 

precision is the same as the definition in the HOO 

2012 Shared Task. The results shows that the 

model trained using four feature sets achieved 

higher precision.   

Features Precision 

MT RT MT+RT 

f1 43.62% 39.15% 40.48% 

f1+f2 52.58% 43.47% 46.18% 

f1+f2+f3 55.20% 46.77% 49.27% 

f1+f2+f3+f4 55.11% 47% 49.41% 

Table 7. The feature selection and accuracy of the 

preposition correction module. 

 

In addition to the evaluation on the effect of 

different feature sets, we also conducted an 

evaluation done on the development data of HOO 

2012 Shared Task to observe the performance of 

the correction model when combined with the 

detection model. The correction model corrected 

three different types of preposition errors, MT, RT 

and MT+RT simultaneously (Table 8). 
 

 

  MT RT MT+RT 

Precision 1.16% 3.80% 4.96% 

Recall 29.86% 41.14% 37.79% 

  

Table 8. Precision and recall scores of the correction 

modules when combined with the detection module.  

 

Note that when we only corrected the 

preposition errors marked MT by preposition error 

detection module, the precision and recall are both 

lower than that of RT. The amount of false alarm 

instances of detection module in MT seems to be 

too high, thus in this paper, we won’t correct the 

instance marked MT to insure the higher precision 

of overall preposition correction. 

 

4. Conclusion 

In this paper, we integrate four learning-based 

methods in determiner and preposition error 

detection and correction. The integrated system 

simply parses and tags the test sentences and then 

corrects determiners and prepositions step by step. 

The training of our system relies on well-formed 

corpora and thus seems to be easier to 

re-implement it. The large well-formed corpus 

might also insure higher recall.  

In the future, we plan to integrate the system in 

a more flexible way. The detection modules could 
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pass probabilities to the correction modules. The 

correction modules thus could decide whether to 

correct the instances or not. In addition, we plan to 

reduce the false alarm rate of the detection module. 

Besides, a more considerable evaluation would be 

conducted in the near future. 
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