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Introduction

BioNLP 2012 received 31 submissions exceeding even the traditionally high quality of the preceding
eleven years of BioNLP. Due to uniformly positive reviews, eleven submissions were accepted as full
papers and 19 as poster presentations.

The themes in this year’s papers and posters continue reflecting researchers’ growing interest in clinical
text processing, while maintaining a steady mature work in biological language processing. This year
presents a wide range of innovative methods applied to interesting problems in both domains.
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Graph-based alignment of narratives for automated neurological assessment

Emily T. Prud’hommeaux and Brian Roark
Center for Spoken Language Understanding

Oregon Health & Science University
{emilypx,roarkbr}@gmail.com

Abstract

Narrative recall tasks are widely used in neu-
ropsychological evaluation protocols in or-
der to detect symptoms of disorders such
as autism, language impairment, and demen-
tia. In this paper, we propose a graph-based
method commonly used in information re-
trieval to improve word-level alignments in
order to align a source narrative to narra-
tive retellings elicited in a clinical setting.
From these alignments, we automatically ex-
tract narrative recall scores which can then be
used for diagnostic screening. The signifi-
cant reduction in alignment error rate (AER)
afforded by the graph-based method results
in improved automatic scoring and diagnos-
tic classification. The approach described here
is general enough to be applied to almost any
narrative recall scenario, and the reductions in
AER achieved in this work attest to the po-
tential utility of this graph-based method for
enhancing multilingual word alignment and
alignment of comparable corpora for more
standard NLP tasks.

1 Introduction

Much of the work in biomedical natural language
processing has focused on mining information from
electronic health records, clinical notes, and medical
literature, but NLP is also very well suited for ana-
lyzing patient language data, in terms of both con-
tent and linguistic features, for neurological eval-
uation. NLP-driven analysis of clinical language
data has been used to assess language development
(Sagae et al., 2005), language impairment (Gabani

et al., 2009) and cognitive status (Roark et al., 2007;
Roark et al., 2011). These approaches rely on the ex-
traction of syntactic features from spoken language
transcripts in order to identify characteristics of lan-
guage use associated with a particular disorder. In
this paper, rather than focusing on linguistic fea-
tures, we instead propose an NLP-based method for
automating the standard manual method for scoring
the Wechsler Logical Memory (WLM) subtest of the
Wechsler Memory Scale (Wechsler, 1997) with the
eventual goal of developing a screening tool for Mild
Cognitive Impairment (MCI), the earliest observable
precursor to dementia. During standard administra-
tion of the WLM, the examiner reads a brief narra-
tive to the subject, who then retells the story to the
examiner, once immediately upon hearing the story
and a second time after a 30-minute delay. The ex-
aminer scores the retelling in real time by counting
the number of recalled story elements, each of which
corresponds to a word or short phrase in the source
narrative. Our method for automatically extracting
the score from a retelling relies on an alignment be-
tween substrings in the retelling and substrings in
the original narrative. The scores thus extracted can
then be used for diagnostic classification.

Previous approaches to alignment-based narra-
tive analysis (Prud’hommeaux and Roark, 2011a;
Prud’hommeaux and Roark, 2011b) have relied ex-
clusively on modified versions of standard word
alignment algorithms typically applied to large bilin-
gual parallel corpora for building machine transla-
tion models (Liang et al., 2006; Och et al., 2000).
Scores extracted from the alignments produced us-
ing these algorithms achieved fairly high classifi-
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cation accuracy, but the somewhat weak alignment
quality limited performance. In this paper, we com-
pare these word alignment approaches to a new ap-
proach that uses traditionally-derived word align-
ments between retellings as the input for graph-
based exploration of the alignment space in order to
improve alignment accuracy. Using both earlier ap-
proaches and our novel method for word alignment,
we then evaluate the accuracy of automated scoring
and diagnostic classification for MCI.

Although the alignment error rates for our data
might be considered high in the context of building
phrase tables for machine translation, the alignments
produced using the graph-based method are remark-
ably accurate given the small size of our training
corpus. In addition, these more accurate alignments
lead to gains in scoring accuracy and to classification
performance approaching that of manually derived
scores. This method for word alignment and score
extraction is general enough to be easily adapted
to other tests used in neuropsychological evalua-
tion, including not only those related to narrative re-
call, such as the NEPSY Narrative Memory subtest
(Korkman et al., 1998) but also picture description
tasks, such as the Cookie Theft picture description
task of the Boston Diagnostic Aphasia Examination
(Goodglass et al., 2001) or the Renfrew Bus Story
(Glasgow and Cowley, 1994). In addition, this tech-
nique has the potential to improve word alignment
for more general NLP tasks that rely on small cor-
pora, such as multilingual word alignment or word
alignment of comparable corpora.

2 Background

The act of retelling or producing a narrative taps into
a wide array of cognitive functions, not only mem-
ory but also language comprehension, language pro-
duction, executive function, and theory of mind. The
inability to coherently produce or recall a narrative
is therefore associated with many different cogni-
tive and developmental disorders, including demen-
tia, autism (Tager-Flusberg, 1995), and language im-
pairment (Dodwell and Bavin, 2008; Botting, 2002).
Narrative tasks are widely used in neuropsycholog-
ical assessment, and many commonly used instru-
ments and diagnostic protocols include a task in-
volving narrative recall or production (Korkman et

al., 1998; Wechsler, 1997; Lord et al., 2002).
In this paper, we focus on evaluating narrative re-

call within the context of Mild Cognitive Impair-
ment (MCI), the earliest clinically significant pre-
cursor of dementia. The cognitive and memory
problems associated with MCI do not necessarily
interfere with daily living activities (Ritchie and
Touchon, 2000) and can therefore be difficult to
diagnose using standard dementia screening tools,
such as the Mini-Mental State Exam (Folstein et al.,
1975). A definitive diagnosis of MCI requires an
extensive interview with the patient and a family
member or caregiver. Because of the effort required
for diagnosis and the insensitivity of the standard
screening tools, MCI frequently goes undiagnosed,
delaying the introduction of appropriate treatment
and remediation. Early and unobtrusive detection
will become increasingly important as the elderly
population grows and as research advances in delay-
ing and potentially stopping the progression of MCI
into moderate and severe dementia.

Narrative recall tasks, such as the test used in re-
search presented here, the Wechsler Logical Mem-
ory subtest (WLM), are often used in conjunction
with other cognitive measures in attempts to identify
MCI and dementia. Multiple studies have demon-
strated a significant difference in performance on the
WLM between subjects with MCI and typically ag-
ing controls, particularly in combination with tests
of verbal fluency and memory (Storandt and Hill,
1989; Peterson et al., 1999; Nordlund et al., 2005).
The WLM can also serve as a cognitive indicator of
physiological characteristics associated with symp-
tomatic Alzheimers disease, even in the absence of
previously reported dementia (Schmitt et al., 2000;
Bennett et al., 2006).

Some previous work on automated analysis of the
WLM has focused on using the retellings as a source
of linguistic data for extracting syntactic and pho-
netic features that can distinguish subjects with MCI
from typically aging controls (Roark et al., 2011).
There has been some work on automating scoring
of other narrative recall tasks using unigram overlap
(Hakkani-Tur et al., 2010), but Dunn et al. (2002)
are among the only researchers to apply automated
methods to scoring the WLM for the purpose of
identifying dementia, using latent semantic analysis
to measure the semantic distance between a retelling
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Dx n Age Education
MCI 72 88.7 14.9 yr
Non-MCI 163 87.3 15.1 yr

Table 1: Subject demographic data.

and the source narrative. Although scoring automa-
tion is not typically used in a clinical setting, the
objectivity offered by automated measures is par-
ticularly important for tests like the WLM, which
are often administered by practitioners working in a
community setting and serving a diverse population.

Researchers working on NLP tasks such as para-
phrase extraction (Barzilay and McKeown, 2001),
word-sense disambiguation (Diab and Resnik,
2002), and bilingual lexicon induction (Sahlgren and
Karlgren, 2005), often rely on aligned parallel or
comparable corpora. Recasting the automated scor-
ing of a neuropsychological test as another NLP task
involving the analysis of parallel texts, however, is a
relatively new idea. We hope that the methods pre-
sented here will both highlight the flexibility of tech-
niques originally developed for standard NLP tasks
and attract attention to the wide variety of biomed-
ical data sources and potential clinical applications
for these techniques.

3 Data

3.1 Subjects

The data examined in this study was collected from
participants in a longitudinal study on brain aging
at the Layton Aging and Alzheimers Disease Cen-
ter at the Oregon Health and Science University
(OHSU), including 72 subjects with MCI and 163
typically aging seniors roughly matched for age and
years of education. Table 1 shows the mean age
and mean years of education for the two diagnos-
tic groups. There were no significant between-group
differences in either measure.

Following (Shankle et al., 2005), we assign a di-
agnosis of MCI according to the Clinical Dementia
Rating (CDR) (Morris, 1993). A CDR of 0.5 corre-
sponds to MCI (Ritchie and Touchon, 2000), while
a CDR of zero indicates the absence of MCI or any
dementia. The CDR is measured via the Neurobe-
havioral Cognitive Status Examination (Kiernan et
al., 1987) and a semi-structured interview with the

patient and a family member or caregiver that allows
the examiner to assess the subject in several key ar-
eas of cognitive function, such as memory, orienta-
tion, problem solving, and personal care. The CDR
has high inter-annotator reliability (Morris, 1993)
when conducted by trained experts. It is crucial to
note that the calculation of CDR is completely inde-
pendent of the neuropsychological test investigated
in this paper, the Wechsler Logical Memory subtest
of the Wechsler Memory Scale. We refer readers to
the above cited papers for a further details.

3.2 Wechsler Logical Memory Test

The Wechsler Logical Memory subtest (WLM) is
part of the Wechsler Memory Scale (Wechsler,
1997), a diagnostic instrument used to assess mem-
ory and cognition in adults. In the WLM, the subject
listens to the examiner read a brief narrative, shown
in Figure 1. The subject then retells the narrative to
the examiner twice: once immediately upon hearing
it (Logical Memory I, LM-I) and again after a 30-
minute delay (Logical Memory II, LM-II). The nar-
rative is divided into 25 story elements. In Figure 1,
the boundaries between story elements are denoted
by slashes. The examiner notes in real time which
story elements the subject uses. The score that is re-
ported under standard administration of the task is
a summary score, which is simply the raw number
of story elements recalled. Story elements do not
need to be recalled verbatim or in the correct tempo-
ral order. The published scoring guidelines describe
the permissible substitutions for each story element.
The first story element, Anna, can be replaced in the
retelling with Annie or Ann, while the 16th story
element, fifty-six dollars, can be replaced with any
number of dollars between fifty and sixty.

An example LM-I retelling is shown in Figure 2.
According to the published scoring guidelines, this
retelling receives a score of 12, since it contains the
following 12 elements: Anna, employed, Boston, as
a cook, was robbed of, she had four, small children,
reported, station, touched by the woman’s story,
took up a collection, and for her.

3.3 Word alignment data

The Wechsler Logical Memory immediate and de-
layed retellings for all of the 235 experimental sub-
jects were transcribed at the word level. We sup-
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Anna / Thompson / of South / Boston / em-
ployed / as a cook / in a school / cafeteria /
reported / at the police / station / that she had
been held up / on State Street / the night be-
fore / and robbed of / fifty-six dollars. / She
had four / small children / the rent was due /
and they hadn’t eaten / for two days. / The po-
lice / touched by the woman’s story / took up
a collection / for her.

Figure 1: Text of WLM narrative segmented into 25 story
elements.

Ann Taylor worked in Boston as a cook. And
she was robbed of sixty-seven dollars. Is that
right? And she had four children and reported
at the some kind of station. The fellow was
sympathetic and made a collection for her so
that she can feed the children.

Figure 2: Sample retelling of the Wechsler narrative.

plemented the data collected from our experimental
subjects with transcriptions of retellings from 26 ad-
ditional individuals whose diagnosis had not been
confirmed at the time of publication or who did
not meet the eligibility criteria for this study. Par-
tial words, punctuation, and pause-fillers were ex-
cluded from all transcriptions used for this study.
The retellings were manually scored according to
published guidelines. In addition, we manually pro-
duced word-level alignments between each retelling
and the source narrative presented in Figure 1.

Word alignment for phrase-based machine trans-
lation typically takes as input a sentence-aligned
parallel corpus or bi-text, in which a sentence on
one side of the corpus is a translation of the sen-
tence in that same position on the other side of the
corpus. Since we are interested in learning how to
align words in the source narrative to words in the
retellings, our primary parallel corpus must consist
of source narrative text on one side and retelling
text on the other. Because the retellings contain
omissions, reorderings, and embellishments, we are
obliged to consider the full text of the source narra-
tive and of each retelling to be a “sentence” in the
parallel corpus.

We compiled three parallel corpora to be used for
the word alignment experiments:

• Corpus 1: A roughly 500-line source-to-
retelling corpus consisting of the source narra-

tive on one side and each retelling on the other.

• Corpus 2: A roughly 250,000-line pairwise
retelling-to-retelling corpus, consisting of ev-
ery possible pairwise combination of retellings.

• Corpus 3: A roughly 900-line word identity
corpus, consisting of every word that appears
in every retelling and the source narrative.

The explicit parallel alignments of word identities
that compose Corpus 3 are included in order to en-
courage the alignment of a word in a retelling to that
same word in the source, if it exists.

The word alignment techniques that we use are
entirely unsupervised. Therefore, as in the case
with most experiments involving word alignment,
we build a model for the data we wish to evalu-
ate using that same data. We do, however, use the
retellings from the 26 individuals who were not ex-
perimental subjects as a development set for tuning
the various parameters of our system, which is de-
scribed below.

4 Word Alignment

4.1 Baseline alignment

We begin by building two word alignment models
using the Berkeley aligner (Liang et al., 2006), a
state-of-the-art word alignment package that relies
on IBM mixture models 1 and 2 (Brown et al., 1993)
and an HMM. We chose to use the Berkeley aligner,
rather than the more widely used Giza++ alignment
package, for this task because its joint training and
posterior decoding algorithms yield lower alignment
error rates on most data sets and because it offers
functionality for testing an existing model on new
data and for outputting posterior probabilities. The
smaller of our two Berkeley-generated models is
trained on Corpus 1 (the source-to-retelling parallel
corpus described above) and ten copies of Corpus
3 (the word identity corpus). The larger model is
trained on Corpus 1, Corpus 2 (the pairwise retelling
corpus), and 100 copies of Corpus 3. Both models
are then tested on the 470 retellings from our 235 ex-
perimental subjects. In addition, we use both mod-
els to align every retelling to every other retelling so
that we will have all pairwise alignments available
for use in the graph-based model.
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Figure 3: Depiction of word graph.

The first two rows of Table 2 show the preci-
sion, recall, F-measure, and alignment error rate
(AER) (Och and Ney, 2003) for these two Berkeley
aligner models. We note that although AER for the
larger model is lower, the time required to train the
model is significantly larger. The alignments gen-
erated by the Berkeley aligner serve not only as a
baseline for comparison but also as a springboard
for the novel graph-based method of alignment we
will now discuss.

4.2 Graph-based refinement
Graph-based methods, in which paths or random
walks are traced through an interconnected graph of
nodes in order to learn more about the nodes them-
selves, have been used for various NLP tasks in in-
formation extraction and retrieval, including web-
page ranking (PageRank (Page et al., 1999)) and ex-
tractive summarization (LexRank (Erkan and Radev,
2004; Otterbacher et al., 2009)). In the PageRank al-
gorithm, the nodes of the graph are web pages and
the edges connecting the nodes are the hyperlinks
leading from those pages to other pages. The nodes
in the LexRank algorithm are sentences in a docu-
ment and the edges are the similarity scores between
those sentences. The likelihood of a random walk
through the graph starting at a particular node and
ending at another node provides information about
the relationship between those two nodes and the im-
portance of the starting node.

In the case of our graph-based method for word
alignment, each node represents a word in one of the
retellings or in the source narrative. The edges are

Figure 4: Changes in AER as λ increases.

the normalized posterior-weighted alignments that
the Berkeley aligner proposes between each word
and (1) words in the source narrative, and (2) words
in the other retellings, as depicted in Figure 3. Start-
ing at a particular node (i.e., a word in one of the
retellings), our algorithm can either walk from that
node to another node in the graph or to a word in
the source narrative. At each step in the walk, there
is a set probability λ that determines the likelihood
of transitioning to another retelling word versus a
word in the source narrative. When transitioning to
a retelling word, the destination word is chosen ac-
cording to the posterior probability assigned by the
Berkeley aligner to that alignment. When the walk
arrives at a source narrative word, that word is the
new proposed alignment for the starting word.

For each word in each retelling, we perform 1000
of these random walks, thereby generating a distri-
bution for each retelling word over all of the words
in the source narrative. The new alignment for the
word is the source word with the highest frequency
in that distribution.

We build two graphs on which to carry out these
random walks: one graph is built using the align-
ments generated by the smaller Berkeley alignment
model, and the other is built from the alignments
generated by the larger Berkeley alignment model.
Alignments with posterior probabilities of 0.5 or
greater are included as edges within the graph, since
this is the default posterior threshold used by the
Berkeley aligner. The value of λ, the probability of
walking to a retelling word node rather than a source
word, is tuned to the development set of retellings,
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Model P R F AER
Berkeley-Small 72.1 79.6 75.6 24.5
Berkeley-Large 78.6 80.5 79.5 20.5

Graph-Small 77.9 81.2 79.5 20.6
Graph-Large 85.4 76.9 81.0 18.9

Table 2: Aligner performance comparison.

discussed in Section 3.3. Figure 4 shows how AER
varies according to the value of λ for the two graph-
based approaches.

Each of these four alignment models produces,
for each retelling, a set of word pairs containing one
word from the original narrative and one word from
the retelling. The manual gold alignments for the
235 experimental subjects were evaluated against
the alignments produced by each of the four models.
Table 2 shows the accuracy of word alignment us-
ing these two graph-based models in terms of preci-
sion, accuracy, F-measure, and alignment error rate,
alongside the same measures for the two Berkeley
models. We see that each of the graph-based models
outperforms the Berkeley model of the same size.
The performance of the small graph-based model is
especially remarkable since it an AER comparable
to the large Berkeley model while requiring signif-
icantly fewer computing resources. The difference
in processing time between the two approaches was
especially remarkable: the graph-based model com-
pleted in only a few minutes, while the large Berke-
ley model required 14 hours of training.

Figures 5 and 6 show the results of aligning
the retelling presented in Figure 2 using the small
Berkeley model and the large graph-based model,
respectively. Comparing these two alignments, we
see that the latter model yields more precise align-
ments with very little loss of recall, as is borne out
by the overall statistics shown in Table 2.

5 Scoring

The published scoring guidelines for the WLM spec-
ify the source words that compose each story ele-
ment. Figure 7 displays the source narrative with
the element IDs (A− Y ) and word IDs (1− 65) ex-
plicitly labeled. Element Q, for instance, consists of
the words 39 and 40, small children. Using this in-
formation, we extract scores from the alignments as
follows: for each word in the original narrative, if

[A anna1] [B thompson2] [C of3 south4]
[D boston5] [E employed6] [F as7 a8

cook9] [G in10 a11 school12] [H cafeteria13]
[I reported14] [J at15 the16 police17] [K
station18] [L that19 she20 had21 been22 held23

up24] [M on25 state26 street27] [N the28

night29 before30] [O and31 robbed32 of33] [P
fifty-six34 dollars35] [Q she36 had37 four38]
[R small39 children40] [S the41 rent42 was43
due44] [T and45 they46 had47 n’t48 eaten49]
[U for50 two51 days52] [V the53 police54] [W
touched55 by56 the57 woman’s58 story59] [X
took60 up61 a62 collection63] [Y for64 her65]

Figure 7: Text of Wechsler Logical Memory narrative
with story-element labeled bracketing and word IDs.

anna(1) : A
thompson(2) : B
employed(6) : E

boston(5) : D
cook(9) : F

robbed(32) : O
fifty-six(34) : P

four(38) : Q
children(40) : R
reported(14) : I

station(18) : K
took(60) : X

collection(63) : X
for(64) : Y
her(65) : Y

Figure 8: Source content words from the alignment in
Figure 6 with corresponding story element IDs.

that word is aligned to a word in the retelling, the
story element that it is associated with is considered
to be recalled. Figure 8 shows the story elements
extracted from the word alignments in Figure 6.

When we convert alignments to scores in this way,
any alignment can be mapped to an element, even an
alignment between function words such as the and
of, which would be unlikely to indicate that the story
element had been recalled. To avoid such scoring er-
rors, we disregard any word-alignment pair contain-
ing a source function word. The two exceptions to
this rule are the final two words, for her, which are
not content words but together make a single story
element.

The element-level scores induced from the four
word alignments for all 235 experimental sub-
jects were evaluated against the manual per-element
scores. We report the precision, recall, and f-
measure for all four alignment models in Table 3. In
addition, report Cohen’s kappa as a measure of reli-
ability between our automated scores and the man-
ually assigned scores. We see that as AER im-
proves, scoring accuracy also improves, with the
large graph-based model outperforming all other
models in terms of precision, f-measure, and inter-

6



ann(1) : anna(1)
worked(3) : employed(6)

in(4) : in(10)
boston(5) : boston(5)

as(6) : as(7)
a(7) : a(8)

cook(8) : cook(9)
and(9) : and(31)

robbed(12) : robbed(32)
of(13) : of(33)

dollars(15) : dollars(35)
is(16) : was(43)

that(17) : that(19)
and(19) : and(45)
she(20) : she(36)
had(21) : had(37)

four(22) : four(38)
children(23) : children(40)
reported(25) : reported(14)

at(26) : at(15)
the(27) : the(16)

some(28) : police(17)
station(31) : station(18)

made(37) : up(61)

made(37) : took(60)
a(38) : a(62)

collection(39) : collection(63)
for(40) : for(64)
her(41) : her(65)
so(42) : woman’s(58)

she(44) : she(20)

Figure 5: Word alignment generated by the small Berkeley alignment model with retelling words italicized.

ann(1) : anna(1)
taylor(2) : thompson(2)

worked(3) : employed(6)
in(4) : in(10)

boston(5) : boston(5)
as(6) : as(7)

a(7) : a(8)
cook(8) : cook(9)

robbed(12) : robbed(32)
of(13) : of(33)

sixty-seven(14) : fifty-six(34)
dollars(15) : dollars(35)

she(20) : she(36)
had(21) : had(37)
four(22) : four(38)

children(23) : children(40)
reported(25) : reported(14)

at(26) : at(15)

the(27) : the(16)
station(31) : station(18)

made(37) : took(60)
a(38) : a(62)

collection(39) : collection(63)
for(40) : for(64)
her(41) : her(65)

Figure 6: Word alignment generated by the large graph-based model with retelling words italicized.

Model P R F κ
Berkeley-Small 87.2 88.9 88.0 76.1
Berkeley-Large 86.8 90.7 88.7 77.1
Graph-Small 84.7 93.6 88.9 76.9
Graph-Big 88.8 89.3 89.1 78.3

Table 3: Scoring accuracy results.

rater reliability. The scoring accuracy levels re-
ported here are comparable to the levels of inter-rater
agreement typically reported for the WLM, and re-
liability between our automated scores and the man-
ual scores, as measured by Cohen’s kappa, is well
within the ranges reported in the literature (Johnson
et al., 2003). As will be shown in the following sec-
tion, scoring accuracy is very important for achiev-
ing high diagnostic classification accuracy, which is
the ultimate goal of this work.

6 Diagnostic Classification

As discussed in Section 2, poor performance on the
Wechsler Logical Memory test is associated with
Mild Cognitive Impairment. We now use the scores
we have extracted from the word alignments as fea-
tures with a support vector machine (SVM) to per-
form diagnostic classification for distinguishing sub-
jects with MCI from those without. For each of the
235 experimental subjects, we generate 2 summary
scores: one for the immediate retelling and one for

the delayed retelling. The summary score ranges
from 0, indicating that no elements were recalled,
to 25, indicating that all elements were recalled. In
addition to the summary score, we also provide the
SVM with a vector of 50 per-element scores: for
each of the 25 element in each of the two retellings
per subject, there is a vector element with the value
of 0 if the element was not recalled, or 1 if the el-
ement was recalled. Since previous work has indi-
cated that certain elements may be more powerful in
their ability to predict the presence of MCI, we ex-
pect that giving the SVM these per-elements scores
may improve classification performance. To train
and test our classifiers, we use the WEKA API (Hall
et al., 2009) and LibSVM (Chang and Lin, 2011),
with a second-order polynomial kernel and default
parameter settings.

We evaluate the performance of the SVMs us-
ing a leave-pair-out validation scheme (Cortes et al.,
2007; Pahikkala et al., 2008). In the leave-pair-out
technique, every pairing between a negative exam-
ple and a positive example is tested using a classi-
fier trained on all of the remaining examples. The
resulting pairs of scores can be used to calculate
the area under the receiver operating characteristic
(ROC) curve (Egan, 1975), which is a plot of the
false positive rate of a classifier against its true pos-
itive rate. The area under this curve (AUC) has a

7



Model Summ. (s.d.) Elem. (s.d.)
Manual Scores 73.3 (3.76) 81.3 (3.32)
Berkeley-Small 73.7 (3.74) 77.9 (3.52)
Berkeley-Big 75.1 (3.67) 79.2 (3.45)
Graph-Small 74.2 (3.71) 78.9 (3.47)
Graph-Big 74.8 (3.69) 78.6 (3.49)

Table 4: Classification accuracy results (AUC).

value of 0.5 when the classifier performs at chance
and a value 1.0 when perfect classification accuracy
is achieved.

Table 4 shows the classification results for the
scores derived from the four alignment models along
with the classification results using the examiner-
assigned manual scores. It appears that, in all cases,
the per-element scores are more effective than the
summary scores in classifying the two diagnostic
groups. In addition, we see that our automated
scores have classificatory power comparable to that
of the manual gold scores, and that as scoring ac-
curacy increases from the small Berkeley model to
the graph-based models and bigger models, classifi-
cation accuracy improves. This suggests both that
accurate scores are crucial for accurate classifica-
tion and that pursuing even further improvements in
word alignment is likely to result in improved di-
agnostic differentiation. We note that although the
large Berkeley model achieved the highest classi-
fication accuracy, this very slight margin of differ-
ence may not justify its significantly greater compu-
tational requirements.

7 Conclusions and Future Work

The work presented here demonstrates the utility
of adapting techniques drawn from a diverse set of
NLP research areas to tasks in biomedicine. In par-
ticular, the approach we describe for automatically
analyzing clinically elicited language data shows
promise as part of a pipeline for a screening tool for
Mild Cognitive Impairment. Our novel graph-based
approach to word alignment resulted in large reduc-
tions in alignment error rate. These reductions in er-
ror rate in turn led to human-level scoring accuracy
and improved diagnostic classification.

As we have mentioned, the methods outlined here
are general enough to be used for other episodic
recall and description scenarios. Although the re-

sults are quite robust, several enhancements and im-
provements should be made before we apply the sys-
tem to other tasks. First, although we were able to
achieve decent word alignment accuracy, especially
with our graph-based approach, many alignment er-
rors remain. As shown in Figure 4, the graph-based
alignment technique could potentially result in an
AER of as low as 11%. We expect that our deci-
sion to select as a new alignment the most frequent
source word over the distribution of source words at
the end of 1000 walks could be improved, since it
does not allow for one-to-many mappings. In addi-
tion, it would be worthwhile to experiment with sev-
eral posterior thresholds, both during the decoding
step of the Berkeley aligner and in the graph edges.

In order to produce a viable clinical screening
tool, it is crucial that we incorporate speech recogni-
tion in the pipeline. Our very preliminary investiga-
tion into using ASR to generate transcripts for align-
ment seems promising and surprisingly robust to the
problems that might be expected when working with
noisy audio. In our future work, we also plan to ex-
amine longitudinal data for individual subjects to see
whether our techniques can detect subtle differences
in recall and coherence between a recent retelling
and a series of earlier baseline retellings. Since the
metric commonly used to quantify the progression
of dementia, the Clinical Dementia Rating, relies on
observed changes in cognitive function over time,
longitudinal analysis of performance on the Wech-
sler Logical Memory task may be the most promis-
ing application for our research.
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Jahna Otterbacher, Günes Erkan, and Dragomir R. Radev.
2009. Biased lexrank: Passage retrieval using random
walks with question-based priors. Inf. Process. Man-
age., 45(1):42–54.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. 1999. The pagerank citation ranking:
Bringing order to the web. Technical Report 1999-
66, Stanford InfoLab, November. Previous number =
SIDL-WP-1999-0120.

Tapio Pahikkala, Antti Airola, Jorma Boberg, and Tapio
Salakoski. 2008. Exact and efficient leave-pair-out
cross-validation for ranking RLS. In Proceedings of
AKRR 2008, pages 1–8.

Ronald Peterson, Glenn Smith, Stephen Waring, Robert
Ivnik, Eric Tangalos, and Emre Kokmen. 1999. Mild
cognitive impairment: Clinical characterizations and
outcomes. Archives of Neurology, 56:303–308.

Emily T. Prud’hommeaux and Brian Roark. 2011a.
Alignment of spoken narratives for automated neu-
ropsychological assessment. In Proceedings of ASRU.

Emily T. Prud’hommeaux and Brian Roark. 2011b. Ex-
traction of narrative recall patterns for neuropsycho-
logical assessment. In Proceedings of Interspeech.

Karen Ritchie and Jacques Touchon. 2000. Mild cogni-
tive impairment: Conceptual basis and current noso-
logical status. Lancet, 355:225–228.

9



Brian Roark, Margaret Mitchell, and Kristy Holling-
shead. 2007. Syntactic complexity measures for de-
tecting mild cognitive impairment. In Proceedings of
the ACL 2007 Workshop on Biomedical Natural Lan-
guage Processing (BioNLP), pages 1–8.

Brian Roark, Margaret Mitchell, John-Paul Hosom,
Kristina Hollingshead, and Jeffrey Kaye. 2011. Spo-
ken language derived measures for detecting mild
cognitive impairment. IEEE Transactions on Audio,
Speech and Language Processing, 19(7):2081–2090.

Kenji Sagae, Alon Lavie, and Brian MacWhinney. 2005.
Automatic measurement of syntactic development in
child language. In Proceedings of ACL, pages 197–
204.

Magnus Sahlgren and Jussi Karlgren. 2005. Automatic
bilingual lexicon acquisition using random indexing
of parallel corpora. Natural Language Engineering,
11(3).

F.A. Schmitt, D.G. Davis, D.R. Wekstein, C.D. Smith,
J.W. Ashford, and W.R. Markesbery. 2000. Preclini-
cal ad revisited: Neuropathology of cognitively normal
older adults. Neurology, 55:370–376.

William R. Shankle, A. Kimball Romney, Junko Hara,
Dennis Fortier, Malcolm B. Dick, James M. Chen,
Timothy Chan, and Xijiang Sun. 2005. Methods
to improve the detection of mild cognitive impair-
ment. Proceedings of the National Academy of Sci-
ences, 102(13):4919–4924.

Martha Storandt and Robert Hill. 1989. Very mild senile
dementia of the alzheimers type: Ii psychometric test
performance. Archives of Neurology, 46:383–386.

Helen Tager-Flusberg. 1995. Once upon a ribbit: Stories
narrated by autistic children. British journal of devel-
opmental psychology, 13(1):45–59.

David Wechsler. 1997. Wechsler Memory Scale - Third
Edition Manual. The Psychological Corporation.

10



Proceedings of the 2012 Workshop on Biomedical Natural Language Processing (BioNLP 2012), pages 11–19,
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Abstract

We describe an open information extraction
system for biomedical text based on NELL
(the Never-Ending Language Learner) (Carl-
son et al., 2010), a system designed for ex-
traction from Web text. NELL uses a cou-
pled semi-supervised bootstrapping approach
to learn new facts from text, given an initial
ontology and a small number of “seeds” for
each ontology category. In contrast to previ-
ous applications of NELL, in our task the ini-
tial ontology and seeds are automatically de-
rived from existing resources. We show that
NELL’s bootstrapping algorithm is suscepti-
ble to ambiguous seeds, which are frequent in
the biomedical domain. Using NELL to ex-
tract facts from biomedical text quickly leads
to semantic drift. To address this problem, we
introduce a method for assessing seed qual-
ity, based on a larger corpus of data derived
from the Web. In our method, seed quality
is assessed at each iteration of the bootstrap-
ping process. Experimental results show sig-
nificant improvements over NELL’s original
bootstrapping algorithm on two types of tasks:
learning terms from biomedical categories,
and named-entity recognition for biomedical
entities using a learned lexicon.

1 Introduction

NELL (the Never-Ending Language Learner) is a
semi-supervised learning system, designed for ex-
traction of information from the Web. The system
uses a coupled semi-supervised bootstrapping app-
roach to learn new facts from text, given an initial
ontology and a small number of “seeds”, i.e., labeled

examples for each ontology category. The new facts
are stored in a growing structured knowledge base.

One of the concerns about gathering data from the
Web is that it comes from various un-authoritative
sources, and may not be reliable. This is especially
true when gathering scientific information. In con-
trast to Web data, scientific text is potentially more
reliable, as it is guided by the peer-review process.
Open access scientific archives make this informa-
tion available for all. In fact, the production rate of
publicly available scientific data far exceeds the abil-
ity of researchers to “manually” process it, and there
is a growing need for the automation of this process.

The biomedical field presents a great potential for
text mining applications. An integral part of life sci-
ence research involves production and publication of
large collections of data by curators, and as part of
collaborative community effort. Prominent exam-
ples include: publication of genomic sequence data,
e.g., by the Human Genome Project; online col-
lections of three-dimensional coordinates of protein
structures; and databases holding data on genes. An
important resource, initiated as a means of enforc-
ing data standardization, are ontologies describing
biological, chemical and medical terms. These are
heavily used by the research community. With this
wealth of available data the biomedical field holds
many information extraction opportunities.

We describe an open information extraction sys-
tem adapting NELL to the biomedical domain. We
present an implementation of our approach, named
BioNELL, which uses three main sources of infor-
mation: (1) a public corpus of biomedical scientific
text, (2) commonly used biomedical ontologies, and
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zfh-1 Kruppel hmgcr Slam dad dTCF
tkv gypsy insulator Dichaete Cbs Helicase mago
CrebA alpha-Adaptin Abd-B Sufu ora Pten
D-raf doublesex gusA pelo vu sb
MtnA FasII AbdA sombre domain II TrpRS
Dcr-2 GAGA factor dTCF TAS CCK ripcord
fushi
tarazu

kanamycin
resistance

Ecdysone
receptor

GABAA
receptor

diazepam
binding
inhibitor

yolk
protein

Tkv dCBP Debcl arm

Table 1: Two samples of fruit-fly genes, taken from the
complete fly gene dictionary. High PMI Seeds are the top
50 terms selected using PMI ranking, and Random Seeds
are a random draw of 50 terms from the dictionary. These
are used as seeds for the Fly Gene category (Section 4.2).
Notice that the random set contains many terms that are
often not used as genes including arm, 28, and dad. Us-
ing these as seeds can lead to semantic drift. In contrast,
high PMI seeds exhibit much less ambiguity.

(3) a corpus of Web documents.
NELL’s ontology, including categories and seeds,

has been manually designed during the system de-
velopment. Ontology design involves assembling a
set of interesting categories, organized in a meaning-
ful hierarchical structure, and providing represen-
tative seeds for each category. Redesigning a new
ontology for a technical domain is difficult without
non-trivial knowledge of the domain. We describe a
process of merging source ontologies into one struc-
ture of categories with seed examples.

However, as we will show, using NELL’s boot-
strapping algorithm to extract facts from a biomed-
ical corpus is susceptible to noisy and ambiguous
terms. Such ambiguities are common in biomedi-
cal terminology (see examples in Table 1), and some
ambiguous terms are heavily used in the literature.
For example, in the sentence “We have cloned an
induced white mutation and characterized the in-
sertion sequence responsible for the mutant pheno-
type”, white is an ambiguous term referring to the
name of a gene. In NELL, ambiguity is limited us-

ing coupled semi-supervised learning (Carlson et al.,
2009): if two categories in the ontology are declared
mutually exclusive, instances of one category are
used as negative examples for the other, and the two
categories cannot share any instances. To resolve
the ambiguity of white with mutual exclusion, we
would have to include a Color category in the ontol-
ogy, and declare it mutually exclusive with the Gene
category. Then, instances of Color will not be able
to refer to genes in the KB. It is hard to estimate what
additional categories should be added, and building
a “complete” ontology tree is practically infeasible.

NELL also includes a polysemy resolution com-
ponent that acknowledges that one term, for exam-
ple white, may refer to two distinct concepts, say
a color and a gene, that map to different ontology
categories, such as Color and Fly Gene (Krishna-
murthy and Mitchell, 2011). By including a Color
category, this component can identify that white is
both a color and a gene. The polysemy resolver per-
forms word sense induction and synonym resolution
based on relations defined between categories in the
ontology, and labeled synonym examples. However,
at present, BioNELL’s ontology does not contain re-
lation definitions (it is based only on categories),
so we cannot include this component in our exper-
iments. Additionally, it is unclear how to avoid the
use of polysemous terms as category seeds, and no
method has been suggested for selecting seeds that
are representative of a single specific category.

To address the problem of ambiguity, we intro-
duce a method for assessing the desirability of noun
phrases to be used as seeds for a specific target cat-
egory. We propose ranking seeds using a Point-
wise Mutual Information (PMI) -based collocation
measure for a seed and a category name. Colloca-
tion is measured based on a large corpus of domain-
independent data derived from the Web, accounting
for uses of the seed in many different contexts.

NELL’s bootstrapping algorithm uses the mor-
phological and semantic features of seeds to pro-
pose new facts, which are added to the KB and used
as seeds in the next bootstrapping iteration to learn
more facts. This means that ambiguous terms may
be added at any learning iteration. Since white really
is a name of a gene, it is sometimes used in the same
semantic context as other genes, and may be added
to the KB despite not being used as an initial seed.
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To resolve this problem, we propose measuring seed
quality in a Rank-and-Learn bootstrapping method-
ology: after every iteration, we rank all the instances
that have been added to the KB by their quality
as potential category seeds. Only high-ranking in-
stances are used as seeds in the next iteration. Low-
ranking instances are stored in the KB and “remem-
bered” as true facts, but are not used for learning
new information. This is in contrast to NELL’s ap-
proach (and most other bootstrapping systems), in
which there is no distinction between acquired facts,
and facts that are used for learning.

2 Related Work

Biomedical Information Extraction systems have
traditionally targeted recognition of few distinct bi-
ological entities, focusing mainly on genes (e.g.,
(Chang et al., 2004)). Few systems have been devel-
oped for fact-extraction of many biomedical predi-
cates, and these are relatively small scale (Wattaru-
jeekrit et al., 2004), or they account for limited sub-
domains (Dolbey et al., 2006). We suggest a more
general approach, using bootstrapping to extend ex-
isting biomedical ontologies, including a wide range
of sub-domains and many categories. The current
implementation of BioNELL includes an ontology
with over 100 categories. To the best of our knowl-
edge, such large-scale biomedical bootstrapping has
not been done before.

Bootstrap Learning and Semantic Drift. Carl-
son et al. (2010) use coupled semi-supervised boot-
strap learning in NELL to learn a large set of cate-
gory classifiers with high precision. One drawback
of using iterative bootstrapping is the sensitivity of
this method to the set of initial seeds (Pantel et al.,
2009). An ambiguous set of seeds can lead to se-
mantic drift, i.e., accumulation of erroneous terms
and contexts when learning a semantic class. Strict
bootstrapping environments reduce this problem by
adding boundaries or limiting the learning process,
including learning mutual terms and contexts (Riloff
and Jones, 1999) and using mutual exclusion and
negative class examples (Curran et al., 2007).

McIntosh and Curran (2009) propose a metric
for measuring the semantic drift introduced by a
learned term, favoring terms different than the recent
m learned terms and similar to the first n, (shown

for n=20 and n=100), following the assumption that
semantic drift develops in late bootstrapping itera-
tions. As we will show, for biomedical categories,
semantic drift in NELL occurs within a handful of
iterations (< 5), however according to the authors,
using low values for n produces inadequate results.
In fact, selecting effective n and m parameters may
not only be a function of the data being used, but
also of the specific category, and it is unclear how to
automatically tune them.

Seed Set Refinement. Vyas et al. (2009) suggest
a method for reducing ambiguity in seeds provided
by human experts, by selecting the tightest seed
clusters based on context similarity. The method is
described for an order of 10 seeds, however, in an
ontology containing hundreds of seeds per class, it is
unclear how to estimate the correct number of clus-
ters to choose from. Another approach, suggested
by Kozareva et al. (2010), is using only constrained
contexts where both seed and class are present in a
sentence. Extending this idea, we consider a more
general collocation metric, looking at entire docu-
ments including both the seed and its category.

3 Implementation

3.1 NELL’s Bootstrapping System

We have implemented BioNELL based on the sys-
tem design of NELL. NELL’s bootstrapping algo-
rithm is initiated with an input ontology structure of
categories and seeds. Three sub-components oper-
ate to introduce new facts based on the semantic and
morphological attributes of known facts. At every
iteration, each component proposes candidate facts,
specifying the supporting evidence for each candi-
date, and the candidates with the most strongly sup-
ported evidence are added to the KB. The process
and sub-components are described in detail by Carl-
son et al. (2010) and Wang and Cohen (2009).

3.2 Text Corpora

PubMed Corpus: We used a corpus of 200K full-
text biomedical articles taken from the PubMed
Central Open Access Subset (extracted in October
2010)1, which were processed using the OpenNLP
package2. This is the main BioNELL corpus and it

1http://www.ncbi.nlm.nih.gov/pmc/
2http://opennlp.sourceforge.net
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is used to extract category instances in all the exper-
iments presented in this paper.

Web Corpus: BioNELL’s seed-quality colloca-
tion measure (Section 3.4) is based on a domain-
independent Web corpus, the English portion of the
ClueWeb09 data set (Callan and Hoy, 2009), which
includes 500 million web documents.

3.3 Ontology
BioNELL’s ontology is composed of six base on-
tologies, covering a wide range of biomedical sub-
domains: the Gene Ontology (GO) (Ashburner et
al., 2000), describing gene attributes; the NCBI Tax-
onomy for model organisms (Sayers et al., 2009);
Chemical Entities of Biological Interest (ChEBI)
(Degtyarenko et al., 2008), a dictionary focused on
small chemical compounds; the Sequence Ontol-
ogy (Eilbeck et al., 2005), describing biological se-
quences; the Cell Type Ontology (Bard et al., 2005);
and the Human Disease Ontology (Osborne et al.,
2009). Each ontology provides a hierarchy of terms
but does not distinguish concepts from instances.

We used an automatic process for merging base
ontologies into one ontology tree. First, we group
the ontologies under one hierarchical structure, pro-
ducing a tree of over 1 million entities, including
856K terms and 154K synonyms. We then separate
these into potential categories and potential seeds.
Categories are nodes that are unambiguous (have a
single parent in the ontology tree), with at least 100
descendants. These descendants are the category’s
Potential seeds. This results in 4188 category nodes.
In the experiments of this paper we selected only
the top (most general) 20 categories in the tree of
each base ontology. We are left with 109 final cate-
gories, as some base ontologies had less than 20 cat-
egories under these restrictions. Leaf categories are
given seeds from their descendants in the full tree of
all terms and synonyms, giving a total of around 1
million potential seeds. Seed set refinement is de-
scribed below. The seeds of leaf categories are later
extended by the bootstrapping process.

3.4 BioNELL’s Bootstrapping System
3.4.1 PMI Collocation with the Category Name

We define a seed quality metric based on a large
corpus of Web data. Let s and c be a seed and a tar-
get category, respectively. For example, we can take

s = “white”, the name of a gene of the fruit-fly, and c
= “fly gene”. Now, let D be a document corpus (Sec-
tion 3.2 describes the Web corpus used for ranking),
and let Dc be a subset of the documents contain-
ing a mention of the category name. We measure
the collocation of the seed and the category by the
number of times s appears in Dc, |Occur(s, Dc)|.
The overall occurrence of s in the corpus is given
by |Occur(s, D)|. Following the formulation of
Church and Hanks (1990), we compute the PMI-
rank of s and c as

PMI(s, c) =
|Occur(s, Dc)|
|Occur(s, D)|

(1)

Since this measure is used to compare seeds of the
same category, we omit the log from the original for-
mulation. In our example, as white is a highly am-
biguous gene name, we find that it appears in many
documents that do not discuss the fruit fly, resulting
in a PMI rank close to 0.

The proposed ranking is sensitive to the descrip-
tive name given to categories. For a more robust
ranking, we use a combination of rankings of the
seed with several of its ancestors in the ontology hi-
erarchy. In (Movshovitz-Attias and Cohen, 2012)
we describe this hierarchical ranking in more detail
and additionally explore the use of the binomial log-
likelihood ratio test (BLRT) as an alternative collo-
cation measure for ranking.

We further note that some specialized biomedical
terms follow strict nomenclature rules making them
easily identifiable as category specific. These terms
may not be frequent in general Web context, lead-
ing to a low PMI rank under the proposed method.
Given such a set of high confidence seeds from a
reliable source, one can enforce their inclusion in
the learning process, and specialized seeds can addi-
tionally be identified by high-confidence patterns, if
such exist. However, the scope of this work involves
selecting seeds from an ambiguous source, biomed-
ical ontologies, thus we do not include an analysis
for these specialized cases.

3.4.2 Rank-and-Learn Bootstrapping
We incorporate PMI ranking into BioNELL using

a Rank-and-Learn bootstrapping methodology. Af-
ter every iteration, we rank all the instances that have
been added to the KB. Only high-ranking instances
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Learning System Bootstrapping
Algorithm

Initial
Seeds

Corpus

BioNELL Rank-and-Learn
with PMI

PMI
top 50

PubMed

NELL NELL’s
algorithm

Random
50

PubMed

BioNELL+Random Rank-and-Learn
with PMI

Random
50

PubMed

Table 2: Learning systems used in our evaluation, all us-
ing the PubMed biomedical corpus and the biomedical
ontology described in Sections 3.2 and 3.3.

are added to the collection of seeds that are used in
the next learning iteration. Instances with low PMI
rank are stored in the KB and are not used for learn-
ing new information. We consider a high-ranking
instance to be one with PMI rank higher than 0.25.

4 Experimental Evaluation

4.1 Experimental Settings

4.1.1 Configurations of the Algorithm
In our experiments, we ran BioNELL and NELL

with the following system configurations, all using
the biomedical corpus and the ontology described in
Sections 3.2 and 3.3, and all running 50 iterations,
in order to evaluate the long term effects of ranking.
Section 4.2 includes a discussion on the learning rate
of the tested systems which motivates the reason for
evaluating performance at the 50th iteration.

To expand a category we used the following sys-
tems, also summarized in Table 2: (1) the BioNELL
system, using Rank-and-Learn bootstrapping (Sec-
tion 3.4.2) initialized with the top 50 seeds using
PMI ranking, (2) the NELL system, using NELL’s
original bootstrapping algorithm (Section 3.1) ini-
tialized with 50 random seeds from the category’s
potential seeds (NELL does not provide a seed se-
lection method), and (3) in order to distinguish
the contribution of Rank-and-Learn bootstrapping
over ranking the initial seeds, we tested a third
system, BioNELL+Random, using Rank-and-Learn
bootstrapping initialized with 50 random seeds.

4.1.2 Evaluation Methodology
Using BioNELL we can learn lexicons, collec-

tions of category terms accumulated after running
the system. One evaluation approach is to select

a set of learned instances and assess their correct-
ness (Carlson et al., 2010). This is relatively easy
for data extracted for general categories like City or
Sports Team. For example, it is easy to evaluate the
statement “London is a City”. This task becomes
more difficult when assessing domain-specific facts
such as “Beryllium is an S-block molecular entity”
(in fact, it is). We cannot, for example, use the help
of Mechanical Turk for this task. A possible alter-
native evaluation approach is asking an expert. On
top of being a costly and slow approach, the range
of topics covered by BioNELL is large and a single
expert is not likely be able to assess all of them.

We evaluated lexicons learned by BioNELL by
comparing them to available resources. Lexicons of
gene names for certain species are available, and the
Freebase database (Google, 2011), an open repos-
itory holding data for millions of entities, includes
some biomedical concepts. For most biomedical
categories, however, complete lexicons are scarce.

4.1.3 Data Sets
We compared learned lexicons to category dictio-

naries, lists of concept terms taken from the follow-
ing sources, which we consider as a Gold Standard.

We used three lexicons of biomedical categories
taken from Freebase: Disease (9420 terms), Chemi-
cal Compound (9225 terms), and Drug (3896 terms).

To evaluate gene names we used data from the
BioCreative Challenge (Hirschman et al., 2005),
an evaluation competition focused on annotations
of genes and gene products. The data includes
a dictionary of genes of the fruit-fly, Drosophila
Melanogaster, which specifies a set of gene iden-
tifiers and possible alternative forms of the gene
name, for a total of 7151 terms, which we consider
to be the complete fly gene dictionary.

We used additional BioCreative data for a named-
entity recognition task. This includes 108 scientific
abstracts, manually annotated by BioCreative with
gene IDs of fly genes discussed in the text. The ab-
stracts contain either the gene ID or any gene name.

4.2 Extending Lexicons of Biomedical
Categories

4.2.1 Recovering a Closed Category Lexicon
We used BioNELL to learn the lexicon of a

closed category, representing genes of the fruit-fly,
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Figure 1: Performance per learning iteration for gene lexicons learned using BioNELL and NELL.

Learning System Precision Correct Total

BioNELL .83 109 132
NELL .29 186 651
BioNELL+Random .73 248 338

NELL by size 132 .72 93 130

Table 3: Precision, total number of instances (Total),
and correct instances (Correct) of gene lexicons learned
with BioNELL and NELL. BioNELL significantly im-
proves the precision of the learned lexicon compared with
NELL. When examining only the first 132 learned items,
BioNELL has both higher precision and more correct in-
stances than NELL (last row, NELL by size 132).

D. Melanogaster, a model organism used to study
genetics and developmental biology. Two samples
of genes from the full fly gene dictionary are shown
in Table 1: High PMI Seeds are the top 50 dictio-
nary terms selected using PMI ranking, and Random
Seeds are a random draw of 50 terms. Notice that the
random set contains many seeds that are not distinct
gene names including arm, 28, and dad. In con-
trast, high PMI seeds exhibit much less ambiguity.
We learned gene lexicons using the test systems de-
scribed in Section 4.1.1 with the high-PMI and ran-
dom seed sets shown in Table 1. We measured the
precision, total number of instances, and correct in-
stances of the learned lexicons against the full dic-
tionary of genes. Table 3 summarizes the results.

BioNELL, initialized with PMI-ranked seeds, sig-
nificantly improved the precision of the learned
lexicon over NELL (29% for NELL to 83% for
BioNELL). In fact, the two learning systems us-
ing Rank-and-Learn bootstrapping resulted in higher
precision lexicons (83%, 73%), suggesting that con-

strained bootstrapping using iterative seed ranking
successfully eliminates noisy and ambiguous seeds.

BioNELL’s bootstrapping methodology is highly
restrictive and it affects the size of the learned lexi-
con as well as its precision. Notice, however, that
while NELL’s final lexicon is 5 times larger than
BioNELL’s, the number of correctly learned items in
it are less than twice that of BioNELL. Additionally,
BioNELL+Random has learned a smaller dictionary
than NELL (338 and 651 terms, respectively) with a
greater number of correct instances (248 and 186).

We examined the performance of NELL after the
7th iteration, when it has learned a lexicon of 130
items, similar in size to BioNELL’s final lexicon (Ta-
ble 3, last row). After learning 130 items, BioNELL
achieved both higher precision (83% versus 72%)
and higher recall (109 versus 93 correct lexicon
instances) than NELL, indicating that BioNELL’s
learning method is overall more accurate.

After running for 50 iterations, all systems re-
cover only a small portion of the complete gene dic-
tionary (109-248 instances out of 7151), suggesting
either that, (1) more learning iterations are required,
(2) the biomedical corpus we use is too small and
does not contain (frequent) mentions of some gene
names from the dictionary, or (3) some other limita-
tions exist that prevent the learning algorithm from
finding additional class examples.

Lexicons learned using BioNELL show persis-
tently high precision throughout the 50 iterations,
even when initiated with random seeds (Figure 1A).
By the final iteration, all systems stop accumulating
further significant amounts of correct gene instances
(Figure 1B). Systems that use PMI-based Rank-
and-Learn bootstrapping also stop learning incorrect
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Learning System Precision Correct Total

CC Drug Disease CC Drug Disease CC Drug Disease

BioNELL .66 .52 .43 63 508 276 96 972 624
NELL .15 .40 .37 74 522 288 449 1300 782

NELL by size .58 .47 .37 58 455 232 100 968 623

Table 4: Precision, total number of instances (Total), and correct instances (Correct) of learned lexicons of Chemical
Compound (CC), Drug, and Disease. BioNELL’s lexicons have higher precision on all categories compared with
NELL, while learning a similar number of correct instances. When restricting NELL to a total lexicon size similar to
BioNELL’s, BioNELL has both higher precision and more correct instances (last row, NELL by size).

instances (BioNELL and BioNELL+Random; Fig-
ure 1C). This is in contrast to NELL which continues
learning incorrect examples.

Interestingly, the highest number of correct gene
instances was learned using Rank-and-Learn boot-
strapping with random initial seeds (248 items;
BioNELL+Random). This may happen when the
random set includes genes that are infrequent in
the general Web corpus, despite being otherwise
category-specific in the biomedical context. As
such, these would result in low PMI rank (see note
in Section 3.4.1). However, random seed selection
does not offer any guarantees on the quality of the
seeds used, and therefore will result in unstable per-
formance. Note that BioNELL+Random was initi-
ated with the same random seeds as NELL, but due
to the more constrained Rank-and-Learn bootstrap-
ping it achieves both higher recall (248 versus 186
correct instances) and precision (73% versus 29%).

4.2.2 Extending Lexicons of Open Categories

We evaluated learned lexicons for three open cat-
egories, Chemical Compound (CC), Drug, and Dis-
ease, using dictionaries from Freebase. Since these
are open categories — new drugs are being devel-
oped every year, new diseases are discovered, and
varied chemical compounds can be created — the
Freebase dictionaries are not likely to contain com-
plete information on these categories. For our evalu-
ation, however, we considered them to be complete.

We used BioNELL and NELL to learn these cat-
egories, and for all of them BioNELL’s lexicons
achieved higher precision than NELL (Table 4). The
number of correct learned instances was similar in
both systems (63 and 74 for CC, 508 and 522 for
Drug, and 276 and 288 for Disease), however in

BioNELL, the additional bootstrapping restrictions
assist in rejecting incorrect instances, resulting in a
smaller, more accurate lexicon.

We examined NELL’s lexicons when they reached
a size similar to BioNELL’s final lexicons (at the 8th,
42nd and 39th iterations for CC, Drug, and Disease,
respectively). BioNELL’s lexicons have both higher
precision and higher recall (more correct learned in-
stances) than the comparable NELL lexicons (Ta-
ble 4, NELL by size, last row).

4.3 Named-Entity Recognition using a
Learned Lexicon

We examined the use of gene lexicons learned with
BioNELL and NELL for the task of recognizing
concepts in free text, using a simple strategy of
matching words in the text with terms from the lex-
icon. We use data from the BioCreative challenge
(Section 4.1.3), which includes text abstracts and the
IDs of genes that appear in each abstract. We show
that BioNELL’s lexicon achieves both higher preci-
sion and recall in this task than NELL’s.

We implemented an annotator for predicting what
genes are discussed in text, which uses a gene lexi-
con as input. Given sample text, if any of the terms
in the lexicon appear in the text, the corresponding
gene is predicted to be discussed in the text. Follow-
ing BioCreative’s annotation format, the annotator
emits as output the set of gene IDs of the genes pre-
dicted for the sample text.

We evaluated annotators that were given as in-
put: the complete fly-genes dictionary, a filtered
version of that dictionary, or lexicons learned us-
ing BioNELL and NELL. Using these annotators we
predicted gene mentions for all text abstracts in the
data. We report the average precision (over 108 text
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Lexicon Precision Correct Total

BioNELL .90 18 20
NELL .02 5 268
BioNELL+Random .03 3 82

Complete Dictionary .09 153 1616
Filtered Dictionary .18 138 675

Table 5: Precision, total number of predicted genes (To-
tal), and correct predictions (Correct), in a named-entity
recognition task using a complete lexicon, a filtered lex-
icon, and lexicons learned with BioNELL and NELL.
BioNELL’s lexicon achieves the highest precision, and
makes more correct predictions than NELL.

abstracts) and number of total and correct predic-
tions of gene mentions, compared with the labeled
annotations for each text (Table 5).

Many gene names are shared among multiple
variants. For example, the name Antennapedia may
refer to several gene variations, e.g., Dgua\Antp or
Dmed\Antp. Thus, in our precision measurements,
we consider a prediction of a gene ID as “true” if it
is labeled as such by BioCreative, or if it shares a
synonym name with another true labeled gene ID.

First, we used the complete fly gene dictionary
for the recognition task. Any dictionary gene that
is mentioned in the text was recovered, resulting
in high recall. However, the full dictionary con-
tains ambiguous gene names that contribute many
false predictions to the complete dictionary annota-
tor, leading to a low precision of 9%.

Some ambiguous terms can be detected using
simple rules, e.g., short abbreviations and numbers.
For example, section 9 is a gene named after the
functional unit to which it belongs, and abbreviated
by the symbol 9. Clearly, removing 9 from the full
lexicon should improve precision without great cost
to recall. We similarly filtered the full dictionary, re-
moving one- and two-letter abbreviations and terms
composed only of non-alphabetical characters, leav-
ing 6253 terms. Using the filtered dictionary, pre-
cision has doubled (18%) with minor compromise
to recall. Using complete or manually refined gene
dictionaries for named-entity recognition has been
shown before to produce similar high-recall and
low-precision results (Bunescu et al., 2005).

We evaluated annotators on gene lexicons learned
with BioNELL and NELL. BioNELL’s lexicon

achieved significantly higher precision (90%) than
other lexicons (2%-18%). It is evident that this lexi-
con contains few ambiguous terms as it leads to only
2 false predictions. Note also, that BioNELL’s lexi-
con has both higher precision and recall than NELL.

5 Conclusions

We have proposed a methodology for an open infor-
mation extraction system for biomedical scientific
text, using an automatically derived ontology of cat-
egories and seeds. Our implementation is based on
constrained bootstrapping in which seeds are ranked
at every iteration.

The benefits of iterative seed ranking have been
demonstrated, showing that our method leads to sig-
nificantly less ambiguous lexicons for all the eval-
uated biomedical concepts. BioNELL shows 51%
increase over NELL in the precision of a learned
lexicon of chemical compounds, and 45% increase
for a category of gene names. Importantly, when
BioNELL and NELL learn lexicons of similar size,
BioNELL’s lexicons have both higher precision and
recall. We have demonstrated the use of BioNELL’s
learned gene lexicon as a high precision annotator
in an entity recognition task (with 90% precision).
The results are promising, though it is currently dif-
ficult to provide a similar quantitative evaluation for
a wider range of concepts.

Many interesting improvements could be made
in the current system, mainly discovery of relations
between existing ontology categories. In addition,
we believe that Rank-and-Learn bootstrapping and
iterative seed ranking can be beneficial in general,
domain-independent settings, and we would like to
explore further use of this method.
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Abstract

The identification of semantically similar lin-
guistic expressions despite their formal differ-
ence is an important task within NLP appli-
cations (information retrieval and extraction,
terminology structuring...) We propose to de-
tect the semantic relatedness between biomed-
ical terms from the pharmacovigilance area.
Two approaches are exploited: semantic dis-
tance within structured resources and termi-
nology structuring methods applied to a raw
list of terms. We compare these methods and
study their complementarity. The results are
evaluated against the reference pharmacovigi-
lance data and manually by an expert.

1 Introduction

When an automatic system is able to identify that
different linguistic expressions convey the same or
similar meanings, this is a positive point for several
applications. For instance, when documents refer-
ring to muscle pain or cephalgia are searched, in-
formation retrieval system can also take advantage
of the synonyms, like muscle ache or headache, to
return more relevant documents and in this way to
increase the recall. This is also a great advantage
for systems designed for instance for text mining,
terminology structuring and alignment, or for more
specific tasks such as pharmacovigilance.

The pharmacovigilance area covers the identifi-
cation of adverse drug reactions (ADRs) in order
to improve the vigilance on the health products.
Pharmacovigilance reports are traditionally encoded
with normalised terms from the dedicated termi-
nologies, such as MedDRA (Medical Dictionary for

Drug Regulatory Activities) (Brown et al., 1999).
MedDRA is a relatively fine-grained terminology
with nearly 90,000 terms. This means that a given
pharmacovigilance report can be coded with dif-
ferent terms which have close meaning (Fescharek
et al., 2004), like muscle pain and muscle ache or
headache and cephalgia: although formally differ-
ent the terms from these pairs have the same mean-
ing. The difficulty is then to detect their semantic
closeness. Indeed, if this semantic information is
available, reports from the phramacovigilance data-
banks and mentionning similar adverse events can
be aggregated: the safety signal is intensified and
the safety regulation process is improved.

In order to aggregate the pharmacovigilance re-
ports, several types of semantic information from
MedDRA are used: (1) different hierarchical levels
of MedDRA between the five levels available; (2)
the SMQs (Standardized MedDRA Queries) which
group together terms associated to a given medical
condition such as Acute renal failure, Angioedema
or Embolic and thrombotic events; and (3) specific
resources (Bousquet et al., 2005; Iavindrasana et al.,
2006; Alecu et al., 2008; Jaulent and Alecu, 2009).
The SMQs are defined by groups of experts through
a long and meticulous work consisting of the man-
ual study of the MedDRA structure and of the anal-
ysis of the scientific literature (CIOMS, 2004). 84
SMQs have been created so far. They become the
gold standard data of the pharmacovigilance area.
However, the SMQs currently suffer from the lack of
exhausitivity (Pearson et al., 2009): the set of SMQs
is not exhaustive because this is an ongoing work.
We assume that automatic approaches can be ex-
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ploited to systematize and accelerate the process of
recruiting the semantically related MedDRA terms
and to build the SMQs. We propose to exploit two
approaches: methods dedicated to the terminology
structuring and semantic distance approaches. We
compare and combine the generated results. For the
evaluation, we compare the results with the existing
SMQs and also analyse them manually with an ex-
pert. Our work is different from previous work be-
cause we exploit the whole set of the available Med-
DRA terms, we apply several methods to cluster the
terms and we perform several types of evaluation.

2 Material

We exploit two kinds of material: material issued
from MedDRA and specific to the pharmacovigi-
lance area (sections 2.1 and 2.3), and linguistic re-
sources issued from general and biomedical lan-
guages (section 2.2). The MedDRA terms are struc-
tured into five hierarchical levels: SOC (System Or-
gan Class) terms belong to the first and the high-
est level, while LLT (Lowest Level Terms) terms be-
long to the fifth and the lowest level. Terms from
the fourth level PT (Preferred Terms) are usually ex-
ploited for the coding of the pharmacovigilance re-
ports. They are also used for the creation of SMQs.
A given PT term may belong to several SMQs.

2.1 Ontology ontoEIM
ontoEIM is an ontology of ADRs (Alecu et al.,
2008) created through the projection of MedDRA
to SNOMED CT (Stearns et al., 2001). This projec-
tion is performed thanks to the UMLS (NLM, 2011),
where an important number of terminologies are al-
ready merged and aligned, among which MedDRA
and SNOMED CT. The current rate of alignment of
the PT MedDRA terms with SNOMED CT is weak
(version 2011): 51.3% (7,629 terms). Projection of
MedDRA to SNOMED CT allows to improve the
representation of the MedDRA terms:

• the structure of the MedDRA terms is parallel
to that of SNOMED CT, which makes it more
fine-grained (Alecu et al., 2008). The num-
ber of hierarchical levels within the ontoEIM
reaches 14, instead of five levels in MedDRA;

• the MedDRA terms receive formal defini-
tions: semantic primitives which decompose

the meaning. MedDRA terms can be described
along up to four axes from SNOMED CT, ex-
emplified here through the term Arsenical ker-
atosis: (1) Morphology (type of abnormal-
ity): Squamous cell neoplasm; (2) Topogra-
phy (anatomical localization): Skin structure;
(3) Causality (agent or cause of the abnormal-
ity): Arsenic AND OR arsenic compound; and
(4) Expression (manifestation of the abnormal-
ity): Abnormal keratinization. The formal def-
initions are not complete. For instance, only
12 terms receive formal definitions along these
four axes and 435 along three axes. This is due
to the incomplete alignment of the MedDRA
terms and to the fact these four elements are
not relevant for every term (their absence is not
always problematic).

2.2 Linguistic resources
Linguistic resources provide three kinds of pairs
of synonym words: (1) Medical synonyms ex-
tracted from the UMLS 2011AA (n=228,542) and
then cleaned up (n=73,093); (2) Medical syn-
onyms acquired from three biomedical terminolo-
gies thanks to the exploitation of their composition-
ality (Grabar and Hamon, 2010) (n=28,691); (3)
Synonyms from the general language provided by
WordNet (Fellbaum, 1998) (n=45,782). Among
the pairs of words recorded in these resources, we
can find {accord, concordance}, {aceperone, ac-
etabutone}, {adenazole, tocladesine}, {adrenaline,
epinephrine} or {bleeding, hemorrhage}. The last
two pairs are provided by medical and general re-
sources. However, the pair {accord, concordance}
is provided only by medical resources.

2.3 Standardized MedDRA Queries
We exploit 84 SMQs as reference data. Among these
SMQs, we distinguish 20 SMQs which are struc-
tured hierarchically. We also exploit 92 sub-SMQs,
which compose these 20 hierarchical SMQs.

3 Methods

Our method consists into four main steps (figure 1):
(1) computing of the semantic distance and similar-
ity between the MedDRA terms and their cluster-
ing (section 3.1), (2) the application of the termi-
nology structuring methods to acquire semantic re-
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Figure 1: General schema of the experiment composed of four steps: (1) semantic distance approaches, (2) terminology
structuring approaches, (3) their combination and (4) their evaluation

lations between MedDRA terms and their cluster-
ing (section 3.2), (3) the merging of these two sets
of clusters (section 3.3), (4) the evaluation of the
merged clusters (section 3.4). We exploit Perl lan-
guage, R1 project and several NLP tools.

3.1 Semantic distance approach

The semantic distance and similarity approach is ap-
plied to the 7,629 PT MedDRA terms and their for-
mal definitions from ontoEIM. The two main steps
are: computing the distance or similarity (section
3.1.1) and clustering of terms (section 3.1.2).

3.1.1 Computing the semantic distance
Because we work with a tree-structured resource,

we exploit edge-based algorithms to compute the
distance or similarity between two terms t1 and t2:
two semantic distances (Rada (Rada et al., 1989)
and Zhong (Zhong et al., 2002)) and one seman-
tic similarity (Leacock and Chodorow, 1998). In
the following, we call them semantic distance al-
gorithms. For each algorithm, three paths may be
exploited: between the MedDRA terms but also be-
tween the elements of their formal definitions on
two axes (morphology M and topography T often
involved in diagnostics (Spackman and Campbell,

1http://www.r-project.org

1998)). For the illustration, let’s consider two Med-
DRA terms, Abdominal abscess and Pharyngeal ab-
scess defined as follows:

• Abdominal abscess: M = Abscess morphology,
T = Abdominal cavity structure

• Pharyngeal abscess: M = Abscess morphol-
ogy, T = Neck structure

The shortest paths sp are computed between these
two MedDRA terms and between their formal defi-
nitions, whose hierarchical structure is also inherited
from SNOMED CT. The weight of edges is set to 1
because all the relations are of the same kind (hier-
archical), and the value of each shortest path corre-
sponds to the sum of the weights of all its edges. The
semantic distance sd are then exploited to compute
the unique distance between the ADR terms from

MedDRA:

∑
i∈{ADR,M,T}

Wi ∗ sdi(t1, t2)∑
i∈{ADR,M,T}

Wi

, where the

three axes {ADR,M, T} respectively correspond
to terms meaning the ADR, axis Morphology M
and axis Topography T ; t1 and t2 are two ADR
terms; Wi is the coefficient associated with each
of the three axes; and sdi is the semantic distance
computed on a given axis. We carry out several ex-
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Figure 2: Syntactically analyzed terms (muscle pain and muscle ache) into their head and expansion components

periments. Semi-matrices 7629*7629 with semantic
distance between the terms are built.

3.1.2 Clustering of terms
An unsupervised creation of clusters is applied to

the semi-matrices. We exploit two approaches:

• R radius approach: every MedDRA term is
considered a possible center of a cluster and its
closest terms are clustered with it. The thresh-
olds tested correspond to the following inter-
vals: 2 and 3 for Rada, [0; 5.059] for LCH and
[0; 0.49] for Zhong. The intersection of these
clusters is not empty.

• HAC hierarchical ascendant classification is
performed through the R Project tools (hclust
function). Iteratively, this function chooses the
best centers for terms and builds the hierar-
chy of terms by progressively clustering those
which are closest to these centers. Then the
unique cluster with all the terms is split up.
Several splitting values between 100 and 7,000
are tested. These clusters are exclusive.

Clusters created with the radius approach are
merged in order to eliminate smaller clusters in-
cluded in bigger clusters and in order to aggregate
clusters which have an important intersection be-
tween them. For the intersection, we test several in-
tersection values within the interval [10; 90], which
means that two compared clusters may have between
10% and 90% of common terms.

3.2 Terminology structuring approach
The terminology structuring methods are applied to
a raw list of 18,209 MedDRA PTs. They allow
the detection of semantic relations between these
terms. The POS-tagging is done with Genia tag-
ger (Tsuruoka et al., 2005) and the syntactic analy-
sis with the YATEA parser (Aubin and Hamon, 2006).
Three kinds of methods are applied for the acquisi-
tion of synonymy and hierarchical relations: lexical
inclusions (section 3.2.1), morpho-syntactic variants

(section 3.2.2) and compositionality (section 3.2.3).
The terms are then clustered (section 3.2.4).

3.2.1 Lexical inclusion and hierarchy
The lexical inclusion hypothesis (Kleiber and

Tamba, 1990), which states that when a given term
is lexically included at the head syntactic position
in another term there is a semantic subsumption be-
tween them, allows to identify hierarchical relations
between terms. For instance, on figure 2, the short
term pain is the hierarchical parent and the long term
muscle pain is its hierarchical child because pain is
the syntactic head of muscle pain. The lexical inclu-
sions are computed on POS-tagged and syntactically
analyzed terms. We compute two kinds of lexical in-
clusions:
• syntactic dependencies on minimal syntactic

heads: the parent term corresponds to the short-
est lexical form of the syntactic head. For in-
stance, within the term kaolin cephalin clotting
time, the minimal head is time;
• syntactic dependencies on maximal syntactic

heads: the parent term is the most complete lex-
ical form of the syntactic head. Within the same
term kaolin cephalin clotting time, the maximal
head is cephalin clotting time.

Parent and child terms have to be MedDRA terms.

3.2.2 Morpho-syntactic variants
We exploit Faster (Jacquemin, 1996) for the in-

dentification of morpho-syntactic variants between
the PT terms. This tool applies several transforma-
tion rules, such as insertion (cardiac disease/cardiac
valve disease), morphological derivation (artery
restenosis/arterial restenosis) or permutation (aorta
coarctation/coarctation of the aorta). Each transfor-
mation rule is associated with hierarchical or syn-
onymy relations: the insertion introduces a hierar-
chical relation (cardiac valve disease is more spe-
cific than cardiac disease), while the permutation in-
troduces a synonymy relation. When several trans-
formations are involved, the detected relations may
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be ambiguous: gland abscess and abscess of sali-
vary gland combines permutation (synonymy) and
insertion (hierarchy) rules. In such cases the hierar-
chical relation prevails.

3.2.3 Compositionality and synonymy
The synonymy relations are acquired in two ways.

First, the synonymy relation is established between
two simple MedDRA terms if this relation is pro-
vided by the linguitistic resources. Second, the
identification of synonym relations between com-
plex terms relies on the semantic compositionality
(Partee, 1984). Hence, two complex terms are con-
sidered synonyms if at least one of their compo-
nents at the same syntactic position (head or ex-
pansion) are synonyms. For instance, on figure 2,
given the synonymy relation between the two words
pain and ache, the terms muscle pain and muscle
ache are also identified as synonyms (Hamon and
Nazarenko, 2001). Three transformation rules are
applied: on the head component (figure 2), on the
expansion component and on both of them. We per-
form several experiments: each medical synonymy
resource is first used individually and then in com-
bination with WordNet.

3.2.4 Clustering of terms
The sets of terms related through the lexical in-

clusions are considered as directed graphs: the terms
are the nodes of the graph while the hierarchical re-
lations are the directed edges. We partition these di-
rected graphs and identify clusters of terms which
could correspond to or be part of the SMQs. Among
connected components and strongly connected com-
ponents, we choose to generate the strongly con-
nected components: they allow an intersection be-
tween clusters which means that a given term may
belong to several clusters (this is also the case with
the SMQs). Thus, within the directed graphs G we
have to identify the maximal sub-graphs H of G
where for each pair {x, y} of the nodes from H ,
there exists a directed edge from x to y (or from y to
x). To improve the coverage of the obtained clusters,
we also add the synonyms: if a term has a synonymy
relation with the term from a cluster then this term
is also included in this cluster. From a graph theory
point of view, the initial graph is augmented with
two edges going from and to the synonyms.

Methods and relationships #relations
Hierarchical relations

Maximal syntactic head 3,366
Minimal syntactic head 3,816
Morpho-syntactic variants 743

Medical synonyms
3 biomedical terminologies 1,879
UMLS/Filtered UMLS 190
Morpho-syntactic variants 100

Medical synonyms and WordNet
3 biomedical terminologies 1,939
UMLS/Filtered UMLS 227

Table 1: Hierarchical and synonymy relations generated
by terminology structuring methods

3.3 Merging of clusters from two approaches
We merge the clusters generated by the two ap-
proaches. The merging is performed on the inter-
section between the clusters. As previously, we test
intersection values within the interval [10; 90].

3.4 Evaluation
We give judgments on: (1) the correctness of the
generated relations, (2) their relevance according to
the reference data, (3) their relevance according to
the manual evaluation by an expert. The evaluation
is performed with three measures: precision P (per-
centage of the relevant terms clustered divided by
the total number of the clustered terms), recall R
(percentage of the relevant terms clustered divided
by the number of terms in the corresponding SMQ)
and F-measure F1. The association between the
SMQs and the clusters relies on the best F1.

4 Results

Semantic relations acquired with terminology struc-
turing are indicated in table 1. There is a small
difference between relations acquired through maxi-
mal and minimal syntactic heads, although the influ-
ence of medical resources for the acquisition of syn-
onymy varies according to the resources. WordNet
slightly increases the number of synonyms. Faster
generates a large set of hierarchical and synonymy
relations. MedDRA terms have also been processed
with semantic distance and clustered. The best
thresholds with the radius clustering are 2 for Rada,
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Approach Hierarchical SMQs SMQs and sub-SMQs
#clusters interval mean #clusters interval mean

Semantic distance 2,667 [2; 1,206] 73 2,931 [2; 546] 17
Structuring (hierarchical) 690 [1; 134] 3.69 748 [1; 117] 3.43
Structuring (hierarchical+synonymy) 690 [1; 136] 4.11 748 [1; 119] 3.82
Merging (hierarchical) 2,732 [1; 1,220] 72.40 2,998 [1; 563] 24.44
Merging (hierarchical+synonymy) 2,732 [1; 1,269] 75.94 2,998 [1; 594] 26.03

Table 2: Number of clusters and their size (the interval and the mean number of terms per cluster) for individual
approaches and for their merging computed for hierarchical SMQs and also for SMQs and sub-SMQs
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Figure 3: Results (precision, recall and F-measure) for semantic distance and terminology structuring approaches

4.10 for LCH and 0 for Zhong. With the HAC, the
best results are obtained with 300 classes (number of
terms per class is within the interval [1; 98], mean
number of terms per class is 25.34). Our results
show that the best parameters for the semantic dis-
tance are the Rada distance, radius approach and no
formal definitions, while the best parameters for the
terminology structuring are maximal syntactic head
with hierarchical relations by Faster augmented with
synonyms. For the merging of the clusters we apply
50% intersection for hierarchical SMQs and 80% in-
tersection for SMQs and sub-SMQs. We exploit and
discuss these results. The percentage of the Med-
DRA terms involved by the terminology structur-
ing is the 32% with hierarchical relations, it reaches
40% when the synonymy is also considered. With
semantic distance, all the terms from ontoEIM (51%
of the MedDRA) are used.

Table 2 provides information on clusters: num-

ber of clusters, number of terms per cluster (their
interval and the mean number of terms per cluster).
In table 2, we first indicate the results for the indi-
vidual approaches, and then when the merging of
the approaches is performed. We observe that the
merging has a positive effect on the number and the
size of clusters: data generated by the individual ap-
proaches (and by synonymy) are complementary.

4.1 Correctness of the semantic relations
A manual analysis of the generated hierarchical re-
lations indicates that these relations are always cor-
rect: the constraint involved through the syntac-
tic analysis guarantees correct propositions. Nev-
ertheless, we observed a small number of syntac-
tic ambiguities. They appear within 144 pairs (5%)
with maximal syntactic heads and correspond to
pairs like: {anticonvulsant drug level, drug level},
{blood smear test, smear test}, {eye movement dis-
order, movement disorder}. Thus, within the first
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Figure 4: Results (precision, recall and F-measure) ob-
tained when the two approaches are merged

pair, there is an ambiguity on drug as two de-
pendencies seem possible: {anticonvulsant drug
level, drug level} as proposed by the system and
{anticonvulsant drug level, level}. But whatever the
syntactic analysis performed, the semantic relations
are correct.

4.2 Relevance of the generated clusters

Figures 3 and 4 provide quantitative evaluation of
the clusters: semantic distance (figure 3(a)), termi-
nology structuring (figure 3(b)), merging of these
two sets (figure 4). On figure 3, we can observe
that there is a great variability among the SMQs and
the two approaches. The positive result is that these
approaches are indeed complementary: their merg-
ing slightly increases performance. An analysis of
the clusters generated with terminology structuring
shows that: (1) hierarchical relations form the basis
of the clusters: they correspond to 96% of the in-
volved terms and show 69% precision. Only three
clusters do not contain hierarchical relations; (2)
Faster relations are involved in 50% of clusters and
show precision between 75 and 85%; (3) one third
of the clusters contains synonymy relations, which
precision varies between 55 and 69%; (4) relations
acquired with the UMLS resources are involved in
14% of clusters while their precision is only 38%.

We also performed a detailed qualitative analysis
of several SMQs and clusters with an expert. Table 3
presents the analysis for three SMQs: Angioedema,
Embolic and thrombotic events, arterial and Haemo-

dynamic oedema, effusions and fluid overload. It
indicates the number of terms in the SMQ and in
the corresponding clusters clu, as well as the num-
ber of common terms between them com and the
performance (precision P , recall R and F-measure
F ) when computed against the reference data Ref-
erence and also after the analysis performed by the
expert After expertise. The results obtained with
the two approaches are indicated: semantic dis-
tance sd and terminology structuring struc, as well
as their merging merg. In the colums Reference,
we can observe that the best F-measure values are
obtained with the terminology structuring method
for the SMQ Haemodynamic oedema, effusions and
fluid overload (F=45) and with the semantic distance
for the SMQ Embolic and thrombotic events, arte-
rial (F=32). The merging of the two methods sys-
tematically improves the results: in the given exam-
ples, for all three SMQs.

A detailed analysis of the generated noise indi-
cates that across the SMQs we have similar situa-
tions: we generate false positives (terms non rele-
vant for the medical conditions, such as Pulmonary
oedema, Gestational oedema, Spinal cord oedema
for the SMQ Angioedema), but also the SMQs may
contain non relevant terms or may miss relevant
terms (thus, Testicular oedema, Injection site ur-
ticaria, Bronchial eodema are missing in the SMQ
Angioedema). The expert evaluation (columns Af-
ter expertise in table 3) attempts to analyse also the
quality of the SMQs. The corrected performance
of the clusters is improved in several points, which
indicates that automatic approaches may provide a
useful basis for the creation of SMQs.

5 Discussion

Despite the incompleteness of the ontoEIM re-
source, the semantic distance approach is quite ef-
ficient and provides the core terms for the building
of the SMQs. Among the several algorithms tested,
the most simple algorithm (Rada et al., 1989), which
exploits the shortest path, leads to the best results,
while the additional information on the hierarchi-
cal depth exploited by other algorithms appears non
useful. The clustering method which allows the gen-
eration of non-disjoint clusters is the most efficient
as MedDRA terms may belong to several SMQs.

26



Number of terms Reference After expertise
SMQs SMQ clu com P R F P R F

Angioedemasd 52 32 13 40 25 30 43 26 33
Angioedemastruc 52 31 19 61 36 45 61 36 45
Angioedemamerg 52 33 21 63 42 50 71 48 57
Embolic and thrombotic events...sd 132 159 48 30 36 32 32 39 35.2
Embolic and thrombotic events...struc 132 13 12 92 9 16 92 9 16
Embolic and thrombotic events...merg 132 130 49 38 37 37.5 47 46 46.5
Haemodynamic oedema, effusions...sd 36 22 7 32 20 24 54 33 41
Haemodynamic oedema, effusions...struc 36 31 13 42 36 39 84 72 78
Haemodynamic oedema, effusions...merg 36 35 16 46 44 45 86 83 84.5

Table 3: Comparison between the two approaches (semantic distance sd and terminology structuring struc) and the
merging of the two approaches merg for three SMQs: Angioedema, Embolic and thrombotic events, arterial and
Haemodynamic oedema, effusions and fluid overload

Traditionnal classification methods, which produce
disjoint clusters, are less efficient for this task.

It has been surprising to observe that the contri-
bution of the generated hierarchical relations is so
important (table 1) and that these relations appear to
be so often correct for the creation of SMQs. In-
deed, because PT terms belong to the same hierar-
chical level of MedDRA, they should be hierarchi-
cally equivalent between them. In reality, within a
cluster, we can find several hierarchical levels of the
PT terms. This means that the hierarchical structure
of MedDRA could be more fine-grained and that in-
termediate hierarchical levels could be created. As
for the generated synonymy relations, their number
is low and they contribute in a lesser way to the
building of the clusters: this means that the PTs are
semantically differentiated between them.

Finally, the merging of these two approaches is
beneficial for the generation of clusters: the per-
formance is improved, although slightly. The two
approaches provide indeed complementary results.
The low recall and F-measure are due to the material
and methods exploited: ontoEIM contains only 51%
of the MedDRA terms to be processed while the ex-
ploited terminology structuring methods are not able
to detect more common features between the terms.

The difference between the results obtained
against the reference data and after the expert eval-
uation (table 3) show that the reference data are not
very precise. In previous work, it has already been
observed that some important PT terms can be miss-

ing in the SMQs (Pearson et al., 2009). With the
proposed automatic methods we could find some of
these terms. It has been also demonstrated that the
SMQs are over-inclusive (Mozzicato, 2007; Pear-
son et al., 2009). In the proposed analysis of the
SMQs, we have also found terms which have too
large meaning and which should not be included in
the SMQs.

6 Conclusion and Perspectives

We have applied two different approaches to the
clustering of pharmacovigilance terms with simi-
lar or close meaning. We performed a comparison
of the results obtained with these two approaches
and analysed their complementarity. Several experi-
ments have been carried out in order to test different
parameters which may influence the performance of
the methods. Although the automatic creation of the
SMQs is a difficult task, our results seem to indi-
cate that the automatic methods may be used as a
basis for the creation of new SMQs. The precision
of the clusters is often satisfactory, while their merg-
ing leads to the improvement of their completeness.
These approaches generate complementary data and
their combination provides more performant results.

Future studies will lead to the identification of
other parameters which influence the quality of clus-
ters and also other factors which may be exploited
for the merging of clusters. More robust distances
and clustering methods will also be used in future
work, as well as approaches for a better acquisi-
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tion and evaluation of the hierarchical structure of
SMQs. We plan also to design corpora-based meth-
ods which may also to increase the recall of the re-
sults. We will perform an exhaustive analysis of the
nature of semantic relations which can be observed
within the SMQs and propose other methods to fur-
ther improve the coverage of the clusters. Different
filters will be tested to remove the true false posi-
tive relations between terms. The results will also
be evaluation by several experts, which will allow to
assess the inter-expert variation and its influence on
the results. Besides, the obtained clusters will also
be evaluated through their impact on the pharma-
covigilance tasks and through the exploring of the
pharmacovigilance databases.
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Abstract

We investigate the task of assigning medi-
cal events in clinical narratives to discrete
time-bins. The time-bins are defined to cap-
ture when a medical event occurs relative to
the hospital admission date in each clinical
narrative. We model the problem as a se-
quence tagging task using Conditional Ran-
dom Fields. We extract a combination of lexi-
cal, section-based and temporal features from
medical events in each clinical narrative. The
sequence tagging system outperforms a sys-
tem that does not utilize any sequence infor-
mation modeled using a Maximum Entropy
classifier. We present results with both hand-
tagged as well as automatically extracted fea-
tures. We observe over 8% improvement in
overall tagging accuracy with the inclusion of
sequence information.

1 Introduction

There has been a lot of interest in building timelines
of medical events from unstructured patient narra-
tives (Jung et al., 2011; Zhou and Hripcsak, 2007).
Creating a timeline from longitudinal clinical text
requires learning temporal relations such as before,
simultaneous, includes, overlaps, begins, ends and
their inverses between medical events found within
and across patient narratives (Allen, 1981). How-
ever, learning temporal relations for fine-grained
temporal ordering of medical events in clinical text
is challenging: the temporal cues typically found in
clinical text may not always be sufficient for this
task.

An important characteristic of a clinical narrative
is that the medical events in the same narrative are
more or less semantically related by narrative dis-
course structure. However, medical events in the
narrative are not ordered chronologically. Thus, the
clinical narrative structure is not always temporally
coherent.

Moreover, extracting precise temporal features
for highly accurate temporal ordering of medical
events is difficult as the temporal relationship be-
tween medical events is varied and complicated.
Zhou and Hripcsak (2007) identify six major cate-
gories of temporal expressions from a corpus of dis-
charge summaries: “date and time,” “relative date
and time,” “duration,” “event-dependent temporal
expression,” “fuzzy time,” and “recurring times.”
Their study of temporal expressions in clinical text
indicates that relative time (e.g., ever since the
episode 2 days ago) may be more prevalent than ab-
solute time (e.g., 06/03/2007). Further, temporal ex-
pressions may be fuzzy where “history of cocaine
use” may imply that cocaine use started 2 years ago
or 10 years ago.

In this paper, we address a relatively simpler task
of assigning medical events to coarsely defined time-
bins. The time-bins, way before admission, before
admission, on admission, after admission, after dis-
charge, are defined based on the relative temporal
distance of the medical event from the admission
date, which is the only explicit date almost always
found in each clinical narrative. We extract fea-
tures based on narrative structure as well as tempo-
ral expressions to label a sequence of medical events
from each clinical narrative with a highly probable
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HISTORY   PHYSICAL                                 DATE:  06/03/2007 

NAME:  Smith Jack                           MR#:  XXX-XX-XXXX 

ATTENDING PHYSICIAN:  Bill Payne  MD             DOB:  02/28/1960 

CHIEF COMPLAINT 

Chest pain and arm infection. 

HISTORY OF PRESENT ILLNESS 

Patient is a 48-year-old male with history of cocaine use hypertension who presents with chest pain  

which started 2 days ago . He did not having  chest pain yesterday but ever since the episode 2 days ago  

he has felt a little weaker.  He did have chest pain today and this is what prompted him to come to the  

ER.  He also  notices that he has had some infections under his arms.  He states that he had to have an  

abscess I and D 3 or 4 months ago under his arm and 2 to 3 weeks ago he noticed some more spots and  

these spots have now grown and now are under both arms. Currently he is chest pain free. His blood  

pressure upon presentation was 189/106. 

REVIEW OF SYSTEMS 

On exam initial blood pressure was 189/106 current blood pressure 148/83 with heart rate of 74  

respirations  16.  Heart regular rhythm.  No murmurs.   Arms:  He does have tender areas right greater  

than left under the arm. Difficult to tell if there is any erythema but  obvious cellulitis sludge abscess  

under the right arm which is tender. 

ASSESSMENT/PLAN 

1. Chest pain history of cocaine with T-wave inversions in the inferior leads.  Currently he is chest pain 
free.  We will check a 2-D echocardiogram.  Consult Cardiology for a stress test.   

2. Axillary abscesses.  Consult Surgery for I and D.  We will place on IV vancomycin pain control. 

3. Cocaine abuse.  Encouraged to quit. 
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Figure 1: Excerpt from a de-identified clinical narrative
(cn1) written for a patient in 2007. Medical events are
underlined. Enumerated events (in circles) are used as an
example later in Table 1.

sequence of time-bins using Conditional Random
Fields (CRFs). The learned time-bins can be used
as an informative temporal feature for tasks such
as fine-grained temporal ordering of medical events
and medical event coreference resolution.

2 Motivation

Clinical narratives are medical reports that contain
unstructured text documenting the medical history
of the patient. Medical events are temporally-related
concepts in clinical narratives that describe medical
conditions affecting the patient’s health, or tests and
procedures performed on a patient. Sample excerpts
from two different clinical notes (cn1 and cn2) of
the same patient, generated over time, are shown in
Figures 1 and 2. We can see from the examples that
narrative structure moves back and forth in time and
is not temporally coherent. We use cn1 and cn2 as
running examples throughout the paper.

The medical events assigned to time-bins in each
clinical narrative allow us to derive a coarse tempo-
ral order between medical events within and across
the longitudinal medical history of the patient. Since
we learn time-bins centered around admission in
each narrative and we also know the admission date
and perhaps the discharge dates in cn1 and cn2, we
can derive a coarse partial order across the medi-

HISTORY   PHYSICAL                                 DATE:  06/17/2007 

NAME:  Black Jack                           MR#:  XXX-XX-XXXX 

ATTENDING PHYSICIAN:  Jack Payne  MD             DOB:  02/28/1960 

He is a 48-year-old African American gentleman with a history of cocaine use and hypertension. He  

has hidradenitis of both axilla resected. The patient is MRSA positive on IV antibiotics at the present  

time.  The patient's physical condition is excellent but he had MRSA in the axilla for hidradenitis that  

was devastating.  The wounds now are very large but he is wound vac and being changed to alginate.  

Both axilla show major wounds of 20-25 cm in diameter and 4-5 cm deep in overall size and he has  

excoriations on his chest from the tape.  The plan is to change him from vac to alginate and see him  

in a week. 

Figure 2: Excerpt from another de-identified clinical nar-
rative (cn2) for the same patient written in later in 2007.
Medical events are underlined.

cal events in cn1 and cn2. This is shown in Fig-
ure 3. Even if the discharge dates are not known,
we still know that the admission date (A1) of cn1
is 6/03/2007 and A2 of cn2 is 06/17/2007. Thus,
A2 > A1, and all the time-bins in cn2 that are on or
after admission would have happened after A2. The
partially ordered time-bins can now be used for tasks
such as medical concept coreference resolution.

In cross narrative coreference resolution tasks,
we can prune the space of candidate pairs of med-
ical events by ruling out portions of clinical nar-
ratives that will not have any coreferring medical
events. For example, in the timeline shown in Fig-
ure 3, the medical events in time-bins admission, af-
ter admission and discharge of cn2 will not corefer
with any medical event in cn1. Further, when men-
tions of the same medical events occur in different
time-bins, it could mean that they are the same in-
stance of the medical event and they corefer. For
instance, cocaine abuse and cocaine use. Similarly,
MRSA positive is assigned to time-bin on admission
whereas MRSA is assigned to before admission and
both mentions of MRSA corefer.

3 Related Work

The Timebank (Pustejovsky et al., 2003) corpus of
annotated newswire text is widely used for tempo-
ral relation learning. The TempEval challenges have
often focused on extracting different types of tempo-
ral relations from Timebank (Verhagen et al., 2009).
In Timebank, events are typically verbs that denote
change in state. Since the notion of an event in Time-
bank is different from medical events in clinical text,
it is not possible to directly train models on Time-
bank and apply them to clinical text. The THYME
work (Savova et al., 2009) extends TimeML to the
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    A1 D1 

   A2 D2 

cocaine use 
 
hypertension 

 chest pain 
  
abscess 

chest 
pain 
  
     
 
arm  
infection 

heart regular  
rhythm 

cellulitis 

2-D 
echocardiogram 

stress test 

MRSA 
positive 

hidradenitis of axilla  
resected 
 
 
MRSA in the axilla for 
hidradenitis 

wounds 

wound vac 

IV antibiotics 

alginate cocaine use 
 
hypertension 

way before before admission after discharge 

before admission after discharge 
way before 

p1-cn1 

p1-cn2 

Figure 3: Medical events in clinical narratives cn1 and cn2 for patient p1 assigned to time-bins. A1 is the admission
date in cn1 and D1 is the discharge date. Similarly A2 is the admission date in cn2 and D2 is the discharge date. Thus,
we have, A1 < D1, D1 < A2, A2 < D2

medical domain to create layered annotation to be
used for event linking. Boland et al. (2012) identify
the temporal knowledge representation requirements
of clinical eligibility criteria and develop a frame-
based representation designed to support semantic
annotation for temporal expressions in eligibility cri-
teria. However, the nature of data found in eligibility
criteria is different from clinical narratives.

Previous attempts at learning temporal relations
between medical events in clinical text include Jung
et al. (2011) and Zhou et al. (2006). Gaizauskas et
al. (2006) learn the temporal relations before, after,
is included between events from a corpus of clinical
text much like the event-event relation TLINK learn-
ing in Timebank (Pustejovsky et al., 2003). How-
ever, the corpora used in these studies are not freely
available. A comprehensive survey of temporal rea-
soning in medical data is provided by Zhou and
Hripcsak (2007).

The task addressed in this paper is at a higher
level than the temporal relation learning or tempo-
ral ordering task. Without getting into fine-grained
temporal ordering, we define coarse time-bins and
classify medical events into one of the time-bins.

We work with a similar motivation of being able
to answer clinical trial eligibility criteria with tem-
poral constraints. However, while they model the
temporal information in eligibility criteria, we pro-
cess the temporal information and medical events
in the clinical narrative to assign events to time-
bins. The learned time-bins are a step towards fine-
grained temporal ordering of medical events in clin-
ical text. More importantly, we also demonstrate

how automatic feature extraction for this task gives
us promising results, though not as good as using
hand-tagged features.

4 Problem Description

A patient could have multiple clinical narratives,
generated over a period of time, representing the pa-
tient’s longitudinal medical history. Returning to the
examples in Figures 1 and 2, in this section we de-
scribe how such clinical narratives are translated into
a temporal-bin assignment problem.

4.1 Medical event representation

Medical events in clinical narratives often have a
time duration with a corresponding start and stop
time, for example, history of hypertension (Zhou et
al., 2006). In this example, hypertension started at
some point before admission and is present to the
current date. Time duration based representation is
essential to learning the exact fine-grained tempo-
ral order of medical events within and across clin-
ical narratives. In order to keep the task of classi-
fying medical events into coarse time-bins relatively
simple and easy to learn, we use a time-point nota-
tion for representing medical events. Each mention
of a medical event is assigned to a time-bin with-
out taking into consideration whether it denotes the
beginning or end of that event. We also do not dif-
ferentiate between coreferences of the same medical
event. Thus, if chest pain is mentioned in the past
medical history and the same chest pain continues
to persist in the after admission time-bin, the two
different mentions of chest pain get anchored to dif-
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ferent time-bins. Similarly, cocaine use started in
the history of the patient and cocaine abuse still per-
sists. We assign the two different mentions of this
medical event into different time-bins.

4.2 Time-bins
As mentioned earlier, we learn to classify medical
events into one of the following time-bins: way be-
fore admission, before admission, on admission, af-
ter admission, after discharge. The intuition behind
each time-bin label is as follows. The time-bin way
before admission is intended to capture all medical
events that happened in the past medical history of
the patient but are not mentioned as being directly
related to the present illness. Before admission cap-
tures events that occurred before admission and are
related to the present illness. On admission captures
medical events that occur on the day of admission.
After admission captures medical events that occur
between admission and discharge (during the hospi-
tal stay or clinic visit). Finally, medical events that
are supposed to occur in the future after the patient
is discharged belong to the class after discharge.

Further, the time duration of each time-bin varies
based on the patient. For instance, the hospital stay
of a patient could be 4 days or 1 month or a year.
This makes it very difficult to define exact time-bins
based on the intuitions described above. In order
to make the problem more precise and consistent
across different patients, we restrict way before ad-
mission to events that happened more than a year
ago and before admission to events that occurred in
the same year before admission. If it is unclear as
to when in the past the medical event occurred, we
assume it happened way before admission.

5 Learning time-bin assignments
We model the problem of classifying medical events
to time-bins as a sequence tagging task using CRFs
(Lafferty et al., 2001). CRFs are a joint model of
label sequence conditioned on the observation.

For the task proposed in this paper, an observation
sequence is composed of medical events in the order
in which they appear in a clinical narrative, and the
state sequence is the corresponding label sequence
of time-bins. Each label in the label sequence could
be any one of the time-bins way before admission
(wa), before admission (ba), on admission (a), after

admission (aa), after discharge (ad). Thus, given
a sequence of medical events in narrative order we
learn a corresponding label sequence of time-bins
{wb, b, a, aa, ad}.

The probability of time-bin (label) sequence y,
given a medical event (input) sequence x, is given
by,

P (Y |X) = exp
∑

i

(S(x, y, i) + T (x, y, i)) (1)

where i is the medical event index and S and T are
the state and transition features respectively. State
features S consider the label of a single medical
event and are defined as,

S(x, y, i) =
∑

j

λjsj(y, x, i) (2)

Transition features consider the mutual dependence
of labels yi−1 and yi (dependence between the time-
bins of the current and previous medical event in the
sequence) and are given by,

T (x, y, i) =
∑

k

µktk(yi−1, yi, x, i) (3)

where sj and tk are the state and transition feature
functions. Above, sj is a state feature function, and
λj is its associated weight and tj is a transition func-
tion, and µj is its associated weight. In contrast to
the state function, the transition function takes as in-
put the current label as well as the previous label,
in addition to the data. The mutual dependence be-
tween the time-bins of the current and previous med-
ical events is observed frequently in sections of the
text describing the history of the patient. Around
40% of the medical events in gold standard corpus
demonstrate such dependencies.

The Maximum Entropy (MaxEnt) model (Berger
et al., 1996) estimates the probability of a time-bin
given the observed medical event. In this case, we
are interested in finding the time-bin with the maxi-
mum estimated probability.

6 Feature Space

We extract features from medical event sequences
found in each clinical narrative. The extracted
feature-set captures narrative structure in terms of
the narrative type, sections, section transitions, and
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position in document. The medical event and the
context in which it is mentioned is captured with
the help of lexical features. The temporal features
resolve temporal references and associate medical
events with temporal expressions wherever possible.

6.1 Section-based features

Determining the document-level structure of a clin-
ical narrative is useful in mapping medical events
to time-bins. This can be achieved by identifying
different sections in different types of clinical narra-
tives and relating them to different time-bins. The
section in which the medical event is mentioned
tells us something about when it occurred. Li et al.
(2010) train a hidden Markov model (HMM) to map
a sequence of sections to 15 possible known section
types in free-text narratives with high accuracy.

Commonly found sections in discharge sum-
maries and history and physical reports include:
“past medical history,” “history of present illness,”
“findings on admission,” “physical examination,”
“review of systems,” “impression,” and “assess-
ment/plan.” On the other hand, radiology notes tend
to have sections describing “indication,” “‘com-
parison,” “findings” and “impression”. Similarly,
pathology notes may have sections including “clini-
cal history,” “specimen received,” “laboratory data”
and “interpretation.” While some sections talk about
patient history, some other sections describe the pa-
tient’s condition after admission, or plans after dis-
charge. However, some clinical notes like cn2 in
Figure 2 may not have any section information.

The combined feature representing the type of
clinical narrative along with the section can be infor-
mative. Section transitions may also indicate a tem-
poral pattern for medical events mentioned across
those sections. For instance, “past medical history”
(way before admission), followed by “history of
present illness” (way before admission), followed by
“findings on admission” (on admission), followed
by “physical examination” (after admission), fol-
lowed by “assessment/plan” (discharge). Medical
events in different types of sections may also exhibit
different temporal patterns. A “history of present ill-
ness” section may start with diseases and diagnoses
30 years ago and then proceed to talk about them in
the context of a medical condition that happened few
years ago and finally describe the patient’s condition

on admission.
In addition to the section information, we also use

other features extracted from the clinical narrative
structure such as the position of the medical concept
in the section and in the narrative.

6.2 Lexical features

Bigrams are pairs of words that occur in close prox-
imity to each other, and in a particular order. The
bigrams preceding the medical event in the narra-
tive can be useful in determining when it occurred.
For instance, “history of cocaine use and hyper-
tension,” “presents with chest pain,” “have chest
pain,” “since the episode,” etc. If the preceding bi-
gram contains a verb, we also extract the tense of the
verb as a feature. However, tense is not always help-
ful in learning the time of occurrence of a medical
event. Consider the following line from cn2 in Fig-
ure 2, “He has hidradenitis of both axilla resected.”
Though “has” is in present tense, the medical event
has actually occurred in the history and is only being
observed and noted now. Additionally, we also ex-
plicitly include the preceding bigrams and the tense
of verb for the previous and next medical event as a
feature for the current medical event.

Every medical event that occurs above a certain
frequency threshold in all the clinical narratives of
a particular patient is also represented as a binary
feature. More frequent medical events tend to occur
in the history of the patient, for example, cocaine
use. We use a threshold of 3 in our experiments.
The medical event frequency in also calculated in
combination with other features such as the type of
clinical narrative and section type.

6.3 Dictionary features

The UMLS1 includes a large Metathesaurus of con-
cepts and terms from many biomedical vocabular-
ies and a lexicon that contains syntactic, morpho-
logical, and orthographic information for biomed-
ical and common words in the English language.
We map each medical event to the closest concept
in the UMLS Metathesaurus and extract its seman-
tic category. The semantic categories in UMLS in-
clude Finding, Disease or Syndrome, Therapeutic
or Preventative procedure, Congenital abnormality,

1https://uts.nlm.nih.gov/home.html
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and Pathologic Function. The intuition behind this is
that medical events associated with certain semantic
categories may be more likely to occur within cer-
tain time-bins. For instance, a medical event classi-
fied as “Congenital abnormality” may be more likely
to occur way before admission.

6.4 Temporal features

Temporal features are derived from any explicit
dates that fall in the same sentence as the medical
concept. The gold-standard corpus contains anno-
tations for temporal anchors for events. Although
there are no explicit dates in cn1 and cn2, there may
be narratives where there are mentions of dates such
as fever on June 7th, 2007. In some cases, there
may also be indirect references to dates, which tell
us when the medical event occurred. The reference
date with respect to which the indirect temporal ref-
erence is made depends on the type of note. In case
of history and physical notes, the reference date is
usually the admission date. For instance, chest pain
which started 2 days ago, this would mean chest
pain which started 2 days before admission. Since
the admission date is 06/03/2007, chest pain would
have started on 06/01/2007. Similarly, 3 to 4 months
ago resolves to February 2007 or March 2007 and 2
to 3 weeks ago resolves to first or second week of
May 2007. Whenever, the exact date is fuzzy, we as-
sume the date that is farthest from the reference date
as accurate. So in case of these examples, February
2007 and first week of May 2007 are assumed to be
correct. We also calculate the difference between ad-
mission date and these dates associated with medical
events. Another fuzzy temporal expression is “his-
tory of,” where history could mean any time frame
before admission. We assume that any medical event
mentioned along with “history of” has occurred way
before admission.

Other implicit temporal expressions can be found
in phrases such as upon presentation yesterday, to-
day, at the present time, and now. Upon presen-
tation, at the present time, today, and now resolve
to the admission date 06/03/2007 and yesterday
resolves to the day before admission 06/02/2007.
There are some other implicit temporal expressions
expressed relative to medical events, for example,
ever since the episode 2 days ago he has felt a little
weaker. Here, episode refers to chest pain and since

chest pain happened 2 days ago, ever since then up
to the present time would resolve to the time period
between 06/01/2007 and 06/03/2007. This time pe-
riod is associated with weaker.

7 Corpus

We use annotators that are students or recently grad-
uated students from diverse clinical backgrounds
with varying levels of clinical experience to anno-
tate a corpus of clinical narratives from the medical
center. The corpus consists of narratives specifically
from MRSA cases and consists of admission notes,
radiology and pathology reports, history and physi-
cal reports and discharge summaries. The features
marked by the annotators include medical events;
corresponding time-bin; corresponding UMLS con-
cept identifier; the UMLS semantic category; tem-
poral expressions; the link between temporal expres-
sions and medical events, if any; and the section un-
der which the medical event is mentioned, if any.
The annotators marked 1854 medical events across
5 patients and 51 clinical narratives. The annotation
agreement across our team of annotators is high; all
annotators agreed on 89.5% of the events and our
overall inter-annotator Cohen’s kappa statistic (Con-
ger, 1980) for medical events was 0.865.

While we found the inter-annotator agreement
for medical event UMLS concept identifiers to be
lower than for medical events and temporal expres-
sions, agreement was still very high. We discov-
ered that in many cases there was either a dis-
crepancy in the granularity to which the medical
events were coded or whether or not clinical judg-
ment was used in selecting the concept identifier.
For example, all of our annotators marked “B-Cell
CLL” as an event. Three of them coded this term
as “C0023434: Chronic Lymphocytic Leukemia.”
Two others coded this event as “C0475774: B-cell
chronic lymphocytic leukemia variant.” While both
could be considered correct annotations for “B-Cell
CLL,” C0475774 is the more specific term. In
another example, all of the annotators marked the
phrase “white blood cell count of 10,000.” For this
situation, one of them selected “C0750426: white
blood cell count increased,” while another selected
“C0023508: White Blood Cell count procedure.” In
contrast, the other three selected different concept
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identifiers, applying clinical judgment to the medi-
cal events. One other annotator selected “C0860797:
differential white blood cell count normal.”

We use this gold-standard corpus for our exper-
iments. We conduct two sets of experiments with
the clinical narratives in this corpus: 1) Medical
event, Time-bin experiments using hand-tagged fea-
tures from the corpus and 2) Medical event, Time-
bin experiments using automatically extracted fea-
tures from the corpus.

8 Experiments

We first conducted experiments using the hand-
tagged features in our corpus. Based on these
features, we generated the section-based, lexical,
dictionary and temporal features described in the
previous sections. We used 10-fold cross vali-
dation in all our experiments. We use the Mal-
let2 implementation of CRFs and MaxEnt. CRFs
are trained by Limited-Memory Broyden-Fletcher-
Goldfarb-Shanno (BFGS) for our experiments. The
per-class accuracy values of both sequence tagging
using CRFs and using a MaxEnt model are indicated
in Table 3.

When modeled as a multi-class classification task
using MaxEnt, we get an average precision of 81.2%
and average recall of 71.4% whereas using CRFs we
obtain an average precision of 89.4% and average
recall of 79.2%. In order to determine the utility
of temporal features, we do a feature ablation study
with the temporal features removed. In this case
the average precision of the CRF is 79.5% and av-
erage recall is 67.2%. Similarly, when we remove
the section-based features, the average precision of
the CRF is 82.7% and average recall is 72.3%. The
section-based features seems to impact the precision
of the on admission and after admission time-bins
the most.

We compare our approach for classifying medi-
cal events to time-bins with the following baseline
model. We assign medical events to time-bins based
on the type of narrative, any explicit dates and sec-
tion in which they occur. Each section is associated
with a pre-defined time-bin. In the case of the sec-
tions in cn1, any medical event under “history of
present illness” is before admission, “review of sys-

2http://mallet.cs.umass.edu/

Medical Event Baseline MaxEnt CRF Gold
1©cocaine use ba wa wa wa
2©hypertension ba wa wa wa
3©chest pain ba ba ba ba
4©episode ba ba ba ba
5©chest pain ba ba a a
6©infections ba wa ba ba
7©abscess ba ba ba ba
8©spots ba ba ba ba
9©chest pain free ba wa a a

Table 1: Time-bin predictions by the section baseline
method, MaxEnt model and CRF for a subset of medi-
cal events marked in cn1 in Figure 1.

Class(time-bin) Section baseline
P R

way before admission (wa) 56.3 61.4
before admission (ba) 60.2 57.5
on admission (a) 63.8 59.1
after admission (aa) 57.5 68.2
after discharge (ad) 52.3 55.1

Table 2: Per-class precision (P) and recall (R) for medical
events, time-bins using hand-tagged extracted features.

tems” is after admission and “assessment/plan” is
discharge. If the narrative has a “past medical his-
tory” or a similar section, the events mentioned un-
der it would be assigned to way before admission.
Partial results of (medical event, time-bin) assign-
ment in cn2 as per this baseline can be seen in Table
1. However, this baseline does not work for clinical
narratives like cn2 that do not have any section in-
formation. This model gives us an average precision
of 58.02% and average recall of 60.26% across the 5
time-bins. Per-class predictions for the baseline are
shown in Table 2.

The most common false positives for the before
admission class are medical events belonging to on
admission. This may be due to lack of temporal fea-
tures to indicate that the event happened on the same
day as admission. Frequently, medical events that
belong to the aa, ba and wa time-bin get classified
as after discharge. One of the reasons for this could
be misleading section information in case of histori-
cal medical events mentioned in the assessment/plan
section.

Next, we conduct experiments using automati-
cally extracted features. This is done as follows. The
medical events are extracted using MetaMap, which
recognizes medical concepts and codes them using
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Class(time-bin) MaxEnt CRF
P R P R

way before admission (wa) 72.4 63.5 79.8 66.7
before admission (ba) 83.4 80.8 92.0 92.4
on admission (a) 76.6 72.1 87.5 75.2
after admission (aa) 88.6 82.1 93.6 99.1
after discharge (ad) 85.2 58.7 94.3 62.5

Table 3: Per-class precision (P) and recall (R) for medical
events, time-bins using hand-tagged extracted features.

UMLS (Aronson, 2001). Based on this UMLS code,
we can extract the semantic category associated with
the code. Compared to the 1854 medical events
marked by the annotators, MetaMap identifies 1257
medical events, which are a subset of the 1854. The
UMLS coding by the annotators is more contextu-
ally relevant and precise. We use a rule-based al-
gorithm to identify and extract document structure
based features such as sections from clinical narra-
tives. The rules are formulated based on commonly
occurring sections in our corpus. We extract lines
that are all upper-case, and longer than a word and
use their stemmed representation to sort them by fre-
quency of occurrence in the corpus. While parsing
the text in each clinical narrative, on encountering
a line that matches a section title from the frequent
list, all subsequent lines are associated with that title
until a new section title is encountered. In case of the
lexical features, we extract bigrams and calculate the
tense of the verb preceding the medical event using
the Stanford NLP software.3 The temporal features
are extracted with the help of TimeText developed
by Zhou and Hripcsak (2007) that automatically an-
notates temporal expressions in clinical text. How-
ever, it is not able to capture many of the implicit
temporal references. Following this, a temporal ex-
pression is linked to a medical event if it occurs in
the same sentence as the medical event.

The average precision and recall of the Max-
Ent model using automatically extracted features is
74.3% and 66.5% respectively. Sequence tagging
using CRFs gives us an average precision and recall
of 79.6% and 69.7% respectively. Although the re-
sults are not as good as using hand-tagged features,
they are certainly promising. One reason for the loss
in accuracy could be because the automatically cal-
culated temporal features are not as precise as the

3http://nlp.stanford.edu/software/

Gold-standard Features
P R

ME 81.2 71.4
CRF 89.4 79.2
CRF(no temp. feats) 79.5 67.2
CRF(no section feats) 82.7 72.3

Automatic Features
P R

ME 74.3 66.5
CRF 79.6 69.7
Baseline (P;R) 58.02 60.26

Table 4: Overall Result Summary: Average precision
(P) and recall (R) with manually annotated gold-standard
features, automatically extracted features and the base-
line.

hand-tagged ones. These results are summarized in
Table 4.

9 Conclusion

We investigate the task of classifying medical events
in clinical narratives to coarse time-bins. We de-
scribe document structure based, lexical and tempo-
ral features in clinical text and explain how these
feature are useful in time-binning medical events.
The extracted feature-set when used in a sequence
tagging framework with CRFs gives us high accu-
racy when compared with a section-based baseline
or a MaxEnt model. The learned time-bins can
be used as an informative feature for tasks such as
fine-grained ordering of medical events and medical
event coreference resolution. We also experiment
with hand-tagged vs. automatically extracted fea-
tures for this task and observe that while automati-
cally extracted features show promising results, they
are not as good as using hand-tagged features for this
task.
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Abstract

The growth of digital clinical data has raised
questions as to how best to leverage this data
to aid the world of healthcare. Promising ap-
plication areas include Information Retrieval
and Question-Answering systems. Such sys-
tems require an in-depth understanding of the
texts that are processed. One aspect of this
understanding is knowing if a medical con-
dition outlined in a patient record is recent,
or if it occurred in the past. As well as this,
patient records often discuss other individu-
als such as family members. This presents
a second problem - determining if a medi-
cal condition is experienced by the patient de-
scribed in the report or some other individ-
ual. In this paper, we investigate the suitabil-
ity of a machine learning (ML) based system
for resolving these tasks on a previously unex-
plored collection of Patient History and Phys-
ical Examination reports. Our results show
that our novel Score-based feature approach
outperforms the standard Linguistic and Con-
textual features described in the related litera-
ture. Specifically, near-perfect performance is
achieved in resolving if a patient experienced
a condition. While for the task of establish-
ing when a patient experienced a condition,
our ML system significantly outperforms the
ConText system (87% versus 69% f-score, re-
spectively).

1 Introduction
The growth of the digitization of clinical docu-

ments has fostered interest in how to best lever-
age this data in providing assistance in the world
of healthcare, including novel information re-
trieval (Voorhees and Tong, 2010), question an-
swering (Demner-Fushman and Lin, 2007; Patrick

and Li, 2011) and clinical summarization sys-
tems (Feblowitz et al., 2011).

Given the richness of the language found in clin-
ical reports, novel systems require a deeper under-
standing of this textual data. One aspect of this un-
derstanding is the assertion status of medical condi-
tions (Demner-Fushman et al., 2011). The assertion
status of a medical condition may refer to Negation
Resolution, Temporal Grounding (deciding if a con-
dition is currently or historical, and Condition Attri-
bution (deciding if a condition is experienced by the
patient described in the report or some other individ-
ual). The focus of this paper rests on the latter two
tasks of Temporal Grounding and Condition Attribu-
tion as Negation has been satisfactorily addressed in
Chapman et al. (2007).

Several approaches, ranging in complexity, have
been proposed for resolving temporal information.
Hripcsak et al. (2005) modeled the task as a con-
straint satisfaction problem. Another rule-based ap-
proach that achieved moderate results uses regular
expressions matching occurrences of trigger terms
(Chapman et al. 2007). A trigger term in this context
refers to a term or phrase that provides strong evi-
dence supporting the attribution (e.g., patient, fam-
ily member) or temporality (e.g., current, past) of
a condition. Given the limitations of solely us-
ing pre-composed trigger term lists, recent focus
has been placed on the use of rule-based learning
systems with different feature sets (Mowery et al.,
2009). Section headers, tense and aspect are investi-
gated as features, with promising results for the tem-
porality task achieving an accuracy score of 89%.
However, the authors’ acknowledge that conclusions
drawn must be tentative as a majority class classifier
achieved an accuracy of 86.9% (only 13% of condi-
tions in the dataset are historical).
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This paper extends current work in the domain in
the following ways. The dataset used in these exper-
iments is generated from a collection of previously
unannotated History & Physical (H&P) Examina-
tion reports. Prior work has focused on other report
types such as discharge summaries and emergency
department reports. In these cases the distribution
of historical and recent conditions is often heavily
skewed in favour of descriptions of recent conditions
experienced by the patient. As H&P reports aim to
provide a comprehensive picture of a patient’s past
and present state, a more uniform distribution of his-
torical and recent conditions is present in this report
type. This work extends previous work by exploring
the use of machine learning (ML) as an alternative to
hand-crafted rule based systems and rule-based ML
approaches to resolving these tasks.

In this work, a comparative analysis of several
ML algorithms from different paradigms are eval-
uated, in order to determine the best approach for
our tasks. Building on this, the performance of four
automatically extracted feature sets are evaluated,
identifying their contributions and also their interac-
tions. This work also extends existing work by au-
tomatically extracting features that were previously
extracted manually as well as the proposal of a set
of novel score-based features. The performance of
the ML algorithms are compared to the rule-based
system - ConText. Our results show that the ML
approaches significantly outperform this rule-based
system on the Temporal Grounding task.

2 Related Work
Natural Language Processing techniques have

been shown to have many different uses in Clinical
Text Analysis, such as in the representation (Sager
et al., 1994) and understanding (Christensen, 2002)
of clinical narratives, and frequently now in the con-
text of more elaborate large-scale systems, such as a
clinical decision support system (Demner-Fushman
et al., 2009).

Given the sensitive nature of clinical narratives
and the difficulty in obtaining data collections for
experimental purposes, evaluation and comparison
of NLP systems in this domain is difficult. However,
recently anonymised data provided by the Biomedi-
cal Language Understanding (BLU) Lab at the Uni-
versity of Pittsburgh as well as datasets provided
as part of the i2b2/VA 2010 challenge (Uzuner et
al., 2011), has greatly aided NLP research into the
processing of clinical narratives. The dataset pro-
vided by BLU Lab and used in this work con-

sists of 101,711 reports of several different report
types ranging from discharge summaries to surgical
pathology reports. The report types differ in con-
tent, technical language and structure. For example,
surgical pathology reports are very technical and ex-
plicit in the information that they convey, e.g. results
of a biopsy, blood cell counts etc. In contrast, dis-
charge summaries and consultation reports are more
expressive, and aim to create a more complete pa-
tient profile, e.g. including work and personal cir-
cumstances. The BLU Lab have published a num-
ber of papers on the topic of resolving the assertion
status of medical conditions (Chapman et al., 2007;
Harkema et al., 2009; Mowery et al., 2009). Their
ConText algorithm (Chapman et al., 2007) uses
handcrafted regular expressions, along with trigger
terms and termination terms to determine character-
istics of a condition mention in a text. The condition
characteristics investigated included negation, tem-
porality (recent, historical, hypothetical) and experi-
encer (patient, other). Their approach worked very
well on the negation and hypothetical temporality,
achieving an f-score of 97% in determining nega-
tion and an f-score of 88% in resolving hypothetical
conditions. However, the approach was less success-
ful when determining historical conditions and their
experiencer, with f-scores of 71% and 67%, respec-
tively. These results were generated on emergency
room reports only.

In more recent work, their algorithm was ap-
plied to 5 other types of clinical document, namely:
surgical pathology, operative procedure, radiol-
ogy, echocardiogram and discharge summaries
(Harkema et al., 2009). Results achieved on these
new datasets were largely the same, with f-scores
for negation ranging between 75% and 95%, and for
hypothetical conditions ranging between 76% and
96%. Again, a marked drop-off was seen for histor-
ical conditions, with few occurrences of conditions
for other experiencers annotated in the datasets (i.e.
relatives) making it difficult to draw definitive con-
clusions from this work.

Although this manual rule based approach has
performed well and is advocated due to its ease of
implementation (Meystre et al., 2008), Harkema et
al. (2009) note its limitations in resolving historical
conditions, and encourage the possibility of statisti-
cal classifiers in which information other than lexi-
cal items, are considered as features. Further work
investigating the use of Machine Learning (Uzuner
et al., 2009; Mowery et al., 2009) has seen posi-
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tive breakthroughs in resolving the assertion status
of medical conditions.

The 2010 i2b2 challenge (Uzuner et al., 2011)
provided a rigid and standardized platform for eval-
uating systems in resolving the assertion status of
medical conditions found in Discharge Summaries.
The challenge consisted of three subtasks:Concept
Extraction, Assertion and Relation Identification.
The second subtask of Assertion involved the devel-
opment of systems that resolved the assertion sta-
tus of medical conditions. As part of the asser-
tion task there were six possible assertion statuses:
present, absent, uncertain, conditional, or not associ-
ated with the patient. Systems submitted to this chal-
lenge ranged from more simplistic pattern matching
techniques to more complex supervised and semi-
supervised approaches (de Bruijn et al., 2011; Clark
et al., 2011). The datasets used in the 2010 i2b2
challenge were not available to non-participants at
the time the experiments presented in this work were
conducted. We plan to explore these datasets in
future work. This research investigates patient vs.
non-patient conditions as well as past vs. present
conditions in order to fine tune feature-sets that may
be generalized to further assertion statuses.

In the context of this paper, while the BLU Lab
clinical report collection is available, the medical
condition annotations are not. As already stated, our
intention is to explore a machine learning approach
to these tasks. For this purpose we annotated a por-
tion of the consultation report section of the collec-
tion. There were two reasons for this - firstly, the
BLU Lab have not reported results on this report
type so there is no duplication of annotation effort
and secondly, it turns out that the consultation re-
ports are a much richer source of historical condi-
tions and condition attribution than any of the report
types annotated previously.

3 Method
3.1 Corpus

For this task, 120 H&P reports were randomly
extracted from the BluLab’s NLP repository. As
already stated, this report type’s fuller descriptions
make it richer than previous datasets in instances
of condition attribution and temporal grounding. A
breakdown in the distributions of these annotations
can be seen in Tables 1 and 2.

H&P reports may vary in the organization of con-
tent, but the content is mostly uniform, expressing
the same information about patients (Sager et al.,
1987). As well as this, many reports feature head-

ings for different sections of the report (past medical
history, impression), information which can be used
as features in a classification task. Before annotat-
ing conditions found in the text, preprocessing was
required in order to retain such information.

Table 1: Annotated Condition Attribution Occurrences

Class Count
Patient 872
Other 93
Total 965

Table 2: Annotated Temporal Grounding Occurrences

Class Count
Historical 448

Recent 424
Total 872

3.1.1 Preprocessing
Preprocessing of the data consisted of a simple

Java program that extended Lingpipe1 tools in or-
der to correctly split sentences on this dataset, and
extract the heading for the section in which the sen-
tence is contained.

The preprocessing outputs the sentence number,
followed by a separator, the sentence’s contents and
the heading under which the sentence features. Sen-
tences were split for ease of annotation and also
to allow parsing and part-of-speech tagging by the
C&C2 parsing tools. C&C was chosen for its scala-
bilty, speed and the accuracy of its biomedical lan-
guage models. A cursory analysis of its output in-
dicates that its performance is acceptable. As C&C
does not provide a sentence splitter, Lingpipe’s split-
ter was availed of for this task.
3.1.2 Annotation

Annotation of the dataset was performed by two
annotators over a 60 hour period. The inter-
annotator agreement was measured using the kappa
statistic (Carletta, 1996). A kappa statistic of 0.78
was achieved. The annotators were presented with
the collection, to annotate with an XML like tag
“CONDITION”. This tag must have two attributes,
“EXP” representing condition attribution and “HIST”

1http://alias-i.com/lingpipe/
2http://svn.ask.it.usyd.edu.au/trac/

candc
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representing the temporal grounding of the condi-
tion.

• HIST: A value of 1 indicates the occurrence of a
historical condition, where 0 describes a current
or recent condition. e.g. “The patient presented
with <CONDITION NUM=“1” HIST=“0”> re-
nal failure </CONDITION>” would indicate the
condition “renal failure” is current.
• EXP: A value of 1 implies the expe-

riencer is the patient with 0 signifying
“other”. e.g. “The patient has a fam-
ily history of <CONDITION NUM=“1”
EXP=“0”>hypertension </CONDITION>”
signifies the condition “hypertension” is not
experienced by the patient.

3.2 Machine Learning Algorithms
Early work in the resolution of assertion status

primarily focused on the use of manually created
rule-based systems, with more recent work focusing
on statistical and ML methods. However, the do-
main of ML contains many sub-paradigms and vary-
ing approaches to classification. In this paper, three
ML methods that have not been previously applied
to this task are explored. These three classifiers,
namely Naive Bayes, k-Nearest Neighbour and Ran-
dom Forest represent the paradigms of probabilistic,
lazy and ensemble learning, respectively.

Naive Bayes is a probabilistic classifier imple-
menting Bayes Theorem. As a result, features im-
plemented using this classifier are deemed to be in-
dependent. Despite this strong assumption it has
been shown to be more than successful in text classi-
fication tasks such as spam filtering (Provost, 1999).

k-Nearest Neighbour (kNN) (Cover and Hart,
1967) is a simple pattern recognition algorithm that
classifies an instance according to its distance to the
k closest training instances. This algorithm has been
chosen to represent the paradigm of lazy learning,
i.e. there is no training phase as all computation
is performed at the classification stage. Despite its
simplicity, k-NN has often produce high accuracy
results in comparison to other approaches (Caruana,
2006).

The final classifier chosen for this task represents
the state-of-the-art in machine learning, namely the
Random Forest algorithm (Breiman, 2001). A Ran-
dom Forest consists of many different decision trees,
combining bagging (Breiman, 1996), and random
feature selection.

3.3 Features
In this section, a list of features contributing to

this task are presented. All features are automati-
cally extracted using a set of tools developed by the
authors. Section 3.3.1 presents score-based features
that are unique to this work. Section 3.3.2 describes
the implementation of features outlined in Chapman
et al (2007). Section 3.3.3 and Section 3.3.4 present
features similar to those investigated in Mowery et
al. (2009).
3.3.1 Score based features

Scored based features used in this system extend
and reinforce Trigger List features by computing a
normalized score for the number of occurrences of
Trigger List terms3. This feature aims to add fur-
ther granularity to the decision making of the ML al-
gorithms, presenting a floating point number rather
than a binary one.

The equation for computing these scores is de-
fined as follows.

s =
Nt

(Nw − Sw)
(1)

Nt represents the number of trigger terms found in
the sentence that contains the condition, Nw is the
total number of words in the sentence, with Sw being
the number of stopwords4. These scores are calcu-
lated for each type of trigger term. For example, for
trigger type relative mention, a score is calculated
using mentions of relatives in the sentence.
3.3.2 Trigger List Features
• precededByHistTerm: This feature performs

a look-up for trigger terms from the historical
word list, checking if it directly precedes the
condition. An example historical trigger term
would be “history of” as in “a history of dia-
betes”. If a condition, such as diabetes, is mod-
ified by a historical trigger term, it will return 1,
otherwise 0.
• containsHistMention: This is a weaker

form of precededByHistTerm, checking sim-
ply if a trigger term from the historical list oc-
curs in the same sentence as the condition. If
one does, it will return 1 otherwise 0.
• hasRelativeMention: If the sentence which

contains the condition also contains a trigger
3These trigger lists may be downloaded at http:

//csserver.ucd.ie/˜jcogley/downloads/
wordlists.tar.gz

4The list of stopwords may be downloaded at
http://csserver.ucd.ie/˜jcogley/downloads/
stopwords.txt
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term from the experiencer list such as ‘mother’,
‘father’ or ‘uncle’ it will return 1, otherwise 0.
• hasPatientMention: 1 if the sentence men-

tions the patient, otherwise 0.
• containsDeath: 1 if it contains the terms “de-

ceased”, “died” from the death trigger terms list
otherwise 0. A sentence describing death is more
likely to refer to a relative, rather than the pa-
tient.
• mentionsCommunity: 1 if one of “area”,

“community” from the geographical trigger list
is mentioned, otherwise 0. If a sentence de-
scribes a community, as in “there has been a re-
cent outbreak of flu in the area”, it is not refer-
ring to the patient, therefore the condition should
not be attributed to the patient.
• precededByWith: 1 if the condition is directly

preceded by “with”, otherwise 0. “with” was
found to have higher frequency when describ-
ing patients rather than individuals other than the
patient. e.g. ”Patient presented with high blood
pressure and fever.”
• containsPseudoTerms: Pseudo-historical

terms or phrases may mention a term that is
found in the Historical list, but do not indicate
that a condition mention in the same sentence is
being used in a historical context. For example,
“poor history” is a pseudo-historical trigger
term. It uses a historical trigger term (“history”);
however “poor history” refers to the incomplete
nature of the patient’s medical history, not the
historical nature of their condition. This feature
returns 1 on the occurrence of a pseudo trigger
term, otherwise 0.

3.3.3 Contextual features
In resolving the textual context of conditions, it

is important to look at what surrounds the condition
beyond the lexical items. With these contextual fea-
tures, we can capture that section in which a sen-
tence occurs, and how many conditions occur in the
sentence.
• isInFamHist: The importance of header infor-

mation is motivated by the assumption that con-
ditions that fall under explicit headings, are more
than likely to have a greater affinity to the head-
ing. This feature returns 1 if it is under Family
History, 0 otherwise.
• isInList: A binary feature denoting whether

a condition occurs as part of a list of conditions,
with one condition per line. Returns 1 if it is a

member of such a list, otherwise 0.
• numOfConditions: This feature represents the

number of conditions present in a given sen-
tence. A higher number of conditions indicates
that the condition may be part of a list. Sentences
that contain a list of conditions tend to list past
conditions rather than recently suffered illnesses.

3.3.4 Linguistically motivated features
Three features were designed to monitor the ef-

fect of the verb tense on a condition. This feature
has already been shown to aid the classification pro-
cess (Mowery et al., 2009). For this task, linguistic
features were extracted from the output of the C&C
parsing tool, using both part-of-speech tags along
with dependency information.

• hasPastTense: A binary feature with 1 indi-
cating the sentence contains a past tense verb, 0
otherwise. e.g. “The patient previously suffered
renal failure” would return 1. If a condition is
modified by a past tense verb, it has occurred in
the past.
• hasPresentTense: A binary feature with 1

indicating the sentence contains a present tense
verb, 0 otherwise. If a condition is modified by a
present tense verb, the condition is current. e.g.
“the patient presents coughing”.
• containsModalVerb: A binary feature with 1

indicating the sentence contains a modal verb,
0 otherwise. e.g. “palpitations may have been
caused by anxiety”. The presence of the modal
“may” following the condition indicates the con-
dition is currently being examined and is there-
fore recent.
• tenseInClause: Analyzes the tense found in

the same syntactic clause as the condition being
examined. For example, in “abdominal pain has
ceased, but patient now complains of lower ex-
tremity pain”, “abdominal pain” has a past tense
within its clausal boundary, where the clause
which contains “lower extremity pain” has a
present tense verb.
• tenseChange: Determines whether the verb

tense used in the clause that contains the con-
dition differs with the verb in another clause in
the sentence. e.g. “Migraines persist yet palpi-
tations resolved”. This feature allows finer gran-
ularity in resolving the tense surrounding condi-
tions, such as the description of current condi-
tions in the context of the patient’s history.
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4 Experiment Setup & Evaluation
There are two aims of the experiments reported

in this section: firstly, to evaluate the performance
of ML algorithms in resolving the assertion status of
medical conditions. Secondly, to assess the perfor-
mance of individual feature sets in order to discover
the most contributory and informatory features or
sets of features. To evaluate the latter, classifications
using all possible combinations of feature sets (listed
in Table 3) were performed.

Table 3: Feature-set Combinations

ID Feature-Sets
TrigLingConScore trigger, linguistic, score-based, contextual

TrigLingScore trigger, linguistic, score-based
TrigLingCon trigger, linguistic, contextual
TrigConScore trigger, score-based, contextual
LingConScore linguistic, score-based, contextual

TrigLing trigger, linguistic
TrigScore trigger, score-based
TrigCon trigger, contextual

LingScore linguistic, score-based
LingCon linguistic, contextual
ConScore score-based, contextual
Trigger trigger

Ling linguistic
Score score-based
Con contextual

4.1 Evaluation
The systems are evaluated by the metrics preci-

sion, recall and f-score:

precision =
TP

TP + FP

recall =
TP

TP + FN

f =
2× Precision×Recall

Precision + Recall

where TP is the number of true positives, FP is the num-
ber of false positives, FN is the number of false negatives.

Systems are evaluated using both cross-validation
and hold-out methods. In the hold-out method there
are two data sets, one used for training the classifier
and a second for testing it on a blind sub-set of test
material. 10-fold cross-validation is performed on
the training sets and final results are reported in this
paper on the held-out blind test set. Three hold-out
classification splits were experimented with (i.e.,
train/test splits: 30%/70%; 50%/50%; 70%/30%).
We found that results for each of the data splits and

cross-validation experiments were largely uniform.
To avoid repetition of results, Section 5 focuses on
experiments using a held-out method training/test
split of 70%/30%. All hold-out experiments were
implemented using Weka’s (Hall et al., 2009) Ex-
perimenter interface. Cross-Validation experiments
were performed using a script developed by the au-
thors in conjunction with Weka’s API. This allowed
the ML approaches and the ConText algorithm to be
evaluated against the same test-folds.
4.1.1 Comparison with a rule-based system

ConText (Chapman et al., 2007) is a simple yet
effective rule-based system designed to resolve the
assertion status of medical conditions. Comparative
analysis is performed between an implementation of
ConText5 and the ML approaches described in 3.2.
The ML systems were trained on 70% of the dataset
(610 conditions). The remaining 30% (262 condi-
tions) was used as a test set for both ConText and
the Machine Learning systems. For cross-validation
experiments, ConText was evaluated against each
test set fold. For the Condition Attribution exper-
iments training was performed on 675 conditions
with testing performed on 290 conditions. In eval-
uating Temporal Grounding the training set com-
prised of 610 conditions with the test-set containing
262 conditions.
5 Experimental Results

This section reports results of the experiments
outlined in Section 4.
5.1 Condition Attribution

In a system that resolves the assertion status of
medical conditions, it is of benefit to know who is
experiencing the medical condition before resolving
more complex information such as temporality. In
this section, preliminary results on Condition Attri-
bution are presented. The dataset used in evaluat-
ing the effectiveness of Condition Attribution was
highly skewed, as shown in Table 1. This is a natural
skew caused simply by the fact that reports discuss
the patient more than other individuals (e.g., blood
relatives). As a result the baseline score using a Ma-
jority Class classifier achieved an f-score of 95%
(Table 4). Given these results, the contextual fea-
ture set contributes most, as shown by the removal
of the contextual feature set in TrigLingScore coin-
ciding with a drop in performance. However, the
skewed dataset resulted in no statistical significance

5http://code.google.com/p/negex/
downloads/detail?name=GeneralConText.Java.
v.1.0_10272010.zip
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between classifiers and feature-sets.

Table 4: Selected feature-sets (f-score) using Cross-
Validation for the Condition Attribution task

ID RFor kNN NB Maj.
TrigLingConScore 100% 100% 100% 95%

TrigLingScore 96% 96% 96% 95%
TrigConScore 100% 100% 100% 95%

Con 100% 100% 100% 95%

In this task, ConText achieved an f-score of 99%.
As there is little difference in scores achieved be-
tween ConText and the approaches in Table 4 - a
manual rule-based system can be considered ade-
quate for this task.

Taking a closer look at the performance of the fea-
ture sets, we see that the contextual feature set con-
tributes most to the task with the removal of contex-
tual features coinciding with a drop in performance
e.g., TrigLingScore in Table 4. The strength of this
feature set lies with the feature isInFamHist. This
feature simply checks if the condition occurs under
the heading “Family History”. Its highly influen-
tial performance would indicate that its quite rare
for the mention of another individual anywhere else
in a clinical report. The Con run, which is solely
composed of contextual features achieves near per-
fect performance, an indication that the contribution
of other features to the task of Condition Attribu-
tion is minimal. Although this work used only H&P
reports, this finding may be generalized to other re-
port types such as Discharge Summaries which also
explicitly mark sections pertaining to other individ-
uals.
5.2 Temporal Grounding

The distribution of past and recent medical con-
ditions is not skewed (as in the Condition Attribu-
tion task), and hence it presents a more challeng-
ing classification task. Despite the varying per-
formance of individual classifiers and feature sets
the results obtained are again largely similar across
cross-validation and hold-out methods, with the per-
formance of each training set fitting the distribu-
tion in Figure 1. Initial experiments investigated the
use of another state-of-the-art classifier, the Support
Vector Machine using a polykernel, however due to
its relatively poor performance (70% f-score, with
its precision soundly beaten by other approaches) it
will not be discussed in further detail.

Random Forest proved to be the most effective
classifier across almost all feature sets. However,
kNN was a very near second place - Random Forest

only significantly6 outperformed kNN on two occa-
sions (TrigLingConScore, LingConScore). In con-
strast, Naive Bayes performed poorly - despite hav-
ing outperformed all other systems on the precision
metric, it failed to outperform the baseline majority
classifier on the recall.

Although the precision of ConText matches that
of the Random Forest and kNN (Table 5), it is also
let down by its recall performance. As a result, there
is a statistical significant difference between its f-
score and that of the Random Forest and kNN.

Table 5: Temporal Grounding ConText Comparison

System Precision Recall F-score
kNN 80% 80% 80%

RandomForest 82% 84% 83%
NaiveBayes 91% 61% 72%
ConText 80% 61% 69%
Majority 55% 100% 71%

6 Discussion
The distribution of recent and historical condi-

tions for the task of Temporal Grounding is more
evenly distributed than that used in Condition Attri-
bution, allowing for a more interesting comparison
of the approaches and features employed.

Figure 1 shows the performance of each ML for
each feature-set combination. Random Forest was
expectedly the best performing algorithm. However,
more surprising was the comparative performance
of the often overlooked kNN algorithm. Both ap-
proaches statistically significantly outperformed the
rule-based system ConText. Though the rule based
system matched the high performing ML systems in
terms of precision, it was significantly outperformed
with respect to recall.

The most contributory feature set in the ML runs
was the novel score-based feature set. This feature
creates a normalized score for the occurrence of trig-
ger terms in the same sentence as the medical con-
dition in question. It was designed to reinforce the
importance of trigger terms, by providing a numeric
score to support the binary Trigger List feature. The
addition of score-based features to any of the fea-
ture combinations coincided with a statistical signif-
icant boost in performance, with Score (composed
solely of score-based features) outperforming half of
all other feature combinations as seen in Figure 1,.

On the contrary, the effect of contextual features
on the performance of the algorithms for Temporal

6Significance calculated by Paired T-Test with 95% confi-
dence.
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Figure 1: Temporal Grounding f-score performance with 70% Training Data

Grounding is minimal, or even detrimental to the
task. For example, in Figure 1, the performance
of the kNN algorithm increases from TrigLingCon-
Score to TrigLingScore with the removal of contex-
tual features. The performance of the Random For-
est is unaffected by such detrimental features as it
performs its own feature selection prior to classifi-
cation. Though there are several feature set com-
binations reaching a high level of performance, the
most effective approach combines trigger list terms,
linguistic and score based features with the Random
Forest algorithm.

These experiments extend previous work by pro-
viding a systematic, automated approach to feature
extraction for the purpose of ML approaches to Tem-
poral Grounding. They also indicate the high per-
formance and contribution of our novel score-based
features. These features are not designed to solely
classify instances found in H&P reports and can
be applied to other clinical reports such as Dis-
charge Summaries and Emergency Department re-
ports. Previous work has involved the use of the
latter mentioned report types. Unfortunately, given
the terms-of-use of these datasets they could not be
made available to authors to facilitate comparative
experiments.
7 Conclusion

In this paper, we proposed the use of machine
learning (ML) in resolving if and when a patient
experienced a medical condition. The implemented
ML algorithms made use of features comprising of
trigger terms, linguistic and contextual information,
and novel score-based features. In an evaluation of
these feature sets it was found that score-based fea-
tures contributed to the task of resolving when a pa-
tient experienced a medical condition.

The ML approaches were also evaluated against

the rule-based system ConText on a new annotated
dataset of History & Physical (H&P) Examination
Reports. In this evaluation it was discovered that the
task of resolving if a condition was experienced by
the patient was adequately solved by the ConText
system, achieving an f-score of 99%. Although, the
ML approaches proposed achieved perfect perfor-
mance, there is no statistical significance between
the result sets. However, the more challenging task
of deciding when a patient experienced a medical
condition is deemed to be best suited to a ML ap-
proach, with the top performing classifier Random
Forest achieving an f-score of 87%, significantly
outperforming ConText which achieved 69% on the
same dataset .

The results achieved in these tasks have paved the
way for several avenues of future work. We be-
lieve that the performance of these tasks is now suffi-
ciently accurate to justify their inclusion in an Infor-
mation Retrieval (IR) application. It is our intention
to use our medical condition analysis techniques to
annotate clinical documents and build an advanced
IR system capable of taking advantage of this mark
up in the context of the TREC Medical Records
Track 20127. With the availability of datasets such
as that of the i2b2 Shared Task 2010 data, further
work will include experimentation on these datasets
as well as an investigation into further assertion sta-
tuses.
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Abstract

We present an algorithm for extracting abbre-
viation definitions from biomedical text. Our
approach is based on an alignment HMM,
matching abbreviations and their definitions.
We report 98% precision and 93% recall on
a standard data set, and 95% precision and
91% recall on an additional test set. Our re-
sults show an improvement over previously re-
ported methods and our model has several ad-
vantages. Our model: (1) is simpler and faster
than a comparable alignment-based abbrevia-
tion extractor; (2) is naturally generalizable to
specific types of abbreviations, e.g., abbrevia-
tions of chemical formulas; (3) is trained on a
set of unlabeled examples; and (4) associates a
probability with each predicted definition. Us-
ing the abbreviation alignment model we were
able to extract over 1.4 million abbreviations
from a corpus of 200K full-text PubMed pa-
pers, including 455,844 unique definitions.

1 Introduction

Abbreviations and acronyms are commonly used in
the biomedical literature for names of genes, dis-
eases and more (Ambrus, 1987). Abbreviation def-
initions are a source of ambiguity since they may
change depending on the context. The ability to rec-
ognize and extract abbreviations and map them to
a full definition can be useful for Information Ex-
traction tasks (Yu et al., 2007) and for the complete
understanding of scientific biomedical text.

Yu et al. (2002) distinguish the two follow-
ing uses of abbreviations: (1) Common abbrevia-
tions are those that have become widely accepted as

synonyms, such as 〈DNA, deoxyribonucleic acid〉
or 〈AIDS, acquired immunodeficiency syndrome〉.
These represent common fundamental and impor-
tant terms and are often used, although not explic-
itly defined within the text (Fred and Cheng, 2003).
In contrast, (2) Dynamic abbreviations, are defined
by the author and used within a particular article.
Such definitions can often overlap, depending on
the context. For example, the term PBS most com-
monly abbreviates Phosphate Buffered Saline, but
in other contexts may refer to the following: Pain
Behavior Scale, Painful Bladder Syndrome, Paired
Domain-Binding Site, Particle Based Simulation,
Partitioned Bremer Support, Pharmaceutical Bene-
fits Scheme, and more. Some abbreviations fall be-
tween these two definitions in the sense that they are
normally defined in the text, however, they have be-
come widely used, and therefore they do not nor-
mally overlap with other abbreviations. An exam-
ple for this is the term ATP which, almost exclu-
sively, abbreviates adenosine triphosphate, and is
only rarely used in different contexts in biomedicine.

Gaudan et al. (2005) define two similar con-
cepts, distinguishing Global and Local abbrevia-
tions. Global abbreviations are not defined within
the document, similar to common abbreviation. Lo-
cal abbreviations appear in the document alongside
the long form, similar to dynamic abbreviations.
The contextual ambiguity of dynamic, or local, ab-
breviations makes them an important target for ab-
breviation recognition tasks.

There is a great deal of variation in the way that
different authors produce abbreviations. Our defini-
tion of abbreviation is quite flexible and can best be
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represented by the set of examples described in Ta-
ble 1. These include simple acronyms, in which the
first letter of every word from the long form is rep-
resented in the short form, as well as more complex
cases such as: inner letter matches, missing short
form characters, and specific substitutions (such as
of a chemical element and its symbol). We gener-
ally assume that the abbreviated form contains some
contraction of words or phrases from the full form.
This definition is consistent with the one defined by
many other extraction systems (see e.g., (Schwartz
and Hearst, 2002) and (Chang et al., 2002)).

We describe a method for extracting dynamic ab-
breviations, which are explicitly defined in biomed-
ical abstracts. For each of the input texts, the task
is to identify and extract 〈short form, long form〉
pairs of the abbreviations defined within the text. We
also provide a mapping, formed as an alignment, be-
tween the characters of the two forms, and the prob-
ability of this alignment according to our model.

Our approach is based on dividing the abbrevia-
tion recognition task into the following stages: (1)
Parsing the text and extracting candidate abbrevia-
tion pairs (long and short forms) based on textual
cues, such as parentheses; (2) Recovering a valid
alignment between the short and long form candi-
dates (valid alignments are defined in Section 3.2).
We perform a sequential alignment based on a pair-
HMM; (3) Extracting a final short and long form
from the alignment.

We will show that our approach is fast and accu-
rate: we report 98% precision and 93% recall on a
standard data set, and 95% precision and 91% recall
on a validation set. The alignment model: (1) is sim-
pler and faster than a comparable alignment-based
abbreviation extractor; (2) is naturally generalizable
to specific types of abbreviations; (3) is trained on a
set of unlabeled examples; and (4) associates a prob-
ability with each predicted definition.

2 Related Work

A wide variety of methods have been introduced
for recognizing abbreviations in biomedical context.
Many utilize one of the following techniques: rule-
based extraction, and extraction that relies on an
alignment of the abbreviation and full definition.
Abbreviation extraction methods have been used in

two main contexts: to create online collections of
abbreviations, normally extracted from PubMed ab-
stracts (Zhou et al., 2006; Gaudan et al., 2005; Adar,
2004), and as part of larger learning frameworks,
mainly for feature generation (Chowdhury et al.,
2010; Huang et al., 2011).

Rule based extraction systems use a set of man-
ually crafted pattern-matching rules to recognize
and extract the pair of abbreviation and defini-
tion: Acrophile (Larkey et al., 2000) is an acronym
recognition system that exploits morphological rules
based on the case of the characters in the definitions.
Unlike many of the other available systems, it rec-
ognized acronyms that are defined without paren-
theses; The Alice system (Ao and Takagi, 2005) is
based on three extraction phases, each employing
an elaborate set of over 15 rules, patterns and stop
word lists. Liu and Friedman (2003) use a set of
statistical rules to resolve cases in which an abbre-
viation is defined more than once with several dif-
ferent definitions. While these methods normally
achieve high performance results, their main draw-
back is that they are difficult to implement and to
extend. Rule development is normally based on a
thorough investigation of the range of targeted ab-
breviations and the resulting heuristic patterns con-
tain subtleties that are hard to recreate or modify.

Several extraction methods have been developed
based on some variant of the Longest Common Sub-
sequence algorithm (LCS) (Schwartz and Hearst,
2002; Chang et al., 2002; Taghva and Gilbreth,
1999; Bowden et al., 1997). These systems search
for at least one possible alignment of an abbrevia-
tion and a full form definition.

The most widely used abbreviation extraction sys-
tem is that presented by Schwartz and Hearst (2002).
Their method scans the input text and extract pairs
of candidate abbreviations from text surrounding
parentheses. The algorithm scans the candidate defi-
nition from right to left, and searches for an implicit
alignment of the definition and abbreviation based
on few ad-hoc rules. This algorithm presents several
constraints on the type of recognized abbreviations,
the most restrictive being that every letter of the ab-
breviation must be matched during the process of
scanning the definition. Of the variety of available
extraction systems, this remains a popular choice
due to its simplicity and speed. However, as the au-
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Short Long Type of Abbreviation

AMS Associated Medical Services Acronym using the first letter of each long-form word.
PS postsynaptic Inner letters are represented in the abbreviation.
NTx cross-linked N-telopeptides 1. Phonetic substitution (cross→ x).

2. The short form is out-of-order.
3. Words from the long form are missing in the short form (linked).

EDI-2 Eating Disorders Inventory Characters from the short form are missing in the long form (-2).
NaB sodium butyrate Substitution of a chemical element by its symbol (sodium→ Na).
MTIC 5-(3-N-methyltriazen-1-yl)-

imidazole-4-carboxamide
Chemical formula.

EBNA-1 Epstein-Barr virus (EBV) nuclear
antigen 1

Recursive definition, in which the long form contains another ab-
breviation definition.

3-D three-dimensional Substitution of a number name and symbol (three→ 3).
A&E accident and emergency Substitution of a word and symbol (and→ &).
anti-Tac antibody to the alpha subunit of the

IL-2 receptor
Synonym: the short form commonly represents the long form, al-
though it is not a direct abbreviation of it.

R.E.A.L. ’Revised European-American Clas-
sification of Lymphoid Neoplasms’

The long- and/or short-forms contain characters that are not di-
rectly related to the abbreviation (e.g., punctuation symbols).

Table 1: Examples of biomedical abbreviations.

thors report, this algorithm is less specific than other
approaches and consequently results in lower recall.
We will show that by performing an explicit align-
ment of the abbreviation using an alignment-HMM,
our model results in more accurate predictions, and
that the edit operations used in the alignment allow
for natural extensions of the abbreviations domain.

Another frequently used alignment based ap-
proach is that of Chang et al. (2002), and it is closest
to our approach. After calculating an abbreviation
alignment, they convert the set of aligned terms into
a feature vector which is scored using a binary logis-
tic regression classifier. Using a correct threshold on
the alignment scores produces a high performance
abbreviation extractor. However this approach has
several drawbacks. The run-time of this algorithm
is fairly long (see Section 4.3), in part due to the
steps following the alignment recovery, i.e., calcu-
lating a feature vector, and generating an alignment
score. Additionally, choosing a score threshold may
depend on the genre of text, and different thresh-
olds lead to a variety of quality in the results. We
will show that presenting limitations on the range of
available alignments can produce correct alignments
more efficiently and quickly, maintaining high qual-
ity results, without the need for threshold selection.
Our alignment method distinguishes and penalizes
inner and leading gaps in the alignment, and it ap-

plies a set of constraints on the range of legal align-
ments. We will also show that relying solely on con-
strained alignments still allows for flexibility in the
definition of the range of desired abbreviations.

Ristad and Yianilos (1998) proposed a single state
alignment-HMM for learning string-edit distance
based on matched strings. In later work, Bilenko and
Mooney (2003) extend this model to include affine
gaps, by including in their model separate states
for Matches, Deletions and Insertions. McCallum
et al. (2005) describe a discriminative string edit
CRF, following a similar approach to that of Bilenko
and Mooney. The CRF model includes two disjoint
sets of states, each representing either “matching” or
“mismatching” string pairs. Each of the sets is sim-
ilar to the model described by Bilenko and Mooney.
All of these models require labeled training exam-
ples, and the CRF approach also requires negative
training examples, which train the “mismatching”
states of the model. We describe an alignment HMM
that is suited for aligning abbreviation long and short
forms, and does not require any labeling of the input
text or training examples.

3 Method

In the following sections we describe a method for
extracting candidate abbreviation definitions from
text, and an alignment model with affine gaps for
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Description Result

i. Input sentence: “anti-sperm antibodies were studied by indirect mixed anti-globulin reaction test (MAR)”

ii. Candidate: 〈MAR, by indirect mixed anti-globulin reaction test〉

iii. Alignment:
HMM States
Short Form
Long Form

LG LG LG LG M M M M IG M M M IG

M A R

by indirect mixed anti - globulin reaction test

iv. Abbreviation: 〈MAR, mixed anti-globulin reaction test〉

Table 2: Example of the processing steps of a sample sentence. (i) Input sentence containing a single abbreviation.
(ii) Candidate 〈short form, long form〉 pair extracted from the sentence (after truncating the long-form). (iii) The
most likely (Viterbi) alignment of the candidate pair, using our alignment model. Each state corresponds to a single
edit-operation, which consumed the corresponding short-form and long-form characters in the alignment. (iv) Final
abbreviation, extracted from the alignment by removing leading gaps.

matching the two forms of a candidate definition.
Finally we describe how to extract the final abbre-
viation prediction out of the alignment.

3.1 Extracting candidate abbreviations

The process described below scans the text for tex-
tual cues and extracts a list of candidate abbreviation
pairs, for every input document, in the form: 〈short
form, long form〉. The following text also describes
the restrictions and conditions of what we consider
to be valid candidate pairs. The assumptions made
in this work are generally less restrictive that those
introduced by previous extraction systems and they
lead to a larger pool of candidate definitions. We
will later show that false candidates normally pro-
duce invalid alignment of their short and long forms,
according to our alignment model, and so they are
removed and do not affect the final results.

The parsing process includes a search for both
single abbreviations, and abbreviation patterns. An
example of a sentence with a single abbreviation
can be seen in Table 2(i). We consider the fol-
lowing two cases of a single abbreviation defini-
tion: (1) “long form (short form)”, and (2) “short
form (long form)”. Note that in some cases, the
term within the parenthesis is parsed, e.g., in the
following text, ELISA is extracted from the paren-
thesis, by removing the text beyond the ’;’ symbol:
“. . . human commercial enzyme-linked immunosor-
bent assay (ELISA; BioGen, Germany) . . . ”.

We also consider abbreviation patterns which

define multiple abbreviations simultaneously, as
demonstrated by these examples:

• “anti-sperm (ASA), anti-phospholipid (APA),
and antizonal (AZA) antibodies” – The main
noun (antibodies) follows the pattern.

• “Epithelial-mesenchymal transition (EMT)
and interaction (EMI)” – The main noun
(Epithelial-mesenchymal) is at the head of the
pattern.

Using textual cues (patterns and parentheses) we
extract candidate short and long forms. Whenever
possible, we consider the term within the parenthe-
sis as the short form, and the text to the left of the
parenthesis (until the beginning of the sentence) as
the candidate long form. We consider valid short
forms to be no longer than 3 words, having between
1 and 15 characters, and containing at least one let-
ter. In the case that the candidate short form was
found to be invalid by these definitions, we switch
the assignment of long and short forms. The long-
form string is truncated, following Park and Byrd
(2001), to a length of min(|A|+ 5, |A| ∗ 2), where
|A| is the length of the short form.

The length of the candidate long form is estimated
using the Park and Byrd formula, and it is therefore
normally the case that the resulting candidate long
form contains some leading characters that are not
part of the abbreviation definition. Next, we define
an alignment between short and long form strings
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<“CRF-BP”, “ligands for the corticotrophin-releasing factor binding protein”> 

       |  |   |  |   |  |C             | |R        | |F     | |-|B      | |P      | 
ligands|  |for|  |the|  |corticotrophin|-|releasing| |factor| | |binding| |protein| 

!"

#$"

%"

&$"

'"

Figure 1: Abbreviation alignment HMM model with
states: start (s), leading gaps (LG), match (M), inner gap
(IG) and end (e).

Edit
Operation

SF
Match

LF
Match

Valid
States

LF deletion ε alpha-numeric
char

LG, IG

LF deletion ε punct. symbol LG, M
LF deletion ε word LG, IG
SF deletion digit or punct. ε IG
Match char (partial) word M
Match char char M
Substitution ’&’ ’and’ M
Substitution ’1’-’9’ ’one’-’nine’ M
Substitution chem. symbol chemical name M

Table 3: Edit operations used in the alignment HMM
model including, long form (LF) and short form (SF)
deletions, matches and substitutions. We note the SF and
LF characters consumed by each edit operation, and the
HMM states in which it may be used.

which detects possible segments that are missing in
the alignment in either string (gaps).

3.2 Aligning candidate long and short forms

For each of the candidate pairs produced in the pre-
vious step, we find the best alignment (if any) be-
tween the short and the long form strings. We de-
scribe an alignment HMM that is suited for abbrevi-
ation alignments. The model is shown in Figure 1,
and Table 2 shows the parsing process of a sam-
ple sentence, including an alignment created for this
sample using the model.

3.3 Abbreviation Alignment with Affine
Leading and Inner Gaps

An alignment between a long and a short form of an
abbreviation can be modeled as a series of edit oper-
ations between the two strings, in which characters
from the short form may match a single or a series
of characters from the long form. In previous work,
Bilenko and Mooney (2003) describe a generative

model for string edit distance with affine gaps, and
an Expectation Maximization algorithm for learning
the model parameters using a labeled set of match-
ing strings. We propose a similar model for aligning
the short and long form of an abbreviation, using an
affine cost model for gaps

cost(g) = s+ e · l (1)

where s is the cost of starting a gap, e is the cost of
extending a gap and l is the length of the gap. In our
method, we use extracted candidate pairs (candidate
short and long forms) as training examples.

As described above, candidate long forms are
formed by extracting text preceding parentheses and
truncating it to some length. This process may lead
to candidate long forms that contain leading charac-
ters that do not belong to the abbreviation, which
will result in leading gaps in the final alignment.
For example, the candidate long form presented in
Table 2(ii) contains the leading text “by indirect “.
While extra leading text is expected as an artifact of
our candidates extraction method, inner alignment
gaps are not expected to commonly appear in abbre-
viation alignments, and are usually an indication of a
bad alignment. The example presented in Table 2 is
of an abbreviation that does contain inner gaps (e.g.,
globulin) despite being a valid definition.

We distinguish leading and inner alignment gaps
using a model with five states: Leading Gap (LG),
Match (M), Inner Gap (IG), and two “dummy” states
for the beginning and end of an alignment (Figure 1).
Since leading and inner gaps are represented by dif-
ferent states, their penalization is not coupled, i.e.,
they are associated with different s, e and l costs.
We use the EM algorithm to learn the model param-
eters, based on a set of unlabeled candidate pairs,
following the assumption that many false-candidates
will not produce a valid alignment, and will not af-
fect training. This is in contrast to previous string
edit distance models, which require labeled training
examples.

The main effort in developing a successful ab-
breviation alignment model involves generating a
meaningful set of edit operations. The edit opera-
tions used in our model,E = Ed∪Em∪Es, is shown
in Table 3 and includes: Ed, deletions of characters
or words from the long form, or of single characters
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from the short form; Em, matches of a full of par-
tial word from the long form to a character in the
short form; and Es, word substitutions in which a
word from the long form is replaced by a symbol in
the short form. Note that: (1) while all types of dele-
tions from the long form are valid, deletions from the
short form are limited to digits and punctuation sym-
bols, and (2) deletion of non-alpha-numeric charac-
ters from the long form is not considered as opening
a gap but as a match, as it is common for non-alpha-
numeric characters to be missing in an abbreviation
(i.e., be “matched” with the empty string, ε).

Let x = x1 . . . xT be the short form candidate,
y = y1 . . . yV be the long form candidate, and
a = 〈ap〉np=1, ap = (ep, qp, ixp, jyp), be a pos-
sible alignment of the strings x and y. a repre-
sents as a sequence of HMM transitions, ap, where
ep ∈ E is an edit operation that consumes charac-
ters from x (deletion from the long form), y (dele-
tion from the short form), or both (match or substi-
tution), up to position ixp in x and jyp in y, and
is associated with a transition in the model to state
qp ∈ {LG,M, IG, e}. Let π(q, q′) be the transition
probability between states q and q′, and let τ(q, e)
be the emission probability of the edit operation e at
state q. Given a candidate abbreviation pair 〈x, y〉,
and the model parameters π and τ , the probability of
an alignment is given by

p(a|x, y, π, τ) =

|a|∏
p=1

π(qp−1, qp) · τ(qp, ep) (2)

where q0 is the start state. This probability can be
calculated efficiently using dynamic programming
with the forward-backward algorithm, and the most
likely alignment corresponds to the Viterbi distance
between x and y.

In our method, the model parameters, π and τ ,
are estimated using the EM algorithm on an unla-
beled training set of candidate pairs that have been
extracted from the text, without any further process-
ing. At each EM iteration, we train on pairs that have
valid alignments (see below) with non-zero proba-
bility under the model parameters at that iteration.

3.3.1 Valid Alignments
Given the edit operations defined above, the only

valid way of matching a letter from the short form

to the long form is by matching that letter to the
beginning of a full or partial word, or by matching
that letter using a substitution operation. There is
no edit operation for deleting letters from the short
form (only digits and punctuation symbols can be
deleted). This means that for some candidate pairs
there are no valid alignments under this model, in
which case, no abbreviation will be predicted.

3.3.2 Extracting the Final Abbreviation
Given a valid alignment a between the candi-

date pair, x and y, we create a truncated alignment,
a′, by removing from a initial transitions in which
qp = LG. We consider a′ valid if the number of
matches in a′ = 〈a′p〉n

′
p=1 is greater than the number

of deletions,

n′∑
p=1

I(q′p = M) >
n′∑

p=1

I(q′p = IG) (3)

where I is an indicator function.
The final abbreviation prediction is given by the

portions of the x and y strings that are associated
with a′, named x′ and y′, respectively. These may be
truncated compared to x and y, as leading alignment
gaps are removed. The final alignment probability is
given by p(a′|x′, y′, π, τ).

3.4 Substitution Edit Operations
In contrast to rule-based extraction algorithms, in
our model, it is easy to introduce new types of edit
operations, and adjust the model to recognize a va-
riety of abbreviation types. As an example, we have
added a number of substitution operations (see Ta-
ble 3), including an operation for the commonly
used convention of replacing a chemical element
name (e.g., Sodium) with its symbol (Na). These
types of operations are not available using simpler
models, such as that presented by Schwartz and
Hearst (2002), making it impossible to recognize
some important biomedical entities, such as chem-
ical compounds (e.g., 〈NaB, SodiumButyrate〉).
In contrast, such additions are natural in our model.

4 Evaluation

4.1 Abbreviation Extraction Analysis
We evaluated the alignment abbreviation model over
two data sets (Table 4). The method was tuned using
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Data Set Name Abstracts Abbreviations Testing Method

Development (D) Medstract 400 483 10-fold cross validation.
Validation (V) PubMed Sample 50 76 Training on set D and testing on set V.

Table 4: Evaluation Data Sets.

Model D (average %) V (%)

P R F1 P R F1

Alignment HMM 98 93 96 95 91 93
SH 96 88 91 97 83 89
Chang 0.88 99 46 62 97 47 64
Chang 0.14 94 89 91 95 91 93
Chang 0.03 92 91 91 88 93 90
Chang 0 49 92 64 53 93 67

Table 5: Results on validation (V) and development (D)
sets. Average results are shown for D set, which was
tested using 10-fold cross-validation (results rounded to
nearest percent, all standard deviations were < 0.1)

10 fold cross-validation over the publicly available
Medstract corpus (Pustejovsky et al., 2002) which
includes 400 Medline abstracts. The online version
of the corpus was missing the Gold Standard annota-
tions throughout the development of our algorithm,
nor was it possible to get them through communica-
tion with the authors. We therefore hand-annotated
the Medstract data, yielding 483 abbreviation defi-
nitions in the form of 〈short form, long form〉 pairs.
In order to be consistent with previous evaluations
over Medstract, our annotations include only defini-
tions in which either the short or the long form ap-
pear in parenthesis, and it is assumed that there are
no trailing gaps in the term preceding the parenthe-
sis, although our model does detect such gaps.

We compare our results with two algorithms
available for download: the Schwartz and Hearst
(SH; (2002)) algorithm1, and the Chang et al. (2002)
algorithm2 used at three score cutoffs reported in
their paper (0.88, 0.14, 0.03). We also use a fourth
score cutoff of 0 to account for any legal alignments
produced by the Chang model.

In Table 5 we report precision (P), recall (R) and

1Taken from http://biotext.berkeley.edu/software.html
2Taken from http://abbreviation.stanford.edu

F1 scores for all methods, calculated by

P =
correct predicted abbreviations

all predicted abbreviations
(4)

R =
correct predicted abbreviations

all correct abbreviations
(5)

On the development set, our alignment model
achieves 98% precision, 93% recall and 96% F1 (av-
erage values over cross-validation iterations, with
standard deviations all under 0.03).

To test the final model we used a validation
dataset consisting of 50 abstracts, randomly selected
out of a corpus of 200K full-text biomedical articles
taken from the PubMed Central Open Access Sub-
set (extracted in October 2010)3. These were hand-
annotated, yielding 76 abbreviation definitions.

On the validation set, we predicted 69 out of 76
abbreviations, with 4 false predictions, giving 95%
precision, 91% recall and 93% F1. Our alignment
model results in higher F1 score over all baselines
in both datasets (with Chang0.14 giving equal results
on the validation set). Our results are most compa-
rable with the Chang model at a score cutoff of 0.14,
though our model does not require selecting a score
cutoff, and as we will show, it is considerably faster.
Interestingly, our model results in lower recall than
precision on both data sets. This may be due to a
limited scope of edit operations.

In order to evaluate the usability of our method,
we used it to scan the 200K full-text documents of
the PubMed Central Open Access Subset corpus.
The process completed in under 3 hours, yielding
over 1.4 million abbreviations, including 455,844
unique definitions. A random sample of the ex-
tracted abbreviations suggests a low rate of false
positive predictions.

4.2 Error Analysis
Our model makes 4 incorrect predictions on the val-
idation set, 3 of which are partial matches to the

3http://www.ncbi.nlm.nih.gov/pmc/
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Description D V

Letters in short form are missing (e.g., 〈GlyRalpha2, glycine alpha2〉) 5 3
Abbreviation missed due to extraction rules. 6 1
Abbreviation is a synonym (e.g., 〈IRX-2, natural cytokine mixture〉) 5 1
Abbreviation letters are out-of-order (e.g., 〈VSV-G, G glycoprotein of vesicular stomatitis virus〉) 4 1
Correct alignment was found but it is invalid due to many inner gaps (see Section 3.3.1). 5 0
Abbreviations of chemical formulas or compounds. 4 0

Table 6: Abbreviations missed in development (D) and validation (V) sets.

correct definitions, e.g., we predict the pair 〈GlOx,
glutamate oxidase〉 instead of 〈GlOx, L-glutamate
oxidase〉. On the development set, 3 out of 5 incor-
rect predictions are partial matches.

Our model did not extract 7 of the abbreviations
from the validation set and 33 from the development
set. Many of these abbreviations (6 from the valida-
tion set and 29 from the development set) had one
of the properties described in Table 6. The remain-
ing 5 definitions have been missed due to miscel-
laneous issues. Note that while we added several
substitution operations for chemical formula recog-
nition, the elaborate set of operations required for
recovering the full range of chemical formulas was
not included in this work, leading to 4 chemical for-
mula abbreviations being missed.

4.3 Run-Time Analysis

We provide an estimated comparison of the run
time of our method and the baseline algorithms.
This analysis is especially interesting for cases in
which an abbreviation extraction model is included
within a larger learning framework (Chowdhury et
al., 2010; Huang et al., 2011), and may be used in
it in an online fashion. Run time was evaluated on
an Apple iMac with 4GB 1333 MHz RAM, and a
3.06 GHz Core i3, double-core processor, by run-
ning all models on a random set of 400 abstracts.
In order to evaluate the run time contribution of the
substitution operations introduced in our model we
ran it both with (88 docs

sec ) and without (98 docs
sec ) the

use of substitution operations. We find that using
substitutions did not have considerable effect on run
time, adding under 1 ms for processing each docu-
ment. We should note that the performance of the
substitution-less model on this test data was similar
to that of the original model, as substitutions were

relevant to only a smaller portion of the abbrevi-
ations. As expected, the SH algorithm is consid-
erably faster (6451 docs

sec ) than our model, as it is
based on only a number of simple rules. The Chang
model, however, is slower (4 docs

sec ) as it includes
processing steps following the discovery of an ab-
breviation alignment, which means that our model
provides comparable results to the Chang model and
runs an order-of-magnitude faster.

5 Conclusions and Discussion

We presented a method for extracting abbreviation
definitions with high precision and high recall (95%
precision, 91% recall and 93% F1 on a validation
set). Our model achieves higher F1 on both the de-
velopment and validation data sets, when compared
with two popular extraction methods.

Our approach is based on a sequential genera-
tive model, aligning the short and long form of an
abbreviation. Using the proposed method we ex-
tracted 1.4 million abbreviations from a corpus of
200K PubMed articles. This data can be valuable
for Information Extraction tasks and for the full un-
derstanding of biomedical scientific data.

The alignment abbreviation extractor can be eas-
ily extended by adding edit-operations over short
and long forms. This was demonstrated by including
substitutions of chemical elements and their sym-
bols, which facilitates recognition of chemical for-
mulas and compounds.

We have identified the main classes of abbrevia-
tion definitions missed by our approach. These in-
clude out-of-order matches, synonym-like abbrevia-
tions, and short forms with excess letters. It may be
possible to address some of these issues by includ-
ing “global” information on abbreviations, such as
the occurrence of frequent definitions.
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Abstract

In the English clinical and biomedical text do-
mains, negation and certainty usage are two
well-studied phenomena. However, few stud-
ies have made an in-depth characterization
of uncertainties expressed in a clinical set-
ting, and compared this between different an-
notation efforts. This preliminary, qualita-
tive study attempts to 1) create a clinical un-
certainty and negation taxonomy, 2) develop
a translation map to convert annotation la-
bels from an English schema into a Swedish
schema, and 3) characterize and compare two
data sets using this taxonomy. We define
a clinical uncertainty and negation taxonomy
and a translation map for converting annota-
tion labels between two schemas and report
observed similarities and differences between
the two data sets.

1 Introduction and Background

Medical natural language processing techniques are
potentially useful for extracting information con-
tained in clinical texts, such as emergency depart-
ment reports (Meystre et al., 2008). One impor-
tant aspect to take into account when developing ac-
curate information extraction tools is the ability to
distinguish negated, affirmed, and uncertain infor-
mation (Chu et al., 2006). Several research stud-
ies have targeted this problem and created anno-
tation schemas and manually annotated reference
standards for uncertainty and negation occurrence
in news documents (Saurı́ and Pustejovsky (2009),
Wiebe et al. (2001), Rubin et al. (2006)), biomedical
research articles (Wilbur et al. (2006), Vincze et al.

(2008)), and clinical narratives (Uzuner et al. (2011)
and Uzuner et al. (2009)). There are encoding tools
developed for automatic identification of uncertainty
and negation in English, such as ConText (Harkema
et al., 2009), which relies on heuristics and keyword
lists, and MITRE’s CARAFE (Clark et al., 2011),
which combines heuristic and statistical techniques.

However, most relevant annotation schemas, ref-
erence standards, and encoding tools are built for
English documents. For smaller languages, such as
Swedish, resources are scarce.

We present a pilot, qualitative study to compare
two different annotation schemas and subsequent
annotated corpora for uncertainty modeling of dis-
order mentions, e.g., signs, symptoms, and diseases,
in clinical texts, for two different languages: English
and Swedish. We compare these annotation schemas
and their instantiation in the two languages in an at-
tempt to gain a deeper understanding of how uncer-
tainty and negation are expressed in different clini-
cal texts with an emphasis on creating a portable un-
certainty and negation application that generalizes
among clinical texts of different languages.

This pilot study is motivated for at least two
reasons. First, little attention has been given to
mapping, characterizing, or comparing annotation
schemas built for different languages or to character-
izing different types of uncertainty expressions and
the intention underlying those expressions. Such
knowledge is needed for building information ex-
traction tools that can accurately identify or track
differential diagnoses over time, particularly when
medical reasoning can be laden with uncertainty
about a disorder’s existence or change over time.
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Second, building new resources for small lan-
guages is time consuming. Utilizing existing tools
and techniques already developed for one language,
such as English, could be an efficient way of devel-
oping new useful tools for other less exploited lan-
guages, such as Swedish.

Our overall goal is to move towards improving au-
tomatic information extraction from clinical texts by
leveraging language differences and similarities. In
order to address this issue, our aims in this study
are to 1) create a taxonomy for deepened charac-
terization of how uncertainty and negation is ex-
pressed in clinical texts, 2) compare two existing un-
certainty and negation annotation schemas from this
perspective, and 3) compare differences and similar-
ities in expressions of uncertainty and negation be-
tween two languages: English and Swedish.

2 Methods

In this pilot, qualitative comparison study, we used
grounded theory (Strauss and Corbin, 1990) to in-
ductively identify themes that characterize clini-
cal uncertainty and negation expressed in both En-
glish (University of Pittsburgh Medical Center) and
Swedish (Karolinska University Hospital) research
data sets derived from emergency department re-
ports.

2.1 Uncertainty/negation annotation schemas
Two independently developed annotation schemas
were used to annotate disorder mentions in the
clinical texts: a schema developed for English re-
ports (Mowery et al. (2012)) and one for Swedish
(Velupillai et al. (2011)). Each disorder mention
was pre-annotated and constituted the input to a sep-
arate set of annotators, who assigned values to a set
of attributes defined in the schema. For instance, in
the sentence “Patient with possible pneumonia.”, an-
notators for the English data set assigned values to
four attributes for the instance of pneumonia:

• Existence(yes, no): whether the disorder was ever present

• AspectualPhase(initiation, continuation, culmination, un-
marked): the stage of the disorder in its progression

• Certainty(low, moderate, high, unmarked): amount of certainty
expressed about whether the disorder exists

• MentalState(yes, no): whether an outward thought or feeling
about the disorder’s existence is mentioned

In the Swedish schema, annotators assigned val-
ues to two attributes:

• Polarity(positive, negative): whether a disorder mention is in the
positive or negative polarity, i.e., affirmed (positive) or negated
(negative)

• Certainty(possibly, probably, certainly): gradation of certainty
for a disorder mention, to be assigned with a polarity value.

2.2 Data Sets
The English data set included 30 de-identified, full-
length emergency department reports annotated with
283 disorders related to influenza-like illnesses by
a board-certified infectious disease physician. Each
disorder was annotated with four attributes – exis-
tence, aspectual phase, certainty and mental state –
by two independent annotators (including DM) who
came to consensus after reviewing disagreements.

The Swedish data set included 1,297 assessment
sections from emergency department reports anno-
tated with approx. 2,000 disorders, automatically
marked from a manually created list of approx-
imately 300 unique disorders by two physicians.
The two physicians annotated each disorder mention
with attributes of polarity and certainty. A random
subset of approx. 200 annotated disorder mentions
from the data set were used for this qualitative study.

2.3 Study Process
In order to better understand how physicians de-
scribe uncertainty of the presence or absence of a
disorder, we evaluated the annotations from the two
data sets as follows: 1) created a clinical uncertainty
and negation taxonomy, 2) developed a translation
map for mapping attributes and values from the En-
glish schema into the Swedish schema, and 3) char-
acterized and compared both data sets and languages
using the taxonomy.

To create the uncertainty and negation taxonomy,
we conducted a literature review of recent annota-
tion schemas (e.g. Vincze et al. (2008)), assignment
applications (e.g. Uzuner et al. (2011), Harkema
et al. (2009), Clark et al. (2011), Chapman et al.
(2011)), and observational studies (Lingard et al.,
2003) about uncertainty or negation in the clinical
domain. From our review, we created a clinical tax-
onomy describing notable characteristics of uncer-
tainty and negation, which were added to and re-
fined using grounded theory, by inspecting the dis-
order annotations in our data sets and documenting
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emerging themes consistent with issues found from
the literature review. For instance, one characteristic
of negation annotations found in the literature and in
our data sets is the existence of a lexical cue indicat-
ing that a disorder is negated, and the lexical cue can
occur before, within, or after the disorder mention.
The characteristics included in the taxonomy repre-
sent features describing the attributes of uncertainty
and negation in the data sets (see Section 3.1).

To develop the translation map between certainty
and negation values from each annotation schema,
authors DM and SV jointly reviewed each annotated
disorder mention from the English data set and as-
signed a Swedish polarity and certainty label, then
devised a map from the English schema into the
Swedish schema.

To characterize and compare manifestations of
uncertainty and negation using annotations from the
two data sets, DM and SV annotated each disorder
mention in both data sets with the features in the
clinical uncertainty and negation taxonomy. In the
English data set, each disorder was annotated by DM
and adjudicated by SV. In the Swedish data set, each
disorder was annotated by SV then translated into
English for adjudication by DM.

3 Results

3.1 Clinical Uncertainty and Negation
Taxonomy

We developed a clinical uncertainty and negation
taxonomy to characterize the linguistic manifesta-
tions of uncertainty and negation in clinical text
(Figure 1). We found three high-level features in
the literature and in our data sets: position of lexical
cue (i.e., position of the lexical expression indicat-
ing uncertainty or negation with respect to the dis-
order), opinion source (i.e. person believing there
is absence, presence, or uncertainty), and evidence
evaluation (i.e., reason for the uncertainty or nega-
tion belief).

Position of lexical cue demonstrated itself in the
data sets in three non-mutually exclusive ways:

• pre-disorder (lexical cue precedes the disorder) “Patient denies
chest pain.”

• intra-disorder (lexical cue occurs within the name of the disor-
der) “x-ray...possibly be indicative of pneumonia.”

• post-disorder (lexical cue occurs after the disorder)
“abdominal cramping..is unlikely.”

Opinion source exhibited the following values:

• dictating physician (dictating physician alone expressed pres-
ence, absence, or uncertainty regarding the disorder) “I suspect
bacterial pneumonia.”

• dictating physician with consultation (dictating physician explic-
itly includes other clinical professional in statement) “Discussing
with Dr. **NAME**, pneumonia can not be excluded.”

• other clinical care providers (other clinical team members ex-
plicitly stated as expressing presence, absence or uncertainty re-
garding the disorder) “per patient’s primary doctor, pneumonia
is suspected.”

• patient (patient expressed presence, absence, or uncertainty re-
garding the disorder) “Pt doesn’t think she has pneumonia.”

• unknown (ambiguous who is expressing presence, absence, or
uncertainty regarding the disorder) “there was a short episode of
coughing.”

Evidence evaluation includes a modified subset
of values found in the model of uncertainty pro-
posed by Lingard et al. (2003) to connote perceived
reasons for the provider uncertainty (and negation)
about the disorder mention as used in our data sets.

• limits of evidence (data limitations for hypothesis testing), one
diagnosis

– evidence contradicts (data contradicts expected hypothe-
sis), “Blood test normal, but we still think Lyme disease.”

– evidence needed (evidence unavailable to test hypoth-
esis) “Waiting for x-ray results to determine if it’s a
femur fracture.”

– evidence not convincing, but diagnosis asserted (data
doesn’t fully support proposed hypothesis), “Slightly el-
evated levels of WBCs suggests infection.”

• limits of evidence, more than one diagnosis

– differential diagnoses enumerated (competing diagnoses
reasoned), “bacterial infection vs. viral infection.”

• limits in source of evidence (untrusted evidence)

– non-clinical source (from non-provider source), “Pt can’t
remember if she was diagnosed with COPD.”

– clinical source (from provider source), “I do not agree
with Dr. X’s diagnosis of meningitis.”

– test source (from test e.g., poor quality), “We cannot de-
termine from the x-ray if the mass is fluid or a tumor.”

• limitless possibilities (large number of likely diagnoses so diag-
nosis defaulted to most likely), “This is probably an infection of
some sort.”

• other (no evidence limitation)

– asserting a diagnosis or disorder as affirmed (positive
case), “Confirms nausea.”

– asserting a diagnosis or disorder as negated (negative
case), “No vomiting.”
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Figure 1: Uncertainty and negation taxonomy with features – Position of lexical cue, Opinion source and Evidence evaluation –
with corresponding values (nested lines and sub-lines).

3.2 Translation Map
In order to compare annotations between the data
sets, we developed a mapping procedure for convert-
ing the four annotated attribute values from the En-
glish schema into the two annotated attribute values
from the Swedish schema. This mapping procedure
uses two normalization steps, negation and certainty
(see Figure 2).

Using Figure 2, we explain the mapping proce-
dure to convert English annotations into Swedish
annotations. Our steps and rules are applied with
precedence, top down and left to right. For “I have
no suspicion for bacterial infection for this patient”,
English annotations are Existence(no) AND Aspec-
tualPhase(null) AND Certainty(high) AND Men-
talState(yes), and Swedish annotations are Polar-
ity(negative) AND Certainty(probably). The map-
ping procedure applies two normalization steps,
negation and uncertainty, with the following rules.

The first step is negation normalization to convert
Existence and Aspectual Phase into Polarity anno-
tations. In this example, Existence(no) → Polar-
ity(negative).

The second step is certainty normalization with
up to two sub steps. For Certainty mapping, in sum-
mary, map English NOT Certainty(unmarked) to
Swedish Certainty level, e.g., Certainty(high)
→ Certainty(probably). For MentalState

mapping, if English Certainty(unmarked) AND
MentalState(yes), map to either Swedish Cer-
tainty(probably) OR Certainty(possibly) using
your best judgment; otherwise, map to Cer-
tainty(certainly). For our example sentence,
Certainty mapping was sufficient to map from the
English to the Swedish Certainty levels.

We found that these two schemas were mappable.
Despite the binary mapping splits from English Cer-
tainty(Moderate) → Swedish Certainty(possibly)
OR Certainty(probably) and judgment calls neces-
sary for MentalState mapping, few annotations were
not easily mapped.

3.3 Characterization of English and Swedish
Data sets

In this study, we characterized our data sets accord-
ing to a clinical uncertainty and negation taxonomy
comprised of three concepts – position of lexical
cue, opinion source, and evidence evaluation.

3.3.1 Position of lexical cue
In Table 1, we show examples of phrases from each
data set representing the Polarity and Certainty lev-
els in the taxonomy. In our data set, we did not
explicitly annotate markers for the highest certainty
levels in the positive polarity, such as “definitely
has”. We did not encounter any of these cases in the
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Figure 2: Map between values for attributes in Swedish and English schemas. Bolded rules indicate the rules used to assign values
to the example sentence (English sentence on top).

data set. We observed that most uncertainty expres-
sions precede a disorder mention. Few expressions
both precede and follow the disorder mention, or
within the disorder mention itself. We observed that
most expressions of uncertainty are conveyed using
positive polarity gradations such as “probably” and
“possibly”, for example “likely”, “appears to have”,
“signs of”. Lexical cues of low levels of certainty in
the negative polarity were rare.

3.3.2 Opinion source
In Table 2, we report examples of the various in-
dividuals – dictating physician, dictating physician
with consultation, other clinical care providers, pa-
tient, unknown – that are the source of the belief
state for uncertainty about a disorder. We observed
explicit judgments or mental postulations e.g., “I
judge” or implied speculations in which the physi-
cian was not the subject and passive expressions
were used e.g., “patient appears to have”. In cases
of dictating physician with consultation, the physi-
cian speculated about the disorder using references
to other providers consulted to strengthen the as-
sessment e.g., “Discussing with Dr...”. In cases of
other clinical care providers, there was no owner-
ship on the part of the dictating physician, but of
other members of the clinical care team e.g., “Con-

sulting Attending (Infection) thinks...”. In cases for
patient, the patient is conveying statements of con-
fusion with respect to self-diagnosing e.g., “Pat. re-
ports that she finds it difficult to discern...”. We ob-
served no expressions of uncertainty owned by the
patient in the English data set or by a relative in the
Swedish data set. In the unknown case, it is unclear
from the context of the report whether the specu-
lation is on the part of the physician to believe the
symptom reported or the relative unsure about re-
porting the symptoms e.g., “there was apparently”.

3.3.3 Evidence evaluation
Below we list examples of the different rea-
sons for uncertainties that were identified. Not all
types were observed in both corpora (Not observed).

limits of evidence, one diagnosis

- evidence contradicts – English: “Likely upper GI bleed
with elevated bun, but normal h and h.”; Swedish: “Kon-
sulterar infektionsjour som anser viros vara osannolikt
med tanke på normalt leverstatus. (Consulting Attend-
ing (infection) who thinks that virosis is improbable given
normal liver status.)”

- evidence needed – English: “chest x-ray was ordered
to rule out TB.”; Swedish: “Diskuterar med RAH-jour;
vi börjar utredning med CT-skalle med kontrast på mis-
stanke om metastaser och någon form av epileptiskt anfall
(Discussion with Attendant [CLINIC]; we start inves-
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Table 1: Common lexical cues and their relative position to the disorder mention: Pre-disorder: uncertainty marker before disor-
der, Intra-disorder: uncertainty marker inside disorder, Post-disorder: uncertainty marker after disorder, }= schema compatibil-
ity/neutral case.

Table 2: Opinion source of uncertainty or negation types with English and Swedish examples.

tigation with CT-brain with contrast on suspicion for
metastasis and some form of epileptic seizure.)”

- evidence not convincing, but diagnosis asserted – En-
glish: Not observed; Swedish: “Förmodligen en viros
eftersom man kan se en viss lymfocytopeni i diff (Proba-
bly a virosis since there is some lymphocyte in blood cell
count.)”

limits of evidence, more than one diagnosis

- differential diagnoses enumerated – English: “ques-
tionable right-sided increased density on the right side
of the chest x-ray that could possibly be indicative of
a pneumonia versus increased pulmonary vasculature”;
Swedish: “Förefaller neurologiskt, blödning? Infarkt?
(Appears neurological, bleeding? Infarction?)”

limits in source of evidence

- non-clinical source – English: “I am not convinced that
he is perfectly clear on his situation..”; Swedish: “Pat

uppger att hon har svårt att skilja på panikångest och an-
dra symtom. (Pat. reports that she finds it difficult to
discern panick disorder from other symptoms...)”

- clinical source – English: “there was no definite diagno-
sis and they thought it was a viral syndrome of unknown
type..”; Swedish: Not observed

- test source – English: “..confusion was possible related
a TIA without much facial droop appreciated on my
physical exam”; Swedish: “Ter sig mest sannolikt som
reumatoid artrit både klinisk och lab-mässigt (Seems like
it most probably is rheumatoid arthritis both clinically
and lab-wise.)”

limitless possibilities – English: “I think this is probably a
viral problem.”; Swedish: “Pat bedömes ha en förkylning,
troligen virusinfektion. (Patient is evaluated as having a cold,
probably a virus infection.)”

other
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- asserting dx or disorder as affirmed – English: “I sus-
pect that colon cancer is both the cause of the patient’s
bleeding..”; Swedish: Not observed

- asserting dx or disorder as negated – English: “...her
fever has abated.”; Swedish: Not observed

In many cases, the local context was sufficient for
understanding the evidential origins for uncertainty.
When a single disorder was mentioned, uncertainty
was due to data insufficient to make a definitive di-
agnosis because it contradicted a hypothesis, was
unavailable, or was not convincing. For instance,
data was to be ordered and the opportunity to inter-
pret it had not presented itself, such as “..was or-
dered to rule out TB” or “..start investigation with
CT-brain with contrast..”. In few cases, more than
one diagnosis was being enumerated due to a lim-
itation in the evidence or data gathered e.g., “Ap-
pears neurological, bleeding? Infarction?”. We ob-
served cases in which the source of the evidence pro-
duced uncertainty including both non-clinical and
clinical sources (care providers consulted and tests
produced). In cases of limitless possibilities, the
physician resorted to a common, default diagnosis
e.g., “probably a virus infection”. Limitations of ev-
idence from a clinical source were not found in the
Swedish data set and few were found in the English
data set. We expect that more examples of this cat-
egory would be found in e.g. radiology reports in
which the quality of the image is a critical factor in
making an interpretation.

4 Discussion and Conclusion

From the resulting clinical taxonomy and charac-
terization, we observe some general differences and
similarities between the two data sets and languages.
The Swedish assessment entries are more verbose
compared to the English medical records in terms
of a more detailed account of the uncertainty and
what is being done by whom to derive a diagnosis
from a disorder mention. This might reflect cultural
differences in how documentation is both produced
and used. Differential diagnoses are often listed with
question marks (“?”) in the Swedish set, e.g., “Dis-
order 1? Disorder 2? Disorder 3?”, whereas in the
English data set enumerations are either listed or
competing, e.g., “disorder 1 vs. disorder 2”. De-
spite these differences, there are many similarities

between the two data sets.
Mapping observations from the English schema

into the Swedish schema was not complicated
despite the difference in the modeled attributes.
In most cases, we determined that designating
attribute-value rules for negation and certainty nor-
malization steps was sufficient to accurately map ob-
servations between the language schemas without
changing an observation’s semantics. This finding
suggests that simple heuristics can be used to trans-
late annotations made from English trained tools
into the Swedish schema values.

The majority of the lexical markers are pre-
positioned in both languages, and the majority of
these markers are similar across the two languages,
e.g., “likely”, “possible”, “suspicion for”. How-
ever, inflections and variants are more common in
Swedish, and the language allows for free word or-
der, this relation needs to be studied further. The
default case, i.e. affirmed, or certainly positive, was
rarely expressed through lexical markers.

When it comes to the opinion source of an un-
certainty or negation, we observed a pattern in the
use of passive voice, e.g. “it was felt”, indicating
avoidance to commitment in a statement. Accurate
extraction of the opinion source of an expression
has important implications for a system that, for in-
stance, tracks the reasoning about a patient case over
time by source. This has been recognized and incor-
porated in other annotation efforts, for example for
news documents (Saurı́ and Pustejovsky, 2009). In
the English data set, no cases of self-diagnosing are
found, i.e. a patient owning the expressed uncer-
tainty. In both data sets, an implicit dictating physi-
cian source is most common, i.e. there is no explicit
use of pronouns indicating the opinion holder. In
most cases it is clear that it is the writer’s (i.e. the
dictating physician’s) opinion that is expressed, but
in some cases, a larger context is needed for this
knowledge to be resolved.

Reviewing the evidential origins or reason for ex-
pressed uncertainty, for both the Swedish and En-
glish data sets, the category “limits of evidence” is
most common. This reflects a clinical reality, where
many disorders require test results, radiology find-
ings and other similar procedures before ascertain-
ing a diagnosis. Although most cases of uncertainty
are manifested and strengthened through a lexical
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marker, there are also instances where the uncer-
tainty is evident without such explicit markers, e.g.
the ordering of a test may in itself indicate uncer-
tainty.

4.1 Limitations

There are several limitations of this study. The
Swedish data set only contains parts of the medi-
cal record and the English data set is very small.
In the creation of the taxonomy and characteristics,
we have not focused on studying uncertainty lev-
els, i.e. distinctions between “possibly” and “prob-
ably”. The values of our taxonomy are preliminary
and may change as we develop the size of our data
set. Additionally, we only studied emergency de-
partment reports. We need to study other report
types to evaluate the generalizability of the taxon-
omy.

The two compared languages both origin from the
same language family (Germanic), which limits gen-
eralizability for other languages. Furthermore, the
definitions of disorders in the two sets differ to some
extent, i.e., English disorders are related to specific
influenza-like illnesses and Swedish to more general
disorders found in emergency departments.

4.2 Comparison to related work

Annotation schemas and reference standards for un-
certainty and negation have been created from dif-
ferent perspectives, for different levels and pur-
poses. The BioScope Corpus, for instance, contains
sentence-level uncertainty annotations with token-
level annotations for speculation and negation cues,
along with their linguistic scope (Vincze et al.,
2008). In Wilbur et al. (2006), five qualitative di-
mensions for characterizing biomedical articles are
defined, including levels of certainty. In the 2010
i2b2/VA Challenge on concepts, assertions and re-
lations in clinical texts, medical problem concepts
were annotated. The assertion task included six an-
notation classes (present, absent, possible, hypothet-
ical, conditional, not associated with the patient),
to be assigned to each medical problem concept
(Uzuner et al., 2011). Vincze et al. (2011) present
a quantitative comparison of the intersection of two
English corpora annotated for negation and specula-
tion (BioScope and Genia Event) from two different
perspectives (linguistic and event-oriented).

We extend these schemas by characterizing the
underlying meaning and distinctions evident by the
linguistic expressions used to indicate uncertainty
and negation in the clinical domain and by exploring
the relationship between uncertainty and negation,
through an analysis and comparison of two differ-
ent annotation schemas. However, this study is not a
proposal for mapping to these schemas or others.

From an application perspective, uncertainty and
negation handling have been included in rule-based
systems such as NegEx and ConText, applied on dis-
order mentions. In Chapman et al. (2011), a gener-
alized version of ConText is presented, with uncer-
tainty values (probably, definitely) linked to either a
positive or negative assertion, with an added indeter-
minate value. A previous study has shown promis-
ing results for adapting NegEx to Swedish (Skepp-
stedt, 2011), indicating that further extensions and
adaptations between the two languages for e.g. un-
certainty modeling should be viable. Machine-
learning based approaches outperform rule-based
for assertion classification according to results pre-
sented in Uzuner et al. (2009). A machine-learning
approach was also used in the top performing sys-
tem in the 2010 i2b2/VA Challenge assertion task
(de Bruijn et al., 2011).

4.3 Implications and future work

With uncertainty lexicons for both Swedish and En-
glish, we hypothesize that we will be able to ex-
tend ConText to handle uncertainties in English as
well as in Swedish. This enables both improve-
ments over the existing system and the possibilities
of further comparing system performances between
languages. We will also experiment with machine-
learning approaches to detect and annotate uncer-
tainty and negation. We plan to extend both data
sets, the English data set using semi-automatically
translated disorders marked in the Swedish data set
to encode new disorder mentions, and the Swedish
data set by extracting the full medical records, thus
creating a larger set for comparison. We will extend
the taxonomy as needed e.g., syntactic and semantic
patterns, and investigate how to integrate the clini-
cal taxonomy to inform ConText by providing more
granular descriptions of the motivation behind the
uncertainty, thus bringing us closer to natural lan-
guage understanding.
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Abstract 

As Electronic Health Records are growing ex-
ponentially along with large quantities of un-
structured clinical information that could be 
used for research purposes, protecting patient 
privacy becomes a challenge that needs to be 
met. In this paper, we present a novel hybrid 
system designed to improve the current strate-
gies used for person names de-identification. 
To overcome this task, our system comprises 
several components designed to accomplish 
two separate goals: 1) achieve the highest re-
call (no patient data can be exposed); and 2) 
create methods to filter out false positives. As 
a result, our system reached 92.6% F2-
measure when de-identifying person names in 
Veteran’s Health Administration clinical 
notes, and considerably outperformed other 
existing “out-of-the-box” de-identification or 
named entity recognition systems.  

 

1 Introduction 

Electronic Healthcare Records are invaluable re-
sources for clinical research, however they contain 
highly sensitive Protected Health Information 
(PHI) that must remain confidential. In the United 
States, patient confidentiality is regulated by the 
Health Insurance Portability and Accountability 
Act (HIPAA). To share and use clinical documents 
for research purposes without patient consent, 
HIPAA requires prior removal of PHI. More spe-
cifically, the HIPAA “Safe Harbor”1 determines 18 

                                                
1 GPO US: 45 C.F.R. § 164 Security and Privacy. 
http://www.access.gpo.gov/nara/cfr/waisidx_08/45cfr164_08.html 
Further details about the 18 HIPAA Safe Harbor PHI identifi-
ers can be also found in (Meystre et al., 2010). 

PHI categories that have to be obscured in order to 
consider clinical data de-identified. 

An ideal de-identification system should recog-
nize PHI accurately, but also preserve relevant 
non-PHI clinical data, so that clinical records can 
later be used for various clinical research tasks. 

Of the 18 categories of PHI listed by HIPAA, 
one of the most sensitive is patient names, and all 
person names in general. Failure to de-identify 
such PHI involves a high risk of re-identification, 
and jeopardizes patient privacy. 

In this paper, we describe our effort to satisfac-
torily de-identify person names in Veteran’s Health 
Administration (VHA) clinical documents. We 
propose improvements in person names de-
identification with a pipeline of processes tailored 
to the idiosyncrasies of clinical documents. This 
effort was realized in the context of the develop-
ment of a best-of-breed clinical text de-
identification system (nicknamed “BoB”), which 
will be released as an open source software pack-
age, and it started with the implementation and 
evaluation of several existing de-identification and 
Named Entity Recognition (NER) systems recog-
nizing person names. We then devised a novel 
methodology to better tackle this task and improve 
performance. 
 

2 Background and related work  

In many aspects de-identification resembles tradi-
tional NER tasks (Grishman and Sundheim, 1996). 
NER involves detecting entities such as person 
names, locations, and organizations. Consequently, 
given the similar entities targeted by both tasks, 
NER systems can be relevant to de-identify docu-
ments. However, most named entity recognizers 
were developed for newswire articles, and not for 
clinical narratives. Clinical records are character-
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ized by fragmented and incomplete utterances, lack 
of punctuation marks and formatting, as well as 
domain specific language. These complications, in 
addition to the fact that some entities can appear 
both as PHI and non-PHI in the same document 
(e.g., “Mr. Epley” vs. “the Epley maneuver”), 
make clinical text de-identification a challenging 
task. Therefore, although person names de-
identification is essentially NER, the unique char-
acteristics of clinical texts make it more interesting 
and challenging than recognizing names in news 
articles, which also enhance the motivation for this 
study. 

Several different approaches were proposed to 
deal with de-identification of clinical documents, 
and for named entity recognition of person names. 
These approaches are mainly focused on either 
pattern matching techniques, or statistical methods 
(Meystre et al., 2010), as exemplified below. 

Beckwith et al. (2006) developed a de-
identification system for pathology reports. This 
system implemented some patterns to detect dates, 
locations, and ID numbers, as well as a database of 
proper names and well-known markers such as 
‘Mr.’ and ‘PhD’ to find person names. 

Friedlin and McDonald (2008) described the 
Medical De-identification System (MeDS). It used 
a combination of methods including heuristics, 
pattern matching, and dictionary lookups to identi-
fy PHI. Pattern matching through regular expres-
sions was used to detect numerical identifiers, 
dates, addresses, ages, etc.; while for names, 
MeDS used lists of proper names, common usage 
words and predictive markers, as well as a text 
string nearness algorithm to deal with typograph-
ical errors.  

Neamatullah et al. (2008) proposed another rule-
based de-identification approach focused on pat-
tern matching via dictionary lookups, regular ex-
pressions and context checks heuristics denoting 
PHI. Dictionaries made up of ambiguous names 
and locations that could also be non-PHI, as well 
as dictionaries of common words were used by this 
system to disambiguate PHI terms. 

Other de-identification systems such as 
(Aberdeen et al., 2010; Gardner and Xiong, 2009) 
use machine learning algorithms to train models 
and predict new annotations. The key aspect of 
these systems is the selection of the learning algo-
rithm and features. Both (Aberdeen et al., 2010) 
and (Gardner and Xiong, 2009) use an implemen-

tation of Conditional Random Fields (CRF) and a 
set of learning features based on the morphology of 
the terms and their context. One disadvantage of 
these systems is the need for large amounts of an-
notated training examples. 

As mentioned previously, for detecting person 
names, we could also use traditional newswire-
trained NER systems. NER has long been studied 
by the research community and many different ap-
proaches have been developed (Tjong Kim Sang 
and De Meulder, 2003; Doddington et al., 2004). 
One successful and freely available named entity 
recognizer is the Stanford NER system (Finkel et 
al., 2005), which provides an implementation of 
linear chain CRF sequence models, coupled with 
well-engineered feature extractors for NER, and 
trained with newswire documents. 

 

3 Methods 

As already mentioned, we first selected and ran 
several existing de-identification and NER systems 
detecting person names in our clinical documents. 
Afterwards, we devised and present here a novel 
pipeline of processes designed to improve the PHI 
recognition task. 

3.1 Existing de-identification and NER sys-
tems 

Five available de-identification systems, as well as 
one newswire-trained named entity recognizer, 
were selected for an “out-of-the-box” evaluation. 
The aim of this evaluation was to compare the per-
formance of the various methods and resources 
when de-identifying person names in our clinical 
documents. 

We included three rule-based de-identification 
approaches:  
• HMS Scrubber (Beckwith et al., 2006); 
• MeDS (Friedlin and McDonald, 2008); and 
• MIT deid system (Neamatullah et al., 2008). 

 
And two systems based on machine learning 

classifiers: 
• The MITRE Identification Scrubber Toolkit 

(MIST) (Aberdeen et al., 2010); and  
• The Health Information DE-identification 

(HIDE) system (Gardner and Xiong, 2009). 
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Regarding NER systems, we chose the Stanford 
NER system (Finkel et al., 2005), which has re-
ported successful results when detecting person 
names. These systems were described in Section 2, 
when we presented related work. 

3.2 Our best-of-breed approach 

Our names de-identification approach consists of a 
novel pipeline of processes designed to improve 
the current strategies for person names de-
identification. This system is being developed as 
an Apache UIMA2 pipeline, with two main goals:  
 
1) Obtain the highest recall (i.e., sensitivity), re-

gardless of the impact on precision; and  
2) Improve overall precision by filtering out the 

false positives produced previously.  
 
These goals correspond to the implementation of 

the main components of our system. When we 
tested existing systems (we will present results for 
these systems in Table 1), we observed that recall 
was better addressed by rule-based approaches, 
while precision was higher applying machine 
learning-based algorithms. We therefore used this 
knowledge for the design of our system: goal#1 is 
then accomplished mainly using rule-based tech-
niques, and goal#2 implementing machine learn-
ing-based approaches. 

Moreover, recall is of paramount importance in 
de-identification (patient PHI cannot be disclosed). 
And this was also a reason that motivated us to 
first focus on achieving high recall, and filtering 
out false positives afterwards as a separate proce-
dure.  

Unlike other de-identification and NER systems 
that tackle the classification problem from one per-
spective (i.e., rule-based or machine learning-
based) or from a limited combined approach (e.g., 
learning features extracted using regular expres-
sions), the design of our system allows us to take 
advantage of the strong points of both techniques 
separately. And more importantly, our classifiers 
for filtering out false-positives (goal#2) are trained 
using correct and incorrect annotations derived 
from previous modules implemented in goal#1. 
Thus, they do not predict if every token in the doc-
ument is or belongs to a PHI identifier, they in-
stead decide if an actual annotation is a false or 
                                                
2 http://uima.apache.org/ 

true positive. This design makes our classifiers 
better with less learning examples, which is a re-
striction we have to deal with, and it also allows us 
to create methods that can be only focused on max-
imizing recall regardless of the amount of false-
positives introduced (goal#1). To the best of our 
knowledge, this perspective has not been exploited 
before, and as we will show in the evaluation sec-
tion, it empirically demonstrates more robustness 
than previous approaches. 

The design of our system integrates different 
components described below. Figure 1 depicts an 
overview of our system’s architecture and work-
flow. 

 

 
 

Figure 1. System’s architecture. 
 

3.2.1 NLP preprocessing steps 

This NLP preprocessing prepares the input for the 
main components of our system. It includes sen-
tence segmentation, tokenization, part-of-speech 
tagging, chunking, and word normalization based 
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on Lexical Variant Generation (LVG)3. The output 
of this preprocessing will be used by subsequent 
pattern matching techniques and features for ma-
chine learning algorithms. For these processes, we 
adapted several cTAKES (Savova et al., 2010) 
components. 

3.2.2 Rules and dictionary lookups 

We created a pattern matching component support-
ed by contextual keyword searches (e.g., “Dr.”, 
“Mr.”, “M.D.”, “R.N.”, “L.C.S.W.”), dictionaries 
of person names4, and a simple disambiguation 
procedure based on a list of common words and 
the capitalization of the entity. We adapted some 
of the techniques implemented in (Beckwith et al., 
2006; Friedlin and McDonald, 2008; Neamatullah 
et al., 2008) to our documents, and developed new 
patterns. For dictionary lookups, we used Lucene5 
indexing, experimenting with keyword and fuzzy 
dictionary searches. Each word token is compared 
with our indexed dictionary of names (last and first 
names from the 1990 US Census4), considering all 
matches as candidate name annotations. However, 
candidates that also match with an entry in our dic-
tionary of common words6 and do not contain an 
initial capital letter are discarded from this set of 
candidate name annotations. 

With this component, we attempt to maximize 
recall, even if precision is altered. 

3.2.3 CRF-based predictions 

To further enhance recall, we created another com-
ponent based on CRF models. We incorporated 
this component in our system considering that ma-
chine learning classifiers are more generalizable 
and can detect instances of names that are not sup-
ported by our rules or dictionaries. Therefore, alt-
hough we knew the individual results of a CRF 
classifier at this level were not enough for de-
identification, at this point our main concern is to 
obtain the highest recall. Thus, adding a machine 
learning classifier into this level we could help the 
system predicting the PHI formats and instances 
                                                
3 http://lexsrv2.nlm.nih.gov/LexSysGroup/Projects/lvg/      
current/web/index.html 
4 Frequently Occurring Names from the 1990 Census. 
http://www.census.gov/genealogy/names. 
5 http://lucene.apache.org/java/docs/index.html 
6 We used the dictionary of common words from Neamatullah 
et al. (2008). 

that could not be covered by our patterns and dic-
tionaries. 

To develop this component, we used the CRF 
classifier implementation provided by the Stanford 
NLP group7. We carried out a feature selection 
procedure using greedy forward selection. It pro-
vided us with the best learning feature set, which 
consisted of: the target word, 2-grams of letters, 
position in the document, part-of-speech tag, lem-
ma, widely-used word-shape features (e.g., initial 
capitals, all capitals, digits inside, etc.), features 
from dictionaries of names and common words, a 
2-word context window, and combinations of 
words, word-shapes and part-of-speech tags of the 
word and its local context. 

The learning features considered before and af-
ter the selection procedure are shown in Table 1. 

3.2.4 False-positive filtering 

The two previous components’ objective is maxi-
mal recall, producing numerous false positives. 
The last component of our pipeline was therefore 
designed to filter out these false positives and con-
sequently increase overall precision. We built a 
machine learning classifier for this task, based on 
LIBSVM (Chang and Lin, 2001), a library for 
Support Vector Machines (SVM), with the RBF 
(Radial Basis Function) kernel. We then trained 
this classifier with reference standard text annota-
tions, as well as the correct and incorrect annota-
tions made by the previous components. We used 
our training document set (section 4.1) for this 
purpose. 
Features for the LIBSVM machine learning model 
were: the LVG normalized form of the target anno-
tation, three words before and after, part-of-speech 
tags of the words within the annotation and the 
local context, number of tokens within the annota-
tion, position in the document, 40 orthographic 
features (denoting capitals, digits, special charac-
ters, etc.), features from dictionaries of names and 
common words, and the previous strategy used to 
make the annotation (i.e., rules, dictionary lookups 
or CRF-based predictions). 

                                                
7 http://nlp.stanford.edu/software/corenlp.shtml 
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Feature Description Selected* 
target word The word to classify as person name Yes 
2-grams of letters Features from the 2-grams of letters from the word Yes 
3-grams of letters Features from the 3-grams of letters from the word No 
4-grams of letters Features from the 4-grams of letters from the word No 

lowercase n-grams Features from the n-grams of letters from the word in  
lowercase (considering 2-, 3-, and 4-grams separately) No 

position Position of the word within a sentence Yes 
PoS Part-of-speech tag of the word Yes 
lemma Lemma of the word Yes 

word shape 

Initial capital 

Yes 

All capitals 
Mix of uppercase and lowercase letters 

Digits inside 
All digits 
Has dash 
End dash 

Alpha-numeric 
Numeric-alpha (starts with a number) 

Contains punctuation mark 

dictionaries 
Does the word match with an entry of the dictionary of names? Yes 

Does the word match with an entry of the dictionary of  
common words? Yes 

2-word window The two preceding and following words in the context Yes 
3-,4-,5-word window The three, four and five preceding and following words in the context No 

word-pairs 

Combinations of the word and the next and previous words in the  
context window, preserving direction but not position 

 (considering separate features for the different combinations  
of the context and the target word) 

No 

titles Match the word against a list of name titles (Mr, Mrs, etc.) No 
lemma_context Lemma of the words inside the contextual window No 

PoS_context Individual features from the part-of-speech tags  
of the contextual window Yes 

PoS_sequence Sequence of the part-of-speech tags of the 2-word contextual 
window and the target word Yes 

word_shape_context Word shape features of the contextual window Yes 
word-tag Combination of the word and part-of-speech No 
Table 1. Set of learning features for the CRF-based prediction module. (* = selected in the best learning features set) 
 

4 Evaluation and discussion 

Our evaluation consists of: 1) “out-of-the-box” 
evaluation of the systems presented in Section 3.1; 
and 2) evaluation of the performance of our person 
names de-identification pipeline.   

 
 

4.1 Data 

We manually annotated all person names (includ-
ing patients, relatives, health care providers, and 
other persons) in a corpus of various types of Vet-
eran’s Health Administration (VHA) clinical notes. 
These notes were selected using a stratified ran-
dom sampling approach with documents longer 
than 500 words. Then, the 100 most frequent VHA 
note types were used as strata for sampling, and the 
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same number of notes was randomly selected in 
each stratum. Two reviewers independently anno-
tated each document, a third reviewer adjudicated 
their disagreements, and a fourth reviewer eventu-
ally examined ambiguous and difficult adjudicated 
cases. 

The evaluation corpus presented here comprises 
a subset of 275 VHA clinical notes from the 
aforementioned corpus. For training, 225 notes 
were randomly selected (contained 748 person 
name annotations), and the remaining 50 notes 
(with 422 name annotations) were used for testing 
the systems. 

4.2 Experiments and results 

We present results in terms of precision, recall and 
F-measure (harmonic mean of recall and preci-
sion). We used a weight of 2 when calculating the 
F2-measure giving recall more (twice) importance 
than precision (Jurafsky and Martin, 2009). This 
reflects our emphasis on recall for de-
identification. To our understanding, due to legal 
and privacy issues, a good de-identification system 
should be tailored to prioritize recall, and conse-
quently patient confidentiality. It is not the scope 
of this paper to judge or modify the development 
design adopted by other de-identification systems. 

Moreover, we considered correct predictions at 
least overlapping with the entire PHI annotation in 
the reference standard (i.e., exact match with the 
reference annotation, or more than the exact 
match). We can therefore assure complete redac-
tion of PHI. 

Table 2 illustrates “out-of-the-box” evaluation 
results of the systems described in Section 3.1. For 
this evaluation, we trained MIST and HIDE with 
our 225 notes training corpus, while the Stanford 
NER was run using the trained models available 
with its distribution8. Testing was realized using 
our 50 notes testing corpus. 

Table 3 shows the performance of our names de-
identification approach. We provide results for dif-
ferent configurations of our pipeline: 

 
• Rules & Dictionaries. Results of the rules 

and dictionary lookups component de-
scribed in Section 3.2.2, in this case using a 

                                                
8 Further details about these models can be found at 
http://nlp.stanford.edu/software/CRF-NER.shtml 

keyword-search strategy for dictionary 
lookups. 

• R&D with fuzzy searches. Results from the 
rules and dictionary lookups component us-
ing Lucene’s Fuzzy Query engine for dic-
tionary searches. It implements a fuzzy 
search based on the Levenshtein (edit dis-
tance) algorithm9 (Levenshtein, 1966), 
which has to surpass a similarity threshold 
in order to produce a match. We carried out 
a greedy search on the training corpus for 
the best similarity threshold. We found 0.74 
to be the best threshold. 

• CRF-based w/FS. The CRF-based predic-
tions component results after selecting the 
best set of features (see Section 3.2.3). The 
CRF classifier was trained using our 225-
document training corpus. 

• R&D + CRF w/FS. The cumulative results 
from the rules and dictionary lookups (not 
implementing fuzzy dictionary searches) 
and the CRF-based predictions components. 

• R&D + CRF w/FS + FP-filtering. Includes 
all components together, adding the false-
positive filtering component (Section 3.2.4) 
at the end of the pipeline. The SVM model 
for this last component was created using 
our training corpus. 

 
System Prec. Rec. F2 

HMS Scrubber 0.150 0.675 0.397 
MeDS 0.149 0.768 0.419 
MIT deid 0.636 0.893 0.826 
MIST 0.865 0.319 0.356 
HIDE 0.975 0.376 0.429 
Stanford NER 0.692 0.723 0.716 

Table 2. “Out-of-the-box” evaluation of existing de-
identification and NER systems (Prec.=precision; 
Rec.=recall; F2= F2-measure). 
 

System Prec. Rec. F2 
Rules & Dictionaries 0.360 0.962 0.721 
R&D + fuzzy 0.171 0.969 0.502 
CRF-based w/FS 0.979 0.874 0.893 
R&D + CRF w/FS 0.360 0.988 0.732 
R&D + CRF w/FS + 
FP-filtering 0.774 0.974 0.926 

Table 3. Cumulative results of our pipeline of processes. 

                                                
9 http://www.merriampark.com/ld.htm 
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4.3 Analysis 

Our novel names de-identification pipeline signifi-
cantly outperforms all other systems we evaluated 
“out-of-the-box” or trained with our VHA notes 
corpus. 

Among the five existing systems we evaluated 
(Table 1), only one achieved noteworthy recall 
around 89%. However, none of them obtained any 
remarkable F2-measure.  Most errors produced by 
the pattern matching systems (i.e., HMS Scrubber, 
MeDS, and MIT deid system) were due to false 
positive annotations of medical eponyms (e.g., 
“Achilles”, “Guyon”, etc.), as well as acronyms 
denoting medical facilities (e.g., “ER” and 
“HCS”). The false negatives consisted of ambigu-
ous person names (e.g., “Bill” and “Chase”), some 
formats not covered by the patterns (e.g., “[Last-
Name], [FirstName] [Initial]”), and a few names 
not found in the dictionaries. 

Among machine learning-based systems, the 
two de-identification applications (i.e., MIST and 
HIDE) obtained good precision, but quite low re-
call. The size of our training corpus was somewhat 
limited, and these results probably indicate a need 
for more sophisticated learning features, as well as 
feature selection procedures (rather than using the 
“out-of-the-box” feature specification that comes 
with these systems) for better performance. With 
improved learning features, we could mitigate the 
relative lack of training examples. Interestingly, 
the NER system, which was trained on newswire 
documents, performed even better than some de-
identification systems, although a need for im-
provement is still present. 

We acknowledge that the comparison with Stan-
ford NER is not completely fair due to the different 
source of documents used for training. However, 
we considered it interesting information, and alt-
hough clinical notes contain characteristics not 
present in newswire corpora, they also have simi-
larities regarding person names (e.g., titles “Mr.”, 
“Dr.”, “PhD”, part-of-speech, verb tenses). There-
fore, we think that only for names recognition, a 
newswire trained NER can provide interesting re-
sults, and this was actually what we observed. 

Table 2 points out that the combination of our 
components produces successful cumulative re-
sults. Using the training corpus to create a simple 
component made up of rules, dictionary lookups, 
and few heuristics for disambiguation allowed for 

recall values of 0.96. This demonstrates the need to 
adapt these techniques to the target documents, 
instead of employing systems “out-of-the-box”. 

Our experiments with fuzzy dictionary lookups 
did not allow for a significant increase in recall, 
but caused a decrease in precision (-19%). It sug-
gests that there was no need for considering person 
name misspellings. 

The component based on CRF predictions alone 
achieved good performance, especially in preci-
sion. It obtained the best F2-measure (0.89), clearly 
higher than the other “out-of-the-box” systems 
based on CRF models. It proves that selecting suit-
able learning features mitigates to some extent the 
scarcity of training examples.  

Our next experiment combined the rules and 
dictionaries and CRF components. It improved the 
overall recall to about 0.99, which means that 
CRF-based predictions recognized some person 
names that were missed by our pattern matching 
components, but didn’t increase the precision. We 
reached here our first goal of high recall or sensi-
tivity. 

Finally, we added the false-positive filtering 
component to our system. This component was 
able to filter out 622 (84%) false positives from a 
total of 742, improving the precision to 0.77 
(+41%); but also causing a slight decrease in recall 
(-1.4%). This application of our pipeline was suc-
cessful, reaching an F2-mesure of 0.93, and was an 
effective way of training the SVM model for false-
positives filtering. 

 

5 Conclusions 

We designed and evaluated a novel person names 
de-identification system with VHA clinical docu-
ments. We also presented an “out-of-the-box” 
evaluation of several available de-identification 
and NER systems; all of them were surpassed by 
our approach. 

With our proposal, we showed that it is possible 
to improve the recognition of person names in clin-
ical records, even when the corpus for training ma-
chine learning classifiers is limited. Furthermore, 
the workflow of our pipeline allowed us to tackle 
the de-identification task from an intuitive but 
powerful perspective, i.e. facing the achievement 
of high recall and precision as two separate goals 
implementing specific techniques and components. 
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Packaging this two-step procedure as a boot-
strapping learning or adding the rules to define 
learning features would not allow us to use the 
qualities of the R&D and CRF components (i.e., 
obtain the highest recall by any means). Moreover, 
considering the small size of our manually anno-
tated examples, these approaches would not work 
much better than existing systems.  

As future efforts, we plan to improve the preci-
sion of the rules and dictionary lookups component 
by adding more sophisticated person names disam-
biguation procedures. Such procedures should deal 
with the peculiar formatting of clinical records as 
well as integrate enriched knowledge from bio-
medical resources. We also plan to evaluate the 
portability of our approach by using other sets of 
clinical documents, such as the 2006 i2b2 de-
identification challenge corpus (Uzuner et al., 
2007). 
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Abstract

Active learning can lower the cost of anno-

tation for some natural language processing

tasks by using a classifier to select informa-

tive instances to send to human annotators. It

has worked well in cases where the training in-

stances are selected one at a time and require

minimal context for annotation. However,

coreference annotations often require some

context and the traditional active learning ap-

proach may not be feasible. In this work we

explore various active learning methods for

coreference resolution that fit more realisti-

cally into coreference annotation workflows.

1 Introduction

Coreference resolution is the task of deciding which

entity mentions in a text refer to the same entity.

Solving this problem is an important part of the

larger task of natural language understanding in gen-

eral. The clinical domain offers specific tasks where

it is easy to see that correctly resolving coreference

is important. For example, one important task in the

clinical domain is template filling for the Clinical El-

ements Model (CEM).1 This task involves extracting

various pieces of information about an entity and fit-

ting the information into a standard data structure

that can be reasoned about. An example CEM tem-

plate is that for Disease with attributes for Body Lo-

cation, Associated Sign or Symptom, Subject, Nega-

tion, Uncertainty, and Severity. Since a given entity

may have many different attributes and relations, it

1http://intermountainhealthcare.org/cem

may be mentioned multiple times in a text. Coref-

erence resolution is important for this task because

it must be known that all the attributes and relations

apply to the same entity so that a single CEM tem-

plate is filled in for an entity, rather than creating a

new template for each mention of the entity.

2 Background

2.1 Coreference Resolution

Space does not permit a thorough review of coref-

erence resolution, but recent publications covered

the history and current state of the art for both the

general domain and the clinical domain (Ng, 2010;

Pradhan et al., 2011; Zheng et al., 2011).

The system used here (Zheng et al., 2012) is

an end-to-end coreference resolution system, mean-

ing that the algorithm receives no gold standard in-

formation about mentions, named entity types, or

any linguistic information. The coreference res-

olution system is a module of the clinical Tex-

tual Analysis and Knowledge Extraction System

(cTAKES) (Savova et al., 2010) that is trained on

clinical data. It takes advantage of named entity

recognition (NER) and categorization to detect en-

tity mentions, and uses several cTAKES modules

as feature generators, including the NER module,

a constituency parser module, and a part of speech

tagging module.

The system architecture is based on the pairwise

discriminative classification approach to the coref-

erence resolution problem. In that paradigm, pairs

of mentions are classified as coreferent or not, and

then some reconciliation must be done on all of the
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links so that there are no conflicts in the clusters.

The system uses support vector machines (SVMs)

as the pairwise classifiers, and conflicts are avoided

by only allowing an anaphor to link with one an-

tecedent, specifically that antecedent the classifier

links with the highest probability.

There are separate pairwise classifiers for named

entity and pronominal anaphor types. In the domain

of clinical narratives, person mentions and personal

pronouns in particular are not especially challeng-

ing – the vast majority of person mentions are the

patient. In addition, pronoun mentions, while im-

portant, are relatively rare. Thus we are primarily

interested in named entity coreference classification,

and we use that classifier as the basis of the work de-

scribed here.

The feature set of this system is similar to that

used by Ng and Cardie (2002). That system in-

cludes features based on surface form of the men-

tions, shallow syntactic information, and lexical se-

mantics from WordNet. The system used here has

a similar feature set but uses Unified Medical Lan-

guage System (UMLS)2 semantic features as it is

intended for clinical text, and also incorporates sev-

eral syntactic features extracted from constituency

parses extracted from cTAKES.

To generate training data for active learning simu-

lations, mention detection is run first (cTAKES con-

tains a rule-based NER system) to find named en-

tities and a constituency parser situates entities in

a syntax tree). For each entity found, the system

works backwards through all other mentions within

a ten sentence window. For each candidate anaphor-

antecedent pair, a feature vector is extracted using

the features briefly described above.

2.2 Active Learning

Active Learning (AL) is a popular approach to se-

lecting unlabeled data for annotation (Settles, 2010)

that can potentially lead to drastic reductions in the

amount of annotation that is necessary for train-

ing an accurate statistical classifier. Unlike passive

learning, where the data is sampled for annotation

randomly, AL delegates data selection to the clas-

sifier. AL is an iterative process that operates by

first training a classifier on a small sample of the

2http://www.nlm.nih.gov/research/umls/

data known as the seed examples. The classifier

is subsequently applied to a pool of unlabeled data

with the purpose of selecting additional examples

the classifier views as informative. The selected data

is annotated and the cycle is repeated, allowing the

learner to quickly refine the decision boundary be-

tween classes. One common approach to assessing

the informativeness is uncertainty sampling (Lewis

and Gale, 1994; Schein and Ungar, 2007), in which

the learner requests a label for the instance it is most

uncertain how to label. In this work, we base our

instance selection on the distance to the SVM de-

cision boundary (Tong and Koller, 2002), assuming

that informative instances tend to concentrate near

the boundary.

Most AL work focuses on instance selection

where the unit of selection is one instance repre-

sented as a feature vector. In this paper we also

attempt document selection, where the unit of se-

lection is a document, typically containing multi-

ple coreference pairs each represented as a feature

vector. The most obvious way to extend a sin-

gle instance informativeness metric to the document

scenario is to aggregate the informativeness scores.

Several uncertainty metrics have been proposed that

follow that route to adapt single instance selection

to multiple instance scenarios (Settles et al., 2008;

Tomanek et al., 2009). We borrow some of these

metrics and propose several new ones.

To the best of our knowledge only one work

exists that explores AL for coreference resolution.

Gasperin (2009) experiments with an instance based

approach in which batches of anaphoric pairs are se-

lected on each iteration of AL. In these experiments,

AL did not outperform the passive learning baseline,

probably due to selecting batches of large size.

3 Active Learning Configurations

3.1 Instance Selection

The first active learning model we considered selects

individual training instances – putatively coreferent

mention pairs. This method is quite easy to simu-

late, and follows naturally from most of the theo-

retical active learning literature, but it has the draw-

back of being seemingly unrealistic as an annotation

paradigm. That is, since coreference can span across

an entire document, it is probably not practical to

74



have a human expert annotate only a single instance

at a time when a given instance may require many

sentences of reading in order to contextualize the in-

stance and properly label it. Moreover, even if such

an annotation scheme proved viable, it may result

in an annotated corpus that is only valuable for one

type of coreference system architecture.

Nonetheless, active learning for coreference at the

instance level is still useful. First, since this method

most closely follows the successful active learning

literature by using the smallest discrete problems, it

can serve as a proof of concept for active learning

in the coreference task – if it does not work well at

this level, it probably will not work at the document

level. Previous results (Gasperin, 2009) have shown

that certain multiple instance methods do not work

for coreference resolution, so testing on smaller se-

lection sizes first can ensure that active learning is

even viable at that scale. In addition, though in-

stance selection may not be feasible for real world

annotations, individual instances and metrics for se-

lecting them are usually used as building blocks for

more complex methods. In order for this to be pos-

sible it must be shown that the instances themselves

have some value.

3.2 Document Selection

Active learning with document selection is a much

more realistic representation of conventional anno-

tation methods. Conventionally, a set of documents

is selected, and each document is annotated exhaus-

tively for coreference (Pradhan et al., 2011; Savova

et al., 2011). Document selection fits into this work-

flow very naturally, by selecting the next document

to annotate exhaustively based on some metric of

which document has the best instances. In theory,

this method can save annotation time by only anno-

tating the most valuable documents.

Document selection is somewhat similar to the

concept of batch-mode active learning, wherein

multiple instances are selected at once, though

batch-mode learning is usually intended to solve a

different problem, that of an asymmetry between

classifier training speed and annotation speed (Set-

tles, 2010). A more important difference is that doc-

ument selection requires that all of the instances in

the batch must come from the same document. Thus,

one might expect a priori that document selection

for active learning will not perform as well as in-

stance selection. However, it is possible that even

smaller gains will be valuable for improving annota-

tion time, and the more robust nature of a corpus an-

notated in such a way will make the long term bene-

fits worthwhile.

In this work, we propose several metrics for se-

lecting documents to annotate, all of which are

based on instance level uncertainty. In the fol-

lowing descriptions, D is the set of documents, d

is a single document, d̂ is the selected document,

Instances(d) is a function which returns the set of

pair instances in document d, i is an instance, dist(i)
is a function which returns the distance of instance i

from the classification boundary, and I is the indica-

tor function, which takes the value 1 if its argument

is true and 0 otherwise. Note that high uncertainty

occurs when Abs(dist(i)) approaches 0.

• Best instance – This method uses the un-

certainty sampling criteria on instances, and

selects the document containing the in-

stance the classifier is least certain about.

d̂ = argmin
d∈D

[mini∈Instances(d)Abs(dist(i))]

• Highest average uncertainty – This method

computes the average uncertainty of all

instances in a document, and selects the

document with the highest average uncertainty.

d̂ = argmin
d∈D

1
|Instances(d)|

∑
i∈Instances(d)Abs(dist(i))

• Least bad example – This method uses

uncertainty sampling criteria to find the

document whose most certain example is

least certain, in other words the document

whose most useless example is least useless.

d̂ = argmin
d∈D

maxi∈Instances(d)Abs(dist(i))

• Narrow band – This method creates an un-

certainty band around the discriminating

boundary and selects the document with

the most examples inside that narrow band.

d̂ = argmax
d∈D

∑
i∈Instances(d) I(Abs(dist(i) < 0.2))

• Smallest spread – This method computes the

distance between the least certain and most

certain instances and selects the document

minimizing that distance.
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d̂ = argmin
d∈D

[maxi∈Instances(d)(Abs(dist(i)))−

mini∈Instances(d)(Abs(dist(i)))]

• Most positives – This method totals the

number of positive predicted instances

in each document and selects the doc-

ument with the most positive instances.

d̂ = argmax
d∈D

∑
i∈Instances(d) I(dist(i) > 0)

• Positive ratio – This method calculates

the percentage of positive predicted in-

stances in each document and selects the

document with the highest percentage.

d̂ = argmax
d∈D

∑
i∈Instances(d) I(dist(i)>0)

|Instances(d)|

Many of these are straightforward adaptations of

the instance uncertainty criteria, but others deserve

a bit more explanation. The most positives and pos-

itive ratio metrics are based on the observation that

the corpus is somewhat imbalanced – for every posi-

tive instance there are roughly 20 negative instances.

These metrics try to account for the possibility that

instance selection focuses on positive instances. The

average uncertainty is an obvious attempt to turn in-

stance metrics into document metrics, but narrow

band and smallest spread metrics attempt to do the

same thing while accounting for skew in the distri-

bution of “good” and “bad” instances.

3.3 Document-Inertial Instance Selection

One of the biggest impracticalities of instance se-

lection is that labeling any given instance may re-

quire reading a fair amount of the document, since

the antecedent and anaphor can be quite far apart.

Thus, any time savings accumulated by only anno-

tating an instance is reduced since the reading time

per instance is probably increased.

It is also possible that document selection goes

too far in the other direction, and requires too

many useless instances to be annotated to achieve

gains. Therefore, we propose a hybrid method of

document-inertial instance selection which attempts

to combine aspects of instance selection and docu-

ment selection.

This method uses instance selection criteria to se-

lect new instances, but will look inside the current

document for a new instance within an uncertainty

threshold rather than selecting the most uncertain in-

stance in the entire training set. Sticking with the

same document for several instances in a row can

potentially solve the real world annotation problem

that marking up each instance requires some knowl-

edge of the document context. Instead, the context

learned by selecting one instance can be retained if

useful for annotating the next selected instance from

the same document.

This also preserves one of the biggest advantages

of instance selection, that of re-training the model

after every selected instance. In batch-mode selec-

tion and document selection, many instances are se-

lected according to criteria based on the same model

starting point. As a result, the selected instances

may be redundant and document scores based on

accumulated instance scores may not reflect reality.

Re-training the model between selected instances

prevents redundant instances from being selected.

4 Evaluation

Evaluations of the active learning models described

above took place in a simulation context. In active

learning simulations, a labeled data set is used, and

the unlabeled pool is simulated by ignoring or “cov-

ering” the labels for part of the data until the selec-

tion algorithm selects a new instance for annotation.

After selection the next data point is simply put into

the training data and its label is uncovered.

The data set used was the Ontology Development

and Information Extraction (ODIE) corpus (Savova

et al., 2011) used in the 2011 i2b2/VA Challenge on

coreference resolution.3 We used a set of 64 docu-

ments from the training set of the Mayo Clinic notes

for our simulations.

Instances were created by using the training

pipeline from the coreference system described in

Section 2.1. As previously mentioned, this work

uses the named entity anaphor classifier as it con-

tains the most data points. This training set resulted

in 6820 instances, with 311 positive instances and

6509 negative instances. Baseline ten-fold cross val-

idation performance on this data set using an SVM

with RBF kernel is an F-score of 0.48.

Simulations are performed using ten fold cross-

validation. First, each data point is assigned to one

3https://www.i2b2.org/NLP/Coreference/
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of ten folds (this is done randomly to avoid any auto-

correlation issues). Then, for each iteration, one fold

is made the seed data, another fold is the validation

data, and the remainder are the unlabeled pool. Ini-

tially the labeled training data contains only the seed

data set. The model is trained on the labeled train-

ing data, tested on the validation set, then used to

select the next data point from the pool data set. The

selected data point is then removed from the pool

and added to the training data with its gold stan-

dard label(s), and the process repeats until the pool

of unlabeled data is empty. Performance is averaged

across folds to minimize the effects of randomness

in seed and validation set selection. Typically, active

learning is compared to a baseline of passive learn-

ing where the next data point to be labeled is selected

from the unlabeled pool data set randomly.

4.1 Instance Selection Experiments

Instance selection simulations follow the general

template above, with each instance (representing

a putative antecedent-anaphor pair) randomly as-

signed to a fold. After scoring on the validation set,

uncertainty sampling is used to select a single in-

stance from the unlabeled pool, and that instance is

added to the training set.

Figure 1 shows the results of active learning using

uncertainty selection on instances versus using pas-

sive learning (random selection). This makes it clear

that if the classifier is allowed to choose the data, top

performance can be achieved much faster than if the

data is presented in random order. Specifically, the

performance for uncertainty selection levels off at

around 500 instances into the active learning, out of

a pool set of around 5500 instances. In contrast, the

passive learning baseline takes basically the entire

dataset to reach the same performance.

This is essentially a proof of concept that there is

such a thing as a “better” or “worse” instance when

it comes to training a classifier for coreference. We

take this as a validation for attempting a document

selection experiment, with many metrics using in-

stance uncertainty as a building block.

4.2 Document Selection Experiments

Document selection follows similarly to the instance

selection above. The main difference is that instead

of assigning pair vectors to folds, we assign docu-
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Figure 1: Instance selection simulation results. The x-

axis is number of instances and the y-axis is ten-fold av-

eraged f-score of the pairwise named entity classifier.

ments to folds. To make a selection, each instance is

labeled according to the model, document level met-

rics described in Section 3.2 are computed per docu-

ment, and the document is selected which optimizes

the metric being evaluated. All of that document’s

instances and labels are added to the training data,

and the process repeats as before.

The results of these experiments are divided into

two plots for visual clarity. Figure 2 shows the

results of these experiments, roughly divided into

those that work as well as a random baseline (left)

and those that seem to work worse than a random

baseline (right). The best performing metrics (on

the left side of the figure) are Positive Ratio, Least

Worst,Highest Average, and Narrow Band, although

none of these performs noticeably better than ran-

dom. The remaining metrics (on the right) seem

to do worse than random, taking more instances to

reach the peak performance near the end.

The performance of document selection suggests

that it may not be a viable means of active learn-

ing. This may be due to a model of data distribution

in which useful instances are distributed very uni-

formly throughout the corpus. In this case, an aver-

age document will only have 8–10 useful instances

and many times as many that are not useful.

This was investigated by follow-up experiments

on the instance selection which kept track of which
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Figure 2: Two sets of document selection experiments.

document each instance came from. The experi-

ments tracked the first 500 instances only, which is

roughly the number of instances shown in Figure 1

to reach peak performance. Figure 3 (left) shows

a histogram with document indices on the x-axis

and normalized instance counts on the y-axis. The

counts are normalized by total number of document

vectors. In other words, we wanted to show whether

there was a distinction between “good” documents

containing lots of good instances and “bad” docu-

ments with few good instances.

The figure shows a few spikes, but most docu-

ments have approximately 10% of their instances

sampled, and all but one document has at least one

instance selected. Further investigation shows that

the spikes in the figure are from shorter documents.

Since shorter documents have few instances overall

but always at least one positive instance, they will be

biased to have a higher ratio of positive to negative

instances. If positive instances are more uncertain

(which may be the case due to the class imbalance),

then shorter documents will have more selected in-

stances per unit length.

We performed another follow-up experiment

along these lines using the histogram as a measure

of document value. In this experiment, we took the

normalized histogram, selected documents from it in

order of normalized number of items selected, and

used that as a document selection technique. Ob-

viously this would be “cheating” if used as a metric

for document selection, but it can serve as a check on

the viability of document selection. If the results are

better than passive document selection, then there is

some hope that a document level metric based on the

uncertainty of its instances can be successful.

In fact, the right plot on Figure 3 shows that the

“cheating” method of document selection still does

not look any better than random document selection.

4.3 Document-Inertial Instance Selection

Experiments

The experiments for document-inertial instance se-

lection were patterned after the instance selection

paradigm. However, each instance was bundled with

metadata representing the document from which it

came. In the first selection, the algorithm selects the

most uncertain instance, and the document it comes

from is recorded. For subsequent selections, the

document which contained the previously selected

instance is given priority when looking for a new

instance. Specifically, each instance in that docu-

ment is classified, and the confidence is compared

against a threshold. If the document contains in-

stances meeting the threshold, the most uncertain in-

stance was selected. After each instance, the model

is retrained as in normal instance selection, and the

new model is used in the next iteration of the selec-

tion algorithm. For these experiments, the threshold

is set at 0.75, where the distance between the classi-

fication boundary and the margin is 1.0.

Figure 4 shows the performance of this algorithm

compared to passive and uncertainty sampling. Per-
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formance using this algorithm is clearly better than

passive learning and is similar to standard uncer-

tainty selection ignoring document constraints.

5 Discussion and Conclusion

The results of these experiments paint a complex

picture of the way active learning works for this do-

main and model combination. The first experiments

with uncertainty selection indicate that the number

of instances required to achieve classifier perfor-

mance can be compressed. Selecting and training

on all the good instances first leads to much faster

convergence to the asymptotic performance of the

classifier given the features and data set.

Attempting to extend this result to document se-

lection met with mediocre results. Even the best per-

forming of seven attempted algorithms seems to be

about the same as random document selection. One

can interpret these results in different ways.

The most pessimistic interpretation is that docu-

ment selection simply requires too many useless in-

stances to be annotated, good instances are spread

too evenly, and so document selection will never be

meaningfully faster than random selection. This in-

terpretation seems to be supported by experiments

showing that even if document selection uses a

“cheating” algorithm to select the documents with

the highest proportion of good instances it still does

not beat a passive baseline.

One can also interpret these results to inspire fur-

ther work, first by noting that all of the selection

techniques attempt to build on the instance selec-

tion metrics. While our document selection metrics

were more sophisticated than simply taking the n-

best instances, Settles (2010) notes that some suc-

cessful batch mode techniques explicitly account for

diversity in the selections, which we do not. In ad-

dition, one could argue that our experiments were

unduly constrained by the small number of docu-

ments available in the unlabeled pool, and that with

a larger unlabeled pool, one would eventually en-

counter documents with many good instances. This

may be true, but may be difficult in practice as clin-

ical notes often need to be manually de-identified
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before any research use, and so it is not simply a

matter of querying all records in an entire electronic

medical record system.

The document-inertial instance selection showed

that the increase in training speed can be main-

tained without switching documents for every in-

stance. This suggests that while good training in-

stances may be uniformly distributed, it is usually

possible to find multiple good enough instances in

the current document, and they can be found despite

not selecting instances in the exact best order that

plain instance selection would suggest.

Future work is mainly concerned with real world

applicability. Document level active learning can

probably be ruled out as being non-beneficial despite

being the easiest to work into annotation work flows.

Instance level selection is very efficient in achieving

classifier performance but the least practical.

Document-inertial seems to provide some com-

promise. It does not completely solve the prob-

lems of instance selection, however, as annotation

will still not be complete if done exactly as simu-

lated here. In addition, the assumption of savings

is based on a model that each instance takes a con-

stant amount of time to annotate. This assumption is

probably true for tasks like word sense disambigua-

tion, where an annotator can be presented one in-

stance at a time with little context. However, a better

model of annotation for tasks like coreference is that

there is a constant amount of time required for read-

ing and understanding the context of a document,

then a constant amount of time on top of that per

instance.While modeling annotation time may pro-

vide some insight, it will probably be most effective

to undertake empirical annotation experiments to in-

vestigate whether document-inertial instance selec-

tion actually provides a valuable time savings.

The final discussion point is that of producing

complete document annotations. For coreference

systems following the pairwise discriminative ap-

proach as in that described in Section 2.1, a corpus

annotated instance by instance is useful. However,

many recent approaches do some form of document-

level clustering or explicit coreference chain build-

ing, and are not natively able to handle incompletely

annotated documents.4

4Other recent unsupervised graphical model approaches us-

Future work will investigate this issue by quan-

tifying the value of complete gold standard annota-

tions versus the partial annotations that may be pro-

duced using document-inertial instance selection.

One way of doing this is in simulation, by training

a model on the 500 good instances that document-

inertial instance selection selects, and then classify-

ing the rest of the training instances using that model

to create a “diluted” gold standard. Then, a model

trained on the diluted gold standard will be used

to classify the validation set and performance com-

pared to the version trained on the full gold standard

corpus. Similar experiments can be performed using

other systems. The logic here is that if an instance

was not in the top 10% of difficult instances it can be

classified with high certainty. The fact that positive

instances are rare and tend to be most uncertain is a

point in favor of this approach – after all, high accu-

racy can be obtained by guessing in favor of negative

once the positive instances are labeled. On the other

hand, if document-inertial instance selection simply

amounts to labeling of positive instances, it may not

result in substantial time savings.

In conclusion, this work has shown that instance

selection works for coreference resolution, intro-

duced several metrics for document selection, and

proposed a hybrid selection approach that preserves

the benefits of instance selection while offering the

potential of being applicable to real annotation. This

work can benefit the natural language processing

community by providing practical methods for in-

creasing the speed of coreference annotation.
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ing Gibbs sampling (Haghighi and Klein, 2007) may be able to

incorporate partially annotated documents in semi-supervised

training.
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Abstract

Recent efforts in biomolecular event extrac-
tion have mainly focused on core event types
involving genes and proteins, such as gene
expression, protein-protein interactions, and
protein catabolism. The BioNLP’11 Shared
Task extended the event extraction approach
to sub-protein events and relations in the Epi-
genetics and Post-translational Modifications
(EPI) and Protein Relations (REL) tasks. In
this study, we apply the Turku Event Ex-
traction System, the best-performing system
for these tasks, to all PubMed abstracts and
all available PMC full-text articles, extract-
ing 1.4M EPI events and 2.2M REL relations
from 21M abstracts and 372K articles. We
introduce several entity normalization algo-
rithms for genes, proteins, protein complexes
and protein components, aiming to uniquely
identify these biological entities. This nor-
malization effort allows direct mapping of
the extracted events and relations with post-
translational modifications from UniProt, epi-
genetics from PubMeth, functional domains
from InterPro and macromolecular structures
from PDB. The extraction of such detailed
protein information provides a unique text
mining dataset, offering the opportunity to fur-
ther deepen the information provided by ex-
isting PubMed-scale event extraction efforts.
The methods and data introduced in this study
are freely available from bionlp.utu.fi.

1 Introduction

Biomedical domain information extraction has in re-
cent years seen a shift from focus on the extraction
of simple pairwise relations (Pyysalo et al., 2008;

Tikk et al., 2010) towards the extraction of events,
represented as structured associations of arbitrary
numbers of participants in specific roles (Ananiadou
et al., 2010). Domain event extraction has been pop-
ularized in particular by the BioNLP Shared Task
(ST) challenges in 2009 and 2011 (Kim et al., 2009;
Kim et al., 2011). While the BioNLP ST’09 em-
phasized protein interactions and regulatory rela-
tionships, the expressive event formalism can also
be applied to the extraction of statements regarding
the properties of individual proteins. Accordingly,
the EPI (Epigenetics and Post-Translational Modi-
fications) subchallenge of the BioNLP ST’11 pro-
vided corpora and competitive evaluations for the
detection of epigenetics and post-translational mod-
ification (PTM) events, while the REL (Entity Re-
lations) subchallenge covers structural and complex
membership relations of proteins (Ohta et al., 2011b;
Pyysalo et al., 2011). The complex memberships
and domains define the physical nature of an indi-
vidual protein, which is closely linked to its func-
tion and biological activity. Post-translational mod-
ifications alter and regulate this activity via struc-
tural or chemical changes induced by the covalent
attachment of small molecules to the protein. In
epigenetic regulation, gene expression is controlled
by the chemical modification of DNA and the his-
tone proteins supporting chromosomal DNA. All of
these aspects are important for defining the biologi-
cal role of a protein, and thus the EPI and REL tasks
enable the development of text mining systems that
can extract a more complete picture of the biomolec-
ular reactions and relations than previously possible
(cf. Table 1). Furthermore, previous work has shown
promising results for improving event extraction by

82



integration of “static” entity relations (Pyysalo et al.,
2009), in particular for the previously only available
PTM event, phosphorylation (Van Landeghem et al.,
2010).

Information on protein modifications is avail-
able in general-purpose protein databases such as
UniProt, and there are also a number of dedicated
database resources covering such protein modifica-
tions (Wu and others, 2003; Lee et al., 2006; Li et
al., 2009). While the automatic extraction of PTMs
from text has also been considered in a number of
earlier studies, these have primarily involved single
PTM reactions extracted with special-purpose meth-
ods (Hu et al., 2005; Yuan et al., 2006; Lee et al.,
2008). The EPI task and associated work (Ohta et
al., 2010) were the first to target numerous PTM re-
actions in a general framework using retrainable ex-
traction methods. The automatic detection of mod-
ification statements using keyword matching-based
methods has been applied also in support of DNA
methylation DB curation (Ongenaert et al., 2008;
Fang et al., 2011). However, as for PTM, the EPI
task and its preparatory efforts (Ohta et al., 2011a)
were the first to consider DNA methylation using the
general event extraction approach. To the best of our
knowledge, the present study is the first to extend the
event extraction approach to PTM and DNA methy-
lation event extraction to the scale of the entire avail-
able literature.

The Turku Event Extraction System (TEES), first
introduced for the BioNLP ST’09 (Björne et al.,
2009), was updated and generalized for participa-
tion in the BioNLP ST’11, in which it had the best
performance on both the EPI and REL challenges
(Björne and Salakoski, 2011). With an F-score of
53.33% for the EPI and 57.7% for the REL task, it
performed over 16 pp better than the next best sys-
tems, making it well suited for our study. We apply
this system to the extraction of EPI events and REL
relations from all PubMed abstracts and all PMC
open access articles, using a pipeline of open source
text mining tools introduced in Björne et al. (2010).

We further process the result using a recently
created bibliome-scale gene normalization dataset1.
This normalization effort connects protein and gene
mentions in text to their database IDs, a prerequi-

1Data currently under review.

site for effective use of text mining results for most
bioinformatics applications. In addition to protein
names, the EPI and REL challenges refer to the
protein substructures, modifications and complexes,
which we also need to normalize in order to deter-
mine the biological context of these events. In this
work, we develop a number of rule-based algorithms
for the normalization of such non-protein entities.

With both proteins and other entities normalized,
we can align the set of events extracted from the
literature with biological databases containing an-
notations on protein features, such as UniProt. We
can determine how many known and unknown fea-
tures we have extracted from text, and what percent-
age of various protein feature annotations our text
mining results cover. This association naturally also
works in the other direction, as we can take a gene or
protein and find yet unannotated post-translational
modifications, domains, or other features from sci-
entific articles, a promising use case for supporting
biomedical database curation.

2 Methods

2.1 PMC preprocessing

PMC full texts are distributed in an XML format that
TEES cannot use directly for event extraction. We
convert this XML into a flat ASCII text format with
a pipeline built on top of BioNLP ST’11 supporting
resource tools (Stenetorp et al., 2011). This process-
ing resolves embedded LATEX expressions, separates
blocks of text content (titles, sections, etc.) from
others, maps non-ASCII characters to corresponding
ASCII sequences, and normalizes whitespace. Re-
solving non-ASCII characters avoids increased error
rates from NLP tools trained on ASCII-only data.

2.2 Event Extraction

We use the Turku Event Extraction System for ex-
tracting both REL relations and EPI events. TEES is
a modular event extraction pipeline, that has recently
been extended for all the subtasks of the BioNLP’11
ST, including EPI and REL (Björne and Salakoski,
2011). TEES performs all supported tasks using
a shared graph scheme, which can represent both
events and relations (Figure 1 D). The system also
provides confidence scores enabling selection of the
most likely correct predictions. Before event extrac-
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Event/relation type Example
Hydroxylation HIF-alpha proline hydroxylation
Phosphorylation (D) siRNA-mediated ATM depletion blocks p53 Serine-15 phosphorylation.
Ubiquitination K5 ubiquitinates BMPR-II on a Membrane-proximal Lysine
DNA methylation RUNX3 is frequently inactivated by P2 methylation in solid tumors.
Glycosylation Also, two asparagine residues in alpha-hCG were glycosylated.
Acetylation This interaction was regulated by Tat acetylation at lysine 50.
Methylation Methylation of lysine 37 of histone H2B is conserved.
Catalysis GRK2 catalyzed modest phosphorylation of BAC1.

Protein-Component Three enhancer elements are located in the 40 kb intron of the GDEP gene.
Subunit-Complex The most common form is a heterodimer composed of the p65/p50 subunits.

Table 1: Sentences with examples of the eight EPI event and two REL relation types, with highlighted triggers, and
protein and site arguments. Relations have no trigger and Catalysis takes as an argument another event.
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Protein Protein

57765 27373
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REL EPI

Figure 1: Event and relation extraction. Article text is
split into sentences (A), where gene/protein entities are
detected and normalized to their Entrez Gene IDs (B).
Each sentence with at least one entity is then parsed
(C). EPI events and REL relations are extracted from
the parsed sentences (D) and following conversion to
the BioNLP ST format are imported into a database (E).
(Adapted from Björne and Salakoski (2011)).

tion, protein/gene names are detected and sentences
are parsed. TEES handles all these preprocessing
steps via a pipeline of tool wrappers for the GE-
NIA Sentence Splitter (Kazama and Tsujii, 2003),
the BANNER named entity recognizer (Leaman and
Gonzalez, 2008), the McClosky-Charniak-Johnson
(McCCJ) parser (Charniak and Johnson, 2005; Mc-
Closky, 2010) and the Stanford tools (de Marneffe
et al., 2006). For a detailed description of TEES
we refer to Björne and Salakoski (2011) and for the
computational requirements of PubMed-scale event
extraction to Björne et al. (2010).

2.3 Entity normalization

The extraction of events and relations as described in
the previous sections is purely text-based and does
not rely on any domain information from external
resources. This ensures generalizability of the meth-
ods to new articles possibly describing novel inter-
actions. However, practical use cases often require
integration of text mining results with external re-
sources. To enable such an integration, it is crucial to
link the retrieved information to known gene/protein
identifiers. In this section, we describe how we link
text mining data to biomolecular databases by pro-
viding integration with Entrez Gene, UniProt, Inter-
Pro and the Protein Data Bank.

2.3.1 Protein annotations
A crucial step for integrating statements in do-

main text with data records is gene name normaliza-
tion As part of a recent PubMed-scale effort,2 gene

2Data currently under review.
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normalizations were produced by the GenNorm sys-
tem (Wei and Kao, 2011), assigning unique Entrez
Gene identifiers (Sayers and others, 2010) to am-
biguous gene/protein symbols. The GenNorm sys-
tem represents the state-of-the-art in gene normal-
ization, having achieved first rank by several evalua-
tion criteria in the BioCreative III Challenge (Lu and
others, 2011).

For practical applications, the Entrez Gene iden-
tifiers have been mapped to UniProt (The UniProt
Consortium, 2011) through conversion tables pro-
vided by the NCBI. As Entrez Gene and UniProt
are two of the most authoritative resources for gene
and protein identification, these annotations ensure
straightforward integration with other databases.

2.3.2 Complex annotations
The REL task Subunit-Complex relations all in-

volve exactly one protein complex and one of its
subunits, but the same complex may be involved in
many different Subunit-Complex relations (Pyysalo
et al., 2011). A key challenge for making use
of these relations thus involves retrieving a unique
identification of the correct complex. To identify
protein complexes, we use the Protein Data Bank
(PDB), an archive of structural data of biological
macromolecules (Berman et al., 2000). This re-
source currently contains more than 80,000 3-D
structures, and each polymer of a structure is anno-
tated with its respective UniProt ID.

To assign a unique PDB ID to an entity involved
in one or more Subunit-Complex relations, there
is usually no other lexical context than the protein
names in the sentence, e.g. “the Rad9-Hus1-Rad1
complex”. Consequently, we rely on the normal-
ized protein names (Section 2.3.1) to retrieve a list
of plausible complexes, using data downloaded from
UniProt to link proteins to PDB entries. Ambiguity
is resolved by selecting the complex with the high-
est number of normalized proteins and giving pref-
erence to so-called representative chains. A list of
representative chains is available at the PDB web-
site, and they are determined by clustering similar
protein chains3 and taking the most confident ones
based on resolution quality.

Each assignment of a PDB identifier is annotated
with a confidence value between 0 and 1, express-

3Requiring at least 40% sequence similarity.

ing the percentage of proteins in the complex that
could be retrieved and normalized in text. For ex-
ample, even if one out of three UniProt identifiers is
wrongly assigned for a mention, the correct complex
might still be assigned with 0.66 confidence.

2.3.3 Domain annotations
Protein-Component relations define a relation be-

tween a gene/protein and one of its components,
such as a gene promoter or a protein domain. To
identify at least a substantial subset of these di-
verse relations, we have integrated domain knowl-
edge extracted from InterPro. InterPro is a rich re-
source on protein families, domains and functional
sites, integrating data from databases like PROSITE,
PANTHER, Pfam, ProDom, SMART and TIGR-
FAMs (Hunter and others, 2012). Over 23,000 dis-
tinct InterPro entries were retrieved, linking to more
than 16.5 million protein identifiers.

To assign an InterPro ID to an entity involved in
one or more Protein-Component relations, a set of
candidates is generated by inspecting the InterPro
associations of each of the proteins annotated with
that domain in text. For each such candidate, the
description of the InterPro entry is matched against
the lexical context around the entity by comparing
the number of overlapping tokens, excluding gen-
eral words, such as domain, and prepositions. The
amount of overlap is normalized against the length
of the InterPro description and expressed as a per-
centage, creating confidence values between 0 and 1.

Additionally, a simple pattern matching algorithm
recognizes statements expressing an amino acid in-
terval, e.g. “aristaless domain (aa 527-542)”. When
such expressions are found, the intervals as anno-
tated in InterPro are matched against the retrieved
interval from text, and the confidence values express
the amount of overlap between the two intervals.

2.3.4 PTM site normalization
Six of the eight4 EPI event types refer to

post-translational modification of proteins. These
events are Hydroxylation, Phosphorylation, Ubiq-
uitination, Glycosylation, Acetylation and (Protein)
Methylation. To evaluate the events predicted

4As we are interested in PTM sites, we make no distinc-
tion between “additive” PTMs such as Acetylation and their “re-
verse” reactions such as Deacetylation.
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from text, we compare these to annotated post-
translational modifications in UniProt. UniProt is
one of the largest manually curated databases for
protein knowledge, and contains annotations corre-
sponding to each of the EPI PTM event types.

We use the reviewed and manually annotated
UniProtKB/Swiss-Prot dataset (release 2012 02) in
XML format. We take for each protein all feature
elements of types modified residue, cross-link and
glycosylation site. Each of these feature elements
defines the site of the modification, either a single
amino acid, or a sequence of amino acids. We select
only annotations based on experimental findings,
that is, features that do not have a non-experimental
status (potential, probable or by similarity) to avoid
e.g. features only inferred from the sequence.

The modified residue feature type covers the event
types Hydroxylation, Phosphorylation, Acetylation
and Methylation. We determine the class of the mod-
ification with the UniProt controlled vocabulary of
post-translational modifications5. The description
attribute is the ID attribute of an entry in the vocabu-
lary, through which we can determine the more gen-
eral keyword (KW) for that description, if defined.
These keywords can then be connected to the corre-
sponding event types in the case of Hydroxylation,
Phosphorylation, Acetylation and Methylation. For
Ubiquitination events, we look for the presence of
the string “ubiquitin” in the description attribute of
cross-link features. Finally, features corresponding
to Glycosylation events are determined by their fea-
ture element having the type glycosylation site.

The result of this selection process is a list of in-
dividual modification features, which contain a type
corresponding to one of the EPI PTM event types,
the UniProt ID of the protein, and the position and
amino acid(s) of the modification site. This data can
be compared with extracted events, using their type,
normalized protein arguments and modification site
arguments. However, we also need to normalize the
modification site arguments.

PTM sites are defined with a modification type
and the numbered target amino acid residue. In EPI
events, these residues are defined in the site argu-
ment target entities. To convert these into a form
that can be aligned with UniProt, we apply a set

5http://www.uniprot.org/docs/ptmlist/

Event Type Extracted PMC (%)
Hydroxylation 14,555 34.17
Phosphorylation 726,757 44.00
Ubiquitination 74,027 70.46
DNA methylation 140,531 52.27
Glycosylation 154,523 42.31
Acetylation 114,585 69.40
Methylation 122,015 74.86
Catalysis 45,763 67.86
Total EPI 1,392,756 51.53
Protein-Component 1,613,170 52.59
Subunit-Complex 537,577 51.18
Total REL 2,150,747 52.23

Table 2: Total number of EPI events and REL relations
extracted from PubMed abstracts and PMC full-text arti-
cles, with the fractions extracted from PMC.

of rules that try to determine whether a site is an
amino acid. We start from the main site token, and
check whether it is of the form AA#, where AA is an
amino acid name, or a one or three letter code, and
# an optional site number, which can also be in a to-
ken following the amino acid. For cases where the
site entity is the word “residue” or “residues”, we
look for the amino acid definition in the preceding
and following tokens. All strings are canonicalized
with removal of punctuation, hyphens and parenthe-
sis before applying the rules. In total, of the 177,994
events with a site argument, 75,131 could be nor-
malized to an amino acid, and 60,622 of these to a
specific residue number.

3 Results

The source for extraction in this work is the set of 21
million PubMed abstracts and 372 thousand PMC
open-access full-text articles. From this dataset,
1.4M EPI events and 2.2M REL relations were ex-
tracted (Table 2). For both tasks, about half of the
results were extracted from PMC, confirming that
full-text articles are an important source of infor-
mation for these extraction targets. The total num-
bers of events and relations are considerably lower
than e.g. the 21.3M events extracted for the GENIA
task from PubMed abstracts (Björne et al., 2010;
Van Landeghem et al., 2012), likely relating to the
comparatively low frequency with which EPI and
REL extraction targets are discussed with respect to
the basic GENIA biomolecular reactions.
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Event type UniProt Events Match Coverage Events (site) Match Coverage
Hydroxylation 1,587 14,555 1,526 19 4,298 130 5
Phosphorylation 57,059 726,757 286,978 4,795 86,974 9,732 748
Ubiquitination 792 74,027 4,994 143 10,562 54 20
Glycosylation 6,708 154,523 18,592 897 22,846 68 31
Acetylation 6,522 114,585 15,470 764 25,689 158 30
Methylation 1,135 122,015 2,178 113 27,625 36 10
Total 73,803 1,206,462 329,738 6,731 177,994 10,178 844

Table 3: PTM events. PTMs that are not marked with non-experimental qualifiers are taken from UniProt. The
Events column lists the total number of predicted events, and the Events (site) the number of events that also have a
predicted site-argument. For these groups, Match is the number of events that matches a known PTM from UniProt,
and Coverage the number of UniProt PTMs for which at least one match exists. For Events matching takes into account
the PTM type and protein id, for Events (site) also the amino acid and position of the modified residue.

Event type AA UP # Highest confidence event Article ID
Phosphorylation S9 • 2 p53 isolated from ML1, HCT116 and RKO cells, after short

term genotoxic stress, were phosphorylated on Ser 6, Ser 9
PMC:2777442

Acetylation S15 4 phosphorylated (Ser15), acetylated p53(Lys382) PMC:2557062
Methylation S15 1 phosphorylation of p53 at serine 15 and acetylation PM:10749144
Phosphorylation S15 • 238 Chk2, as well as p53 Ser(15) phosphorylation and its PM:16731759
Phosphorylation T18 • 12 p53 stabilization and its phosphorylation in Thr18 PMC:3046209
Phosphorylation S20 • 45 that phosphorylation of p53 at Ser20 leads to PMC:3050855
Phosphorylation S33 • 14 phosphorylation of p53 at serine 33 may be part of PMC:35361
Phosphorylation S37 • 20 serine 33 of p53 in vitro when serine 37 is already PMC:35361
Phosphorylation S46 • 55 phosphorylation of p53, especially at Serine 46 by PMC:2634840
Phosphorylation T55 • 7 that phosphorylation of p53 at Thr55 inhibits its PMC:3050855
Phosphorylation S99 • 0
Phosphorylation S183 • 0
Phosphorylation S269 • 0
Phosphorylation T284 • 0
Ubiquitination K291 • 0
Acetylation K292 • 0
Ubiquitination K292 • 0
Acetylation K305 • 0
Phosphorylation S313 • 1 hyperphosphorylation of p53, particularly of Ser313 PM:8649812
Phosphorylation S314 • 0
Phosphorylation S315 • 6 to require phosphorylation of p53 at serine 315 (35) PMC:2532731
Methylation K370 • 6 by methylating lysine 370 of p53 PMC:1636665
Acetylation K372 1 for lysine 372 and 383 acetylated p53 (Upstate, PMC:1315280
Methylation K372 • 5 methylation of p53 by the KMT7(SET7/9) methyltransferase

enzyme on Lys372
PMC:2794343

Acetylation K373 • 16 p53 and acetylated p53 (lysine-373 and lysine-382) PMC:1208859
Methylation K373 • 4 EHMT1-mediated p53 methylation at K373 PM:20588255
Acetylation K381 • 0
Acetylation K382 • 82 p53 acetylation at lysine 382 was found not PM:17898049
Methylation K382 • 6 SET8 specifically monomethylates p53 at lysine 382 PM:17707234
Methylation K386 • 1 that sumoylation of p53 at K386 blocks subsequent PM:19339993
Phosphorylation S392 • 35 and phosphorylation of p53 at S392 PM:17237827

Table 4: Extracted and known PTM sites of p53. The type and site of the modification are in the first two columns.
UP indicates whether the PTM is present in the UniProt annotation for p53. Column # shows the number of extracted
events, followed by the event with the highest confidence score and the PubMed abstract or PMC full-text article it has
been extracted from.
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3.1 Extracted PTMs compared to UniProt

The EPI PTM events were compared to annotated
PTMs from UniProt (Table 3). The majority of ex-
tracted PTM events (85%) have only a protein ar-
gument, and no information about the modification
site, so these can only be compared by the protein
id and PTM type. For the subset of proteins that
also have a site, which can be normalized to an
amino acid position, we can make a detailed com-
parison with UniProt. Finding a match for these
normalized amino acids is more difficult, and for
both categories, only a small fraction of proteins
from UniProt is covered. In part this may be due
to the limitations of the gene name normalization, as
finding the exact species-specific protein ID remains
a challenging task (Lu and others, 2011). How-
ever, even if the overall coverage is limited, well-
known protein modifications can be assigned to spe-
cific residues, as we show in the next section.

3.2 Extracted PTMs for a single protein

For an in-depth example of PTM modifications, we
study the protein p53, a central tumor suppressor
protein that is the subject of many studies. p53 is
also among the proteins with the most UniProt PTM
sites for which EPI events were predicted, making it
a good example for a case study (see Table 4).

We take from UniProt all known p53 PTMs corre-
sponding to our EPI event types and list the number
of predicted events for them (see Table 4). When
the number of predicted events is high, the most
confident prediction is usually a correctly extracted,
clear statement about the PTM. All events for PTMs
known in UniProt are correct except for the type
of K386. For events not in UniProt, the two S15
ones are false positives, and K372 acetylation, while
correctly extracted, is most likely a typo in the arti-
cle. For the PTMs for which no event was extracted,
we checked the reference article from UniProt an-
notation. K291, K292 ubiquitination, and K305 are
from abstracts, and thus missed events. S183, S269
and T284 are from a non-open access PMC article,
while S99, K292 acetylation, K305, S314 and K381
are from Excel or PDF format supplementary tables,
sources outside our extraction input.

In total, we have extracted 561 PTM events re-
lated to p53, 554 of which correspond to a PTM an-

Item PubMeth Extracted Recall
PMID+UPID 2776 1698 61.2%
UPID 392 363 92.6%
PMID 1163 1120 96.3%

Table 5: Evaluation of DNA methylation event extraction
recall against PubMeth.

notated in UniProt. Of the 28 EPI-relevant PTMs on
p53, 17 have at least one predicted event. The high-
est confidence events are about equally often from
abstracts as from full texts.

3.3 DNA methylation analysis
Two recently introduced databases, PubMeth (On-
genaert et al., 2008) and MeInfoText (Fang et al.,
2011) provide manually curated information on
DNA methylation, primarily as it relates to cancer.
To evaluate the coverage of DNA methylation event
extraction, we focus here on PubMeth, as the full
content of this database could be directly used. Each
PubMeth DB record provides the primary name of
the methylated gene and the PMID of the publica-
tion supporting the curation of the record. We used
these two pieces of information to evaluate the recall
6 of DNA methylation event extraction.

We mapped PubMeth entries to UniProt iden-
tifiers (UPIDs), and extracted all unique (PMID,
UPID) pairs from both PubMeth and the automat-
ically extracted DNA methylation/demethylation
events. The results of comparison of these sets of
ID pairs are given in Table 5. We find that for over
60% of PubMeth entries, the system is able to re-
cover the specific (document, gene) pair. This result
is broadly in line with the recall of the system as
evaluated in the BioNLP ST. However, if the match-
ing constraint is relaxed, asking either 1) can the sys-
tem extract the methylation of each gene in PubMeth
somewhere in the literature or, inversely, 2) can the
system detect some DNA methylation event in each
document included in PubMeth as evidence, recall
is over 90%. In particular, the evaluation indicates
that the system shows very high recall for identify-
ing documents discussing DNA methylation.

6As PubMeth does not aim for exhaustive coverage, preci-
sion cannot be directly estimated in this way. For example, Pub-
Meth covers fewer than 2,000 documents and DNA methylation
events were extracted from over 20,000, but due to differences
in scope, this does not suggest precision is below 10%.
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REL Type Extracted Match (p) Match (e)
Prot-Cmp 1613.1K 561.8K 150.7K
SU-Cmplx 537.6K 226.5K 99.6K

Table 6: Numbers of extracted entity relations, with the
protein (p) or both protein and entity (e) identified.

3.4 REL statistics

Table 6 presents the amount of extracted entity re-
lations and the coverage of the normalization algo-
rithms assigning protein, domain and complex iden-
tifiers. From a total of 537.6K Subunit-Complex re-
lations, 226.5K (42%) involve a protein that could be
unambiguously identified (Section 2.3.1). From this
subset, 99.6K relations (44%) could be assigned to a
PDB complex identifier (Section 2.3.2), accounting
for 3800 representative 3D protein structures.

The Protein-Component relations are much more
frequent in the data (1.6M relations) and here 35%
of the relations (561.8K) involve a normalized pro-
tein mention. The assignment of InterPro domains
to these Protein-Component relations (Section 2.3.3)
further covers 150.7K relations in this subset (27%),
identifying 5500 distinct functional domains. The
vast majority of these annotations (99%) are pro-
duced by matching the lexical context against the
InterPro descriptions, and only a few cases (200)
matched against the amino-acid pattern.

4 Conclusions

We have combined state-of-the-art methods for
gene/protein name normalization together with the
best available methods for event-based extraction
of protein post-translational modifications, reactions
relating to the epigenetic control of gene expres-
sion, and part-of relations between genes/proteins,
their components, and complexes. These methods
were jointly applied to the entire available litera-
ture, both PubMed abstracts and PMC full-text doc-
uments, creating a text mining dataset unique in both
scope and breadth of analysis. We further performed
a comprehensive analysis of the results of this au-
tomatic extraction process against major biological
database resources covering various aspects of the
extracted information. This analysis indicated that
text mining results for protein complexes, substruc-
tures and epigenetic DNA methylation provides al-

ready quite extensive coverage of relevant proteins.
For post-translational modifications, we note that
coverage still needs to be improved, but conclude
that the extracted events already provide a valuable
link to PTM related literature. In future work we
hope to further extend the event types extracted by
our PubMed-scale approach. The extraction meth-
ods as well as all data introduced in this study are
freely available from bionlp.utu.fi.
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Abstract 

The latest discoveries on diseases and their di-

agnosis/treatment are mostly disseminated in 

the form of scientific publications. However, 

with the rapid growth of the biomedical litera-

ture and a high level of variation and ambigui-

ty in disease names, the task of retrieving 

disease-related articles becomes increasingly 

challenging using the traditional keyword-

based approach. An important first step for 

any disease-related information extraction 

task in the biomedical literature is the disease 

mention recognition task. However, despite 

the strong interest, there has not been enough 

work done on disease name identification, 

perhaps because of the difficulty in obtaining 

adequate corpora. Towards this aim, we creat-

ed a large-scale disease corpus consisting of 

6900 disease mentions in 793 PubMed cita-

tions, derived from an earlier corpus. Our cor-

pus contains rich annotations, was developed 

by a team of 12 annotators (two people per 

annotation) and covers all sentences in a 

PubMed abstract. Disease mentions are cate-

gorized into Specific Disease, Disease Class, 

Composite Mention and Modifier categories. 

When used as the gold standard data for a 

state-of-the-art machine-learning approach, 

significantly higher performance can be found 

on our corpus than the previous one. Such 

characteristics make this disease name corpus 

a valuable resource for mining disease-related 

information from biomedical text. The NCBI 

corpus is available for download at 

http://www.ncbi.nlm.nih.gov/CBBresearch/Fe

llows/Dogan/disease.html. 

1 Introduction 

Identification of biomedical entities has been an 

active area of research in recent years (Rinaldi et 

al., 2011, Smith et al., 2008, Yeh et al., 2005). Au-

tomatic systems, both lexically-based and machine 

learning-based, have been built to identify medi-

cally relevant concepts and/or their relationships. 

Biomedical entity recognition research covers not 

only gene/protein mention recognition (Tanabe et 

al., 2005, Campos et al., 2012), but also other med-

ically relevant concepts such as disease names, 

chemical/drug names, treatments, procedures etc. 

Systems capable of achieving high performance on 

these tasks are highly desirable as entity recogni-

tion precedes all other information extraction and 

text mining tasks.   

Disease information is sought very frequently in 

biomedical search engines. Previous PubMed log 

usage analysis (Islamaj Dogan et al., 2009) has 

shown that disease is the most frequent non-

bibliographic information requested from PubMed 

users. Furthermore, disease information was often 

found to be queried together with Chemical/Drug 

or Gene/Protein information. Automatic recogni-

tion of disease mentions therefore, is essential not 

only for improving retrieval of relevant documents, 

but also for extraction of associations between dis-

eases and genes or between diseases and drugs. 

However, prior research shows that automatic dis-

ease recognition is a challenging task due to varia-

tions and ambiguities in disease names (Leaman et 

al., 2009, Chowdhury and Lavelli 2010).  

Lexically-based systems of disease name recog-

nition, generally refer to the Unified Medical Lan-

guage System (UMLS) (Burgun and Bodenreider 
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2008). UMLS is a comprehensive resource of med-

ically relevant concepts and relationships and 

METAMAP(Aronson and Lang 2010) is an exam-

ple of a natural language processing (NLP) system 

that provides reliable mapping of the text of a bio-

medical document to UMLS concepts and their 

semantic types.  

Machine learning systems, on the other hand, 

have been employed in order to benefit from the 

flexibility they allow over the rule-based and other 

statistical systems. However, machine learning 

systems are strongly dependent on the data availa-

ble for their training; therefore a comprehensive 

corpus of examples representing as many varia-

tions as possible of the entity of interest is highly 

favorable. 

To our best knowledge, there is one corpus of 

disease mentions in MEDLINE citations developed 

by Leaman et al., 2009. This corpus, AZDC cor-

pus, was inspired by the work of Jimeno et al., 

2008 and its overall characteristics are given in 

Table 1. This corpus has been the study of at least 

two different groups in building automatic systems 

for disease name recognition in biomedical litera-

ture (Leaman et al., 2009, Chowdhury and Lavelli, 

2010). They both reported F-scores around 80% in 

10-fold cross-validation experiments.  

One common encountered difficulty in this do-

main is the fact that “disease” as a category has a 

very loose definition, and covers a wide range of 

concepts. “Disease” is a broadly-used term that 

refers to any condition that causes pain, suffering, 

distress, dysfunction, social problems, and/or 

death. In UMLS, the “disease” concept is covered 

by twelve different semantic types as shown in 

Table 2. The disease definition issue has been dis-

cussed extensively in other studies (Neveol et al., 

2009, Neveol and Lu 2012).   

Disease mentions are also heavily abbreviated in 

biomedical literature (Yeganova et al., 2010). The-

se abbreviations are not always standard; the same 

abbreviated form may represent different defining 

strings in different documents. It is therefore, un-

clear whether these ambiguities could be resolved 

by an abbreviation look-up list from UMLS Me-

tathesaurus and other available databases.  

In this study, we present our efforts in improv-

ing the AZDC corpus by building a richer, broader 

and more complete disease name corpus. The 

NCBI corpus reflects a more representative view 

of what constitutes a disease name as it combines 

the decisions of twelve annotators. It also provides 

four different categories of disease mentions. Our 

work was motivated by the following observations:  

 The need of a pool of experts:  

The AZDC corpus is the work of one annota-

tor. While in terms of consistency this is gen-

erally a good thing, a pool of annotators 

guarantees a more representative view of the 

entity to be annotated and an agreement be-

tween annotators is preferred for categories 

with loose definitions such as “disease”. 

Moreover, this would ensure that there would 

be fewer missed annotations within the corpus.  

 The need of annotating all sentences in a 

document:  

The AZDC corpus has disease mention annota-

tions of selected sentences in a collection of 

PubMed abstracts. In order to be able to per-

form higher level text mining tasks that ex-

plore relationships between diseases and other 

types of information such as genes or drugs, 

the disease name annotation has to include all 

sentences, as opposed to selected ones. 

Our work is also related to other corpus annota-

tion projects in the biomedical domain (Grouin et 

al., 2011, Tanabe at al., 2005, Thompson et al., 

2009, Neveol at al., 2009, Chapman et al., 2012). 

These studies generally agree on the need of multi-

ple experienced annotators for the project, the need 

of detailed annotation guidelines, and the need of 

large scale high-quality annotation corpora. The 

production of such annotated corpora facilitates the 

development and evaluation of entity recognition 

and information extraction systems. 

2 Methods 

Here we describe the NCBI corpus, and its annota-

tion process. We discuss the annotation guidelines 

and how they evolved through the process. 

2.1 The NCBI disease corpus 

The AZDC corpus contains 2,783 sentences cho-

sen from 793 PubMed abstracts. These selected 

Table 1 AZDC corpus characteristics 

Characteristics of the corpus  

Selected abstracts 793 

Sentences 2,783 

Sentences with disease mentions 1,757 

Total disease mentions 3,224 
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sentences were annotated for disease mentions, 

resulting in 1,202 unique mentions and 3,224 total 

mentions. The NCBI corpus starts with this origi-

nal corpus; however, it is expanded to cover all the 

sentences in all the 793 PubMed abstracts. 

2.2 Annotation guidelines 

One fundamental problem in corpus annotation is 

the definition of what constitutes an entity to be 

tagged. Following the lead of the AZDC annota-

tions, the group of annotators working on the 

NCBI corpus decided that a textual string would be 

annotated as a disease mention if it could be 

mapped to a unique concept in the UMLS Me-

tathesaurus, if it corresponded to at least one of the 

semantic types listed in Table 2, and if it contained 

information that would be helpful to physicians 

and health care professionals. 

Annotators were invited to use their common 

knowledge, use public resources of the National 

Library of Medicine such as UMLS or PubMed 

Health, Disease Ontology (Warren et al., 2006) and 

Wikipedia and consider the viewpoint of an aver-

age user trying to find information on diseases. 

Initially, a set of 20 randomly chosen PubMed 

abstracts was used as a practice set for the devel-

opment of annotation guidelines. After each anno-

tator worked individually on the set, the results 

were shared and discussed among all annotators. 

The final annotation guidelines are summarized 

below and also made available at the corpus down-

load website. 

What to annotate? 

1. Annotate all specific disease mentions. 

A textual string referring to a disease name may 

refer to a Specific Disease, or a Disease Class. 

Disease mentions that could be described as a 

family of many specific diseases were annotated 

with an annotation category called Disease 

Class. The annotation category Specific Disease 

was used for those mentions which could be 

linked to one specific definition that does not in-

clude further categorization.  

e.g. <Specific Disease> Diastrophic dysplasia 

</> is an <Disease Class> autosomal recessive 

disease</> characterized by short stature, very 

short limbs and joint problems that restrict mo-

bility. 

2. Annotate contiguous text strings. 

A textual string may refer to two or more sepa-

rate disease mentions. Such mentions are anno-

tated with the Composite Mention category. 

e.g. The text phrase “Duchenne and Becker 

muscular dystrophy” refers to two separate dis-

eases. If this phrase is separated into two strings: 

“Duchenne” and “Becker muscular dystrophy”, 

it results in information loss, because the word 

“Duchenne” on its own is not a disease mention.  

3. Annotate disease mentions that are used as 

modifiers for other concepts 

A textual string may refer to a disease name, but 

it may not be a noun phrase and this is better ex-

pressed with the Modifier annotation category.  

e.g.: Although this mutation was initially de-

tected in four of 33 <Modifier> colorectal can-

cer </> families analysed from eastern England, 

more extensive analysis has reduced the fre-

quency to four of 52 English <Modifier> 

HNPCC </> kindreds analysed. 

4. Annotate duplicate mentions. 

Table 2 The set of UMLS semantic types that collectively cover concepts of the “disease” category 

UMLS sematic types Disease name example 

Acquired Abnormality Hernia, Varicose Veins 

Anatomical Abnormality Bernheim aneurysm,  Fistula of thoracic duct 

Congenital Abnormality Oppenheim's Disease, Ataxia Telangiectasia 

Cell or Molecular Dysfunction Uniparental disomy, Intestinal metaplasia 

Disease or Syndrome   Acute pancreatitis, Rheumatoid Arthritis 

Experimental Model of Disease Collagen-Induced Arthritis, Jensen Sarcoma 

Injury or Poisoning Contusion and laceration of cerebrum 

Mental or Behavioral Dysfunction Schizophrenia, anxiety disorder, dementia 

Neoplastic Process Colorectal Carcinoma, Burkitt Lymphoma 

Pathologic Function Myocardial degeneration, Adipose Tissue Atrophy 

Sign or Symptom Back Pain, Seizures, Skeletal muscle paralysis 

Finding Abnormal or prolonged bleeding time 
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For each sentence in the PubMed abstract and ti-

tle, the locations of all disease mentions are 

marked, including duplicates within the same 

sentence.  

5. Annotate minimum necessary span of text. 

The minimum span of text necessary to include 

all the tokens expressing the most specific form 

of the disease is preferred. For example, in case 

of the phrase “insulin-dependent diabetes melli-

tus”, the disease mention including the whole 

phrase was preferred over its substrings such as 

“diabetes mellitus” or “diabetes”.  

6. Annotate all synonymous mentions.  

Abbreviation definitions such as “Huntington 

disease” (“HD”) are separated into two annotat-

ed mentions. 

What not to annotate?  

1. Do not annotate organism names. 

Organism names such as “human” were exclud-

ed from the preferred mention. Viruses, bacteria, 

and other organism names were not annotated 

unless it was clear from the context that the dis-

ease caused by these organisms is discussed.  

e.g. Studies of biopsied tissue for the presence 

of <Specific Disease> Epstein-Barr virus</> and 

<Specific Disease> cytomegalovirus </> were 

negative.  

2. Do not annotate gender.  

Tokens such as “male” and “female” were only 

included if they specifically identified a new 

form of the disease, for example “male breast 

cancer”.  

3. Do not annotate overlapping mentions. 

For example, the phrase “von Hippel-Lindau 

(VHL) disease” was annotated as one single dis-

ease mention. 

4. Do not annotate general terms.  

Very general terms such as: disease, syndrome, 

deficiency, complications, abnormalities, etc. 

were excluded. However, the terms cancer and 

tumor were retained. 

5. Do not annotate references to biological 

processes.  

For example, terms corresponding to biological 

processes such as “tumorigenesis” or “cancero-

genesis”.  

6. Do not annotate disease mentions inter-

rupted by nested mentions.  

Basically, do not break the contiguous text 

rule. E.g. WT1 dysfunction is implicated in both 

neoplastic (Wilms tumor, mesothelioma, leuke-

mia, and breast cancer) and nonneoplastic (glo-

merulosclerosis) disease. 

In this example, the list of all disease mentions 

includes: “neoplastic disease” and “nonneo-

plastic disease” in addition to the underlined 

mentions. However, they were not annotated in 

our corpus, because other tokens break up the 

phrase. 

2.3 Annotators and the annotation process 

The annotator group consisted of 12 people with 

background in biomedical informatics research and 

experience in biomedical text corpus annotation. 

The 793 PubMed citations were divided into sets 

of 25 PubMed citations each. Every annotator 

worked on 5 or 6 sets of 25 PubMed abstracts. The 

sets were divided randomly among annotators. 

Each set was shared by two people to annotate. To 

avoid annotator bias, pairs of annotators were cho-

sen randomly for each set of 25 PubMed abstracts.  

As illustrated in Figure 1, first, each abstract 

was pre-annotated using our in-house-developed 

CRF disease mention recognizer trained on the 

AZDC corpus. This process involved a 10-fold 

 
Figure 1. The annotation process 
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cross-validation scheme, where all sentences from 

the same PubMed abstract were assigned to the 

same split. The learning was performed on 9-folds 

and then, the PubMed abstracts assigned to the 

10th fold were annotated for disease mentions on a 

sentence-by-sentence basis.  

Annotation Phase I consisted of each pre-

annotated abstract in the corpus being read and 

reviewed by two annotators working independent-

ly. Annotators could agree with the pre-annotation, 

remove it, or adjust its text span. Annotators could 

also add new annotations. After this initial round 

of annotations, a summary document was created 

highlighting the agreement and differences be-

tween two annotators in the annotations they pro-

duced for each abstract. This constituted the end of 

phase I. The pair of annotators working on the 

same set at this stage was given the summary doc-

ument and their own annotations of Phase I. 

In annotation Phase II, each annotator examined 

and edited his or her own annotations by reviewing 

the different annotations reported in the Phase I 

summary document. This resulted in a new set of 

annotations. After this round, a second summary 

document highlighting the agreement and differ-

ences between two annotators was created for each 

pair of annotators to review.  

After phase II, each pair of annotators organized 

meetings where they reviewed, discussed and re-

solved their differences. After these meetings, a 

reconciled set of annotations was produced for 

each PubMed abstract. The final stage of the anno-

tation process consisted of the first author going 

over all annotated segments and ensuring that an-

notations were consistent both in category and in 

text span across different abstracts and different 

annotation sets. For example if the phrase “classi-

cal galactosemia” was annotated in one abstract as 

a Specific Disease mention, all occurrences of that 

phrase throughout the corpus should receive con-

sistent annotation. Identified hard cases were dis-

cussed at a meeting where all annotators were 

present and a final decision was made to reconcile 

differences. The final corpus is available at: 

http://www.ncbi.nlm.nih.gov/CBBresearch/Fellow

s/Dogan/disease.html 

 
Figure 2. NCBI corpus annotation software. Each annotator selects a PubMed ID from the current 

working set, and is directed to this screen. Annotation categories are: Specific Disease (highlighted in 

yellow), Disease Class (green), Composite Mention (blue), or Modifier (purple). To annotate a disease 

mention in text, annotators highlight the phrase and click on the appropriate label on top of the editor 

screen. To delete a disease mention, annotators highlight the phrase and click on the Clear label on top 

of the editor. Annotators can retrieve the last saved version of their annotations for each particular 

document by clicking on “Last Saved” button. Annotators save their work by clicking on Submit but-

ton at the bottom of editor screen.  
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2.4 Annotation software 

Annotation was done using a web interface (the 

prototype of PubTator (Wei et al., 2012)), as 

shown in Figure 2. Each annotator was able to log 

into the system and work independently. The sys-

tem allowed flexibility to make annotations in the 

defined categories, modify annotations, correct the 

text span, delete as well as go back and review the 

process as often as needed. At the end of each an-

notation phase, annotators saved their work, and 

the annotation results were compared to find 

agreement and consistency among annotations.  

2.5 Annotation evaluation metrics  

We measured the annotators’ agreement at phase I 

and II of the annotation process. One way to meas-

ure the agreement between two annotators is to 

measure their observed agreement on the sample of 

annotated items, as specified in Equation (1).  

Agreement statistics are measured for each an-

notator pair, for each shared annotation set. Then, 

for each annotator pair the average agreement sta-

tistic is computed over all annotation sets shared 

between the pair of annotators. The final agree-

ment statistic reflects the average and standard de-

viation computed over all annotator pairs. This is 

repeated for both phases.  

Agreement between two annotators is measured 

on two levels: one, both annotators tag the same 

exact phrase based on character indices as a dis-

ease mention, and two, both annotators tag the 

same exact phrase based on character indices as a 

disease mention of the same category. 

2.6  Application of the NCBI corpus 

To compare the two disease corpora with regard to 

their intended primary use in training and testing 

machine learning algorithms, we performed a 10-

fold cross validation experiment with BANNER 

(Leaman et al, 2009). We evaluated BANNER per-

formance and compared Precision, Recall and F-

score values for BANNER when trained and tested 

on AZDC corpus and the NCBI disease name cor-

pus, respectively. In these experiments, disease 

mentions of all categories were included and are 

discussed in the Results section.  

To compare the effect of improvement in dis-

ease name recognition, the different disease cate-

gory annotations present in the NCBI corpus were 

        
Figure 3 Inter-annotator annotation consistency measured at the span and span-category level 
 

Table 3 The annotation results and corpus characteristics 

Characteristics of the corpus NCBI corpus AZDC 

Annotators 12 1 

Annotated sentences in citation ALL Selected 

PubMed Citations 793 793 

Sentences 6,651 2,784 

Sentences with disease annotations 3,752 1,757 

Total disease mentions 6,900 3,228 

Specific Disease 3,924 - 

Disease Class 1029 - 

Modifier 1,774 - 

Composite Mention 173 - 
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Table 4 NCBI corpus as training, development and testing sets for disease name recognition 

Corpus Characteristics  Training set Development set Test set 

PubMed Citations 593 100 100 

Total disease mentions 5148 791 961 

Specific Disease 2959 409 556 

Disease Class 781 127 121 

Modifier 1292 218 264 

Composite Mention 116 37 20 

 

flattened into only one single category. This made 

the NCBI corpus compatible with the AZDC cor-

pus. 

3 Results and Discussion 

3.1 Results of Inter-Annotator Agreement  

Figure 3 shows the inter-annotator agreement re-

sults after Phase I and Phase II of the annotations. 

These statistics show a good agreement between 

annotators, especially after phase II of annotations. 

In particular, both span-consistency measure and 

span-category consistency measure is above 80% 

after phase II. These values show that our corpus 

reflects a high quality of annotations and that our 

two-stage annotation steps are effective in improv-

ing corpus consistency.  

3.2 Agreement between automatic pre-

annotation and final annotation results 

In our previous work (Neveol et al, 2009) we have 

shown that automatic pre-annotation is found help-

ful by most annotators in assisting large-scale an-

notation projects with regard to speeding up the 

annotation time and improving annotation con-

sistency while maintaining the high quality of the 

final annotations. Thus, we again used pre-

annotation in this work. To demonstrate that hu-

man annotators were not biased towards the com-

puter-generated pre-annotation, we compared the 

final annotation with the pre-annotation results. 

There are a total of 3295 pre-annotated disease 

mentions: 1750 were found also in the final corpus 

while the remaining 1545 were either modified or 

deleted. Furthermore, the final corpus consists of 

additional 3605 new annotations. Overall, the 

agreement between pre-annotation and final anno-

tation results is only 35%. 

3.3 Statistics of the NCBI disease corpus 

After two rounds of annotation, several annotator 

meetings and resolving of inconsistencies, the 

NCBI corpus contains 793 fully annotated PubMed 

citations for disease mentions which are divided 

into these categories: Specific Disease, Disease 

Class, Composite Mention and Modifier. As shown 

in Table 3, the NCBI corpus contains more than 

6K sentences, of which more than half contain dis-

ease mentions. There are 2,161 unique disease 

mentions total, which can be divided into these 

categories: 1,349 unique Specific Disease men-

tions, 608 unique Disease Class mentions, 121 

unique Composite Disease mentions, and 356 

unique Modifier disease mentions. The NCBI dis-

ease name corpus is available for download and 

can be used for development of disease name 

recognition tools, identification of Composite Dis-

ease Mentions, Disease Class or Modifier disease 

mention in biomedical text. 

3.4 Characteristics of the NCBI corpus 

This annotation task was initially undertaken for 

purposes of creating a larger, broader and more 

complete corpus for disease name recognition in 

biomedical literature.  

The NCBI corpus addresses the inconsistencies 

of missed annotations by using a pool of experts 

for annotation and creating the annotation envi-

ronment of multiple discussions and multiple 

rounds of annotation. The NCBI corpus addresses 

the problem of recognition of abbreviated disease 

mentions by delivering annotations for all sentenc-

es in the PubMed abstract. Processing all sentences 

in a document allows for recognition of an abbre-

viated form of a disease name. An abbreviated 

term could be tagged for later occurrences within 

the same document, if an abbreviation definition is 

recognized in one of the preceding sentences.  

NCBI corpus provides a richer level of annota-

tions characterized by four different categories of 

disease mentions: Specific Disease, Disease Class, 

(1) 

s2Annotation1
2100  
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Composite Mention and Modifier. Specific Disease 

mentions could be linked to one specific definition 

without further categorization, allowing for future 

normalization tasks. Composite Disease Mentions 

identify intricate lexical strings that express two or 

more disease mentions, allowing for future natural 

language processing tasks to look at them more 

closely. Modifier disease mentions identify non-

noun phrase mentions, again useful for other text 

mining tasks. 

Finally, the corpus can be downloaded and used 

for development and testing for disease name 

recognition and other tasks. To facilitate future 

work, we have divided the corpus into training, 

development and testing sets as shown in Table 4. 

 

3.5 The NCBI corpus as training data for 

disease mention recognition 

We replicated the BANNER experiments by com-

paring their cross-validation results on the original 

corpus (AZDC) and on the NCBI corpus. Our re-

sults reveal that BANNER achieves significantly 

better performance on the NCBI corpus: a 10% 

increase in F-score from 0.764 to 0.840.  Table 5 

shows detailed results for BANNER processing in 

precision, recall and F-score, for both corpora. 

In addition, we performed BANNER experi-

ments on the newly divided NCBI corpus with the 

following results: BANNER achieves an F-score of 

0.845 on a 10 fold cross-validation experiment on 

the NCBI training set, an F-score of 0.819 when 

tested on the NCBI development set, after trained 

on the NCBI training set, and an F-score of 0.818 

when tested on NCBI test set, after trained on 

NCBI training set.   

 

3.6 Limitations of this work 

The NCBI corpus was annotated manually, thus 

the tags assigned were judgment calls by human 

annotators. Annotation guidelines were established 

prior to the annotation process and they were re-

fined during the annotation process, however grey 

areas still remained for which no explicit rules 

were formulated. In particular, inclusion of qualita-

tive terms as part of the disease mention is a matter 

of further investigation as illustrated by the follow-

ing example:  

 Acute meningococcal pericarditis – Consti-

tutes a disease mention and, exists as a 

separate concept in UMLS, however 

 Acute Neisseria infection – May or may 

not include the descriptive adjective.  

Similarly: 

 Classical galactosemia – Includes the de-

scriptive adjective, because it corresponds 

to a particular form of the disease. 

 Inherited spinocerebellar ataxia – May or 

may not include the descriptive adjective. 

Names containing conjunctions are difficult to 

tag. Although it might seem excessive to require a 

named entity recognizer to identify the whole ex-

pression for cases such as:  

 Adenomatous polyps of the colon and rec-

tum, 

 Fibroepithelial or epithelial hyperplasias, 

 Stage II or stage III colorectal cancer, 

The NCBI disease name corpus rectifies this sit-

uation by annotating them as Composite Mention 

disease name category, thus, allowing for future 

NLP application to develop more precise methods 

in identifying these expressions.  

Moreover, sentences which contained nested 

disease names require further attention, as the cur-

rent annotation rule of annotating only contiguous 

phrases cannot select the outer mentions. 

Finally, our current annotation guideline re-

quires that only one of the four categories be as-

signed to each disease mention. This is not ideal 

because a disease mention may actually fit more 

than one category. For instance, a mention can be 

tagged as both “Modifier” and “Disease Class”. In 

practice, for obtaining consistent annotations, the 

priority was given in the order of “Modifier”, 

“Composite Mention”, “Disease Class”, and “Spe-

cific Disease” when more than one category deems 

appropriate. This aspect should be addressed at 

future work.   

4 Conclusions 
We have described the NCBI disease name corpus 

of tagged disease mentions in 793 PubMed titles 

and abstracts. The corpus was designed to capture 

Table 5 BANNER evaluation results on AZDC 

(original) corpus and on the NCBI corpus. 

CRF-

order 
Corpus Precision Recall F-score 

1 AZDC 0.788 0.743 0.764 

1 NCBI 0.859 0.824 0.840 

2 AZDC 0.804 0.752 0.776 

2 NCBI 0.857 0.820 0.838 
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disease mentions in the most common sense of the 

word, and is particularly relevant for biomedical 

information retrieval tasks that involve diseases. 

Annotations were performed for all sentences in a 

document, facilitating the future applications of 

complex information retrieval tasks connecting 

diseases to treatments, causes or other types of in-

formation. Annotation guidelines were designed 

with the goal of allowing flexible matching to 

UMLS concepts, while retaining true meaning of 

the tagged concept. A more detailed definition on 

what constitutes a disease name, accompanied with 

additional annotation rules, could help resolve 

some existing inconsistencies.  The current corpus 

is reviewed several times by several annotators and 

describes a refined scale of annotation categories. 

It allows the separate definition and annotation of 

Composite mentions, Modifiers and distinguishes 

between Disease Class mentions versus Specific 

Diseases. The corpus is available for download
1
. 
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Abstract
Event extraction is a major focus of re-
cent work in biomedical information extrac-
tion. Despite substantial advances, many chal-
lenges still remain for reliable automatic ex-
traction of events from text. We introduce a
new biomedical event extraction resource con-
sisting of analyses automatically created by
systems participating in the recent BioNLP
Shared Task (ST) 2011. In providing for the
first time the outputs of a broad set of state-of-
the-art event extraction systems, this resource
opens many new opportunities for studying
aspects of event extraction, from the identifi-
cation of common errors to the study of ef-
fective approaches to combining the strengths
of systems. We demonstrate these opportuni-
ties through a multi-system analysis on three
BioNLP ST 2011 main tasks, focusing on
events that none of the systems can success-
fully extract. We further argue for new per-
spectives to the performance evaluation of do-
main event extraction systems, considering a
document-level, “off-the-page” representation
and evaluation to complement the mention-
level evaluations pursued in most recent work.

1 Introduction

Biomedical information extraction efforts are in-
creasingly focusing on event extraction using struc-
tured representations that allow associations of arbi-
trary numbers of participants in specific roles (e.g.
Theme, Cause) to be captured (Ananiadou et al.,
2010). Domain event extraction has been advanced
in particular by the BioNLP Shared Task (ST) events
(Kim et al., 2011a; Kim et al., 2011b), which have
introduced common task settings, datasets, and eval-
uation criteria for event extraction. Participants in

these shared tasks have introduced dozens of sys-
tems for event extraction, and the resulting methods
have been applied to automatically analyse the entire
available domain literature (Björne et al., 2010) and
applied in support of applications such as semantic
literature search (Ohta et al., 2010; Van Landeghem
et al., 2011b) and pathway curation support (Kemper
et al., 2010).

It is possible to assess recent advances in event ex-
traction through results for a task considered both in
the BioNLP ST 2009 and 2011. By the primary eval-
uation criteria, the highest performance achieved in
the 2009 task was 51.95% F-score, and a 57.46% F-
score was reached in the comparable 2011 task (Kim
et al., 2011b). These results demonstrate significant
advances in event extraction methods, but also indi-
cate that the task continues to hold substantial chal-
lenges. This has led to a call from task participants
for further analysis of the data and results, accompa-
nied by a proposal to release analyses from individ-
ual systems to facilitate such analysis (Quirk et al.,
2011).

In this study, we explore new perspectives into the
analyses and performance of event extraction meth-
ods. We build primarily on a new resource compiled
with the support of the majority of groups participat-
ing in the BioNLP ST 2011, consisting of analyses
from systems for the three main tasks sharing the
text-bound event representation. We demonstrate
the use of this resource through an evaluation fo-
cusing on events that cannot be extracted even by
the union of combined systems, identifying partic-
ular remaining challenges for event extraction. We
further propose and evaluate an alternate, document-
level perspective to event extraction, demonstrat-
ing that when only unique events are considered for
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Figure 1: Example event annotations. The “crossed-out” event type identifies an event marked as negated. Event
illustrations created using the STAV visualization tool (Stenetorp et al., 2011).

each document, the measured performance and even
ranking of systems participating in the shared task is
notably altered.

2 Background

In this work, we focus on the definition of the
event extraction task first introduced in the BioNLP
Shared Task 2009.1 The task targets the extrac-
tion of events, represented as n-ary associations of
participants (entities or other events), each marked
as playing a specific role such as Theme or Cause
in the event. Each event is assigned a type such
as BINDING or PHOSPHORYLATION from a fixed,
task-specific set. Events are further typically associ-
ated with specific trigger expressions that state their
occurrence in text. As physical entities such as pro-
teins are also identified in the setting with specific
spans referring to the real-world entities in text, the
overall task is “text-bound” in the sense of requiring
not only the extraction of targeted statements from
text, but also the identification of specific regions of
text expressing each piece of extracted information.
Events can further be marked with modifiers iden-
tifying additional features such as being explicitly
negated or stated in a speculative context. Figure 1
shows an illustration of event annotations.

This BioNLP ST 2009 formulation of the event
extraction task was followed also in three 2011 main
tasks: the GE (Kim et al., 2011c), ID (Pyysalo et al.,
2011a) and EPI (Ohta et al., 2011) tasks. A vari-
ant of this representation that omits event triggers
was applied in the BioNLP ST 2011 bacteria track
(Bossy et al., 2011), and simpler, binary relation-
type representations were applied in three support-
ing tasks (Nguyen et al., 2011; Pyysalo et al., 2011b;
Jourde et al., 2011). Due to the challenges of con-
sistent evaluation and processing for tasks involv-

1While far from the only formulation proposed in the litera-
ture, this specific task setting is the most frequently considered
and arguably a de facto standard for domain event extraction.

ing different representations, we focus in this work
specifically on the three 2011 main tasks sharing a
uniform representation: GE, ID and EPI.

3 New Resources for Event Extraction

In this section, we present the new collection of au-
tomatically created event analyses and demonstrate
one use of the data through an evaluation of events
that no system could successfully extract.

3.1 Data Compilation
Following the BioNLP ST 2011, the MSR-NLP
group called for the release of outputs from various
participating systems (Quirk et al., 2011) and made
analyses of their system available.2 Despite the ob-
vious benefits of the availability of these resources,
we are not aware of other groups following this ex-
ample prior to the time of this publication.

To create the combined resource, we approached
each group that participated in the three targeted
BioNLP ST 2011 main tasks to ask for their support
to the creation of a dataset including analyses from
their event extraction systems. This suggestion met
with the support of all but a few groups that were
approached.3 The groups providing analyses from
their systems into this merged resource are summa-
rized in Table 1, with references to descriptions of
the systems used to create the included analyses. We
compiled for each participant and each task both the
final test set submission and a comparable submis-
sion for the separate development set.

As the gold annotations for the test set are only
available for evaluation through an online interface
(in order to avoid overfitting and assure the compa-
rability of results), it is important to provide also de-
velopment set analyses to permit direct comparison

2http://research.microsoft.com/bionlp/
3We have yet to hear back from a few groups, but none has

yet explicitly denied the release of their data. Should any re-
maining group accept the release of their data, we will release a
new, extended version of the resource.
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Task System
Team GE EPI ID BB BI CO REL REN description

UTurku 1 1 1 1 1 1 1 1 Björne and Salakoski (2011)
ConcordU 1 1 1 1 1 1 Kilicoglu and Bergler (2011)

UMass 1 1 1 Riedel and McCallum (2011)
Stanford 1 1 1 McClosky et al. (2011)
FAUST 1 1 1 Riedel et al. (2011)

MSR-NLP 1 1 Quirk et al. (2011)
CCP-BTMG 1 1 Liu et al. (2011)
BMI@ASU 1 Emadzadeh et al. (2011)

TM-SCS 1 Bui and Sloot (2011)
UWMadison 1 Vlachos and Craven (2011)

HCMUS 1 1 Le Minh et al. (2011)
PredX 1 -

VIBGhent 1 Van Landeghem et al. (2011a)

Table 1: BioNLP ST 2011 participants contributing to the combined resource.

Events
Task Gold FN Recall

GE (task 1) 3250 1006 69.05%
EPI (CORE task) 601 129 78.54%
ID (CORE task) 691 183 73.52%

Table 2: Recall for the union of analyses from systems
included in the combined dataset.

against gold annotations. The inclusion of both de-
velopment and test set annotations also allows e.g.
the study of system combination approaches where
the combination parameters are estimated on devel-
opment data for final testing on the test set (Kim et
al., 2011a).

3.2 Evaluation
We demonstrate the use of the newly compiled
dataset through a manual evaluation of GE, EPI and
ID main task development set gold standard events
that are not extracted by any of the systems for
which analyses were available.4 We perform eval-
uation on the GE subtask 1 and the EPI and ID
task CORE subtasks, as all participating systems ad-
dressed the extraction targets of these subtasks.

We first evaluated each of the analyses against the
development set of the respective task using the of-
ficial shared task evaluation software, using options
for the evaluation tools to list the sets of true posi-
tive (TP), false positive (FP) and false negative (FN)

4The final collection includes analyses from the systems of
two groups that agreed to the release of their data after the com-
pletion of this analysis, but we expect the results to largely hold
also for the final collection.

events. We then selected for each of the three tasks
the set of events that were included in the FN list
for all systems. This gives the results for the re-
call of the union of all systems shown in Table 2.
The recall of the system union is approximately 30%
points higher than that of any individual GE system
(Kim et al., 2011c) and 25% points higher for EPI
and ID (Ohta et al., 2011; Pyysalo et al., 2011a),
suggesting potential remaining benefits from system
combination. Nevertheless, a substantial fraction of
the total set of gold events remains inaccessible also
to this system union.

We then selected a random set of 100 events from
each of the three sets of events that were not re-
covered by any system (i.e. 300 events in total) and
performed a manual evaluation to identify frequent
properties of these events that could contribute to
extraction failures. In brief, we first performed a
brief manual evaluation to identify common charac-
teristics of these events, and then evaluated the 300
events individually to identify the set of these char-
acteristics that apply to each event.

The results of the evaluation for common cases
are shown in Table 3. We find that the most fre-
quent property of the unrecoverable events is that
they involve implicit arguments (Gerber and Chai,
2010), a difficult challenge that has not been ex-
tensively considered in domain event extraction. A
closely related issue are events involving arguments
in a sentence different from that containing the trig-
ger (“cross-sentence”), connected either implicitly
or through explicit coreference (“coreference”). Al-
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Type GE EPI ID Total
Implicit argument 18 33 15 66

Cross-sentence 14 40 4 58
Weak trigger 28 14 11 53
Coreference 12 20 18 50

Static Relation 6 28 6 40
Error in gold 17 4 9 30

Ambiguous type 2 9 11 22
Shared trigger 2 12 1 15

Table 3: Manual evaluation results for features of events
that could not be recovered by any system.

though coreference was considered as as separate
task in BioNLP ST 2011 (Nguyen et al., 2011), it is
clear that it involves many remaining challenges for
event extraction systems. Similarly, events where
explicit arguments are connected to other arguments
through “static” relations such as part-of (e.g. “A
binds the X domain of B”) represent a known chal-
lenge (Pyysalo et al., 2011b). These results sug-
gest that further advances in event extraction perfor-
mance could be gained by the integration of systems
for the analysis of coreference and static relations,
approaches for which some success has already been
demonstrated in recent efforts (Van Landeghem et
al., 2010; Yoshikawa et al., 2011; Miwa et al., 2012).

“Weak” trigger expressions that must be inter-
preted in context to determine whether they express
an event, as well as a related class of events whose
type must be disambiguated with reference to con-
text (“ambiguous type”) are comparatively frequent
in the three tasks, while EPI in particular involves
many cases where a trigger is shared between mul-
tiple events – an issue for approaches that assume
each token can be assigned at most a single class.
Finally, we noted a number of cases that we judged
to be errors in the gold annotation; the number
is broadly in line with the reported inter-annotator
agreement for the data (see e.g. Ohta et al. (2011)).

While there is an unavoidable subjective com-
ponent to evaluations such as this, we note that a
similar evaluation performed following the BioNLP
Shared Task 2009 using test set data reached broadly
comparable results (Kim et al., 2011a). The newly
compiled dataset represents the first opportunity for
those without direct access to the test set data and
submissions to directly assess the task results, as
demonstrated here. We hope that this resource will

encourage further exploration of both the data, the
system analyses and remaining challenges in event
extraction.

4 New Perspectives to Event Extraction

As discussed in Section 2, the BioNLP ST event ex-
traction task is “text-bound”: each entity and event
annotation is associated with a specific span of text.
Contrasted to the alternative approach where anno-
tations are document-level only, this approach has
a number of important benefits, such as allowing
machine learning methods for event extraction to
be directly trained on fully and specifically anno-
tated data without the need to apply frequently error-
prone heuristics (Mintz et al., 2009) or develop ma-
chine learning methods addressing the mapping be-
tween text expressions and document-level annota-
tions (Riedel et al., 2010). Many of the most suc-
cessful event extraction approaches involve direct
training of machine learning methods using the text-
bound annotations (Riedel and McCallum, 2011;
Björne and Salakoski, 2011; McClosky et al., 2011).
However, while the availability of text-bound anno-
tations in data provided to task participants is clearly
a benefit, there are drawbacks to the choice of ex-
clusive focus on text-bound annotations in system
output, including issues relating to evaluation and
the applicability of methods to the task. In the fol-
lowing section, we discuss some of these issues and
propose alternatives to representation and evaluation
addressing them.

4.1 Evaluation

The evaluation of the BioNLP ST is instance-based
and text-bound: each event in gold annotation and
each event extracted by a system is considered in-
dependently, separating different mentions of the
“same” real-world event. This is the most detailed
(sensitive) evaluation setting permitted by the data,
and from a technical perspective a reasonable choice
for ranking systems performing the task.

However, from a practical perspective, this eval-
uation setting arguably places excessively strict de-
mands on systems, and may result in poor correla-
tion between measured performance and the practi-
cal value of systems. Our motivating observations
are that specific real-world events tend to be men-
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tioned multiple times in a single publication – espe-
cially the events that are of particular importance in
the study – and that there are few practical applica-
tions for which it is necessary to find each such re-
peated mention. For example, in literature search for
e.g. pathway or database curation support, one typi-
cal information need is to identify biomolecular re-
actions involving a specific protein. Event extraction
can support such needs either by summarizing all
events involving the protein that could be extracted
from the literature (Van Landeghem et al., 2011b), or
by retrieving documents (perhaps showing relevant
text snippets) containing such events (Ohta et al.,
2010). For the former to meet the information need,
it may be sufficient that each different event is ex-
tracted once from the entire literature; for the latter,
once from each relevant document. For uses such
as these, there is no obvious need for, or, indeed,
no very obvious benefit from the ability of extrac-
tion systems to separately enumerate every mention
of every event in every publication. It is easy to en-
vision other practical use cases where instance-level
extraction performance is at best secondary and, we
argue, difficult to identify ones where it is of critical
importance.

For applications such as these, the important
question is the reliability of the system at identify-
ing events either on the level of documents or on the
level of (a relevant subset of) the literature, rather
than on the level of individual mentions. For a more
complete and realistic picture of the practical value
of event extraction methods, measures other than
instance-level should thus also be considered.

4.2 Task setting

While applications can benefit from the ability of
IE systems to identify a specific span of text sup-
porting extracted information,5 the requirement of
the BioNLP ST setting that the output of event ex-
traction systems must identify specific text spans for
each entity and event makes it complex or impossi-
ble to address the task using a number of IE methods
that might otherwise represent feasible approaches
to event extraction.

5For example, for curation support tasks, this allows the hu-
man curator to easily check the correctness of extracted infor-
mation and helps to select “evidence sentences”, as included in
many databases.

For example, Patwardhan and Riloff (2007) and
Chambers and Jurafsky (2011) consider an IE ap-
proach where the extraction targets are MUC-4 style
document-level templates (Sundheim, 1991), the
former a supervised system and the latter fully un-
supervised. These methods and many like them for
tasks such as ACE (Doddington et al., 2004) work
on the document level, and can thus not be readily
applied or evaluated against the existing annotations
for the BioNLP shared tasks. Enabling the appli-
cation of such approaches to the BioNLP ST could
bring valuable new perspectives to event extraction.

4.3 Alternative evaluation
We propose a new mode of evaluation that otherwise
follows the primary BioNLP ST evaluation criteria,
but incorporates the following two exceptions:

1. remove the requirement to match trigger spans

2. only require entity texts, not spans, to match

The first alternative criterion has also been previ-
ously considered in the GE task evaluation (Kim et
al., 2011c); the latter has, to the best of our knowl-
edge, not been previously considered in domain
event extraction. We additionally propose to con-
sider only the minimal set of events that are unique
on the document level (under the evaluation criteria),
thus eliminating effects from repeated mentions of a
single event on evaluated performance. We created
tools implementing this mode of evaluation with ref-
erence to the BioNLP ST 2011 evaluation tools.

While this type of evaluation has, to the best of
our knowledge, not been previously applied specif-
ically in biomedical event extraction, it is closely
related (though not identical) to evaluation criteria
applied in MUC, ACE, and the in-domain PPI re-
lation extraction tasks in BioCreative (Krallinger et
al., 2008).

4.4 Alternative representation
A true conversion to a document-level, “off the
page” representation would require manual anno-
tation efforts to identify the real-world entities and
events referred to in text (Doddington et al., 2004).
However, it is possible to reasonably approximate
such a representation through an automatic heuristic
conversion.
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BioNLP Shared Task
T1 Protein 0 5 CIITA
T2 Protein 21 28 TAFII32
T3 Binding 6 15 interacts
E1 Binding:T3 Theme:T1 Theme2:T2
T4 Protein 54 61 TAFII32
T5 Protein 66 71 CIITA
T6 Binding 33 45 interactions
E2 Binding:T6 Theme:T4 Theme2:T5

Document level
T1 Protein CIITA
T2 Protein TAFII32 
E1 Binding Theme:T1 Theme2:T2

CIITA interacts with TAFII32 ... interactions between TAFII32 and CIITA are

Pro Binding Protein Binding Protein Pro
Th Th2 Theme

Theme2

...

Figure 2: Illustration of BioNLP Shared Task annotation format and the proposed document-level (“off-the-page”)
format.

We first introduce a non-textbound annotation for-
mat that normalizes over differences in e.g. argu-
ment order and eliminates duplicate events. The for-
mat largely follows that of the shared task but re-
moves any dependencies and references to text off-
sets (see Figure 2). The conversion process into this
representation involves a number of steps. First, we
merge duplicate pairs of surface strings and types,
as different mentions of the same entity in different
parts of the text are no longer distinguishable in the
representation. In the original format, equivalence
relations (Kim et al., 2011a) are annotated only for
specific mentions. When “raising” the annotations
to the document level, equivalence relations are rein-
terpreted to cover the full document by extending
the equivalence to all mentions that share the surface
form and type with members of existing equivalence
classes. Finally, we implemented an event equiv-
alence comparison to remove duplicate annotations
from each document. The result of the conversion
to this alternate representation is thus an “off-the-
page” summary of the unique set of events in the
document.

This data can then be used for training and com-
parison of methods analogously to the original anno-
tations, but without the requirement that all analyses
include text-bound annotations.

4.5 Experimental Results

We next present an evaluation using the alternative
document-level event representation and evaluation,
comparing its results to those for the primary shared
task evaluation criteria. As comparatively few of the

Primary criteria New criteria
Group Rec. Prec. F Rec. Prec. F

FAUST 49.41 64.75 56.04 53.10 67.56 59.46
UMass 48.49 64.08 55.20 52.55 66.57 58.74

UTurku 49.56 57.65 53.30 54.23 60.11 57.02
MSR-NLP 48.64 54.71 51.50 53.55 58.24 55.80
ConcordU 43.55 59.58 50.32 47.42 60.85 53.30

UWMadison 42.56 61.21 50.21 46.09 62.50 53.06
Stanford 42.36 61.08 50.03 46.48 63.22 53.57

BMI@ASU 36.91 56.63 44.69 41.15 61.44 49.29
CCP-BTMG 31.57 58.99 41.13 34.82 66.89 45.80

TM-SCS 32.73 45.84 38.19 38.02 50.87 43.51
HCMUS 10.12 27.17 14.75 14.50 40.05 21.29

Table 4: Comparison of BioNLP ST 2011 GE task 1 re-
sults.

shared task participants attempted subtasks 2 and 3
for GE or the FULL task setting for EPI and ID, we
consider only GE subtask 1 and the EPI and ID task
CORE extraction targets in these experiments. We
refer to the task overviews for the details of the sub-
tasks and the primary evaluation criteria (Kim et al.,
2011c; Pyysalo et al., 2011a; Ohta et al., 2011).

Tables 4, 5 and 6 present the results for the
GE, EPI and ID tasks, respectively. For GE, we
see consistently higher F-scores for the new crite-
ria, in most cases reflecting primarily an increase
in recall, but also involving increases in precision.
The F-score differences range between 3-4% for
most high-ranking systems, with more substantial
increases for lower-ranking systems. Notable in-
creases in precision are seen for some systems (e.g.
HCMUS), indicating that the systems comparatively
frequently extract correct information, but associ-
ated with the wrong spans of text.
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Primary criteria New criteria
Group Rec. Prec. F Rec. Prec. F

UTurku 68.51 69.20 68.86 74.20 69.14 71.58
FAUST 59.88 80.25 68.59 67.04 76.82 71.60

MSR-NLP 55.70 77.60 64.85 59.24 77.66 67.21
UMass 57.04 73.30 64.15 65.76 69.65 67.65

Stanford 56.87 70.22 62.84 62.74 67.12 64.86
CCP-BTMG 45.06 63.37 52.67 54.62 63.17 58.58

ConcordU 40.28 76.71 52.83 48.41 76.57 59.32

Table 5: Comparison of BioNLP ST 2011 EPI CORE
task results.

For EPI (Table 5), we find comparable differences
in F-score to those for GE, but there is a signifi-
cant difference in the precision-recall balance: the
majority of systems show over 5% points higher re-
call under the new criteria, but many show substan-
tial losses in precision, while for GE precision was
also systematically increased. This effect was not
unexpected: we judge this to reflect primarily the
increased number of opportunities to extract each
unique event (higher recall) combined with the com-
paratively higher effect from errors from the reduc-
tion in the total number of unique correct extraction
targets (lower precision). It is not clear from our
analysis why a comparable effect was not seen for
GE. Interestingly, most systems show a better pre-
cision/recall balance under the new criteria than the
old, despite not optimizing for these criteria.

For ID (Table 6), we find a different effect also on
F-score, with all but one system showing reduced
performance under the new criteria, with some very
clear drops in performance; the only system to ben-
efit is UTurku. Analysis suggests that this effect
traces primarily to a notable reduction in the number
of simple PROCESS events that take no arguments6

when considering unique events on the document
level instead of each event mention independently.7

Conversely, the Stanford system, which showed the
highest instance-level performance in the extraction
of PROCESS type events (see Pyysalo et al. (2011a)),
shows a clear loss in precision.

6The ID task annotation criteria call for mentions of some
high-level biological processes such as “infection” to be anno-
tated as PROCESS even if no explicit participants are mentioned
(Pyysalo et al., 2011a).

7It is interesting to note that there was an error in the
UTurku system implementation causing it to fail to output any
events without arguments (Jari Björne, personal communica-
tion), likely contributing to the effect seen here.

Primary criteria New criteria
Group Rec. Prec. F Rec. Prec. F

FAUST 50.84 66.35 57.57 50.11 65.33 56.72
UMass 49.67 62.39 55.31 49.34 60.98 54.55

Stanford 49.16 56.37 52.52 42.00 50.80 45.98
ConcordU 50.91 43.37 46.84 43.42 37.18 40.06

UTurku 39.23 49.91 43.93 48.03 51.84 49.86
PredX 23.67 35.18 28.30 20.94 30.69 24.90

Table 6: Comparison of BioNLP ST 2011 ID CORE task
results.

The clear differences in performance and the
many cases in which the system rankings under the
two criteria differ demonstrate that the new evalua-
tion criteria can have a decisive effect in which ap-
proaches to event extraction appear preferred. While
there may be cases for which the original shared task
criteria are preferred, there is at the very minimum
a reasonable argument to be made that the emphasis
these criteria place on the extraction of each instance
of simple events is unlikely to reflect the needs of
many practical applications of event extraction.

While these experimental results demonstrate that
the new evaluation criteria emphasize substantially
different aspects of the performance of the systems
than the original criteria, they cannot per se serve
as an argument in favor of one set of criteria over
another. We hope that these results and the accom-
panying tools will encourage increased study and
discussion of evaluation criteria for event extraction
and more careful consideration of the needs of spe-
cific applications of the technology.

5 Discussion and Conclusions

We have presented a new resource combining analy-
ses from the systems participating in the GE, ID and
EPI main tasks of the BioNLP Shared Task 2011,
compiled with the collaboration of groups partic-
ipating in these tasks. We demonstrated one use
of the resource through an evaluation of develop-
ment set events that none of the participating sys-
tems could recover, finding that events involving
implicit arguments, coreference and participants in
more than once sentence continue to represent chal-
lenges to the event extraction systems that partici-
pated in these tasks.

We further argued in favor of new perspectives to
the evaluation of domain event extraction systems,
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emphasizing in particular the need for document-
level, “off-the-page” representations and evaluation
to complement the text-bound, instance-level eval-
uation criteria that have so far been applied in the
shared task evaluation. We proposed a variant of
the shared task standoff representation for support-
ing such evaluation, and introduced evaluation tools
implementing the proposed criteria. An evaluation
supported by the introduced resources demonstrated
that the new criteria can in cases provide substan-
tially different results and rankings of the systems,
confirming that the proposed evaluation can serve
as an informative complementary perspective into
event extraction performance.

In future work, we hope to further extend the cov-
erage of the provided system outputs as well as their
analysis to cover all participants of all tasks in the
BioNLP Shared Task 2011. We also aim to use the
compiled resource in further study of appropriate
criteria for the evaluation of event extraction meth-
ods and deeper analysis of the remaining challenges
in event extraction.

To encourage further study of all aspects of event
extraction, all resources and tools introduced in this
study are provided freely to the community from
http://2011.bionlp-st.org.
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Ohta, Jin-Dong Kim, and Jun’ichi Tsujii. 2011.
BioNLP Shared Task 2011: Supporting Resources. In
Proceedings of the BioNLP Shared Task 2011 Work-
shop.

Beth M. Sundheim. 1991. Third message understanding
evaluation and conference (MUC-3): Phase 1 status
report. In Proceedings of the Speech and Natural Lan-
guage Workshop, pages 301–305.

Sofie Van Landeghem, Sampo Pyysalo, Tomoko Ohta,
and Yves Van de Peer. 2010. Integration of static re-
lations to enhance event extraction from text. In Pro-
ceedings of BioNLP 2010, pages 144–152.

Sofie Van Landeghem, Thomas Abeel, Bernard De Baets,
and Yves Van de Peer. 2011a. Detecting entity rela-
tions as a supporting task for bio-molecular event ex-
traction. In Proceedings of BioNLP Shared Task 2011
Workshop, pages 147–148.

Sofie Van Landeghem, Filip Ginter, Yves Van de Peer,
and Tapio Salakoski. 2011b. Evex: a pubmed-scale
resource for homology-based generalization of text
mining predictions. In Proceedings of BioNLP 2011
Workshop, pages 28–37.

Andreas Vlachos and Mark Craven. 2011. Biomedical
event extraction from abstracts and full papers using
search-based structured prediction. In Proceedings of
BioNLP Shared Task 2011 Workshop, pages 36–40.

Katsumasa Yoshikawa, Sebastian Riedel, Tsutomu Hi-
rao, Masayuki Asahara, and Yuji Matsumoto. 2011.
Coreference based event-argument relation extraction
on biomedical text. Journal of Biomedical Semantics,
2(Suppl 5):S6.

108



Proceedings of the 2012 Workshop on Biomedical Natural Language Processing (BioNLP 2012), pages 109–117,
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Université Paris 13, France
thierry.hamon@univ-paris13.fr

Christopher Engström
Division of Applied Mathematics

Mälardalen University
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Abstract

The acquisition of semantic resources and re-
lations is an important task for several appli-
cations, such as query expansion, information
retrieval and extraction, machine translation.
However, their validity should also be com-
puted and indicated, especially for automatic
systems and applications. We exploit the com-
positionality based methods for the acquisi-
tion of synonymy relations and of indicators
of these synonyms. We then apply pager-
ank-derived algorithm to the obtained seman-
tic graph in order to filter out the acquired syn-
onyms. Evaluation performed with two inde-
pendent experts indicates that the quality of
synonyms is systematically improved by 10 to
15% after their filtering.

1 Introduction

Natural languages have extremely rich means to ex-
press or to hide semantic relations: these can be
more or less explicit. Nevertheless, the semantic
relations are important to various NLP tasks within
general or specialized languages (i.e., query expan-
sions, information retrieval and extraction, text min-
ing or machine translation) and their deciphering
must be tackled by automatic approaches. We fo-
cus in this work on synonymy relations. Thus, it
is important to be able to decide whether two terms
(i.e., anabolism and acetone anabolism, acetone an-
abolism and acetone biosynthesis, replication of mi-
tochondrial DNA and mtDNA replication) convey
the same, close or different meanings. According to
the ability of an automatic system to decipher such

relations, the answers of the system will be more or
less exhaustive. Several solutions may be exploited
when deciphering the synonymy relations:

1. Exploitation of the existing resources in which
the synonyms are already encoded. However,
in the biomedical domain, such resources are
not well described. If the morphological de-
scription is the most complete (NLM, 2007;
Schulz et al., 1999; Zweigenbaum et al., 2003),
little or no freely available synonym resources
can be found, while the existing terminologies
often lack the synonyms.

2. Exploitation and adaptation of the existing
methods (Grefenstette, 1994; Hamon et al.,
1998; Jacquemin et al., 1997; Shimizu et al.,
2008; Wang and Hirst, 2011).

3. Proposition of new methods specifically
adapted to the processed data.

Due to the lack of resources, we propose to ex-
ploit the solutions 2 and 3. In either of these situ-
ations, the question arises about the robustness and
the validity of the acquired relations. For instance,
(Hamon and Grabar, 2008) face two problems: (1)
contextual character of synonymy relations (Cruse,
1986), i.e., two words are considered as synonyms
if they can occur within the same context, which
makes this relation more or less broad depending on
the usage; (2) ability of automatic tools to detect and
characterize these relations, i.e., two words taken out
of their context can convey different relations than
the one expected. Our objective is to assess the relia-
bility of synonymy resources. We propose to weight
and to filter the synonym relations with the pager-
ank-derived algorithm (Brin and Page, 1998). When
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Figure 1: Parsing tree of the terms lipid storage and re-
tention of lipids

processing textual data, this algorithm has been pre-
viously applied in different contexts such as seman-
tic disambiguation (Mihalcea et al., 2004; Sinha and
Mihalcea, 2007; Agirre and Soroa, 2009), summa-
rization (Fernandez et al., 2009) and, more recently,
for the identification of synonyms (Sinha and Mi-
halcea, 2011). This last work takes into account the
usage of a given word in corpora and its known syn-
onyms from lexical resources. Other related works
propose also the exploitation of the random walk al-
gorithm for the detection of semantic relatedness of
words (Gaume, 2006; Hughes and Ramage, 2007)
and of documents (Hassan et al., 2007). Our work
is different from the previous work in several ways:
(1) the acquisition of synonymy is done on resources
provided by a specialized domain; (2) the pager-
ank algorithm is exploited for the filtering of seman-
tic relations generated with linguistically-based ap-
proaches; (3) the pagerank algorithm is adapted to
the small size of the processed data.

In the following of this paper, we present first the
material (section 2), then the method we propose
(section 3). We then describe the experiments per-
formed and the results (section 4), as well as their
evaluation and discussion (section 5). Finally, we
conclude and indicate some perspectives (section 6).

2 Material

We use the Gene Ontology (GO) as the original re-
source from which synonym lexicon (or elementary
synonym relations) are induced. The goal of the GO
is to produce a structured vocabulary for describing
the roles of genes and their products in any organ-
ism. GO terms are structured with four types of re-
lations: subsumption is-a, meronymy part-of,
synonymy and regulates. The version used in
the current work is issued from the UMLS 2011AA.
It provides 54,453 concepts and their 94,161 terms.
The generated pairs of terms have 119,430 is-a
and 101,254 synonymy relations.

3 Methods

Our method has several steps: preprocessing of GO
terms (section 3.1), induction of elementary syn-
onyms (section 3.2) and their characterization with
lexical and linguistic indicators (section 3.3), anal-
ysis of the synonymy graph, its weighting thanks to
the pagerank algorithm and its filtering (section 3.4).
We also perform an evaluation of the generated and
filtered synonymy relations (section 3.5).

In the following, we call original synonyms those
synonyms which are provided by GO, and we call
elementary synonyms those synonyms which are in-
duced by the compositionality based approach.

3.1 Preprocessing the GO terms: Ogmios NLP
platform

The aim of terminology preprocessing step is to
provide syntactic analysis of terms for computing
their syntactic dependency relations. We use the
Ogmios platform1 and perform: segmentation into
words and sentences; POS-tagging and lemmatiza-
tion (Tsuruoka et al., 2005); and syntactic analysis2.
Syntactic dependencies between term components
are computed according to assigned POS tags and
shallow parsing rules. Each term is considered as
a syntactic binary tree composed of two elements:
head component and expansion component. For in-
stance, lipid is the head component of the two terms
analyzed on figure 1.

3.2 Compositionality based induction of
synonyms

GO terms present compositional structure (Verspoor
et al., 2003; Mungall, 2004; Ogren et al., 2005). In
the example below (concept GO:0009073) the com-
positionality can be observed through the substitu-
tion of one of the components (underlined):

aromatic amino acid family biosynthesis
aromatic amino acid family anabolism
aromatic amino acid family formation
aromatic amino acid family synthesis

We propose to exploit the compositionality for in-
duction of synonym resources (i.e., biosynthesis, an-
abolism, formation, synthesis in the given example).

1http://search.cpan.org/∼thhamon/Alvis-NLPPlatform/
2http://search.cpan.org/∼thhamon/Lingua-YaTeA/
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While the cited works are based on the string match-
ing, our approach exploits their syntactic analysis,
which makes it independent on their surface graphi-
cal form (like examples on figure 1).

Compositionality assumes that the meaning of a
complex expression is fully determined by its syn-
tactic structure, the meaning of its parts and the com-
position function (Partee, 1984). This assumption is
very often true in specialized langages, which are
known to be compositional. On the basis of syntac-
tically analysed terms, we apply a set of composi-
tional rules: if the meaningM of two complex terms
A rel B and A′ rel B, where A is its head and B its
expansion components, is given as following:

M(A rel B) = f(M(A),M(B),M(rel))

M(A′ rel B) = f(M(A′),M(B),M(rel))

for a given composition function f , if A rel B and
A′ rel B are complex synonym terms and if B com-
ponents are identical (such as acetone within ace-
tone catabolism and acetone breakdown), then the
synonymy relation between components A and A′

{catabolism, breakdown} can be induced. The mod-
ification is also accepted on expansion component
B: from terms replication of mitochondrial DNA
and mtDNA replication (fig. 1), we can induce syn-
onymy between mitochondrial DNA and mtDNA.
Finally, the modification is also accepted for both
components A rel B and A′ rel B′, such as in
nicotinamide adenine dinucleotide catabolism and
NAD breakdown, where one pair, i.e. {catabolism,
breakdown}, can be known from previously pro-
cessed synonyms and allow to induce the new
pair {nicotinamide adenine dinucleotide, NAD}. It
should noticed that rel depends on the original re-
lations: if the original terms are synonyms then the
elementary terms are also synonyms, if the original
terms are hierarchically related then the elementary
terms are also hierarchically related, etc.

3.3 Lexically-based profiling of the induced
elementary synonyms

In order to test and improve the quality of the in-
duced synonymy relations, we confront these syn-
onyms with approaches which allow to acquire the
hyperonymy relations. All these resources are endo-
geneously acquired from the same terminology GO:

• Each induced pair of synonyms is controlled
for the lexical inclusion (Kleiber and Tamba,
1990; Bodenreider et al., 2001). If the test is
positive, like in the pair {DNA binding, bind-
ing} this would suggest that this pair may con-
vey a hierarchical relation. Indeed, it has been
observed that lexical subsumption marks often
a hierarchical subsumption. Thus, in the pair
{DNA binding, binding}, binding is the hierar-
chical parent of DNA binding, while DNA bind-
ing has a more specific meaning than binding.
One can assume that the cooccurrence of syn-
onymy with the lexical subsumption makes the
synonymy less reliable;

• The same compositional method, as described
in the previous section, is applied to original
GO term pairs related through is-a relations.
In this way, we can also infer is-a elemen-
tary relations. Thus, if a pair of induced syn-
onyms is also induced through is-a relations,
i.e. {binding, DNA binding}, this also makes
the synonymy relations less reliable.

In summary, an induced synonymy relation is con-
sidered to be less reliable when it cooccurs with
a lexical inclusion or with is-a relation. For in-
stance, several edges from figure 2 present the cooc-
currence of synonymy relations with the is-a rela-
tions (such as, {holding, retention}, {retention, stor-
age} or {retention, sequestering}).

3.4 Pagerank-derived filtering of the induced
elementary synonyms

The induced semantic relations can be represented
as graphs where the nodes correspond to words and
the edges to one or more relations between given two
words. An example of what it can look like can be
seen on figure 2: the induced synonymy relations
may indeed cooccur with non-synonymy relations,
like the hierarchical relations is-a. We propose to
use a pagerank approach (Brin and Page, 1998) in
order to separate a given graph of synonym relations
into subsets (or groups) within which all the words
are considered as synonyms with each other but not
with any other word outside their subset. In order
not to influence the results by the varying size of
the graphs, we exploit a non-normalized version of
pagerank (Engström, 2011). Thus, given the usual
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Figure 2: An example of graph generated thanks to the
induced semantic relations: pairs related with synonymy
relations syn may also be related with non-synonymy
relations (like hierarchical relation is-a)

normalized version P
(1)
Si

of pagerank:

Definition 1 P
(1)
S for system S is defined as the

eigenvector with eigenvalue one to the matrix

M = c(A + gvT )T + (1− c)v1T

where g is a n × 1 vector with zeros for nodes with
outgoing nodes and 1 for all dangling nodes, 0 <
c < 1, A is the linkmatrix with sum of every row
equal to one, v is a non-negative weightvector with
sum one.

As we mentioned, with the processed data we
have to use the non-normalized version of pagerank:

Definition 2 P
(2)
S for system S is defined as:

P
(2)
S =

P
(1)
S ||V ||1

d
, with d = 1−

∑
cAT P

(1)
S

where V is the part of a global weightvector corre-
sponding to the system S. We let V be the one vector
such that all words are weighted equally.

Looking at the example from figure 2, we start
from any node and then randomly either stop by a
probability c or choose (possibly weighted by edge-
weights) a new node by the probability 1 − c from
any of those linked to the chosen node. The page-
rank of a node can then be seen as the sum of the

probabilities of all paths to the node in question
(starting in every node once including itself).

Usually A is a two-dimensional matrix in which
the sum of every row is equal to one and all non-
zero elements are equal between them. In order to
use different types of relations and different weights
on these relations we calculate cA. Given B, where
B contains the weights of different edges and their
type, we calculate A as:

Ai,j = (Bi,j,SY N/(Bi,j,OTHER + 1))/ni

where ni is the total number of edges connected to
node i. We treat all relations as symmetric relations
for the filtering algorithm when creating B. While
some relations aren’t symmetric it seems reasonable
to assume they affect the likelihood of synonyms in
both directions. We also do not distinguish non-
synonym relations among them. However, we try
a few variations on how to weight A such as assign-
ing different weights to synonym and non-synonym
relations or using a logarithmic scale to decrease the
effect of very different weights in B.

Further to the weighting, the rows of A do not
necessarily sum to one. We propose then not to
choose a specific value for c, but to threshold the
sum of every row in cA to 0.95. This means that for
most of the rows we set crow = 1/

∑
Arow · 0.95,

but for rows with a low sum we don’t increase the
strength of the links but rather keep them as they
are (crow = 1). Choosing the threshold can be
seen as choosing c in the ordinary pagerank formu-
lation. A low threshold means that only the immedi-
ate surrounding of a node may impact its pagerank,
while a high threshold means that distant nodes may
also have an impact. Higher threshold is also use-
ful to separate the pagerank of nodes and to make
slower the convergence when calculating the pager-
ank. When the sum of all rows is less than one and
all non-zero elements are positive we can guarantee
that the pagerank algorithm converges (Bryan and
Leise, 2006). We also use the Power Method modi-
fied for the non-normalized version of pagerank (En-
gström, 2011). On the basis of these elements, we
apply the following algorithm for segmenting the
graph into groups of nodes:

1. Calculate weighted linkmatrix;
2. Calculate pagerank from uniform weightvector

vi;
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3. Select the node with the highest pagerank;

4. Calculate pagerank from non-uniform
weightvector (zero vector with a single 1
for the selected node);

5. Nodes with P (2) > cutoff are selected as syn-
onyms with selected node and each other;

6. Remove the found synonym nodes from the
graph;

7. If the graph is non empty, restart from step 1;

8. Otherwise end: words belonging to the same
group are considered as synonyms.

We present the application of the algorithm on
the example from figure 2 using the cutoff =
1.5. We start by calculating the weights on the
links (weighted linkmatrix). For instance, given
the relation from storage to retention we have:
Ai,j = (Bi,j,SY N/(Bi,j,OTHER + 1))/ni =
(1/(2 + 1))/3 = 1/9. After computing the
weights for all the relations and thresholding the
sum of rows to 0.95, when the sum of weights
out of a node is larger than 0.95, we obtain fig-
ure 3. This gives the pagerank from uniform vec-
tor [4.8590, 7.7182, 16.4029, 16.1573, 15.4152], in
which we select the node storage with the highest
pagerank. Pagerank from non-uniform weightvec-
tor is then [0.5490, 1.0970, 4.7875, 4.0467, 3.9079],
in which we select the nodes with rank larger than
cutoff = 1.5 (storage, sequestration, sequestering)
as synonyms. After removing these nodes, we re-
calculate the weight matrix and repeate the algo-
rithm: the two remaining nodes are found to belong
to the same group. We then terminate the algorithm.

3.5 Evaluation protocol

The evaluation is performed against the manually
validated synonymy relations. This validation has
been done by two independent experts with the
background in biology. They were asked to vali-
date the induced synonyms acquired as the step 3.2
of the method. The inter-expert Cohen’s kappa is
0.75. On the basis of this evaluation, we compute
the precision: percentage of relations which allow to
correctly group terms within the connected compo-
nents and the groups. We compute two kinds of pre-
cision (Sebastiani, 2002): micro-precision which is
the classical conception of this measure obtained at

3: storage 4: sequestering

1: holding

2: retention

5: sequestration

0.060.07

0.5

0.44

0.480.48

0.45

0.11

0.45

0.08

0.95

0.44

Figure 3: Example from figure 2 with weighted links

the level of the relations, and macro-precision which
corresponds to the mean of the precisions obtained
at the level of connected components or groups. The
evaluation is done with the induced synonyms and
also after their filtering with the pagerank-derived
algorithm. This last evaluation leads to a better ob-
servation of the efficiency of the pagerank algorithm.

4 Experiments and Results

The GO terms have been fully processed with the
NLP tools (POS-tagging and syntactic analysis) in
order to prepare the next step, during which the ele-
mentary relations and the indicators are acquired.

4.1 Application of the lexical NLP methods
We applied the NLP method to the GO terms.
The application of the compositionality approach to
original synonymy and hierarchical relations gen-
erated 3,707 and 10,068 elementary relations, syn-
onymous and hierarchical respectivelly. Depend-
ing on the syntactic structure of the original terms,
the synonymy relations are induced between simple
or complex terms, but also between their abbrevi-
ated and full forms, between the morpho-syntactic
variants, etc. Very few of these synonyms exist
within GO or within the WordNet resource (Fell-
baum, 1998). We also detected 1,608 lexical in-
clusions. The lexical inclusions and the is-a re-
lations are preserved only if they cooccur with in-
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duced synonymy relations. All these relations are
then grouped into connected components (figure 2):
the synonymy relations correspond to edges, term
components correspond to nodes, while the infor-
mation on is-a relations and on lexical inclusions
appears as reliability indicators of the synonymy
edges. A total of 2,017 connected components are
generated. The biggest connected component con-
tains 140 nodes and 183 edges. At this step, the con-
nected components are evaluated against the refer-
ence data: we compute the precision.

4.2 Filtering of the induced synonyms with the
pagerank-derived algorithm

We the apply the pagerank-derived algorithm to the
induced synonyms, but also to the combinations of
these synonyms with is-a relations and/or with
lexical inclusions. The objective is then to filter the
induced synonyms and to improve their reliability.
We perform seven experiments, in which the syn-
onymy and the indicators may receive the same im-
portance or may be weighted:

1. syn: only the elementary synonymy relations
are considered;

2. syn-isa: combination of synonymy and hierar-
chical is-a relations;

3. syn-incl: combination of synonymy relations
with lexical inclusions;

4. syn-isa-incl: combination of synonymy and hi-
erarchical relations with lexical inclusions;

5. syn-isa(535): combination of synonymy rela-
tions with lexical inclusions, using different
weights: (Ai,j = 5Bi,j,SY N/(3Bi,j,OTHER +
5))/ni;

6. syn-isa(353): combination of synonymy rela-
tions with lexical inclusions, using different
weights: (Ai,j = 3Bi,j,SY N/(5Bi,j,OTHER +
3))/ni.

7. syn-isa(log): combination of synonymy rela-
tions with lexical inclusions, using logarithmic
weights: (Ai,j = ((1/ln(2))ln(Bi,j,SY N +
1)/((1/ln(2))ln(Bi,j,OTHER + 2)))/ni.

According to the method described in section 3.4,
the connected components of the synonymy rela-
tions obtained in section 3.2 are segmented again
into one or more smaller and more homogeneous

groups. The number of groups varies between 745
and 1,798 across the experiments. Moreover, around
25% of the synonymy relations may be removed by
pagerank. These connected components and groups
can also be evaluated against the reference data and
we can compute the precision.

5 Evaluation and Discussion

The evaluation has been done by two indepen-
dent experts, with the Cohen’s kappa inter-expert
agreement 0.75. We exploit the reference data of
the two experts separately (we distinguish expert1
and expert2) and in common. We also distinguish
macro-precision and micro-precision. Finally, the
precision is first evaluated after the induction step
with the NLP methods, and then after the process-
ing of the acquired synonymy relations through the
pagerank-derived algorithm and their filtering.

For the weighting of the non-synonymy and syn-
onymy relations, we tested and applied several coef-
ficients: 5, 3 and 5 in experiment 5 (syn-isa535); 3,
5 and 3 in experiment 6 (syn-isa353), etc. Different
weights have been tested ranging from 1 to 7, as well
as the log variations. On the whole, these variations
have no significant impact on the results. But then, it
is very important to respect the dependence among
these coefficients and not to set them randomly.

The filtering of the synonymy relations has to con-
trol two factors: (1) the first is related to the fact
that the removed relations are to be true negatives
and that among them there should be no or a small
number of correct relations; while (2) the second is
related to the fact that the remaining relations are to
be true positives and that among them there should
be no or a small number of wrong relations.

Figure 4: Impact of the cutoff values on the filtering of
synonymy relations
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Figure 5: Evaluation of the results in terms of micro-precision miP and of macro-precision maP for connected
components and for groups of terms (performed according to the reference data provided by two experts)

On figure 4, we present the impact of the cut-
off values on the selection and filtering of the syn-
onyms. Like with other parameters, we have tested
several values between 0.5 and 4. This figure illus-
trates the distribution of the correctly removed rela-
tions. The cutoff values have an important impact
on the results: we can observe that the optimal cut-
off values are set between 1.5 and 2 because they
allow to remove the highest number of the wrong
relations. We have set the cutoff value to 1.5. The
choice of cutoff is an important factor for the defi-
nition of the amount of the links that are to be re-
moved: the higher the cutoff the higher the number
of clusters. On the data processed in this work, the
cutoff value has been defined experimentally thanks
to the observation of the processed data. For the gen-
eralization of this method to new unknown but sim-
ilar linguistic data (new terminology, new langage,
new domain...), the cutoff will be either set in order
to remove a certain predefined number of links or
will be defined from a typical sample of the data.

Contrary to the cutoff values, the choice of thresh-
old doesn’t greatly impact the results, although us-
ing a lower threshold makes it harder to choose a
good cutoff values since the ranking of different
nodes will be closer to each other.

As for the analysis of the precision and of the
relations which are correctly kept within the con-
nected components, let’s observe figure 5. On this
figure, we present the evaluation results performed
within the connected components with induced syn-

onyms (figure 5(a)) and within the groups of filtered
synonyms (figure 5(b)). On the y-axis we indicate
the precision values, and on the x-axis, we indicate
the different experiments performed as mentioned
above: 1 in which only synonyms are exploited, 2
in which synonyms are combined with hierarchical
is-a relations, 3 in which synonyms are combined
with lexical inclusions, etc. Horizontal lines corre-
spond to the precision obtained before the applica-
tion of the pagerank: they remain the same whatever
the experiment. These lines correspond to three ref-
erence data provided by the expert1, the expert2 and
by their common data. As for the points, they indi-
cate the precision obtained further to the pagerank:
it varies according to experiments and experts. On
the basis of figure 5, we can observe that:

• the difference between the expert evaluations is
very low (0.02);

• the pagerank allows to increase the precision
(between 0.10 and 0.15 for micro-precision,
while macro-precision varies by 0.05);

• the consideration of synonymy alone provides
performant results;

• the consideration of is-a relations improves
the results but lexical inclusions decrease them;

• the increased weight of some of the quality in-
dicators has no effect on the evaluation;

• macro-precision is superior to micro-precision
because our data contain mainly small groups,
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while the few large connected components have
a very low precision;

• there is but a small difference between con-
nected components (figure 5(a)) and groups
(figure 5(b));

• the consideration of is-a relations and of lex-
ical inclusions provides the best precision but
the amount of the remaining synonyms is then
the lowest. As we explained, it is important
to keep the highest number of the correct re-
lations, although when a lot of relations is re-
moved, it is logical to obtain a higher precision.
This means that the combination of is-a re-
lations and of lexical inclusions is not suitable
because it removes too much of synonyms.

In relation with this last observation, is should be
noted that the balance between the removed and the
remaining relations is a subtle parameter.

The obtained results indicate that the pagerank is
indeed useful for the filtering of synonyms, although
the parameters exploited by this algorithm must be
defined accurately. Thus, it appears that synonymy
alone may be sufficient for this filtering. When the
quality indicators are considered, is-a relations are
suitable for this filtering because very often they pro-
pose true hierarchical relations. However, the lex-
ical inclusions have a negative effect of the filter-
ing. We assume this is due to the fact that the lexical
inclusions are ambiguous: they may convey hierar-
chical relations but also equivalence relations (Har-
alambous and Lavagnino, 2011). Indeed, contextu-
ally some terms may be shortened or may be subject
to an elision while their meaning is not impacted.

Currently, the pagerank is limited by the fact that
it is applied to a relatively small set of data while
it is designed to process very large data. Then, it
can be interesting to enrich the model and to be able
to take into account other quality indicators, such as
frequencies, productivity or other semantic relations
proposed within GO (part-of and regulates).
Moreover, we can also give a lesser weight to some
indicators (such as lexical inclusions) with penal-
ties and keep the strong weight for other indicators.
In the current model of the pagerank, we thresh-
old rows to < 0.95. However, we assume that the
algorithm may have problems with very large and
very connected graphs: the pagerank may spread

out in the graph too much and possibly allow the
first words with the highest pagerank to make groups
with only one word. This can be corrected if an addi-
tional calculation is added and when the group con-
tains only one word at step 5.

6 Conclusion and Perspectives

We propose an original approach for inducing syn-
onyms from terminologies and for their filtering.
The methods exploit the NLP methods, composi-
tionality principle and pagerank-derived algorithm.
This work is motivated by the fact that synonymy
is a contextual relation and its validity and univer-
sality are not guaranteed. We assume the seman-
tic cohesiveness of synonymy relations should be
qualified and quantified. The compositionality and
NLP methods allow to acquire endogeneously the
synonymy relations and the quality indicators, while
the pagerank-derived algorithm leads to the filtering
of the acquired synonyms. Its functionning is based
upon the synonymy relations and also upon the ac-
quired indicators (is-a relations and lexical inclu-
sions). It appears that the synonymy relations alone
provide good clues for their filtering. The is-a re-
lations are also fruitful, while the use of the lexical
inclusions appears not to be suitable.

In the future, we plan to add and test other indi-
cators. Other experiments will also be done with the
pagerank approach. For instance, it will be inter-
esting to propose a model which takes into account
that, within a cluster, words may be synonym with
some cluster words but not with all the words of the
cluster. This method can be adapted for the process-
ing of corpora and also applied to terms from other
terminologies. The acquired and filtered synonymy
relations will be exploited within the NLP applica-
tions in order to test the efficiency of these resources
and also the usefulness and efficiency of their filter-
ing. Moreover, the compositionality approach can
be adapted and exploited for the paraphrasing of the
biomedical terms and for the improvement of their
understanding by non expert people.
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52(1):37–68.

S Hassan, R Mihalcea, and C Banea. 2007. Random-
walk term weighting for improved text classification.
In ICSC, pages 242–249.

T Hughes and D Ramage. 2007. Lexical semantic relat-
edness with random graph walks. In EMNLP-CoNLL,
pages 581–589. Association for Computational Lin-
guistics.

C Jacquemin, JL Klavans, and E Tzoukerman. 1997.
Expansion of multi-word terms for indexing and re-
trieval using morphology and syntax. In ACL/EACL
97), pages 24–31, Barcelona, Spain.

G Kleiber and I Tamba. 1990. L’hyperonymie revisitée :
inclusion et hiérarchie. Langages, 98:7–32, juin.

R Mihalcea, P Tarau, and E Figa. 2004. Pagerank on se-
mantic networks, with application to word sense dis-
ambiguation. In COLING, pages 1126–1132.

CJ Mungall. 2004. Obol: integrating language and
meaning in bio-ontologies. Comparative and Func-
tional Genomics, 5(6-7):509–520.

NLM, 2007. UMLS Knowledge Sources Manual. Na-
tional Library of Medicine, Bethesda, Maryland.
www.nlm.nih.gov/research/umls/.

PV Ogren, KB Cohen, and L Hunter. 2005. Implica-
tions of compositionality in the Gene Ontology for its
curation and usage. In Pacific Symposium of Biocom-
puting, pages 174–185.

BH Partee, 1984. Compositionality. F Landman and F
Veltman.

S Schulz, M Romacker, P Franz, A Zaiss, R Klar, and
U Hahn. 1999. Towards a multilingual morpheme
thesaurus for medical free-text retrieval. In Medical
Informatics in Europe (MIE), pages 891–4.

F Sebastiani. 2002. Machine learning in automated text
categorization. ACM Computing Surveys, 34(1):1–47.

N Shimizu, M Hagiwara, Y Ogawa, K Toyama, and
H Nakagawa. 2008. Metric learning for synonym ac-
quisition. In COLING, pages 793–800.

R Sinha and R Mihalcea. 2007. Unsupervised graph-
based word sense disambiguation using measures of
word semantic similarity. In IEEE International Con-
ference on Semantic Computing (ICSC 2007), pages
363–369.

RS Sinha and RF Mihalcea. 2011. Using centrality algo-
rithms on directed graphs for synonym expansion. In
FLAIRS.

Y Tsuruoka, Y Tateishi, JD Kim, T Ohta, J McNaught,
S Ananiadou, and J Tsujii. 2005. Developing a ro-
bust part-of-speech tagger for biomedical text. LNCS,
3746:382–392.

CM Verspoor, C Joslyn, and GJ Papcun. 2003. The Gene
Ontology as a source of lexical semantic knowledge
for a biological natural language processing applica-
tion. In SIGIR workshop on Text Analysis and Search
for Bioinformatics, pages 51–56.

T Wang and G Hirst. 2011. Exploring patterns in dictio-
nary definitions for synonym extraction. Natural Lan-
guage Engineering, 17.

P Zweigenbaum, R Baud, A Burgun, F Namer, É Jar-
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Abstract

In this paper we explore the applicability of
existing coreference resolution systems to a
biomedical genre: radiology reports. Analysis
revealed that, due to the idiosyncrasies of the
domain, both the formulation of the problem
of coreference resolution and its solution need
significant domain adaptation work. We refor-
mulated the task and developed an unsuper-
vised algorithm based on heuristics for coref-
erence resolution in radiology reports. The
algorithm is shown to perform well on a test
dataset of 150 manually annotated radiology
reports.

1 Introduction

Coreference resolution is the process of determin-
ing whether two expressions in natural language re-
fer to the same entity in the world. General purpose
coreference resolution systems typically cluster all
mentions (usually noun phrases) in a document into
coreference chains according to the underlying ref-
erence entity. A number of coreference resolution
algorithms have been developed for general texts. To
name a few, Soon et al. (2001) employed machine
learning on the task and achieved an F-score of 62.6
and 60.4 on the MUC-6 (1995) and MUC-7 (1997)
coreference corpora respectively. Ng et al. (2002)
improved this learning framework and achieved F-
scores of 70.4 and 63.4 respectively on the same
datasets.

There are also a number of freely available off-
the-shelf coreference resolution modules developed

for the general domain. For example, BART (Vers-
ley et al., 2008) is an open source coreference reso-
lution system which provides an implementation of
the Soon et al. algorithm (2001). The Stanford De-
terministic Coreference Resolution System (Raghu-
nathan et al., 2010) uses an unsupervised sieve-like
approach to coreference resolution. Similarly, the
GATE Information Extraction system (Cunningham
et al., 2002) includes a rule-based coreference reso-
lution module consisting of orthography-based pat-
terns and a pronominal coreferencer (matching pro-
nouns to the most recent referent).

While coreference resolution is a universal dis-
course problem, both the scope of the problem and
its solution could vary significantly across domains
and text genres. Newswire coreference resolution
corpora (such as the MUC corpus) and general pur-
pose tools do not always fit the needs of specific do-
mains such as the biomedical domain well.

The importance and distinctive characteristics of
coreference resolution for biomedical articles has
been recognized, for example (Castano et al., 2002;
Gasperin, 2006; Gasperin et al., 2007; Su et al.,
2008). Within the biomedical field, clinical texts
have been noted as a genre that needs specialized
coreference corpora and methodologies (Zheng et
al., 2011). The importance of the task for the clini-
cal domain has been attested by the 2011 i2b2 NLP
shared task (Informatics for Integrating Biology and
the Bedside1) which provided an evaluation plat-
form for coreference resolution for clinical texts.

However, even within the clinical domain, coref-
erence in different sub-genres could vary signifi-

1https://www.i2b2.org/NLP/Coreference/
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cantly. In this paper we demonstrate the idiosyn-
crasies of the task of coreference resolution in a
clinical domain sub-genre, radiology reports, and
describe an unsupervised system developed for the
task.

2 Coreference Resolution for Radiology
Reports

Radiology reports have some unique characteristics
that preclude the use of coreference resolution mod-
ules or algorithms developed for the general biomed-
ical domain or even for other types of clinical texts.
The radiology report is a clinical text used to com-
municate medical image findings and observations
to referring physicians. Typically, radiology reports
are produced by radiologists after examining medi-
cal images and are used to describe the findings and
observations present in the accompanied images.

The radiology report accompanies an imaging
study and frequently refers to artifacts present in
the image. In radiology reports, artifacts present
in the image exhibit discourse salience, and as a
result are often introduced with definite pronouns
and articles. For example, consider the sentence
The pericardial space is clear. The definite noun
phrase the pericardial space does not represent an
anaphoric (or cataphoric) discourse entity and has
no antecedent. In contrast, coreference resolution
in general texts typically considers definite noun
phrases to be anaphoric discourse entities and at-
tempts to find their antecedents.

Another important distinction between general
purpose coreference resolution and the coreference
resolution module needed by an NLP system for
clinical texts is the scope of the task. General pur-
pose coreference resolution systems typically cluster
all mentions in a document into coreference chains.
Such comprehensive mention clustering is often not
necessary for the purposes of clinical text NLP sys-
tems. Biomedical Information Extraction systems
typically first identify named entities (medical con-
cepts) and map them to unambiguous biomedical
standard vocabularies (e.g. UMLS2 or RadLex3 in
the radiological domain). While multiple mentions
of the same named entity could exist in a document,

2http://www.nlm.nih.gov/research/umls/
3http://www.radlex.org/

in most cases these mentions were previously as-
signed to the same medical concept. For example,
multiple report mentions of ‘the heart’ or ‘the lung’
will normally be mapped to the same medical con-
cept and clustering of these mentions into corefer-
ence chains is typically not needed.

3 Task Definition

Analysis revealed that the coreference resolution
task could be simplified and still meet the needs of
most Information Extraction tasks relevant to the ra-
diological domain. Due to their nature, texts de-
scribing medical image finding and observations do
not contain most pronominal references typically
targeted by coreference resolution systems. For ex-
ample, no occurrence of personal pronouns (e.g. he,
I), possessive pronouns (e.g. his, my), and indefi-
nite pronouns (e.g. anyone, nobody) was found in
the validation dataset. Demonstrative pronouns and
non-pleonastic ‘it’ mentions were the only pronom-
inal references observed in the dataset4. The fol-
lowing examples demonstrate the use of demonstra-
tive pronouns and the non-pleonastic ‘it’ pronoun
(shown in bold):

There is prominent soft tissue swelling involving
the premaxillary tissues. This measures approxi-
mately 15 mm in thickness and extends to the infe-
rior aspect of the nose.

There is a foreign object in the proximal left main-
stem bronchus on series 11 image 17 that was not
present on the prior study. It has a somewhat ovoid
to linear configuration.

Following these observations, the coreference res-
olution task has been simplified as follows. Corefer-
ence chains are assigned only for demonstrative pro-
nouns and ‘it’ noun phrases. The coreference reso-
lution task then involves selecting for each mention
a single best antecedent among previously annotated
named entities (medical concepts) or the NULL an-
tecedent.

4 Dataset

A total of 300 radiology reports were set aside for
validation and testing purposes. The dataset consists

4Pleonastic ‘it’ refers to its use as a ‘dummy’ pronoun, e.g.
It is raining, while non-pleonastic use of the pronoun refers to
a specific entity.
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Figure 1: A sample DICOM image from an imaging
study described by the following radiology report snip-
pet: . . . FINDINGS: Targeted sonography of the upper in-
ner left breast was performed. At the site of palpable ab-
normality, at the 11 o’clock position 3 cm from the nipple,
there is an oval circumscribed, benign-appearing hypoe-
choic mass measuring 2.0 x 1.6 x 1.4 cm. There is mild
internal blood flow. It is surrounded by normal appearing
glandular breast tissue.. . .

of 100 Computed Tomography Chest reports, 100
Ultrasound Breast reports, and 100 Magnetic Res-
onance Brain reports, all randomly selected based
on their report types from a dataset of more than
100,000 de-identified reports spanning a period of
9 years5. These three types of reports represent
a diverse dataset covering representative imaging
modalities and body regions. Figure 1 shows a sam-
ple Breast Ultrasound DICOM6 image and its asso-
ciated radiology report.

The reports were previously tagged (using an au-
tomated system) with medical concepts and their
semantic types (e.g. anatomical entity, disorder,
imaging observation, etc.). Half of the dataset (150
reports) was manually annotated with coreference
chains using the simplified task definition described
above. The other half of the dataset was used for
validation of the system described next.

5 Method and Results

The coreference resolution task involves selecting
for each mention a single best antecedent among
previously annotated named entities or the NULL
antecedent. Mentions are demonstrative pronoun
phrases or definite noun phrases containing previ-
ously annotated named entities.

5The collection is a proprietary dataset belonging to North-
western University Medical School.

6Digital Imaging and Communications in Medicine, c© The
National Electrical Manufacturers Association.

We implemented an algorithm for the task de-
scribed above which was inspired by the work of
Haghighi and Klein (2009). The algorithm first iden-
tifies mentions within each report and orders them
linearly according to the position of the mention
head. Then it selects the antecedent (or the NULL
antecedent) for each mention as follows:

1. The possible antecedent candidates are first fil-
tered based on a distance constraint. Only mentions
of interest belonging to the preceding two sentences
are considered. The rationale for this filtering step is
that radiology reports are typically very concise and
less cohesive than general texts. Paragraphs often
describe multiple observations and anatomical enti-
ties sequentially and rarely refer to mentions more
distant than the preceding two sentences.

2. The remaining antecedent candidates are then
filtered based on a syntactic constraint: the co-
referent mentions must agree in number (singular or
plural based on the noun phrase head).

3. The remaining antecedent candidates are then
filtered based on a semantic constraint. If the two
mentions refer to named entities, the named entities
need to have the same semantic category7.

4. After filtering, the closest mention from the set
of remaining possible antecedents is selected. If the
set is empty, the NULL antecedent is selected.

Pairwise coreference decisions are considered
transitive and antecedent matches are propagated
transitively to all paired co-referents.

The algorithm was evaluated on the manually an-
notated test dataset. Results (Table 1) were com-
puted using the pairwise F1-score measure: preci-
sion, recall, and F1-score were computed over all
pairs of mentions in the same coreference cluster.

Precision Recall F1-score
74.90 48.22 58.66

Table 1: Pairwise coreference resolution results.

The system performance is within the range of
state-of-the-art supervised and unsupervised coref-
erence resolution systems8. F1-scores could range

7The same semantic type in the case of UMLS concepts or
the same parent in the case of RadLex concepts.

8Source code for the described system will be made avail-
able upon request.
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between 39.8 and 67.3 for various methods and
test sets (Haghighi and Klein, 2009). The simpli-
fication of the coreference resolution problem de-
scribed above allowed us to focus only on corefer-
ence chains of interest to clinical text Information
Extraction tasks and positively influenced the out-
come. In addition, our goal was to focus on high
precision results as opposed to optimizing the over-
all F1-score. This guarantees that coreference reso-
lution errors will result in mostly omissions of coref-
erence pairs and will not introduce information ex-
traction inaccuracies.

6 Conclusion

In this paper, we presented some of the challenges
involved in the task of adapting coreference resolu-
tion for the domain of clinical radiology. We pre-
sented a domain-specific definition of the corefer-
ence resolution task. The task was reformulated and
simplified in a practical manner that ensures that the
needs of biomedical information extraction systems
are still met. We developed an unsupervised ap-
proach to the task of coreference resolution of radi-
ology reports and demonstrate state-of-the-art preci-
sion and reasonable recall results. The developed
system is made publicly available to the NLP re-
search community.
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Montréal, Canada, June 8, 2012. c©2012 Association for Computational Linguistics

What can NLP tell us about BioNLP?

Attapol Thamrongrattanarit, Michael Shafir, Michael Crivaro, Bensiin Borukhov, Marie Meteer
Department of Computer Science

Brandeis University
Waltham, MA 02453, USA

{tet, mshafir, mcrivaro, bborukhov, mmeteer}@brandeis.edu

Abstract

The goal of this work is to apply NLP tech-
niques to the field of BioNLP in order to gain
a better insight into the field and show connec-
tions and trends that might not otherwise be
apparent. The data we analyzed was the pro-
ceedings from last decade of BioNLP work-
shops. Our findings reveal the prominent re-
search problems and techniques in the field,
their progression over time, the approaches
that researchers are using to solve those prob-
lems, insightful ways to categorize works in
the field, and the prominent researchers and
groups whose works are influencing the field.

1 Introduction

Thanks to improving technology and the discovery
of stronger statistical methods, natural language pro-
cessing techniques have more power than ever to
give us insights into real datasets too large for hu-
mans to efficiently process. In the field of BioNLP,
we see that natural language processing has a wide
range of applications within the medical domain
from analysis of clinical data to literature. With
the increasing amount of publications in this grow-
ing field, building a classification structure is help-
ful both for categorizing papers in a sensible way
and for recognizing the trends that brought the field
to where it is today. Understanding the current na-
ture of the field can show us where the most effort
is needed, while taking a look at where the field has
been can highlight successes and even unanswered
questions.

As the use of NLP in the medical domain has ex-
panded in recent years so has the amount of freely-
available online research. With this wealth of infor-
mation comes a problem, however, as it is not truly
feasible for humans to read through all the research
out there and classify it in a way that will capture the
less-obvious trends and the finer relationships be-
tween seemingly-disconnected works. Instead, we
propose that statistical methods can help us discover
both the most reasonable way to partition the field
and also see how the research has changed over the
past decade. The longer term goal for the work is to
contribute to a “map” of the field that can be a com-
munity resource, such as www.medlingmap.org, de-
scribed in Meteer, et al. (2012).

Schuemie et al. (2009) used clustering techniques
to analyze the domain of Medical Informatics. They
processed a large number of Medline abstracts to
find a subset of the journals classified as “Medical
Informatics” whose content was sufficiently related
to constitute a basis for the field. Using hierarchi-
cal clustering, they determined that such a group of
journals exists and, as we might expect, the rest of
the journals were largely disconnected. They also
used this cluster of journals as the basis for a topic
modeling task. Analyzing the articles from their new
basis of journals, they found three very strong, topic-
based clusters, each comprised of three sub-clusters.
Overall, Schuemie et al. (2009) demonstrated how it
is possible to gain a great deal of insight into the na-
ture of a field by using statistical methods over that
field’s literature. More recently, Gupta and Manning
(2011) used automatic methods to tag documents for
”focus,” ”technique,” and ”domain” by examining

122



over 15,000 ACL abstracts. This level of categoriza-
tion is useful because it expands beyond the simple
notion of the ”topic” to implicitly show if a work,
for example, is about an application of named-entity
recognition or if it simply uses NER to achieve a
greater task. The techniques demonstrated by Gupta
and Manning could be very enlightening if applied
to the BioNLP proceedings, though in this paper we
refrain from drawing conclusions about individual
papers. Instead, we will relate them through the top-
ics extracted from the full-text proceedings.

For our task, we look to the ACL and NAACL-
associated workshops on NLP applications in the
medical domain. Entering its 11th year, the BioNLP
workshop (under a variety of names) has given
us ten rich and varied proceedings in addition to
a pair of more focused shared tasks. All in all,
the workshops have produced over 270 unique pa-
pers. Our data of 270 documents was small relative
to (Schuemie et al., 2009) 6.3 million documents;
therefore, we chose to expand our analysis to the
full text of the documents instead of just the ab-
stracts. Additionally, using the full papers allowed
us to capture information about document content
that abstracts alone could not provide.

2 Methods and Results

2.1 Pipeline Architecture

We implemented a document processing pipeline
that would allow our approaches to be generaliz-
able, easily reproducible, and extendable. Each
of our analytic processes was integrated into this
pipeline and parameterized to allow us proper flex-
ibility for empirical experimentation. The pipeline
works by managing the interaction between a con-
figurable set of data layers and a configurable set
of processing stages over those layers. It supports
saving and loading its internal state between stages.
In addition, layers and stages follow specific tem-
plates that reduce the amount of code to write and
maintain. The ordering and activation of each stage
is also parameterized. This pipeline allowed us to
quickly and efficiently experiment with various ap-
proaches and combine them. The sample imple-
mentation of this pipeline is available publicly at
github.com/attapol/mapping bionlp.
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Figure 1: Average topic proportion across all the docu-
ments output by the LDA model

2.2 Preprocessing

The papers from the BioNLP workshop are all avail-
able freely from the ACL Anthology Archive 1. We
first extracted the text from the PDF files using
pdf2text unix tool and then tagged them all for title,
authors, places of origin, abstract, content, and ref-
erences. In all cases, the abstract, content, and refer-
ences were separated automatically using a script,
and the places had to be hand-annotated. Papers
from 2004 onward (starting with the first BioLINK
workshop) have complete BibTeX entries that al-
lowed us to automatically extract the titles and au-
thors, but for 2002 and 2003 this work had to be
done manually. Since we wanted to perform our
analysis solely on the prose of the papers, and not on
any of the numerical data, we filtered out portions of
the text containing elements such as tables, graphs,
footnotes, and URLs. We also filtered out stopwords
(as defined by the NLTK package (Bird and Loper,
2004) for Python).

1aclweb.org
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2.3 Topic Modeling

Using the Mallet toolkit (McCallum, 2002), we were
able to generate topics from our cleaned data using
the Latent Dirichlet Allocation (LDA) model. This
approach allows us to represent each document as a
vector of topic proportions instead of a bag of words,
which prevents the problem of sparsity. When we
set the number of topics to 30, the system output a
set of distinct topics that seem to describe a range
of tasks and methods within the domain of BioNLP.
The topics generated by the LDA model reflect areas
of study that are being pursued, techniques that are
being applied, and resources that are being consulted
in the field. A list of the generated topics along with
the associated keywords is shown in Table 1 and the
distributions of the topics across the entire document
set is displayed in Figure 1.

Additionally, we found that the topics generated
by LDA were more informative about the full con-
tent of a work than those generated by TF-IDF as
TF-IDF would often give too much weight to spe-
cific examples over general concepts. For exam-
ple, TF-IDF tended to select specific names of re-
sources and ontologies rather than general terms.
For example, it selected “Frame-net” instead “ontol-
ogy” and “RadLex” instead of “lexicon”. We con-
cluded that, while interesting, TF-IDF results were
not strongly suited for capturing an overall glimpse
of the field. However, we think that TF-IDF can be
much more useful in its more traditional capacity of
finding document-specific keywords; we aim to use
these indices to partially automate keyword genera-
tion for MedlingMap (Meteer et al., 2012), which is
our accompanying project.

2.4 Topic Correlation

While looking at the topic proportions for each of
our LDA topics overall can help us paint a broad
picture of the field, it can also help to look at the
relationship between these topics as they occur in
the documents. Some topics appear highly ranked
in nearly all papers, such as the topic that is char-
acterized by terms such as “system” and “results”,
and the topic that includes “precision” and “recall”
because they reflect the performance evaluation con-
vention in the field. However, most topics are only
dominant in a small subset of the papers. Some
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Figure 2: The bar plot shows the frequency of the co-
occurrences between the event extraction topic and some
of the method-related topics.

topics refer to tasks (e.g. named-entity recognition,
hedging) and others refer to techniques (e.g. CRFs,
parsing). We can look at how often pairs of task-
related topic and method-related topic co-occur to
see if researchers in the community are using certain
techniques in conjunction with solving certain prob-
lems. We first turned a topic proportion vector into a
binary vector where each element indicates which
topic is discussed more extensively than average.
Then, we counted the co-occurrences of tasks and
methods of interest. To demonstrate this, we com-
puted the number of papers that substantially discuss
event extraction in conjunction with parsing, graph,
lexical categories, or semantic knowledge (Figure
2). This topic comparison method provides a means
of visualizing how researchers in the field are ap-
proaching BioNLP problems. It reveals that parsing
and graph-based methods are commonly used in bio-
logical event extraction, while lexical categories and
semantic knowledge are not as central to many of the
approaches to this task. Moving forward, tracking
how these correlations change over time will pro-
vide an insightful reflection of the field’s progress
on the task in a more meaningful way than evalu-
ation scores alone. While a deeper analysis of all
of such trends is beyond the scope of this paper, it
certainly warrants further investigation.
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Table 1: The resulting topics and their associated keywords generated by LDA model with 30 topics
Topic Name Keywords
Event Extraction event, task, extraction, types, data, annotation
Coreference Resolution anaphora, resolution, referring, links, antecedent
Graph graph, relationships, nodes, edges, path, constraint, semanics
Clinical Coding medical, data, codes, patients, notes, reports
Hedging negation, scope, cues, speculative, hedge, lexical
Clinical Data condition, historical, clinical, temporal, reports, context
Bacteria Task bacteria, names, location, organisms, taxonomic, host, roles, type
Entity Relations relations, entities, feature, static, renaming, annotated, pairs
Document Structure Analysis rst, classification, abstracts, identification, data, terms
Q&A question, answer, structure, passage, evidence, purpose
Event Triggers triggers, dependency, binding, type, training, token, detection
Semantic Knowledge semantic, frame, structures, argument, patterns, domain, types
Protein Interaction protein, patterns, interaction, extraction, biological
Parsing dependency, parser, tree, syntactic, structures, grammar, link
Name Normalization gene, names, dictionary, normalization, protein, database, synonyms
Named Entity Recognition entity, named, word, recognition, features, class, protein
Information Retrieval search, queries, interface, text, retrieval, document
Corpus Annotation corpus, annotation, guidelines, agreement, papers
Lexical Categories semantic, categories, resources, simstring, lexical, gazetteer, features
Research text, figure, knowledge, domain, research, complex, processing
CRF crf, skip, chain, linear, dependency, words, edges, sentence
Result Discussion system, based, results, set, table, test, shown, approach
Biological Tasks species, disease, mutation, mentions, features, entities, acronym
UMLS terms, semantic, phrases, umls, concepts, ontology, corpus
Word/Phrase Methods words, measures, morphological, tag, token, chunking, form
WSD disambiguation, sense, word, semantic, wsd, ambiguous
Result Analysis found, number, precision, recall, cases, high, related, results
Classification features, training, data, classification, set, learning, svm
Modeling/Training training, data, model, tagger, performance, corpus, annotated
Syntax attachment, pps, np, fragments, pp, noun, vp, nos, pattern

2.5 Trends within the subdisciplines in
Biomedical NLP Literature

Our analysis of temporal trends builds on the idea
proposed by (Hall et al., 2008) in their analysis of
the changing trends in the field of computational lin-
guistics over time. In their approach, they attempted,
among other things, to analyze which topics were up
and coming in the field and which were becoming
less popular. Given their sound results, we decided
to perform the same kind of trend analysis over the
BioNLP topics. For many of our 30 topics, there
was little change in the topic frequency over time.
Considering the relative youth of the BioNLP field,
this result is not entirely surprising. We did, how-
ever, find a few topics that have undergone notable
changes in these past ten years, as observable in Fig-
ure 3. In particular, we found that two topics have
seen surges of activity in recent years, whereas there
were three topics that started out strong in the early

years but that have since petered off. The two top-
ics that have gained popularity in the past few years
both involve biomedical events. Specifically, one
such topic is primarily about event extraction tasks,
and the other is about event triggers and the more
fine-grained roles one needs to tag to categorize such
events. The popularity of these two tasks is hardly
surprising, given that they were the focus of the 2009
and 2011 shared tasks which were about working
with events in both general and detailed ways. We
do notice, however, that the growing trends continue
in 2010 as well, when there was no shared task, and
so we can see that events are of great interest in
the field at present even without the added incen-
tive of the shared tasks. It is reasonable to suggest
that the 2009 BioNLP Shared Task in event extrac-
tion generated interest in the topic that continued
through 2010 and 2011. Two more topics originally
saw their popularity rise in the early years, but have
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Figure 3: Topic proportions for some topics have gone through dramatic changes, which reflect how research interest
and methodology evolve over time.

since seen it fade. Each of these is a specific task:
named-entity recognition, which dropped off after
2004, and protein interaction, which saw a sharp de-
cline after 2005. Although a detailed causal analysis
is beyond the scope of this paper, we might wonder
what accounts for these drops in topic proportion.
The explanation that seems most likely is that great
strides were made in these areas early on, but we
have since reached a plateau in advancements. As
such, the research has moved elsewhere. The only
topic to see a steady decrease from the start was the
topic associated with the Unified Medical Language
System. In general, we can view a trend associated
with a resource differently from one associated with
a task. Above, when discussing tasks, we saw where
the research currently has been heading and where it
has been. With a resource, we could consider an up-
ward trend to represent either an increased number
of applications to a task or perhaps an expansion of
the resource itself. In the case of UMLS, the down-
ward trend likely suggests that the field has moved
away from this particular resource, either because it
does not apply as well to newer tasks or because it
has been replaced with something more powerful.

2.6 Cluster Analysis

Our next step with the LDA-generated topics was
to run a k-means clustering algorithm. We used the
same topic proportion vector and a Euclidean met-
ric to create the feature space for clustering. We
used the standard k-means function in the statisti-
cal language R (R Development Core Team, 2010).

The assumption of the LDA model biases each topic
proportion vector to be sparse (Blei et al., 2003), and
this turns out to be true in our data set. Therefore, we
chose the number of clusters to match the number of
topics so that the document space can be partitioned
proportionally to its dimensionality. This clustering
provides us with a useful schema for document clas-
sification within the domain of BioNLP. We can use
the clusters as a guide for how to organize the cur-
rent papers, and we can also view the clusters as a
guide for how to select relevant research to build fu-
ture work on. Clusters bring together related papers
from different research groups and multiple work-
shops, such as those shown in Table 2. In all of these
examples, the selection of these sets of papers sim-
ply based on keyword search would be very difficult,
since many of the key terms are going to be present
in a much larger set of documents.

2.7 Author Relation Analysis

As an additional task, we investigated the connec-
tions between authors in the BioNLP proceedings.
Eggers et al. (2005) used a graph to visualize who
was being cited by whom in ISI publications. There,
the hope was to identify which authors worked
within the same subdisciplines by examining clus-
ters within the citation graph. By examining who
cited whom in the BioNLP publications, we hoped
instead to uncover the authors of the most influen-
tial papers, both within our own clusters and outside
the scope of the BioNLP workshops. In our model,
which can be viewed in Figure 4, we constructed a
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List of papers assigned to the cluster where the most discussed topic is parsing (44.74% on average)
A Comparative Study of Syntactic Parsers for Event Extraction
Analysis of Link Grammar on Biomedical Dependency Corpus Targeted at Protein-Protein Interactions
On the unification of syntactic annotations under the Stanford dependency scheme
A Transformational-based Learner for Dependency Grammars in Discharge Summaries
A Study on Dependency Tree Kernels for Automatic Extraction of Protein-Protein Interaction

List of papers assigned to the cluster where the most discussed topic is clinical data (48.74% on average)
Applying the TARSQI Toolkit to Augment Text Mining of EHRs
Temporal Annotation of Clinical Text
Extracting Distinctive Features of Swine (H1N1) Flu through Data Mining Clinical Documents
ConText: An Algorithm for Identifying Contextual Features from Clinical Text
Distinguishing Historical from Current Problems in Clinical Reports – Which Textual Features Help?

Table 2: Two sample clusters from running k-means clustering algorithm on the corpus

Figure 4: Citation relation graph. Each node represents an author whose papers are either published in the BioNLP
proceedings or are cited by one of the papers in the proceedings. Each edge represents a citation activity.

directed graph of author citations from the BioNLP
workshops and shared tasks. We disregarded the au-
thor ordering within each paper and gave the same
weights for all authors whose names appear on the
paper. In this graph, a node points to another node if
that author cited the other author at least three times.
Additionally, a white node signifies an author who
published in the BioNLP workshop between 2008
and 2011, whereas a grey node is someone who did
not, but was cited in papers during that time span. As
can be seen in Figure 4 above, which is itself only
a piece of the complete graph, this graph is rather
large and complex, showing us a large degree of in-

terconnectedness and interdependence in the field.
Simply from the density of the lines, we can find
some of the most influential figures, such as Jun’ichi
Tsujii, shown in Region 3 and Yoshimasa Tsuruoka,
shown in Region 2. Unsurprisingly, Tsujii’s node is
bustling with activity, as a very large number of au-
thors cite works with Tsujii as an author, and his own
prolific authorship (or co-authorship) naturally has
him citing a variety of authors. The white nodes near
his own show the authors who published BioNLP
papers and primarily referenced his works, whereas
the grey nodes near his show people who didn’t pub-
lish, but who Tsujii cited in the proceedings multiple
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times. Thus, proximity can also be very telling in a
graph like this. Since nodes with a heavier reliance
on one another tend to end up closer to one another,
we can also observe something of a “citation hierar-
chy” in sections of the graph. Region 2 is a prime
example of this notion. We observe Ananiadou at
the bottom with a large number of incoming edges.
Above her node, we see Korhonen, who cites Ana-
niadou but is also cited by a number of other authors
herself. Finally, above Korhonen there are a series
of single nodes who cite her (and Ananiadou) but are
without incoming edges of their own. We can think
of this as something of a “local hierarchy”, consist-
ing of authors who are closely connected, with the
more heavily-cited (and heavily-citing) easy to pick
out.

3 Next Steps

The work described here provides a snapshot into
the field. Underlying the work is a toolset able to
reproduce the results on new sets of data to continue
tracking the trends, topics, and collaborations. How-
ever, to be really useful to the research community,
the results need to be captured in a way that can fa-
cilitate searches in this domain and support ongoing
research. In order to do this, we are in the process of
incorporating the results presented here in a content
management system, MedLingMap (Meteer et al.,
2012), which supports faceted indexing. Research
in search interface design has shown that techniques
which can create hierarchical faceted metadata stuc-
tures of a domain significantly increase the ability of
users to efficiently access documents in the collec-
tion (Stoica et al., 2005). The techniques described
here can be fed into MedLingMap to create much
of the metadata required to efficiently navigate the
space.

4 Conclusion

In this report, we have outlined a variety of meth-
ods that can be used to gain a better understand-
ing of BioNLP as a field. Our use of topic model-
ing demonstrates that the field already has several
well-defined tasks, techniques, and resources, and
we showed that we can use these topics to gain in-
sight into the major research areas in the field and
how those efforts areas are progressing. We put forth

that this analysis could be powerful in recogniz-
ing when a problem has been effectively “solved”,
when a technique falls out of favor, and when a re-
source grows outdated. At the same time, we can
see rising trends, such as how the 2009 shared task
spurred an obvious 2010 interest in event extraction,
and the correlations in the field between certain ap-
proaches and certain tasks. Through clustering, we
were able to show that these topics also can help us
separate the documents from the field into distinc-
tive groups with a common theme, which can aid in
building a database for current documents and clas-
sifying future ones. Finally, we ended with an anal-
ysis of author relations based on citation frequency
and demonstrated how such a structure can be useful
in identifying influential figures through their works.

As a further benefit of this work, we propose to
use it to create a more lasting resource for the com-
munity that makes these results available to support
search and and navigation in the bio-medical NLP
field.
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Abstract 

Manually annotating clinical document 
corpora to generate reference standards for 
Natural Language Processing (NLP) sys-
tems or Machine Learning (ML) is a time-
consuming and labor-intensive endeavor. 
Although a variety of open source annota-
tion tools currently exist, there is a clear 
opportunity to develop new tools and assess 
functionalities that introduce efficiencies 
into the process of generating reference 
standards. These features include: man-
agement of document corpora and batch as-
signment, integration of machine-assisted 
verification functions, semi-automated cu-
ration of annotated information, and sup-
port of machine-assisted pre-annotation. 
The goals of reducing annotator workload 
and improving the quality of reference 
standards are important considerations for 
development of new tools. An infrastruc-
ture is also needed that will support large-
scale but secure annotation of sensitive 
clinical data as well as crowdsourcing 
which has proven successful for a variety 
of annotation tasks. We introduce the Ex-
tensible Human Oracle Suite of Tools  
(eHOST) http://code.google.com/p/ehost 
that provides such functionalities that when 
coupled with server integration offer an 
end-to-end solution to carry out small or 
large scale as well as crowd sourced anno-
tation projects. 

1 Introduction 

Supervised learning methods benefit from a ref-
erence standard that is used to train and evaluate 

the performance of Natural Language Processing 
(NLP) or Machine Learning (ML) systems for 
information extraction and classification. Ideal-
ly, generating a reference standard involves the 
review of more than one annotator with an ac-
companying adjudication step to resolve dis-
crepancies (Roberts et al., 2007; Roberts et al., 
2009). However, manual annotation of clinical, 
texts is time-consuming, expensive, and requires 
considerable effort. Reducing the time and costs 
required for manual annotation could be 
achieved by developing new tools that integrate 
methods to more efficiently annotate clinical 
texts and integrate a management interface that 
allows administration of large or small scale an-
notation projects. Such a tool could also inte-
grate methods to pre-annotate entities such as 
noun phrases or clinical concepts mapped to a 
standard vocabulary. Efficiencies could be real-
ized via reduction in human workload, modifica-
tion of annotation tasks that could include crowd 
sourcing, and implementation of machine-
assisted approaches.  

Typically annotation of clinical texts requires 
human reviewers to identify information classes 
of interest called “markables”. These tasks may 
also require reviewers to assign attributes to 
those information classes and build relations 
between spans of annotated text. For each anno-
tation task there may be one or many types of 
markables and each markable class may be asso-
ciated with one or more spans of text and may 
include single or even multiple tokens. These 
tasks may occur simultaneously, or may also be 
done in different steps and by multiple review-
ers. Furthermore, these activities require written 
guidelines that clearly explicate what infor-
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mation to annotate, specifics about each marka-
ble class, such as how much information to in-
clude in annotated spans, or syntactic rules to 
provide further guidance on annotated spans. 
Annotation tasks may benefit by incorporating 
rules or guidelines as part of the annotation task 
itself in the form of machine-assisted verifica-
tion. 

There are many annotation tools available, 
and the majority of them were designed for lin-
guistic or gene annotation. Linguistic annotation 
tools such as Callisto and WordFreak are stand-
alone clients suitable for small to medium scale 
tasks where collaborative effort is not empha-
sized. Functionality integrated with eHOST was 
inspired by existing features of these tools with 
the intent of providing a more efficient means of 
reference standard generation in a large collabo-
rative environment. One annotation tool called 
Knowtator, a plug-in for Protégé (Musen, M.A., 
et al, 1995) developed by Ogren (2006) has been 
widely used to annotate clinical texts and gener-
ate reference standards. However, no stand-
alone system exists that can provide end users 
with the ability to manually or semi-
automatically edit, curate, and easily navigate 
annotated information. There are also specific 
functionalities that are missing from open source 
annotation tools in the clinical and biomedical 
domains that would introduce efficiencies into 
manual annotation tasks. These functionalities 
include: annotation of clinical texts along with 
database storage of stand-off annotations, the 
ability to interactively annotate texts in a way 
that allows users to react to either pre-
annotations imported from NLP or ML systems 
or use exact string matching across an active 
corpus to identify similar spans of text to those 
already annotated. Additionally, these systems 
do not generally support crowd sourcing, ma-
chine-assisted pre-annotation or verification ap-
proaches integrated directly with the annotation 
tool. 

This paper discusses development of a proto-
type open source system designed to provide 
functionality that supports these activities and 
offers an end-to-end solution when coupled with 
server integration to reduce both annotator and 
administrative workload associated with refer-
ence standard. We introduce the Extensible Hu-

man Oracle Suite of Tools (eHOST) created 
with these expectations in mind.  

2 Background 

Our goal for these development efforts was to 
build a prototype open source system that im-
proves upon existing tools by including new 
functions and refining capabilities available in 
other annotation tools. The resulting GUI inter-
face provides a means of visually representing 
annotated information, its attributes, and rela-
tions between annotated mentions. These efforts 
also focused integrating various machine-
assisted approaches that can be used to easily 
curate and navigate annotated information with-
in a document corpus, pre-annotate information, 
and also verify annotations based on rules 
checks that correspond with annotation guide-
lines or linguistic and syntactic cues.  
 The eHOST provides basic functionality in-
cluding manual annotation of information repre-
senting markable classes and assignment of 
information attributes and relationships between 
markable classes. Annotations exported from 
eHOST are written using the XML format as 
Knowtator thus allowing integration of inputs 
and outputs to and from Knowtator and indirect-
ly to Protégé 3.3.1. Coupling eHOST with an 
integrated server package such as the one under 
development by the VA Informatics and Com-
puting Infrastructure (VINCI) called the Chart 
Administration Server for Patient Review 
(CASPR) provides one method of increasing 
efficiencies for small or large-scale annotation 
efforts that could also include crowd sourcing.  

2.1 System Features Development 

In the domains of computational linguistics and 
biomedical informatics various approaches that 
can be used to improve annotation efficiencies 
have been evaluated for a variety of tasks in-
cluding information extraction and classifica-
tion. While several methods may help reduce the 
time and costs required to create reference 
standards, one of the simplest approaches may 
include integrating machine-assisted methods to 
pre-annotate relevant spans of text allowing the 
annotator to add missing annotations, modify 
spans, or delete spurious annotations. Neveol 
(2011) evaluated use of automatic semantic pre-
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annotation of PubMed queries. This study 
showed a significant reduction in the number of 
required annotations when using pre-
annotations, reduction in annotation time with 
higher inter-annotator agreement. Pre-annotation 
using simple approaches such as regular expres-
sions coupled with dictionaries (South et al., 
2010a) based on the UMLS as a source of lexi-
cal knowledge (Friedman, 2001) and  pre-
annotation of information representing protected 
health information (South et al., 2010b). In both 
cases finding that annotators preferred particular 
types of pre-annotation over others, but im-
provements in reference standard quality occur 
when pre-annotation was provided. Others have 
explored the use of third party tools for the pre-
annotation task for UMLS concepts (Savova, 
2008) and pre-annotation using an algorithmic 
approach (Chapman, et al., 2007) combined with 
domain expert annotations reused for temporal 
relation annotation (Mowery, 2008). Savova 
(2008) suggests limited utility when a third party 
tool is used for pre-annotation and Mowery 
(2008) suggest that even with domain expert 
pre-annotations, additional features are required 
to discern temporality. Finally, Fort and Sagot 
(2008) evaluated using pre-annotation for part-
of-speech tagging on the Penn Tree bank corpus 
and demonstrate a gain in quality and annotation 
speed even with a not so accurate tagger. 

Semi-automated curation has been explored 
as a means to build custom dictionaries for in-
formation extraction tasks (Riloff, 1993). More 
recently this approach was spurred on by the 
BioCreative II competition (Yeh et al., 2003). 
Alex et al., (2008), explored the use of NLP-
assisted text mining to speed up curation of bi-
omedical texts. Settles et al., (2008) estimates 
true labeling costs and provides a review of ac-
tive and interactive learning approaches as a 
means of providing labels and reducing the cost 
of obtaining training data (Settles, 2010). Alt-
hough eHOST does not yet include an active 
learning module it does provide one means of 
interactive annotation so these are important 
considerations for future development efforts.  

In the biomedical informatics domain crowd 
sourcing has been evaluated as part of the 2009 
i2b2 Medication Challenge (Uzuner, 2010). 
Nowak and Ruger (2010) provide estimates of 
annotation reliability from crowd sourcing of 

image annotation. Hsueh et al., (2009) provide 
estimates of the quality of crowd sourcing for 
sentiment classification using both experts and 
non-expert annotators. In all three cases the re-
sulting annotation set was of comparable quality 
to that derived from expert annotators. Wang et 
al., (2008) make general recommendations for 
best approaches to crowd sourcing that include 
closer interactions between human and machine 
methods in ways that more efficiently connect 
domain expertise with the annotation task.  

Subsequent sections in this paper walk the 
reader through the various basic and advanced 
features eHOST provides. These features have 
been developed in a way that provides flexibility 
to add additional modules that support im-
provements in annotation workflow and effi-
ciency for a variety of annotation scenarios 
applicable to computational linguistics and bio-
medical informatics. Some of these features may 
be useful for crowd-sourced efforts whereas oth-
ers may simply represent an improvement in the 
way annotation is visualized or how manual ef-
fort can be reduced. Figures in this paper use a 
set of synthetic clinical documents and a demon-
stration annotation project based on the 2010 
and 2011 i2b2/VA annotation tasks as examples 
available from http://code.google.com/p/ehost. 

2.2 Systems Architecture 

The eHOST is a client application that can run 
on most operating systems that supports Java 
including, most Microsoft Windows x86/x64 
platforms, Apple Mac OS X, Sun Solaris, and 
Linux. The application uses standardized for-
mats including a file folder system, and struc-
tured XML inputs and outputs. These 
capabilities also support integration with other 
open source tools for annotation and knowledge 
management including Knowtator and Protégé. 
An Extract-Transform-Load process (ETL) is 
used by the system to import concept infor-
mation from different sources, such as XML or 
Protégé PINS files. These inputs sources are 
normalized for loading into eHOST. All data 
that exists in the data pool can be transformed 
into various output formats. Raw input data doc-
uments in a single text file or sequential text 
files in a file folder system. 

Information representing an annotation in-
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cluding concept attributes such as the annotated 
span, attributes, and relationships between anno-
tations are inserted into a common data pool us-
ing a dynamic structured storage space. The data 
pool ensures that eHOST has capabilities to add 
new functions easily without making major 
changes to system architecture.  

2.3 Annotation Project Workspace 

In eHOST each project has its own user assigned  
workspace that includes an annotation schema 
and document corpus. Annotation schema can 
also be imported from an existing Protégé PINS 
file. Project settings can be inherited from exist-
ing projects for similar annotations tasks using 
eHOST. Other workspace functions include 
quickly switching between up to five of the most 
recently used workspaces. A workspace can be 
assigned for each annotation layer or document 
batch. In these situations, an annotator would 
receive a pre-compiled project that specifies all 
settings including any text documents and the 
annotation schema. Defining a workspace is a 
particularly useful function in situations where 
annotations may be crowd sourced and there 
may be multiple layers of annotation that are 
potentially fielded to many annotators. 

2.3.1 Corpus Management 

For any annotation task, the end user must man-
age the document corpus, which can originate 
from a server or a file folder system that con-
tains individual text files. Using the stand-alone 
eHOST client tool, corpus management is ac-
complished via the current workspace (Figure 1). 
When the user initializes a new project, docu-
ments are placed in a “corpus” folder that is as-
sociated with the newly created annotation 
project. All text files, are copied to the “corpus” 
folder at the time of workspace assignment. 
Therefore, there is no risk of deleting the origi-
nal documents associated with each new annota-
tion project. This feature makes distribution of 
projects easier, because of the consistency be-
tween the workspace, corpus assignment and 
annotation output folders. For crowd-sourced 
projects eHOST can be integrated with a 
backend server via web services using an admin-
istrative module called CASPR.   
 

 
Figure 1. eHOST corpus management  

2.3.2 Viewer/Editor Panels 

Figure 2 shows an annotation for “full body 
pain”, (shown with black bar above and below 
the active annotation) and information for that 
annotation including the annotated span, the 
class assignment and an assertion for the 2010 
and 2011 i2b2/VA Challenge annotation tasks 
(Uzuner et al., 2011 and Uzuner et al., 2012). 
The result editor tab and its associated panels 
serve as the central place for basic annotation 
features. These functionalities include: assigning 
an annotator, creating new annotations or adjust-
ing annotated spans of text and assignment of 
attributes or creating relationships between an-
notated spans of text. Other functions in the re-
sults editor tab include navigation between 
documents in the active corpus, resizing the text 
displayed in the document viewer, and “save” 
and “save as” functions that assigns a path for 
XML output files. The end user can easily re-
move all annotations in a document or remove 
specific kinds of annotations by deleting a 
“markable” class as well as remove attributes, 
and relationships between all annotations.  

From the navigator screen in the stand-alone 
eHOST client tool a user can build annotation 
schema specifying markable classes, their asso-
ciated attributes, and any allowed relationships. 
The navigator interface allows the user to review 
all annotated spans either within the current 
document or across the entire document corpus, 
toggle the view of each class on or off, see 
counts for all unique annotations and all annota-
tions for each class, and choose a class for a fast 
annotate mode.  

An annotation editor panel allows the user to 
view more detailed information for each selected 
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annotation. This includes the time stamp of 
when the annotation was created, annotator as-
signment, comments on the annotation and class, 
attribute and relationship information.  

Annotations can be created using several ap-
proaches from the result editor. In the normal 
mode, a class assignment window appears when 
the user selects a span of text, new annotations 
are generated by selecting any one of the marka-
ble classes.  Activating a “one click annotate” 
mode is possible by checking the box next to a 
class of markables. Under this mode, any text 

selected is automatically annotated as that mark-
able class. This feature improves task efficien-
cies when categories of markables are low or 
annotations of the same category cluster in small 
sections. Keyboard shortcuts have also been in-
tegrated with eHOST to reduce annotator click 
burden and dependence on a mouse. These 
shortcuts are available for tasks such as modifi-
cation of spans, deletion of annotations, and nav-
igation between annotations. 

 

 

 
Figure 2. Example annotations using the eHOST interface 

 
2.3.3 Server Integration 

Annotation projects of any scale benefit from an 
automated means of building and distributing 
batches of texts to annotators, managing stand-
off XML files generated from annotation tasks 
or written directly to a database and getting and 
submitting assignments with minimal user input. 
Coupling eHOST with server components that 
comply with the web services API defined for 
eHOST allows these functionalities. The 
CASPR module under development by VINCI 
provides a means to automate the administration 
of annotation efforts that could include crowd-
sourced annotation projects.  

Clicking on the sync assignments tab in the 
eHOST client (Figure 2) brings up a GUI that 

allows annotators to sync with a server location, 
enter credentials, see documents assigned, and 
designate documents as on hold, in process, or 
completed. When a user syncs and gets assign-
ments from CASPR, a project folder is created 
that contains the annotation schema, text docu-
ments, and annotations sent from the server.  
The CASPR module allows an annotator to open 
the project and complete their task without need-
ing to manage files or folders.  Once completed, 
annotations can be synced to the server, and the 
next assignment will be loaded.  The CASPR 
module allows iterative distribution of annota-
tion batches without sending large sets of docu-
ments to annotators that may contain sensitive 
data, decreasing the risk of breaches in privacy 
and data security. 
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2.3.4 Additional Features 

The document viewer panel employs visual cues 
to display relationships between annotations us-
ing color coding representing a parent and child 
node and line indicator between them showing 
the relationship. An “annotation profiler” to the 
right of the scroll bar shows the density of anno-
tations color-coded to their categories, as well as 
relative to their positions in the document. This 
type of data visualization is useful to see the rel-

ative location of annotations within a single 
document or across an en tire document corpus.  

An adjudication mode is also included in the 
stand-alone eHOST client that allows difference 
matching and side-by-side comparison of anno-
tations for efficient adjudication of discrepancies 
between annotations. Standard reporting metrics 
can be calculated including Inter-Annotator 
Agreement (IAA), Recall, Precision and F1-
Measure. 

 

 
Figure 3. eHOST adjudication mode showing discrepant annotations between annotators A7 and B4

In Adjudication mode discrepant annotations are 
shown using a wavy red underline in the editor 
window and by a red bolded outline in a side by 
side two panel view between the annotation edi-
tor and comparator (Figure 3). These metrics 
and comparison tables between annotator results 
on the same documents can be output as HTML 
formatted reports that can be used by an adjudi-
cator to quickly identify discrepancies between 

annotators (Figure 4). These reports and the edi-
tor window display can also be used to quickly 
train annotators on new clinical domains using a 
reference standard created by domain experts for 
training purposes. Using these features error 
analysis can also be done by importing outputs 
from an NLP system that have been converted 
into the XML format used by eHOST. 
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Figure 4. HTML Formatted report showing discrepant annotations between annotators A7 and B4
  
3 Advanced eHOST Features  
There are also other more advanced features that 
have been integrated with eHOST. These in-
clude an “Oracle” mode that allows semi-
automated annotation of similar spans of text 
across a document corpus, a means to easily and 
quickly curate annotated spans of text to create 
custom dictionaries, and machine-assisted pre-
annotation integrated with the annotation tool 
itself.  

3.1 Oracle Mode 

Also implemented with eHOST is an “Oracle” 
mode which uses exact string matching allowing 
the user to annotate all spans of text that are 

identical to a new annotation. The oracle lists 
where these candidate annotations are found 
along with the surrounding context. The annota-
tor can then accept or reject candidate spans an-
notated with the same markable class. Oracle 
mode can run within the current document or 
across the entire document corpus. This type of 
functionality is useful for annotation tasks that 
may involve identifying and marking spans of 
text that are repetitive or follow the same format 
For example, the 2011 i2b2/VA annotation task 
in which annotation of pronominal information 
was required for co-reference resolution (Figure 
5). 

 

 
Figure 5. Example annotations generated using the eHOST “Oracle” mode 
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3.2 Semi-Automated Curation and    
Dictionary Management 

Using the navigator window users can navigate 
to all annotations in either a single document or 
across an entire document corpus (Figure 6). 
The end user can curate annotations directly, 
create classes on the fly, or add attributes to an-
notations found from the navigator pane. These 
functions also allow users to easily identify spu-
rious annotations introduced from machine-
assisted approaches correct misclassification 
errors, and quickly curate all annotations within 
a single document or across an entire document 
corpus. 

 
Figure 6. Semi-Automated curation within the  

document corpus 
 
One task often associated with development of 
NLP systems involves manually creating or en-
hancing some existing representation of lexical 
knowledge that can be used as a domain specific 
dictionary. Using eHOST users can export anno-
tations to create a dictionary of terms, phrases, 
or individual tokens that have been identified by 
human annotators and assigned to markable in-
formation classes. Once curated, annotated in-
formation can be exported as a new dictionary. 
User created dictionaries can be integrated with 

a database or exported and used in the creation 
of some ontologic representation of information 
using Protégé. Output from a dictionary manager 
is in the form of a delimited text file and can 
therefore be modified to fit any standardized 
information model or used to pre-annotate sub-
sequent document batches. 

3.3 Machine-Assisted Pre-Annotation 

An interface is provided in eHOST that can be 
used for machine-assisted pre-annotation of 
documents in the active project corpus using 
either dictionaries or regular expressions based 
approaches. Users can import libraries of regular 
expressions or build their own regular expres-
sions using a custom regular expression builder. 
Users can build and modify dictionaries created 
as part of annotation tasks that may include 
semi-automated curation steps. Dictionaries and 
regular expressions can also be coupled with the 
ConText algorithm (Chapman et al., 2007) to 
identify concept attributes such as negation, ex-
periencer, and temporality. Pre-annotations de-
rived from some external third party source such 
as an NLP system written as Knowtator XML 
outputs may also be imported into eHOST or 
passed to eHOST using CASPR. 

Computational speed required for pre-
annotation can be improved by selecting an op-
tion to use an internal statistical dictionary in-
dexing function. This feature is particularly 
useful in situations where pre-annotation dic-
tionaries are extremely large, such as where a 
subset of some standard vocabulary may be used 
to pre-annotate documents. Using the result edi-
tor and its associated functions annotators can 
add missed annotations, modifying existing an-
notations and delete spurious annotations. Han-
dling pre-annotations in this way allows 
troubleshooting and error analysis of NLP sys-
tem outputs imported into eHOST that can be 
shown to a reviewer in context and also facili-
tates interactive annotator training.   

3.4 Machine-Assisted Verification 

One of the more innovative features integrated 
with eHOST is the ability to verify and produce 
recommendations that help human annotators 
comply with syntactic and lexical rules that are 
specified by annotation task guidelines. Ma-
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chine-Assisted verification is most useful when 
used on lexical or syntax rules to ensure that 
candidate phrases generated by automated sys-
tems are similar to those marked by humans. 
These rules rely more on adherence to patterns 
than on decision-making, so the strengths of 
human review with machine approaches to semi-
automated verification can be leveraged. When 
identifying medical concepts, it is common that 
noun phrases are marked as candidates. The de-
termination of how much of a noun phrase to 
mark (inclusion of articles, adjectives, noun-
modifiers, prepositional phrases) and at what 
granularity (simple nouns or complex noun 
phrases) may vary with each project. 

The verifier allows portions of an annotation 
guideline to be programmed into rules that check 
for consistency. Rules check whether a word 
appears within a user-defined window before 
and after an annotation. Each rule can be linked 
to text that describes why the annotation was 
flagged. Annotators are then provided sugges-
tions on the correct span based on the rule. Us-
ing the surrounding text, the guideline text, and 
the suggestion, the annotator can determine the 
final span for an annotation. These machine-
assisted verifier functions help support reference 
standard generation by providing the context of 
annotations that seem to fail syntactic and lexi-
cal rules while allowing human annotators to 
focus on domain expertise required to identify 
and classify information found in clinical texts.  

Conclusion 

Our prototype system provides functionalities 
that have been created to more efficiently sup-
port reference standard generation including ma-
chine-assisted annotation approaches. It is our 
hope that these system features will serve as the 
basis for the further development efforts that 
will be part of an enterprise level system. Out-
puts of such an annotation tool could be used as 
inputs for pipeline NLP systems or as one com-
ponent of a common workbench of tools used 
for clinical NLP development tasks.  

We have implemented and tested eHOST for 
the 2010 and 2011 i2b2/VA challenge annota-
tion tasks and annotation projects for the Con-
sortium for Healthcare Informatics Research 
(CHIR). The stand-alone eHOST client tool is 

available from http://code.google.com/p/ehost 
along with a demonstration project, a users 
guide, API documentation, and source code. The 
eHOST/CASPR interfaces will be used to sup-
port a large-scale crowd sourced annotation task 
used for annotation of disorders, temporal ex-
pressions, uncertainty, and negation along with 
data standardization. These efforts will include 
more rigorous analysis and usability assessment 
of eHOST/CASPR for crowd sourcing and other 
small and large-scale annotation projects.  
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Abstract 

The application of natural language process-
ing (NLP) in the biology and medical domain 
crosses many fields from Healthcare Informa-
tion to Bioinformatics to NLP itself.  In order 
to make sense of how these fields relate and 
intersect, we have created “MedLingMap” 
(www.medlingmap.org) which is a compila-
tion of references with a multi-faceted index.  
The initial focus has been creating the infra-
structure and populating it with references an-
notated with facets such as topic, resources 
used (ontologies, tools, corpora), and organi-
zations.  Simultaneously we are applying NLP 
techniques to the text to find clusters, key 
terms and other relationships.  The goal for 
this paper is to introduce MedLingMap to the 
community and show how it can be a power-
ful tool for research and exploration in the 
field. 

1 Introduction 

In any field, understanding the scope of the field as 
well as finding materials relevant to a particular 
project paradoxically gets more difficult as the 
field gets larger.  This is even more difficult in a 
field such as Bio-Medical NLP, since it is at the 
crossroads of multiple disciplines. The drawbacks 
of keyword search, even using a specific engine 
such as Google Scholar, are well documented 
(Stoica et. al 2007) and recent trends in content 
aggregation and content curation have emerged to 
attempt to address the problem.  Uses of curation 
range from those in library science to ensure mate-
rial remain accessible as format and electronic 
readers change and to make that information more 
findable (e.g. Peer and Green 2012) to those in 
marketing to increase revenue by providing more 
relevant content (Beaulaurier 2012).   

However, these approaches still have chal-
lenges. Automatic aggregation over a large body of 
content still provides too many results without ad-
ditional filtering mechanism.  Content curation, 
which filters content by value and annotates it to 
ensure higher quality returns, is expensive since  
annotating large collections of content with the 
metadata needed to support faceted search and 
navigation is a huge challenge.   

The goal of the work described in this paper is 
to provide a framework for creating a useful re-
source tool bounded by the interests of a specific 
community which can take advantage of automated 
clustering and keyword extraction techniques and 
the use of community based annotation through 
crowd sourcing and social tatting to provide valu-
able curation. What is an impossible task for a sin-
gle team because doable when we successfully 
harness and empower the community. 

The MedLingMap site is available at 
www.medlingmap.org. Currently MedLingMap 
has over 300 references many of which are anno-
tated according to a set of “contextual” facets (de-
scribed below). We first provide some use cases 
for the system and then go into more detail on the 
content, infrastructure and origins of the system.   

We welcome members of the field to join 
MedLingMap as a curator to help extend the re-
source.  Just email info@medlingmap.org to get an 
account.  Please include your affiliation. 

2 Use Cases 

MedLingMap was started as a class project in a 
Brandeis graduate course on NLP in the Medical 
Domain to provide a means of finding and organiz-
ing the publications in the field and as a data 
source for exploring trends in topics and relation-
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ships among researchers.  While there are many 
use cases for such a resource, three stand out. 

The first is simply the ability to find material 
that meets very specific criteria. for example, to 
find papers using “MetaMap” for named entity 
extraction over clinical data. MedLingMap’s grow-
ing collection of references and the necessary 
meta-data to make it useful is well suited to this 
task.  

The second is to support the exploration of an 
area.  If I’m interested in clinical coding, I can se-
lect that subject area and am presented with a 
number of papers.  I notice that Phil Resnik is on a 
number of papers and may want to follow up on 
his work.  I also see many of the papers are tagged 
with AHIMA, including an entire proceedings that 
is worth exploring.  I select a paper and see the 

abstract mentions a particular challenge that is also 
worth following up on.  We are in the process of 
developing a personal “workspace” that will let 
researchers record searches, annotate findings, and 
keep a queue of the “next directions” that might be 
worth following up. 

The third use case gets back to one of the origi-
nal premises of the work, which is that a “map” of 
a field goes beyond a collection of materials, it also 
provides context and can be used to see “hot spots” 
and trends.  In order to provide this information 
and visualization, we have developed a set of tools 
applying a variety of NLP techniques, such as clus-
tering, topic identification and tf-idf to the content 
of the papers.  This work is described in more de-
tail in (Thamrongrattanarit, et al, 2012).   

 

 
 

Figure 1:  MedLingMap site:  www.medlingmap.org 

3 Content and Context 

The core content in MedLingMap are the refer-
ences themselves.  The underlying representation 
is based on bibtex and references can be added by 
either pasting in a single bibtex item or uploading 

an entire file.  A reference can be added through a 
form interface as well.  

We have added BioNLP and related workshops 
dating back to 2002 as well as many other docu-
ments.  In addition to the references, there are en-
tries for a variety of organizations and resources 
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with a short description and links for each.  These 
elements are entered by hand.  The assumption is 
that there are a limited number of them and edito-
rial control is more important than speed of entry. 

3.1 Examples of the interface 

The MedLingMap interface is shown in Figure 
1.  All references, resources and organizations are 
linked through a set of “taxonomies” (described 
below), which have been developed bottom up 
based on the material tagged to date.  Selecting any 
item from the taxonomies will select content anno-
tated by that tag.  So selecting a “Technical area” 
from the box on the right brings in all the papers 
annotated by that topic.  A similar box of “re-
sources” allows the user to select all papers that 
have been annotated as using a particular resource. 

For example, in Figure 1 the user has selected 
MedLEE from the “Resources” taxonomy and is 
shown the information on MedLee as well as refer-
ences that have been annotated as discussing 
MedLEE.  In addition to the basic bibliographic 
information, the user can export the reference in 
bibtex or xml or jump directly to it Google scholar, 
which can provide multiple ways of accessing the 
resource. Alternative views show all of the refer-
ences by year, author or title.  

 
Figure 2:  Information on a particular reference 

By selecting a reference in MedLingMap, addi-
tional information is available, as shown in Figure 

2. By selecting any of the key terms from the tax-
onomy at the top of the “view”, the user can go to 
more papers tagged with that term.  By selecting 
any of the authors, the user is shown other papers 
by that author.  Those with a “curator” account 
(described below) can select “edit” and make 
changes or provide additional tags. 

In addition, there is a standard search mecha-
nism, as shown in Figure 3.  We are in the process 
of implementing true faceted search, similar to 
“advanced search” for recipes, where you can se-
lect one or more item from each taxonomy to con-
strain the search. 

 
Figure 3:  Open search 

3.2 Faceted indexing 

Indexing content along multiple dimensions or 
“facets” is not new to search (Alan 1995) and sig-
nificant work has gone into creating effective inter-
faces for faceted search (Hearst 2006).  When 
searching for research materials, the context the 
work was done can be a significant contributor to 
being able to find related materials.  “Necessity is 
the mother of invention” implies that if you want 
to find similar solutions, look for similar needs.   

To try to capture this kind of information, 
MedLingMap has facets organized into taxono-
mies:  
• Technical area or topic of the work (shown in 

the screen shot above) 

• Resources used: 
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• Data: Corpora such as Genia, CRAFT, i2B2, 
BioInfer 

• Lexical Resources, which are organized into 
dictionaries, and ontologies and  include 
UMLS, PubMEd, MedLine, MeSH, and 
Medical Wordnet 

• Tools, such as parsers, taggers, annotation 
toolkits and more complete systems, such as 
MedLee, GATE, and MIST 

• Shared tasks, such as the BioNLP 2009 and 
2011 shared tasks, BioCreative, and i2b2 

• Institution the work was done in or is associated 
with in some way (e.g. funding, providing re-
sources, etc) 

As the project continues, these facets will grow 
and new ones will be added.  Additional facets un-
der consideration include the program (e.g. across 
multiple institutions, generally associated with a 
single funding source), target data (e.g. medical 
literature or clinical records).   

4 Origins of MedLingMap 

As mentioned above, MedLingMap was started as 
a class project in a graduate course NLP in the 
Medical Domain and the creation of the taxono-
mies and population of the material was done as 
part of the class. However, the underlying architec-
ture itself is based on a system that has been under 
development for speech recognition for the past 
two years (www.stcspeechmap.org) by author 
Marie Meteer as part of the Speech Technology 
Consortium’s effort to improve prior art research 
in non-patent literature.  

The driving principle is that the “art” in any 
field (the papers, documentation, product descrip-
tions, etc) can only be understood in terms of the 
context in which they were produced, contexts 
which show relations between them that is usually 
not available in the individual documents.  For ex-
ample, much of the early work in speech recogni-
tion addressed the challenges of multimodal 
interfaces well before we had sophisticated mobile 
devices.  Solutions are being reinvented and pat-
ents applied for that would not considered novel if 
the original research were more readily available.  
Similar issues arise in multidisciplinary fields such 
as Bio-Medical NLP where different groups come 

together who do not have the same historical con-
text and may not know about previous research.  

5 Infrastructure 

 MedLingMap and SpeechMap are built on Dru-
pal1 an open architecture Content Management 
System (CMS), which underlies many web sites 
ranging from www.whitehouse.gov to BestBuy.   

Using Drupal ensures that MedLingMap can be 
a living, growing resource. Drupal provides the 
following functionality: 

• A database to store, retrieve, and maintain 
large documents sets and web pages, provid-
ing multiple views into the contents. 

• Specific content types for resources, organi-
zations, authors, and references, all linked 
though a set of taxonomies. 

• The capability to load in references in bibtex 
format either in a group or individually and 
annotate them with terms from the taxono-
mies. 

• Maintenance facilities, such as suggesting 
when multiple authors may be the same per-
son and merging them. 

• User profiles with different permission lev-
els to accommodate viewers, contributors, 
social tagging, and private workspaces with 
the appropriate levels of security. 

• The ability to integrate powerful search 
components, such as SOLR2, as well as spe-
cific modules, such as the Bibliography 
module which provides automatic links to 
Google Scholar to retrieve those documents. 

• Web-based to allow easy outside access and 
be more compatible with other systems.  

• Extensibility both for more content, more 
content types, and more functionality.  For 
example while there is a module that pro-
duces a warning if a possible duplicate ref-
erence, we are still looking for one that 
would search out potential duplicates and 
propose merges.  If none exists, such a mod-
ule can be written and easily integrated. 

                                                
1 http://drupal.org/ 
2 SOLR is an open-source search server based on the Lucene 
Java search library. http://lucene.apache.org/solr/ 
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6 Value for Stakeholders 

The value of MedLingMap varies with the audi-
ence.  We first talk about the value to the current 
community and contrast MedLingMap to similar 
resources already available.  We then look at 
stakeholders outside or entering the community 
and the value MedLingMap brings to them. 

6.1 BioMedical NLP community 

For members of the community, a central reposi-
tory for papers in the field is a “nice to have”.  
There is information that is surfaced by seeing the 
organization of the information and links to re-
sources in one place, but if you have been attend-
ing conferences and workshops regularly, this is 
not new information.  You know the players and 
already follow the work you are interested in.   

In addition, similar information is available 
elsewhere, though in a more distributed form.  
ACL has made all of the proceedings to confer-
ences and workshops available3. Similarly ACM 
and IEEE Xplore provide access to all of the pa-
pers they control.  The significant difference is that 
in these collections even the advance search is re-
lying on standard bibliographic elements, such as 
author and title, and keyword search and there is 
no segmentation of the material by field, which 
introduces significant ambiguity as the same term 
can mean different things in different fields.  Simi-
larly PubMed and GoPubMed offer documents and 
advanced search on a huge body of literature, but 
focused on biology and medicine, not the applica-
tion of NLP techniques to those fields.  MedLing-
Map is designed to be focused on a smaller 
community with more like interests.  

It is also important to note that MedLingMap is 
providing links to papers, not the actual papers, 
which are controlled by the publishers.  While 
many papers are readily available using the links 
provided or can be found through the Google 
Scholar link for each reference, if you need a sub-
scription to see the entire paper such as for IEEE, 
you still need to go through your standard method 
to get those papers. 

LREC’s Resource Map is more similar in that it 
provides more in depth information that the aggre-
gations described above, however the focus is on 

                                                
3 http://aclweb.org/anthology-new/ 

mapping the resources themselves, not necessarily 
all of the publications that have taken advantage of 
those resources, though some of that information 
may be available by following the links.  LREC is 
also using a crowd sourcing method for growing 
the resource by asking those who submit papers 
also submit the information about the resources 
they used.  This is an interesting model in that it 
assures that those contributing have a stake in the 
result since they are members of the community by 
virtue of submitting a paper. 

Organizations such as BioNLP.org and Sig-
BioMed are also important resource aggregators 
for the community.  Neither are focused on publi-
cations and we hope that MedLingMap willl be-
come one more resource they would point to. 

6.2 From the outside 

For students or those who come to the field from a 
neighboring field, the aggregation of the material 
in MedLingMap can save considerable time and 
provide overview or “map” of the field.  Queries 
that are ambiguous in Google Scholar are more 
precise when the domain is limited.  <example> 

This increase in the ability of newcomers in the 
field to find what they are looking for actual turns 
into benefits for those in the field in two ways:  
First, one’s own papers become more findable, 
increasing citations and potential collaborations.  
Second, for those who teach, MedLingMap pro-
vides a great environment for the students to do 
targeted research.  Letting them loose in a con-
strained search environment increases the likeli-
hood they will find a rich body of material to learn 
from and build on without having to always hand 
select the papers. 

7 Growing the resource 

The real challenge for a community resource such 
as MedLingMap is how to grow it to be compre-
hensive and keep it up to date, specifically how to: 

• grow the number of references and resources 

• increase high quality annotations that go be-
yond what can be extracted automatically. 

• provide visualizations that bring to light the 
connections in the material. 

• maintain the quality of the data, for example 
by fining and merging duplicate entries and 

144



ensuring information about resources and 
organizations is up to data. 

The two choices for growing are automatic tech-
niques and human annotation.  We discuss the 
former in a related paper (Thamrongrattanarit 
2012).  Here we describe how manual annotation 
can be feasible. 

7.1 Distributed Power 

The key to high quality documents and tagging is 
community involvement.  There are two comple-
mentary approaches that are key to the MedLing-
Map project:  crowd sourcing and social tagging.  
Crowd sourcing involves the community in finding 
relevant resources, particularly those that are fairly 
obscure and predate the internet.  The second is 
social tagging which lets individuals check on their 
own materials or materials in areas related to their 
own work and adding or adjusting the tags to make 
the content more searchable. 

The key to making these tactics work is setting 
up the right support in the underlying system.  For-
tunately, the MedLingMap infrastructure allows 
for easy signup for those volunteering to contrib-
ute.  These technique have been used successfully 
in patent prior art search by Article One, Inc.4 
which puts out a call to researchers to find art on a 
particular patent.  If the client selects that art to 
support their case, the contributor is paid.  The pat-
ent office itself attempted something similar in the 
Peer to Patent program5, which depended on peo-
ple’s desire to improve the quality of patents by 
letting them contribute art.  It was moderately suc-
cessful, but without the kind of specific reward the 
Article One provides, they did not get nearly as 
much material as they would have liked. 

MedLingMap, SpeechMap and other efforts of 
its kind have the same problem:  no one has 
enough time.  So how do we address it?  How do 
we create a convincing value proposition?  Here 
are a couple suggestions: 

Teaching:  MedLingMap is a great teaching 
tool.  Not only can students use it to do research on 
the material that’s in it, we as educators can enlist 
them to both tag material and go out on the web to 
find additional material to tag and add.  In just one 
semester we have made considerable progress.  If 

                                                
4 http://www.articleonepartners.com/ 
5 http://peertopatent.org/ 

everyone teaching a similar course enlisted their 
students, the students would gain and the resource 
would grow. 

Research support:  With the implementation of 
the personal workspace described above, the sys-
tem will provide a unique service not available 
from other aggregators or content owners. 

Funded project: Being able to hire student an-
notators would accelerate the process.  For the 
SpeechMap project we have a proposal into the US 
Patent Office for funding.  We are open to sugges-
tions about funding sources for MedLingMap. 

Conclusion 

With MedLingMap’s infrastructure in place and 
enough content to provide an exemplar of how it 
can grow, the challenge now is engaging the com-
munity in what we see as an exiting experiment in 
harnessing the resources of the internet through 
crowd sourcing and social tagging to create a liv-
ing resource that will benefit both the current and 
future members of the field.  MedLingMap also 
provides a resource for exploring automated ways 
of annotating and organizing research materials.  
We also hope that this can be a map itself, to build 
similar “maps” in other subfields. 
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Abstract

Many genetic epidemiological studies of hu-
man diseases have multiple variables related
to any given phenotype, resulting from dif-
ferent definitions and multiple measurements
or subsets of data. Manually mapping and
harmonizing these phenotypes is a time-
consuming process that may still miss the
most appropriate variables. Previously, a su-
pervised learning algorithm was proposed for
this problem. That algorithm learns to de-
termine whether a pair of phenotypes is in
the same class. Though that algorithm ac-
complished satisfying F-scores, the need to
manually label training examples becomes a
bottleneck to improve its coverage. Herein
we present a novel active learning solution
to solve this challenging phenotype-mapping
problem. Active learning will make pheno-
type mapping more efficient and improve its
accuracy.

1 Introduction

Phenotypes are observable traits of an individual or-
ganism resulting from the presence and interaction
of its genotype with the environment. Phenotypes
potentially related to human health are of interest in
genetics and epidemiology, including common clin-
ical conditions, inheritance disorders, as well as var-
ious risk factors such as diet. Substantial amounts
of genomic data, including genome-wide genotyp-
ing from GWAS (Genome-Wide Association Stud-
ies) (Hardy and Singleton, 2009; Consortium, 2007)
and sequencing, are being produced in conjunction

with the collection of carefully defined and mea-
sured phenotypes to study the role of genetic vari-
ations in a wide variety of inherited traits and disor-
ders for many decades.

Recently, there is an emerging need to re-use
these valuable phenotype-genotype association data
to boost the statistical power and improve sensitiv-
ity and specificity of the search of associations be-
tween various disorders and genetic variations. New
paradigms of genomic studies may be fostered once
a map of related phenotypes is easily accessible. In
fact, one of such new paradigms, PheWAS (Phe-
nome Wide Association Studies), has been devel-
oped and producing interesting findings (Denny et
al., 2010; Pendergrass et al., 2011) with the help
of phenotype mapping and harmonization. Unlike
GWAS, which focus on calculating the association
between the variation of hundreds of thousands of
genotyped single nucleotide polymorphisms (SNPs)
and a single or small number of phenotypes, Phe-
WAS uses an extensive range of detailed pheno-
typic measurements for comprehensively exploring
the association between genetic variations and phe-
notypes. The investigation of a broad range of phe-
notypes has the potential to identify pleiotropy, re-
veal novel mechanistic insights, generate new hy-
potheses, and define a more complete picture of ge-
netic variations and their impact on human diseases.

To facilitate integration of genomic data sets, the
research community needs to categorize compara-
ble phenotype measurements and match them across
multiple genomic studies to identify data sets of
interest as well as potential future collaborations.
While the naming strategy for genetic variants is
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largely standardized across studies (e.g. rs numbers
for single nucleotide polymorphisms or SNPs), this
is often not the case for phenotype variables. Due
to the lack of a standardized terminologies or other
controlled vocabularies, it becomes increasingly dif-
ficult to find studies with comparable phenotypes as
the genomic data accumulate. A researcher search-
ing for the availability of comparable phenotypes
across multiple studies is confronted with a veritable
mountain of variables to sift through. Even within
a study, there are often numerous versions of se-
mantically equivalent phenotypic variables. Manu-
ally mapping and harmonizing these phenotypes is a
time-consuming process that may still miss the most
appropriate variables.

Previously, (Hsu et al., 2011) have developed a
supervised learning algorithm that learns to deter-
mine whether a pair of phenotypes is semantically
related from their descriptors. Though that algo-
rithm accomplished satisfying F-scores, the need to
manually label training examples becomes a bottle-
neck to improve its coverage. Moreover, the algo-
rithm treats each pair independently, but pairs that
consist of common phenotypes are not independent.
Exploring this dependency may potentially improve
its performance. In this paper, we investigate how
to apply active learning to solve this challenging
phenotype-mapping problem. Application of effec-
tive active learning techniques will make pheno-
type mapping more efficient and improve its accu-
racy and, along with intuitive phenotype query tools,
would provide a major resource for researchers uti-
lizing these genomic data.

Active learning queries a user for labels of unla-
beled phenotypes that may improve the learning of
phenotype mapping the most and thereby reduce the
need of labeling efforts. To select the most useful
training examples to query, different selection strate-
gies have been proposed in the past (Settles, 2010):

• Uncertainty Sampling In this strategy, an ac-
tive learner chooses an instance that is the most
uncertain for the current model to label (Lewis
and Catlett, 1994).

• Query-By-committee This strategy (Seung et
al., 1992) is also known as maximum dis-
agreement (Ayache and Quénot, 2007; Di and
Crawford, 2011) because the idea is to choose

an instance for which a committee of models
disagrees the most among its members about
its label.

• Expected Model Change The general princi-
ple of this strategy is to choose an instance to
query when if its label is available, the model
will be changed the most (Settles and Craven,
2008).

• Expected Error Reduction Active learning is
useful when the selected instance reduce the er-
ror the most and this strategy looks for an in-
stance that can achieve this ultimate goal di-
rectly.

• Variance Reduction Inspired by the bias-
variance analysis of the generalization perfor-
mance, the variance reduction principle seeks
to query for instances that reduce the variance
of the model the most. A similar approach is
applied in the optimal experimental design in
statistics (Federov, 1972). However, usually
this also requires to solve expensive optimiza-
tion problems.

• Density-Weighted Methods By considering
the distribution of the instances, this strategy
addresses an issue of uncertainty sampling and
query-by-committee where outliers are likely
to be selected but contribute limitedly to im-
proving the learning (Fujii et al., 1998; Das-
gupta and Hsu, 2008).

The method reported here basically follows
the maximum disagreement principle of query-by-
committee to select unlabeled pairs of phenotypes
to query. A committee must be formed in order for
this strategy to be applied, but it has been shown that
even a small committee works well in practice. Vari-
ous approaches can be applied to create committees.
For example, co-testing (Muslea et al., 2006) applies
this principle by combining forward and backward
parsing models for information extraction. A key to
the success of this strategy is that member models
in the committee complement strengths and weak-
nesses.

The idea of our method is to compare the match-
or-not assignments by the model trained by super-
vised learning and the class assignments derived
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from exploring linkages of the labeled and unlabeled
phenotypes. The most useful pairs to query are those
whose assignments from the two different sources
disagree with the highest confidence.

Exploring linkages may improve classifier learn-
ing when the classes of instances depend on each
other. This idea has been studied in the context
of classification of network data, such as pages on
the Web, co-reference resolution, word sense disam-
biguation, and statistical relational learning (see e.g.,
(Macskassy, 2007; McCallum and Wellner, 2005;
Popescul et al., 2003)).

In this paper, we present an algorithm that im-
plement our idea. This algorithm can be divided
into two major steps. The first step of the algo-
rithm explores the linkages and the second step pri-
oritizes pairs of phenotypes to query. By identify-
ing maximum disagreement pair instances between
the model classification results and exploring link-
ages between labeled and unlabeled phenotype vari-
ables, our active learner queries users for labels of
unlabeled phenotypes that may improve the map-
ping the most and therefore will reduce the need of
labeling efforts. Our experimental results show that
exploring linkages can perfectly infer the match-or-
not labels for a large number of pairs, and that ac-
tive learning from maximum disagreement pairs im-
proves the performance faster than from randomly
selected pairs, suggesting that active learning by ex-
ploring linkages is a promising approach to the prob-
lem of phenotype mapping.

2 Phenotype Mapping

2.1 Problem Definition

Phenotype mapping is a task of searching for all
databases of participating studies to find a set of phe-
notype variables that match a requested variable that
the researcher is interested in. This is similar to the
definition given in (Hsu et al., 2011) where the task
is defined as the assignment of every phenotype vari-
able from each participating study to one of a set
categories, or classes, which corresponds to the “re-
quested variable.”

Table 1 shows a fragment of the phenotype map-
ping results of the phenotype variables that we
matched manually from a consortium of cohort stud-
ies for a set of 70 requested variables. In this frag-

ment, we show the phenotype variables assigned to
one of the requested variables, the phenotype class
‘hypertension’. The real ID of a phenotype in
a Cohort is given in column Variable. In this ex-
ample, seven cohort studies have a total of 13 phe-
notype measurements related to hypertension.

Column Description is the main clue for au-
tomatic matching. The variable descriptions usu-
ally contain less than 10 words. As we can see
in Table 1, the description contains abbreviations
(e.g., ’HTN’, ’HBP’,dx), aliases (e.g., ’High
Blood Pressure’ vs. Hypertension), mea-
surement criteria (e.g., DBP>90 MMHG, sys GE
140, per JNC7, JNC VI), and tokens irrelevant
to our task. As a result, word-by-word string sim-
ilarity or sophisticated edit-distance based metrics
can only match a small number of them. These ex-
amples are phenotypes that share similar semantics
and are manually mapped to the same classes but
their descriptions contain few or no common words.
It is impossible for a model solely using the given
descriptions to figure out that they refer to related
phenotypes without bringing to bear additional in-
formation.

Other challenges of the phenotype problem in-
clude: not knowing in advance how many classes
there are, unavailability of comprehensive catego-
rization of phenotypes, and that the solution should
scale well for a large number of phenotypes.

2.2 Supervised Learning for Phenotype
Mapping

Here, we review the supervised learning method de-
scribed in (Hsu et al., 2011), where phenotype map-
ping was casted as a pair matching problem and ap-
plied supervised learning to learn to tag a pair as a
match or not. A pair of phenotypes are considered as
a match if they are assigned to the same class, other-
wise it is not. 13 phenotype variables in Table 1 will
yield 78 pairs of positive examples of matched pairs.
A maximum entropy classifier (MaxEnt) (Hastie et
al., 2009) was used as the model to estimate the
probability that a pair is a match. Two types of fea-
tures were considered. The first type is based on
string similarity metrics to combine the strength of
a variety of string similarity metrics to measure the
edit distance between the descriptions of a pair of
phenotypes and use the result to determine if they
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Requested
Cohort Variables Variable Description
ARIC Hypertension HYPERT06 HYPERTENSION, DEFINITION 6
CARDIA Hypertension Y01DBP HYPERTENSION BASED ON DBP> 90 MMHG
CARDIA Hypertension Y01HTN HIGH BLOOD PRESSURE
CARDIA Hypertension Y01HTNTP TYPE OF HYPERTENSION
CFS Hypertension htn HTN: abnormal bp (sys GE 140 or dia GE 90) or meds
CFS Hypertension htndx HTN: self report of MD dx of HTN
CHS Hypertension HYPER CALCULATED HTN STATUS
FHS Hypertension A70 HISTORY OF HYPERTENSION
FHS Hypertension B373 HYPERTENSION-ON TREAT OR ELEVATED BP
FHS Hypertension C332 HBP status
JHS Hypertension HTN017 Hypertension Status Per JNC7
MESA Hypertension HIGHBP1 HYPERTENSION: SELF-REPORT
MESA Hypertension HTN1C Hypertension by JNC VI (1997) criteria

Table 1: Example variables of phenotype class ’hypertension’

match each other. The other type is the weighted
Jaccard where appearence of tokens and bi-grams
in both or one of the descriptions of a given phe-
notype pair is used as the features. The training al-
gorithm for MaxEnt will virtually assign to each to-
ken or bi-gram a weight when it appears in the de-
scriptions of an input phenotype pair. Weighted Jac-
card is superior to string similarity features because
string similarity metrics treat all tokens equally and
the information provided by these metrics is limited.
Therefore weighted jaccard was shown to outper-
form string similarity features by a large margin in
the experimental evaluation.

Before the feature extraction step, descriptions
will be augmented with the definitions given in the
Merriam-Webster Medical Dictionary (2006)1. For
example, ’hypertension’ will be augmented
with its definition in the dictionary ’abnormally
high arterial blood pressure’ and
converted into ’hypertension abnormally
high arterial blood pressure’. Aug-
mented ’hypertension’ will have many shared
tokens with ’high blood pressure’. This
augmentation step was proven to be effective in
boosting recall, as semantically equivalent pairs
described by totally different sets of tokens can be
matched.

(Hsu et al., 2011) also reported a transitive in-
ference method to take advantage of the transitive
relationship of matched phenotype pairs. The idea
is that if v1 and v2 are a match, so are v2 and v3,

1www.m-w.com/browse/medical/a.htm

then v1 and v3 must be a match, too. Applying tran-
sitive inference did improve the performance, but
when all possible transitive relations are explored,
the performance degraded because false positives
accumulated. The transitive inference method does
not fully explore the dependency between pairs that
share common phenotype variables. A more sophis-
ticated approach is required.

3 Methods

Figure 1 illustrates our active learning idea. The idea
is that, given a training set of phenotype variables
X manually matched with class labels and a test set
of unlabeled phenotype variables, the first step is to
infer the class of each unlabeled variable by explor-
ing the pairwise match scores assigned by the model
trained by the training set. When we obtain a plausi-
ble class assignment to each unlabeled variable, we
can classify each pair of unlabeled variables v1 and
v2 by the trained model again to determine if they
are a match or not and compare the result with their
plausible class assignments.

If it turns out that the results agree with each other,
we will move the pair to a set called sure pairs, oth-
erwise, we will move the pair to a queue which will
be sorted in descreasing order by how much the re-
sults disagree. Then we can query for true labels of
the pairs in the queue to add to the training set the
most useful examples and thus accomplish the active
learning.
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Figure 1: Inferernce of match between unlabeled pheno-
type variables by exploring their linkages to labeled pairs

3.1 Assigning Phenotype Categories

Procedure LabelA is to assign a class label to each
unlabeled test variable by matching them to labeled
training variables. Let A denote the set of all pairs
between a test variable and a training variable. For
each variable, the output contains an element of the
variable, its assigned class label (may be null) and
a score (log-likelihood). Function I(.) in line 2 is
the indicator function that returns 1 if its parameter
is true and 0 otherwise. H is the model learned by
calling the supervised training procedure. In line 7,
PH

vx is the probability that variables v and x are a
match estimated by H . In line 8, LabelA assigns v
to a class c, which is the class of the training variable
x that maximizes PH

vx. That is to assign the class of
x as that of v if PH

vx is the largest. Other selection
can be used. For example, for each class c, we can
estimate PH

vx for all training variables x in c, and se-
lect c as the class of v if 1

n

∑
log PH

vx, the geometric
mean of the probabilities, is the largest. These selec-
tion criteria are based on different assumptions and
we will empirically compare which one is a better
choice. In fact, any type of average can potentially
be considered here.

3.2 Prioritizing Unlabeled Pairs

Procedure LabelB orders pairs of test variables to
query for match-or-not and class labels. Let B be
the set of all pairs of test variables. LabelB also
generates a set called SurePairs. For each pair
in B, LabelB checks if the model H considers the
pair as a match (PH

vx ≥ 0.5) or not, and then checks
if the pair is assigned by LabelA to the same class

Algorithm 1 Procedure LabelA
1: Initialization

• Training variables X with their class anno-
tated class(x) = c ∈ C,∀x ∈ X

• Test variables V with unknown class
class(v),∀v ∈ V

2: H ← Train({(x1, x2, m)|x1, x2 ∈ X, m =
I(class(x1) = class(x2))})

3: A← {(v, x)|v ∈ V ∧ x ∈ X}
4: procedure LABELA(A, H)
5: Output← ∅
6: for v ∈ V do
7: ∀x ∈ X, PH

vx ← H(v, x)
8: c← arg maxc(P

H
vx)

9: LH
vx ← maxC(logPH

vx)
10: if LH

vx < −2 then
11: c← null,
12: s← log(1− 2LH

vx)
13: else
14: s← LH

vx

15: end if
16: Add (v, c, s) to Output
17: end for
18: Return Output
19: end procedure

or not. If it is a match and assigned to the same class,
or not a match and assigned to different classes, that
is, if H and LabelA agree, then the pair will be
moved to SurePairs, otherwise, the pair will be
moved to Queue. For a disagreed pair, LabelB
also estimate the degree of disagreement by the sum
of the log-probabilities of the class assignments (LH

c1
and LH

c2) and the match-or-not by the model (PH
v1v2

).
SurePairs can then be used for training.

We can then query for true labels of pairs in
Queue. We can either query whether a pair is a
match or not or query for their class label. After a
certain number of queries, we can repeat the pro-
cedure to compute a new set of SurePairs and
Queue, until all phenotypes are correctly assigned
to a class.
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Algorithm 2 Procedure LabelB
1: Initialization
2: H,A as in LabelA
3: B ← {(v1, v2)|v1, v2 ∈ V }
4: SurePairs← ∅; Queue← ∅
5: ∀v1, v2 ∈ V, PH

v1v2
← H(v1, v2)

6: (v, class(v), LH
c ),∀v ∈ V ← LabelA(A,H)

7: procedure LABELB(B, A, H)
8: for (v1, v2) ∈ B do
9: if PH

v1,v2
≥ 0.5 then

10: if c1 = c2 then
11: Add (v1, v2, 1) to SurePairs
12: else
13: s← LH

c1 + LH
c2 + log(1−PH

v1v2
)

14: Add (v1, v2, s) to Queue
15: end if
16: else
17: if c1 = c2 then
18: s← LH

c1 + LH
c2 + log PH

v1v2

19: Add (v1, v2, s) to Queue
20: else
21: Add (v1, v2, 0) to SurePairs
22: end if
23: end if
24: end for
25: Sort (v1, v2, m) in Queue by m
26: Return Queue and SurePairs
27: end procedure

4 Results

4.1 Data

We manually selected 1,177 phenotype variables
from a total of 35,041 in the databases of seven co-
hort studies as shown in Table 1 and assigned them
to one of 70 requested variables that are common
trait classes related to a large consortium study of
cardiovascular disorders. These seven cohorts in-
clude ARIC (the Atherosclerosis Risk In Communi-
ties study www.cscc.unc.edu/aric/), CAR-
DIA (the Coronary Artery Risk In Young Adults
study www.cardia.dopm.uab.edu), CFS (the
Cleveland Family study dceweb1.case.edu/
serc/collab/project_family.shtml),
CHS (the Cardiovascular Heart Study www.
chs-nhlbi.org/), FHS (Framingham Heart
Study www.framinghamheartstudy.org/),

Method / Model Precision Recall F-score
String similarity
MaxEnt 0.5557 0.0660 0.1179
Weighted Jaccard
MaxEnt 0.8791 0.4848 0.6250
w/ dictionary 0.9200 0.6104 0.7339
w/ transitive infer. 0.7735 0.6612 0.7129
w/ both 0.7728 0.8402 0.8051

Table 2: Performance results of supervised learning

JHS (Jackson Heart Study jhs.jsums.edu/
jhsinfo/), and MEC (the Multi-Ethnic Cohort
www.crch.org/multiethniccohort/,
www.uscnorris.com/mecgenetics/).

From these 1,177 phenotypes, 21,886 pairs are
considered matches, that is, they are positive pairs
with both phenotype variables in the same class.
670,190 pairs are negatives.

4.2 Result of Supervised Learning

We divided all pairs in our data set by half into train-
ing and test sets and evaluate different options of the
supervised learning algorithm with different options
as described in (Hsu et al., 2011). The results as
shown in Table 2 are consistent with the conclusions
given in (Hsu et al., 2011). That is, weighted Jaccard
features with dictionary augmentation plus transitive
inference yields the best performance.

We also performed a split-by-variable test, where
the set of all variables is divided into three equal
parts. Two of them are used for training and the
other for testing. This is closer to the realistic appli-
cation scenario and provides a better estimation of
the generalization performance of a trained model.
The results are given as the first two rows in Table 3.

4.3 Result of Active Learning

We implemented the two algorithms and evalu-
ate the performance. We still applied split-by-
variable to divide the data with 1

3 for testing and 2
3

for training. We measured the performance when
SurePairs produced by procedure LabelB was
added to the training set, and then increasingly add
more pairs in Queue, also produced by LabelB,
to the training set, and measured the performance
of the trained models to simulate an active learning
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Method/Model Precision Recall F-score
w/o dictionary 0.8344 0.4106 0.5504
w/ dictionary 0.6310 0.5287 0.5753
Test on A 0.7956 0.5243 0.6321
GM SurePairs
(62622) 0.8772 0.5909 0.7061
Model (62622) 0.9577 0.2936 0.4494
MP SurePairs
(74229) 0.8845 0.6196 0.7287
Model (74229) 0.9660 0.2875 0.4431

Table 3: Performance results of splitting by variables.
Numbers in the parentheses show the number of pairs in
SurePairs.

query sequence.
To ensure a fair comparison, we always use the set

A, the pairs between a labeled and unlabeled pheno-
type variables, as the hold-out set for testing in all
performance evaluations. Note that pairs in the set A
never appear in either SurePairs or Queue, be-
cause pairs in SurePairs or Queue are selected
from the set B, which contains the pairs between
unlabeled phenotype variables. The third row of Ta-
ble 3 shows the performance of the model tested
only on A.

We implemented two versions of procedure
LabelA that are different in the methods they used
to assign a class to an unlabeled variable. The first,
MP, is to use the maximum probability and the other,
GM, is to use the maximum geometric mean of the
probabilities (see Section 3.1).

We start by evaluating the quality of
SurePairs. GM produced 62,622 pairs (1,642
positives) while MP had 74,229 pairs (1,816
positives). The match-or-not labels assigned by
LabelB for both methods turn out to be perfectly
correct, suggesting that combining model training
and linkage exploration can effectively infer the
match-or-not labels.

Adding SurePairs to the training set boosts F-
scores, as shown in Table 3, which also shows that,
in contrast, if we add the same number of pairs to
the training set, but assign them match-or-not labels
with the trained model, they will degrade F-scores.

Next, we added pairs in Queue to the training
set, 280 pairs at a time, and measured the F-scores

achieved by the resulting model. Figure 2 shows
the learning curves of three different ways to order
Queue produced with GM: descreasing, increasing,
and random scores. The decreasing-score one per-
formed the best by improving F-scores the fastest,
confirming that higher-scored pairs are more useful.
The end points of the three curves do not meet be-
cause we have not exhausted all training examples.

Similarly, we evaluated decreasing and random
ordering of Queue produced by applying MP.
We note that MP already produced a large set of
SurePairs. As a result, less pairs are in Queue
compared to that by GM. Therefore, after 9 passes, all
pairs are exhausted and no obvious difference can be
observed between decreasing and random ordering
in the end.

Figure 2: Learning curves of active learning: class as-
signment by maximum geometric mean of probabilities

Figure 3: Learning curves of active learning: class as-
signment by maximum probabilities

5 Conclusions and Future Works

Despite the vast amounts of genomic data available
in repositories, identification of relevant datasets can
be challenging for researchers interested in specific
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phenotypic measures. This paper presents our ac-
tive learning approach that will be implemented as a
component of new informatics tools for the research
community to categorize phenotype measurements
from genomic studies.

We show that comparing class assignment by ex-
ploring linkages and by the model can be effective
in both improving the match-or-not assignments and
ordering unlabeled pairs as queries for active learn-
ing. It is interesting that when two sources of class
assignment agree, the pairs’ match-or-not assign-
ments are perfectly correct. How generalizable for
this result deserves further investigation. We note
that in order to perform a fair comparison, no pair
between labeled and unlabeled phenotype variables
are used for training. In a real application, they can
be added to either SurePairs or Queue by ex-
tending procedure LabelB to include them.

Acknowledgments

We thank Cheng-Ju Kuo and Congxing Cai for their
help in producing the results reported in Section 4.2.
This research is supported by NHLBI-NIH grant
1UH2HL108780-01.

References
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Abstract

Block-LDA is a topic modeling approach to
perform data fusion between entity-annotated
text documents and graphs with entity-entity
links. We evaluate Block-LDA in the yeast bi-
ology domain by jointly modeling PubMed R©

articles and yeast protein-protein interaction
networks. The topic coherence of the emer-
gent topics and the ability of the model to re-
trieve relevant scientific articles and proteins
related to the topic are compared to that of a
text-only approach that does not make use of
the protein-protein interaction matrix. Eval-
uation of the results by biologists show that
the joint modeling results in better topic co-
herence and improves retrieval performance in
the task of identifying top related papers and
proteins.

1 Introduction

The prodigious rate at which scientific literature
is produced makes it virtually impossible for re-
searchers to manually read every article to identify
interesting and relevant papers. It is therefore crit-
ical to have automatic methods to analyze the liter-
ature to identify topical structure in it. The latent
structure that is identified can be used for different
applications such as enabling browsing, retrieval of
papers related to a particular sub-topic etc. Such ap-
plications assist in common scenarios such as help-
ing a researcher identify a set of articles to read (per-
haps a set of well-regarded surveys) to familiarize
herself with a new sub-field; helping a researcher to
stay abreast with the latest advances in his field by
identifying relevant articles etc.

In this paper, we focus on the task of organiz-
ing a large collection of literature about yeast biol-
ogy to enable topic oriented browsing and retrieval
from the literature. The analysis is performed using
topic modeling(Blei et al., 2003) which has, in the
last decade, emerged as a versatile tool to uncover
latent structure in document corpora by identifying
broad topics that are discussed in it. This approach
complements traditional information retrieval tasks
where the objective is to fulfill very specific infor-
mation needs.

In addition to literature, there often exist other
sources of domain information related to it. In the
case of yeast biology, an example of such a resource
is a database of known protein-protein interactions
(PPI) which have been identified using wetlab exper-
iments. We perform data fusion by combining text
information from articles and the database of yeast
protein-protein interactions, by using a latent vari-
able model — Block-LDA (Balasubramanyan and
Cohen, 2011) that jointly models the literature and
PPI networks.

We evaluate the ability of the topic models to re-
turn meaningful topics by inspecting the top papers
and proteins that pertain to them. We compare the
performance of the joint model i.e. Block-LDA with
a model that only considers the text corpora by ask-
ing a yeast biologist to evaluate the coherence of
topics and the relevance of the retrieved articles and
proteins. This evaluation serves to test the utility of
Block-LDA on a real task as opposed to an internal
evaluation (such as by using perplexity metrics for
example). Our evaluaton shows that the joint model
outperforms the text-only approach both in topic co-
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herence and in top paper and protein retrieval as
measured by precision@10 values.

The rest of the paper is organized as follows. Sec-
tion 2 describes the topic modeling approach used
in the paper. Section 3 describes the datasets used
followed by Section 4 which details the setup of the
experiments. The results of the evaluation are pre-
sented in Section 5 which is followed by the conclu-
sion.

2 Block-LDA

The Block-LDA model (plate diagram in Figure 1)
enables sharing of information between the compo-
nent on the left that models links between pairs of
entities represented as edges in a graph with latent
block structure, and the component on the right that
models text documents, through shared latent topics.
More specifically, the distribution over the entities of
the type that are linked is shared between the block
model and the text model.

The component on the right, which is an extension
of the LDA models documents as sets of “bags of en-
tities”, each bag corresponding to a particular type
of entity. Every entity type has a topic wise multi-
nomial distribution over the set of entities that can
occur as an instance of the entity type. This model
is termed as Link-LDA(Nallapati et al., 2008) in the
literature.

The component on the left in the figure is a gen-
erative model for graphs representing entity-entity
links with an underlying block structure, derived
from the sparse block model introduced by Parkki-
nen et al. (2009). Linked entities are generated from
topic specific entity distributions conditioned on the
topic pairs sampled for the edges. Topic pairs for
edges (links) are drawn from a multinomial defined
over the Cartesian product of the topic set with it-
self. Vertices in the graph representing entities there-
fore have mixed memberships in topics. In con-
trast to Mixed-membership Stochastic Blockmodel
(MMSB) introduced by Airoldi et al. (2008), only
observed links are sampled, making this model suit-
able for sparse graphs.

LetK be the number of latent topics (clusters) we
wish to recover. Assuming documents consist of T
different types of entities (i.e. each document con-
tains T bags of entities), and that links in the graph

are between entities of type tl, the generative process
is as follows.
1. Generate topics: For each type t ∈ 1, . . . , T , and
topic z ∈ 1, . . . ,K, sample βt,z ∼ Dirichlet(γ), the
topic specific entity distribution.
2. Generate documents. For every document d ∈
{1 . . . D}:

• Sample θd ∼ Dirichlet(αD) where θd is the
topic mixing distribution for the document.

• For each type t and its associated set of entity
mentions et,i, i ∈ {1, · · · , Nd,t}:

– Sample a topic zt,i ∼Multinomial(θd)
– Sample an entity et,i ∼

Multinomial(βt,zt,i)

3. Generate the link matrix of entities of type tl:

• Sample πL ∼ Dirichlet(αL) where πL de-
scribes a distribution over the Cartesian prod-
uct of the set of topics with itself, for links in
the dataset.

• For every link ei1 → ei2, i ∈ {1 · · ·NL}:

– Sample a topic pair 〈zi1, zi2〉 ∼
Multinomial(πL)

– Sample ei1 ∼Multinomial(βtl,zi1)

– Sample ei2 ∼Multinomial(βtl,zi2)

Note that unlike the MMSB model, this model
generates only realized links between entities.

Given the hyperparameters αD, αL and γ, the
joint distribution over the documents, links, their
topic distributions and topic assignments is given by

p(πL,θ,β, z, e, 〈z1, z2〉, 〈e1, e2〉|αD, αL, γ) ∝

(1)
K∏
z=1

T∏
t=1

Dir(βt,z|γt)×

D∏
d=1

Dir(θd|αD)
T∏
t=1

Nd,t∏
i=1

θ
z
(d)
t,i

d β
et,i

t,z
(d)
t,i

×

Dir(πL|αL)

NL∏
i=1

π
〈zi1,zi2〉
L βei1

tl,z1
βei2
tl,z2
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...

θd
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πL

NL

γ

Dim: K x K
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zi1 zi2
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Links

Docs

βt,z
T

K

D

z1,i
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zT,i

eT,i

Nd,TNd,1

αL - Dirichlet prior for the topic pair distribution for links
αD - Dirichlet prior for document specific topic distributions
γ - Dirichlet prior for topic multinomials
πL - multinomial distribution over topic pairs for links
θd - multinomial distribution over topics for document d
βt,z - multinomial over entities of type t for topic z
zt,i - topic chosen for the i-th entity of type t in a document
et,i - the i-th entity of type t occurring in a document
zi1 and zi2 - topics chosen for the two nodes participating in the i-th link
ei1 and ei2 - the two nodes participating in the i-th link

Figure 1: Block-LDA

A commonly required operation when using mod-
els like Block-LDA is to perform inference on the
model to query the topic distributions and the topic
assignments of documents and links. Due to the
intractability of exact inference in the Block-LDA
model, a collapsed Gibbs sampler is used to perform
approximate inference. It samples a latent topic for
an entity mention of type t in the text corpus con-
ditioned on the assignments to all other entity men-
tions using the following expression (after collaps-
ing θD):

p(zt,i = z|et,i, z¬i, e¬i, αD, γ) (2)

∝ (n¬idz + αD)
n¬i
ztet,i

+ γ∑
e′ n
¬i
zte′

+ |Et|γ

Similarly, we sample a topic pair for every link con-
ditional on topic pair assignments to all other links

after collapsing πL using the expression:

p(zi = 〈z1, z2〉|〈ei1, ei2〉, z¬i, 〈e1, e2〉¬i, αL, γ)(3)

∝
(
nL¬i〈z1,z2〉 + αL

)
×(

n¬i
z1tlei1

+γ
)(
n¬i

z2tlei2
+γ
)

(∑
e n

¬i
z1tle

+|Etl
|γ
)(∑

e n
¬i
z2tle

+|Etl
|γ
)

Et refers to the set of all entities of type t. The n’s
are counts of observations in the training set.

• nzte - the number of times an entity e of type t
is observed under topic z

• nzd - the number of entities (of any type) with
topic z in document d

• nL〈z1,z2〉 - count of links assigned to topic pair
〈z1, z2〉

The topic multinomial parameters and the topic
distributions of links and documents are easily re-
covered using their MAP estimates after inference
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using the counts of observations.

β
(e)
t,z =

nzte + γ∑
e′ nzte′ + |Et|γ

, (4)

θ
(z)
d =

ndz + αD∑
z′ ndz′ +KαD

and (5)

π
〈z1,z2〉
L =

n〈z1,z2〉 + αL∑
z′1,z

′
2
n〈z′1,z′2〉 +K2αL

(6)

A de-noised form of the entity-entity link matrix
can also be recovered from the estimated parame-
ters of the model. Let B be a matrix of dimensions
K × |Etl | where row k = βtl,k, k ∈ {1, · · · ,K}.
Let Z be a matrix of dimensions K ×K s.t Zp,q =∑NL

i=1 I(zi1 = p, zi2 = q). The de-noised matrix M
of the strength of association between the entities in
Etl is given by M = BTZB.

In the context of this paper, de-noising the
protein-protein interaction networks studied is an
important application. The joint model permits in-
formation from the large text corpus of yeast publi-
cations to be used to de-noise the PPI network and
to identify potential interactions that are missing in
the observed network. While this task is important
and interesting, it is outside the scope of this paper
and is a direction for future work.

3 Data

We use a collection of publications about yeast bi-
ology that is derived from the repository of sci-
entific publications at PubMed R©. PubMed R© is a
free, open-access on-line archive of over 18 mil-
lion biological abstracts and bibliographies, includ-
ing citation lists, for papers published since 1948.
The subset we work with consists of approximately
40,000 publications about the yeast organism that
have been curated in the Saccharomyces Genome
Database (SGD) (Dwight et al., 2004) with anno-
tations of proteins that are discussed in the publi-
cation. We further restrict the dataset to only those
documents that are annotated with at least one pro-
tein from the protein-protein interactions databases
described below. This results in a protein annotated
document collection of 15,776 publications. The
publications in this set were written by a total of
47,215 authors. We tokenize the titles and abstracts
based on white space, lowercase all tokens and elim-
inate stopwords. Low frequency (< 5 occurrences)

terms are also eliminated. The vocabulary that is ob-
tained consists of 45,648 words.

The Munich Institute for Protein Sequencing
(MIPS) database (Mewes et al., 2004) includes a
hand-crafted collection of protein interactions cover-
ing 8000 protein complex associations in yeast. We
use a subset of this collection containing 844 pro-
teins, for which all interactions were hand-curated.

Finally, we use another dataset of protein-protein
interactions in yeast that were observed as a result of
wetlab experiments by collaborators of the authors
of the paper. This dataset consists of 635 interac-
tions that deal primarily with ribosomal proteins and
assembly factors in yeast.

4 Setup

We conduct three different evaluations of the emer-
gent topics. Firstly, we obtain topics from only
the text corpus using a model that comprises of the
right half of Figure 1 which is equivalent to using
the Link-LDA model. For the second evaluation,
we use the Block-LDA model that is trained on the
text corpus and the MIPS protein-protein interac-
tion database. Finally, for the third evaluation, we
replace the MIPS database with the interaction ob-
tained from the wetlab experiments. In all the cases,
we set K, the number of topics to be 15. In each
variant, we represent documents as 3 sets of entities
i.e. the words in the abstracts of the article, the set
of proteins associated with the article as indicated in
the SGD database and finally the authors who wrote
the article. Each topic therefore consists of 3 differ-
ent multinomial distributions over the sets of the 3
kinds of entities described.

Topics that emerge from the different variants can
possibly be assigned different indices even when
they discuss the same semantic concept. To com-
pare topics across variants, we need a method to
determine which topic indices from the different
variants correspond to the same semantic concept.
To obtain the mapping between topics from each
variant, we utilize the Hungarian algorithm (Kuhn,
1955) to solve the assignment problem where the
cost of aligning topics together is determined using
the Jensen-Shannon divergence measure.

Once the topics are obtained, we firstly obtain the
proteins associated with the topic by retrieving the
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Figure 2: Screenshot of the Article Relevance Annotation Tool

Variant Num. Coherent Topics
Only Text 12 / 15
Text + MIPS 13 / 15
Text + Wetlab 15 / 15

Table 1: Topic Coherence Evaluation

top proteins from the multinomial distribution cor-
responding to proteins. Then, the top articles cor-
responding to each topic is obtained using a ranked
list of documents with the highest mass of their topic
proportion distributions (θ) residing in the topic be-
ing considered.

4.1 Manual Evaluation

To evaluate the topics, a yeast biologist who is an
expert in the field was asked to mark each topic with

a binary flag indicating if the top words of the dis-
tribution represented a coherent sub-topic in yeast
biology. This process was repeated for the 3 differ-
ent variants of the model. The variant used to obtain
results is concealed from the evaluator to remove the
possibility of bias. In the next step of the evaluation,
the top articles and proteins assigned to each topic
were presented in a ranked list and a similar judge-
ment was requested to indicate if the article/protein
was relevant to the topic in question. Similar to
the topic coherence judgements, the process was re-
peated for each variant of the model. Screenshots
of the tool used for obtaining the judgments can be
seen in Figure 2. It should be noted that since the
nature of the topics in the literature considered was
highly technical and specialized, it was impractical
to get judgements from multiple annotators.
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Figure 3: Retrieval Performance Evaluation (Horizontal lines indicate mean across all topics)

To evaluate the retrieval of the top articles and
proteins, we measure the quality of the results by
computing its precision@10 score.

5 Results

First we evaluate the coherence of the topics ob-
tained from the 3 variants described above. Table
1 shows that out of the 15 topics that were obtained,
12 topics were deemed coherent from the text-only
model and 13 and 15 topics were deemed coherent
from the Block-LDA models using the MIPS and
wetlab PPI datasets respectively.

Next, we study the precision@10 values for each
topic and variant for the article retrieval and protein
retrieval tasks, which is shown in Figure 3. The plots

also show horizontal lines representing the mean of
the precision@10 across all topics. It can be seen
from the plots that for both the article and protein
retrieval tasks, the joint models work better than the
text-only model on average. For the article retrieval
task, the model trained with the text + MIPS resulted
in the higher mean precision@10 whereas for the
protein retrieval task, the text + Wetlab PPI dataset
returned a higher mean precision@10 value. For
both the protein retrieval and paper retrieval tasks,
the improvements shown by the joint models using
either of the PPI datasets over the text-only model
(i.e. the Link LDA model) were statistically sig-
nificant at the 0.05 level using the paired Wilcoxon
sign test. The difference in performance between the
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Topic: Protein Structure & Interactions
Top articles using Publications Only Top articles using Block-LDA with Wetlab PPI
* X-ray fiber diffraction of amyloid fibrils. * X-ray fiber diffraction of amyloid fibrils.
* Molecular surface area and hydrophobic effect. * Scalar couplings across hydrogen bonds.
* Counterdiffusion methods for macromolecular
crystallization.

* Dipolar couplings in macromolecular structure
determination.

* Navigating the ClpB channel to solution. * Structure of alpha-keratin.
* Two Rippled-Sheet Configurations of Polypep-
tide Chains, and a Note about the Pleated Sheets.

* Stable configurations of polypeptide chains.

* Molecular chaperones. Unfolding protein fold-
ing.

* The glucamylase and debrancher of S. diastati-
cus.

* The molten globule state as a clue for under-
standing the folding and cooperativity of globular-
protein structure.

* A study of 150 cases of pneumonia.

* Unfolding and hydrogen exchange of proteins:
the three-dimensional ising lattice as a model.

* Glycobiology.

* Packing of alpha-helices: geometrical con-
straints and contact areas.

* The conformation of thermolysin.

Topic: DNA Repair
Top articles using Publications Only Top articles using Block-LDA with Wetlab PPI
* Passing the baton in base excision repair. * Telomeres and telomerase.
* The bypass of DNA lesions by DNA and RNA
polymerases.

* Enzymatic photoreactivation: overview.

* The glucamylase and debrancher of S. diastati-
cus.

* High-efficiency transformation of plasmid DNA
into yeast.

* DNA replication fidelity. * The effect of ultraviolet light on recombination
in yeast.

* Base excision repair. * T-loops and the origin of telomeres.
* Nucleotide excision repair. * Directed mutation: between unicorns and goats.
* The replication of DNA in Escherichia Coli. * Functions of DNA polymerases.
* DNA topoisomerases: why so many? * Immortal strands? Give me a break.

Table 2: Sample of Improvements in Article Retrieval

two joint models that used the two different PPI net-
works were however insignificant which indicates
that there is no observable advantage in using one
PPI dataset over the other in conjunction with the
text corpus.

Table 2 shows examples of poor results of article
retrieval obtained using the publications-only model
and the improved set of results obtained using the
joint model.

5.1 Topics
Table 3 shows 3 sample topics that were retrieved
from each variant described earlier. The table shows
the top words and proteins associated with the top-

ics. The topic label on the left column was assigned
manually during the evaluation by the expert anno-
tator.

Conclusion

We evaluated topics obtained from the joint mod-
eling of yeast biology literature and protein-protein
interactions in yeast and compared them to top-
ics that were obtained from using only the litera-
ture. The topics were evaluated for coherence and
by measuring the mean precision@10 score of the
top articles and proteins that were retrieved for each
topic. Evaluation by a domain expert showed that
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Topic Top Words & Proteins
Protein Structure & Inter-
actions

Words: protein structure binding residues domain structural beta complex
atp proteins alpha interactions folding structures form terminal peptide helix
model interaction bound domains molecular changes conformational

(Publications Only) Proteins: CYC1 SSA1 HSP82 SUP35 HSP104 HSC82 SSA2 YDJ1 URE2
KAR2 SSB1 SSA4 GCN4 SSA3 SSB2 PGK1 PDI1 SSC1 HSP60 STI1
SIS1 RNQ1 SEC61 SSE1 CCP1

DNA Repair Words:dna recombination repair replication strand single double cells mu-
tations stranded induced base uv mutants mutation homologous virus telom-
ere human type yeast activity telomerase mutant dna polymerase

(Using MIPS PPI) Proteins: RAD52 RAD51 RAD50 MRE11 RAD1 RAD54 SGS1 MSH2
RAD6 YKU70 REV3 POL30 RAD3 XRS2 RAD18 RAD2 POL3 RAD27
YKU80 RAD9 RFA1 TLC1 TEL1 EST2 HO

Vesicular Transport Words:membrane protein transport proteins atp golgi er atpase membranes
plasma membrane vesicles cells endoplasmic reticulum complex fusion
ca2 dependent translocation vacuolar intracellular yeast lipid channel hsp90
vesicle

(Using Wetlab PPI) Proteins: SSA1 HSP82 KAR2 PMA1 HSC82 SEC18 SSA2 YDJ1 SEC61
PEP4 HSP104 SEC23 VAM3 IRE1 SEC4 SSA4 SEC1 PMR1 PEP12
VMA3 VPH1 SSB1 VMA1 SAR1 HAC1

Table 3: Sample Topics

the joint modeling produced more coherent topics
and showed better precision@10 scores in the article
and protein retrieval tasks indicating that the model
enabled information sharing between the literature
and the PPI networks.
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Abstract

This paper presents a machine learning ap-
proach that selects and, more generally, ranks
sentences containing clear relations between
genes and terms that are related to them. This
is treated as a binary classification task, where
preference judgments are used to learn how to
choose a sentence from a pair of sentences.
Features to capture how the relationship is de-
scribed textually, as well as how central the
relationship is in the sentence, are used in the
learning process. Simplification of complex
sentences into simple structures is also applied
for the extraction of the features. We show that
such simplification improves the results by up
to 13%. We conducted three different evalu-
ations and we found that the system signifi-
cantly outperforms the baselines.

1 Introduction

Life scientists, doctors and clinicians often search
for information relating biological concepts. For ex-
ample, a doctor might be interested to know the im-
pact of a drug on some disease. One source of infor-
mation is the knowledge bases and ontologies that
are manually curated with facts from scientific arti-
cles. However, the curation process is slow and can-
not keep up with ongoing publications. Moreover,
not all associations between biological concepts can
be found in these databases.

Another source of information is the scientific
literature itself. However, searching for biological
facts and how they might be related is often cumber-
some. The work presented in this paper tries to au-
tomate the process of finding sentences that clearly

describe relationships between biological concepts.
We rank all sentences mentioning two concepts and
pick the top one to show to the user. In this paper, we
focused on certain specific types of concepts (i.e.,
genes1 and terms believed to be related to them), al-
though our approach can be generalized.

Systems to facilitate knowledge exploration of
genes are being built for the biomedical domain.
One of them, eGIFT (Tudor et al., 2010), tries to
identify iTerms (informative terms) for a gene based
on frequency of co-occurrence (see Figure 1 for top
15 terms selected for gene Groucho). iTerms are
unigrams, bigrams, and exact matches of biomedi-
cal terms gathered from various controlled vocabu-
laries. Thus, iTerms can be of any type (e.g., pro-
cesses, domains, drugs, other genes, etc.), the types
being determined by what is being described about
the gene in the literature. The iTerms for a gene
are ranked based on a score that compares their fre-
quencies of occurrence in publications mentioning
the gene in question with their frequencies in a back-
ground set of articles about a wide variety of genes.

Previous evaluation of eGIFT by life scientists
suggested that there is almost always some kind of
relationship between a gene and its iTerms. These
relationships can be many and varied from one gene-
term pair to another. Sometimes a user might make
an erroneous assumption about a gene-term asso-
ciation if sentences supporting the association are
not immediately inspected. For example, upon see-
ing “co-repressor” in connection to gene Groucho,
eGIFT users might correctly assume that Groucho is

1Throughout the paper, the word “gene” will be used for
both the gene and its products.
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Figure 1: Top iTerms for gene Groucho, and sentences picked by RankPref for various iTerms.

a co-repressor (i.e., a protein that binds to transcrip-
tion factors). However, upon seeing “wrpw motif”,
a user might assume that this is a motif contained
within gene Groucho, as this is typically the asso-
ciation that we make between genes and informa-
tion annotated for them in knowledge bases. But
this would be a wrong assumption, since in actuality
the wrpw motif is contained within other genes that
interact with Groucho, fact which is evident from
reading sentences containing the gene and the mo-
tif. To get a quick overall understanding of a gene’s
functionalities, users of eGIFT could be presented
with terms extracted for the gene, as well as sen-
tences clearly describing how they are related.

Our method selects sentences using a model that
is trained on preference judgments provided by biol-
ogists. Example sentences chosen by our method are
shown in Figure 1. While we evaluate our approach
on sentences from eGIFT, this work could have
equally applied on other similar systems (Smal-
heiser et al., 2008; Gladki et al., 2008; Kim et al.,
2008; Kaczanowski et al., 2009). These systems
also identify “important terms” from a set of doc-
uments retrieved for a given search (either a gene
name or other biomedical concept).

The main contributions of this work are: (1) a
method for ranking sentences by employing ma-
chine learning; (2) the use of preference judgments;
(3) features to capture whether two terms are clearly
related and in focus in a sentence; (4) another appli-
cation of sentence simplification, showing a signifi-
cant gain in performance when utilized.

We continue with a description of our approach,
which includes the use of preference judgments to
learn the models, how the features are extracted, and
how the sentence simplifier is used for this task. The
evaluation of the trained model and the system’s re-
sults are presented in the following section. Re-
lated work, conclusions, and future directions are
provided at the end of the manuscript.

2 Methods

Rather than pre-judging what is important for this
task and manually determining a weighting schema
to automatically score sentences for a gene-term
pair, we approached this task using machine learn-
ing. We asked a group of annotators to rank sen-
tences relating genes and iTerms, and we used their
annotations, together with features described in Sec-
tion 2.3, to learn how to rank sentences.
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2.1 Preference Judgments

For the annotation task, we presented biologists with
sentences containing a gene-term pair and asked
them to specify which sentence they prefer. One
way to do this is by employing the pointwise ap-
proach, which requires absolute judgments (i.e. the
annotator scores each sentence in a list or ranks the
sentences based on their relevance to the given task).
A second approach is the pairwise approach, which
requires the iteration of preference judgments (i.e.,
the annotator is presented with two sentences at a
time, and is asked to chose one as more relevant to
the task than the other).

In order to simplify the annotator’s task, as well
as construct a more reliable training set, we used the
pairwise approach. Our decision was influenced by
Carterette et al. (2008), who showed that preference
judgments are faster and easier to make than abso-
lute judgments. Thus, we can obtain many annotated
instances in a relatively short amount of time. More-
over, since there are only two possible outcomes in
choosing one sentence, we need at most three judges
for a majority vote. This will also ensure consistency
in the annotations. We discuss the model trained on
preference judgments in Section 2.2.

2.2 Learned Models: PrefSVM and RankPref

We used the preference judgments to learn a model,
PrefSVM, that picks one sentence from a pair of sen-
tences. This model was built using SVMLight with
a linear kernel. The examples used in the learning
process correspond to pairs of sentences. For each
pair, we constructed a vector of feature values, by
subtracting the feature values corresponding to the
first sentence from the feature values corresponding
to the second sentence. We assigned a positive value
to a pair vector if the first sentence was preferred and
a negative value if the second one was preferred.

We can also use PrefSVM to design a system that
can rank all the sentences containing a gene and
an iTerm, by performing comparisons between sen-
tences in the list. We call RankPref the system that
picks one sentence from a group of sentences, and
which also ranks the entire set of sentences. This
method recursively applies PrefSVM in the following
manner: Two sentences are randomly picked from
a given list of sentences. PrefSVM chooses one sen-

tence and discards the other. A third sentence is then
randomly picked from the list, and PrefSVM makes
its choice by comparing it to the sentence kept in the
previous step. This process of picking, comparing
and discarding sentences is continued until there is
only one sentence left. We keep track of comparison
results and apply transitivity, in order to speed up the
process of ranking all the sentences.

2.3 Features

Each sentence is first chunked into base phrases. We
used Genia Tagger (Tsuruoka et al., 2005), which
provides part-of-speech tags for every word in the
sentence. We trained a chunker (i.e., shallow parser
that identifies base NPs) using the Genia corpus.

We considered typical features that are used in
machine learning approaches, such as distance be-
tween gene and iTerm, length of sentence, etc.
Moreover, we included additional groups of features
that we felt might be important for this task: one
group to capture how the relationship is described
textually, another group to capture how central the
relationship is in terms of what is being described in
the sentence, and the last to capture whether the re-
lation is stated as a conjecture or a fact. The weights
for these features will be determined automatically
during the learning process and they will be depen-
dent on whether or not the features were effective,
given the annotation set.

The first type of features is to capture how the
relationship is described textually. As an example,
consider the sentence “Bmp2 stimulates osteoblas-
tic differentiation”2, where the gene and the iTerm
are in subject and object (direct object or otherwise)
positions, and the verb is a common biological verb.
Thus, we constructed a set of lexico-syntactic pat-
terns to capture the different kinds of argument re-
lations served by the two concepts. We grouped 25
lexico-syntactic patterns into 8 groups, correspond-
ing to different relational constructions that can ex-
ist between a gene and an iTerm. Example patterns
are shown in Table 1 for each group, and the sym-
bols used in these patterns are explained in Table 2.
When a sentence matches a pattern group, the corre-
sponding value is set to 1 for that feature.

2In our examples, the gene will be marked in italics and the
iTerm will be marked in bold.

165



Group Example Pattern
G1 G VG+ I
G2 G/I via/by/through I/G
G3 G VG+ (NP/PP)* by/in VBG I
G4 G/I by/in VBG I/G
G5 G/I VB I/G
G6 G/I of I/G
G7 G/I other preposition I/G
G8 including/such as/etc. G/I and I/G

Table 1: Examples of lexico-syntactic patterns

For example, the following sentence, in which
the gene is Lmo2 and the iTerm is “erythropoiesis”,
matches the pattern in G1: [G VG+ I].

While Tal1 has been shown to induce ery-
throid differentiation , Lmo2 appears to sup-
press fetal erythropoiesis.

where “Lmo2” matches G, “appears to suppress”
matches VG+, and “fetal erythropoiesis” matches I.

Notice how the verb plays an important role in
the patterns of groups G1, G3, G4, and G5. We also
have a verb type feature which differentiates groups
of verbs having the gene and the iTerm as arguments
(e.g., “activates”, “is involved in”, “plays a role”,
etc. are treated as different types).

The second type of features captures how cen-
tral the relationship is in terms of what is being de-
scribed in the sentence. The subject feature records
whether the gene and iTerm appear in the subject
position, as this will tell us if they are in focus in
the sentence. While we do not parse the sentence,
we take a simplified sentence (see Section 2.4) and
see if the gene/term appear in a noun phrase pre-
ceding the first tensed verb. Another feature, the
gene-iTerm position, measures how close the gene
and the term are to each other and to the beginning
of the sentence, as this makes it easier for a reader
to grasp the relation between them. For this, we add
the number of words occurring to the left of the seg-
ment spanning the gene and iTerm, and half of the
number of words occurring between them. Finally,
we included a headedness feature. The idea here is
that if the gene/term are not the head of the noun
group, but rather embedded inside, then this poten-
tially makes the relation less straightforward. These

Symb Definition
NP a base noun phrase
PP a preposition followed by a base noun phrase

VG+ a series of one or more verb groups
VBG a verb group in which the head is a gerund verb
VBN a verb group in which the head is a participle verb
VB a verb group in which the head is a base verb
G, I base noun phrases, with 0 or more prepositional

phrases, containing the gene/iTerm

Table 2: Symbols used in the pattern notation

groups are denoted by G and I in the patterns shown
in Table 1.

The third type of features captures information
about the sentence itself. The sentence complexity
feature is measured in terms of the number of verbs,
conjunctions, commas, and parentheticals that oc-
cur in the sentence. We use a conjecture feature for
detecting whether the sentence involves a hypothe-
sis. We have a simple rule for this feature, by see-
ing if words such as “may”, “could”, “probably”,
“potentially”, etc., appear in proximity of the gene
and iTerm. Additionally, we have a negation feature
to detect whether the relationship is mentioned in a
negative way. We look for words such as “not”, “nei-
ther”, etc., within proximity of the gene and iTerm.

Although the features and lexico-syntactic pat-
terns were determined by analyzing a development
set of sentences containing genes and their iTerms,
we believe that these features and patterns can be
used to rank sentences involving other biomedical
entities, not just genes.

2.4 Sentence Simplification

Notice that the lexico-syntactic patterns are written
as sequences of chunks and lexical tags. If a sen-
tence matches a pattern, then the sentence expresses
a relation between the gene and the iTerm. However,
sometimes it is not possible to match a pattern if the
sentence is complex.

For example, consider sentence A in Table 3, for
gene Cd63. Let us assume that the iTerm is “prota-
somes”. Clearly, there is a relationship between the
gene and the iTerm, namely that Cd63 was found in
pc-3 cell-derived protasomes. However, none of the
lexico-syntactic patterns is able to capture this rela-
tion, because of all the extra information between
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A Cd63, an integral membrane protein found
in multivesicular lysosomes and secretory
granules, was also found in pc-3 cell-
derived protasomes.

S1 Cd63 was found in pc-3 cell-derived pro-
tasomes.

S2 Cd63 is an integral membrane protein.

CS1 Cd63 is found in multivesicular lyso-
somes.

CS2 Cd63 is found in secretory granules.

Table 3: Simplified sentences for gene Cd63. Example
iTerms: “protasomes” and “secretory granules”.

the gene and the term. While we may have multi-
ple patterns in each group, we cannot necessarily ac-
count for each lexical variation at this level of gran-
ularity.

We are using a sentence simplifier, built in-house,
to ensure a match where applicable. The simpli-
fier identifies appositions, relative clauses, and con-
junctions/lists of different types, using regular ex-
pressions to match chunked tags. In the sentence
of Table 3, the simplifier recognizes the apposition
“an integral membrane protein”, the reduced relative
clause “found in multivesicular bodies/lysosomes
and secretory granules” and the noun conjunction
“multivesicular bodies/lysosome and secretory gran-
ules”. It then produces several simplified sentences
containing the gene. S1 and S2, shown in Table 3,
are simplified sentences obtained from the simpli-
fier. CS1 and CS2 are additional simplified sen-
tences, which required the combination of multiple
simplifications: the appositive, the relative clause,
and the noun conjunction.

Notice how each of the simplified sentences
shown in Table 3 is now matching a pattern group.
If we are interested in the relationship between Cd63
and “protasomes”, we can look at S1. Likewise, if
we are interested in the relationship between Cd63
and “secretory granules”, we can look at CS2.

We have a matching feature that tells whether the
pattern was matched in the original sentence, a sim-
plified sentence, or a combined sentence, and this
feature is taken into account in the learning process.

3 Results and Discussion

We evaluated both PrefSVM and RankPref. Each re-
quired a different set of annotated data. For the
evaluation of PrefSVM, we used the preference judg-
ments and leave-one-out cross validation. And for
the evaluation of RankPref, we asked the annota-
tors to order a group of sentences mentioning gene-
iTerm pairs. Six life science researchers, with grad-
uate degrees, annotated both sets.

3.1 Evaluation of PrefSVM

First, we evaluated the performance of PrefSVM us-
ing leave-one-out cross validation.

3.1.1 Annotation of Preference Judgements
We started by selecting a group of pairs of sen-

tences. We randomly picked gene-iTerm combi-
nations, and for each combination, we randomly
picked two sentences containing both the gene and
the term. To alleviate bias, the order of the sentences
was chosen randomly before displaying them to the
annotators. In our guidelines, we asked the annota-
tors to choose sentences that clearly state the rela-
tionship between the gene and the iTerm. Because
the focus here is on the relationship between the two
terms, we also asked them to refrain from choos-
ing sentences that describe additional information or
other aspects. It is conceivable that, for other appli-
cations, extra information might be an important de-
termining factor, but for our task we wanted to focus
on the relationship only.

For each pair of sentences, we wanted to have
three opinions so that we can have a majority vote.
To alleviate the burden on the annotators, we started
by giving each pair of sentences to two annotators,
and asked for an extra opinion only when they did
not agree. Each biologist was given an initial set
of 75 pairs of sentences to annotate, and shared the
same amount of annotations (15) with each of the
other biologists. 225 unique pairs of sentences were
thus annotated, but six were discarded after the an-
notators informed us that they did not contain the
gene in question.

In 34 out of 219 pairs of sentences, the two biol-
ogists disagreed on their annotations. These cases
included pairs of similar sentences, or pairs of sen-
tences that did not describe any relationship between
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System Performance Correct
Baseline 1 65.75% 144
Baseline 2 71.69% 157
PrefSVM without Simp 72.14% 158
PrefSVM with Simp 83.10% 182

Table 4: Results for PrefSVM

the gene and the iTerm. An example of sentences for
which the annotators could not agree is:

1. The tle proteins are the mammalian ho-
mologues of gro, a member of the drosophila
notch signaling pathway.
2. In drosophila, gro is one of the neurogenic
genes that participates in the notch signalling
pathway .

For these 34 pairs, we randomly selected another
annotator and considered the majority vote.

3.1.2 Baselines
We chose two baselines against which to com-

pare PrefSVM. The first baseline always chooses
the shortest sentence. For the second baseline, we
looked at the proximity of the gene/term to the be-
ginning of the sentence, as well as the proximity of
the two to each other, and chose the sentence that
had the lowest accumulated proximity. The reason
for this second baseline is because the proximity of
the gene/term to the beginning of the sentence could
mean that the sentence focuses on the gene/term and
their relation. Furthermore, the proximity of the
gene to the iTerm could mean a clearer relation be-
tween them.

3.1.3 Results
We evaluated PrefSVM by performing leave-one-

out cross validation on the set of 219 pairs of sen-
tences. Each pair of sentences was tested by using
the model trained on the remaining 218 pairs. The
results are shown in Table 4.

The first baseline performed at 65.75%, correctly
choosing 144 of 219 sentences. The second base-
line performed slightly better, at 71.69%. PrefSVM
outperformed both baselines, especially when the
sentence simplifier was used, as this facilitated the
match of the lexico-syntactic patterns used as fea-
tures. PrefSVM performed at 83.10%, which is

17.35% better than the first baseline, and 11.41%
better than the second baseline.

3.2 Evaluation of RankPref

The previous evaluation showed how PrefSVM per-
forms at picking a sentence from a pair of sentences.
But ultimately, for the intended eGIFT application,
the system needs to choose one sentence from many.
We evaluated RankPref for this task.

3.2.1 Annotating Data for Sentence Selection
For this evaluation, we needed to create a different

set of annotated data that reflects the selection of one
sentence from a group of sentences.

Since a gene and an iTerm can appear in many
sentences, it is too onerous a task for a human anno-
tator to choose one out of tens or hundreds of sen-
tences. For this reason, we limited the set of sen-
tences mentioning a gene and an iTerm to only 10.
We randomly picked 100 gene-term pairs and for the
pairs that contained more than ten sentences, we ran-
domly chose ten of them. On average, there were 9.4
sentences per set.

We asked the same annotators as in the previous
evaluation to participate in this annotation task. Be-
cause the task is very time consuming, and because
it is hard to decide how to combine the results from
multiple annotators, we assigned each set of sen-
tences to only one annotator. We showed the sen-
tences in a random order so that biasing them would
not be an issue.

We initially asked the annotators to order the sen-
tences in the set. However, this task proved to be im-
possible, since many sentences were alike. Instead,
we asked the annotators to assign them one of three
categories:

(Cat.1) Any sentence in this category could be
considered the “best” among the choices provided;

(Cat.2) These sentences are good, but there are
other sentences that are slightly better;

(Cat.3) These sentences are not good or at least
there are other sentences in this set that are much
better.

Classifying the sentences into these categories
was less cumbersome, fact which was confirmed by
our evaluators after a trial annotation.

Out of the total of 936 sentences, 322 (34.4%)
were placed in the first category, 332 (35.5%) were
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System Cat.1 Cat.2 Cat.3
Baseline 1 58 30 12
Baseline 2 61 24 15
RankPref without Simp 67 21 12
RankPref with Simp 80 17 3

Table 5: Results for RankPref

placed in the second category, and 282 (30.1%) were
placed in the third category. On average, it took
about 15 minutes for an annotator to group a set’s
sentences into these three categories. So each anno-
tator volunteered approximately 5 hours of annota-
tion time.

3.2.2 Results
Table 5 shows how the top sentences picked for

the 100 gene-term pairs by the four systems matched
with the annotations. 80 of 100 sentences that
RankPref picked were placed in Cat.1 by the anno-
tators, 17 were placed in Cat.2, and 3 sentences
were placed in Cat.3. These results compare favor-
ably with results obtained for the two baselines and
RankPref without the use of the simplifier.

Furthermore, instead of just focussing on the top
choice sentence, we also considered the ranking of
the entire set of sentences. We looked at how the
ranked lists agree with the categories assigned by
the annotators. We used the normalized discounted
cumulative gain (nDCG) (Jarvelin and Kekalainen,
2002), a standard metric used in information re-
trieval to evaluate the quality of the ranked lists.
DCG at rank p is defined as:

DCGp = rel1 +
p∑

i=2

reli
log2i

where reli is the relevance of the item at position i.
We normalize DCG by dividing it by an ideal gain
(i.e., DCG of same list, when ordered from highest
to lowest relevance).

For our task, we took the relevance score to be 1
for a sentence placed in Cat.1, a relevance score of
0.5 for a sentence placed in Cat.2, and a relevance
score of 0 for a sentence placed in Cat.3. We report
a normalized discounted cumulative gain of 77.19%.

This result compares favorably with results re-
ported for the two baselines (68.36% for B1 and

Figure 2: Distribution of nDCG for different relevance
scores assigned to sentences placed in category Cat.2.

68.32% for B2) as well as for when the sentence
simplifier was removed (69.45%).

Figure 2 shows different results for nDCG when
the relevance score for Cat.2 is varied between 0
(same as sentences placed in Cat.1) and 1 (same as
sentences placed in Cat.3).

4 Related Work

To the best of our knowledge, no one has attempted
to rank sentences from the biomedical literature,
using machine learning on a set of data marked
with preference judgments. However, different ap-
proaches have been described in the literature that
use preference judgments to learn ranked lists. For
example, Radlinski and Joachims (2005) used pref-
erence judgments to learn ranked retrieval functions
for web search results. These judgments were gen-
erated automatically from search engine logs. Their
learned rankings outperformed a static ranking func-
tion. Similar approaches in IR are those of Cohen et
al. (1999) and Freund et al. (2003).

Ranking of text passages and documents has
been done previously in BioNLP for other purposes.
Suomela and Andrade (2005) proposed a way to
rank the entire PubMed database, given a large train-
ing set for a specific topic. Goldberg et al. (2008)
and Lu et al. (2009) describe in detail how they iden-
tified and ranked passages for the 2006 Trec Ge-
nomics Track (Hersh et al., 2006). Yeganova et
al. (2011) present a method for ranking positively la-
beled data within large sets of data, and this method
was applied by Neveol et al. (2011) to rank sen-
tences containing deposition relationships between
biological data and public repositories.
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Extraction of sentences describing gene functions
has also been applied for creating gene summaries
(Ling et al., 2007; Jin et al., 2009; Yang et al., 2009).
However, these methods differ in that their goal is
not to look for sentences containing specific terms
and their relations with genes, but rather for sen-
tences that fall into some predefined categories of
sentences typically observed in gene summaries.

Sentence simplification has been used to aid pars-
ing (Chandrasekar et al., 1996; Jonnalagadda et
al., 2009). Devlin and Tait (1998) and Carroll et
al. (1998) use it to help people with aphasia. Sid-
dharthan (2004) was concerned with cohesion and
suggested some applications.

The idea of using lexico-syntactic patterns to
identify relation candidates has also been applied in
the work of Banko et al. (2007), although their pat-
terns are not used in the learning process.

5 Conclusion and Future Directions

We have developed a system which aims to identify
sentences that clearly and succinctly describe the re-
lation between two entities. We used a set of prefer-
ence judgements, as provided by biologists, to learn
an SVM model that could make a choice between
any two sentences mentioning these entities.

The model compares favorably with baselines on
both the task of choosing between two sentences, as
well as ranking a set of sentences. The performance
for choosing between two sentences was 83.10%, as
compared to 65.75% and 71.69% for the two base-
lines, respectively. For choosing one sentence from
a list of sentences, the performance was 80%, as
compared to 58% and 61%. Furthermore, when the
entire list of ranked sentences was evaluated, the
system reported a nDCG of 77.19%, compared to
68.36% and 68.32% for the two baselines.

The model’s performance was also shown to
be significantly better when sentence simplification
was used. We were able to match relation patterns
on complex sentences, and observed an increase of
10.96%, 13%, and 7.74% for the three evaluations
afore-mentioned, respectively. It is noteworthy that,
without the simplification, the performance is only
slightly better than the second baseline. This is be-
cause the second baseline uses information that is
also used by our system, although this does not in-

clude the lexico-syntactic patterns that identify the
type of relation between the gene and the term.

Given that the full system’s performance is much
better than both baselines, and that the system’s per-
formance without simplification is only slightly bet-
ter than the second baseline, we believe that: (1) the
pattern and type of relation determination are impor-
tant, and (2) sentence simplification is crucial for the
determination of the relationship type.

We are currently pursuing summaries for genes.
Since iTerms have been shown in previous evalua-
tions to represent important aspects of a gene’s func-
tionality and behavior, we are investigating whether
they are represented in gene summaries found in En-
trezGene and UniProtKB. If so, an extractive sum-
mary can be produced by choosing sentences for the
gene and its iTerms. We are also considering de-
veloping abstractive summaries. Our use of lexico-
syntactic patterns can be extended to pick the exact
relation between a gene and the iTerm. For exam-
ple, by using the lexico-syntactic patterns, coupled
with simplification, we can extract the following ex-
act relations from the four sentences shown in Fig-
ure 1: “Groucho is a corepressor”, “The wrpw motif
recruits groucho”, “Groucho is implicated in notch
signaling”, and “The eh1 repression domain binds
groucho”. With these relations extracted, using text
generation algorithms for textual realization and co-
hesion, we can produce abstractive summaries.

We would also like to investigate how to general-
ize this work to other pairs of entities, as well as how
to generalize this work for other applications which
may or may not require the same features as the ones
we used.

Acknowledgments

This work has been supported in part by USDA
Grant 2008-35205-18734 and the Agriculture and
Food Research Initiative Competitive USDA Grant
2011-67015-3032. We thank Cecilia Arighi, Kevin
Bullaughey, Teresia Buza, Fiona McCarthy, Lak-
shmi Pillai, Carl Schmidt, Liang Sun, Hui Wang,
and Qinghua Wang for participating in the anno-
tation task and/or for various discussions. We
also thank the anonymous reviewers for their com-
ments and suggestions, which helped us improve the
manuscript.

170



References
Michele Banko, Michael J Cafarella, Stephen Soderland,

Matt Broadhead, and Oren Etzioni. 2007. Open In-
formation Extraction from the Web. In Proceedings of
IJCAI.

John Carroll, Guido Minnen, Yvonne Canning, Siobhan
Devlin, and John Tait. 1998. Practical simplification
of English newspaper text to assist aphasic readers.
Proceedings of the AAAI98 Workshop on Integrating
AI and Assistive Technology, pages 7–10.

Ben Carterette, Paul N Bennett, David Maxwell Chicker-
ing, and Susan T Dumais. 2008. Here or there: Pref-
erence judgments for relevance. In Proceedings of the
IR research, 30th European conference on Adv. in IR.

R Chandrasekar, Christine Doran, and B Srinivas. 1996.
Motivations and methods for text simplification. In
Proceedings of the 16th conference on Computational
linguistics, volume 2, pages 1041–1044. Association
for Computational Linguistics.

Wiliam W Cohen, Robert E Schapire, and Yoram Singer.
1999. Learning to order things. Journal of Artificial
Intelligence Research, 10:243–270.

Siobhan Devlin and John Tait. 1998. The use of a psy-
cholinguistic database in the simplification of text for
aphasic readers. Linguistic Databases, pages 161–
173.

Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram
Singer. 2003. An efficient boosting algorithm for
combining preferences. Journal of Machine Learning
Research, 4:933–969.

Arek Gladki, Pawel Siedlecki, Szymon Kaczanowski,
and Piotr Zielenkewicz. 2008. e-LiSe–an online tool
for finding needles in the ’Medline haystack’. Bioin-
formatics, 24(8):1115–1117.

Andrew B Goldberg, David Andrzejewski, Jurgen Van
Gael, Burr Settles, Xiaojin Zhu, and Mark Craven.
2008. Ranking biomedical passages for relevance and
diversity. In Proceedings of TREC.

William Hersh, Aaron M Cohen, Phoebe Roberts, and
Hari Krishna Rekapalli. 2006. TREC 2006 Genomics
Track Overview.

Kalervo Jarvelin and Jaana Kekalainen. 2002. Cumu-
lated gain-based evaluation of IR techniques. ACM
Transactions on Information Systems, 20(4):422–446.

Feng Jin, Minlie Huang, Zhiyong Lu, and Xiaoyan Zhu.
2009. Towards automatic generation of gene sum-
mary. In Proceedings of the BioNLP 2009 Work-
shop, pages 97–105. Association for Computational
Linguistics, June.

Siddhartha Jonnalagadda, Luis Tari, Jorg Hakenberg,
Chitta Baral, and Graciela Gonzalez. 2009. Towards
effective sentence simplification for automatic pro-
cessing of biomedical text. In Proceedings of NAACL
HLT 2009: Short Papers, pages 177–180.

Szymon Kaczanowski, Pawel Siedlecki, and Piotr Zie-
lenkewicz. 2009. The high throughput sequence
annotation service (HT-SAS) - the shortcut from se-
quence to true medline words. BMC Bioinformatics,
10:148–154, May.

Jung-Jae Kim, Piotr Pezik, and Dietrich Rebholz-
Schuhmann. 2008. MedEvi: Retrieving textual evi-
dence of relations between biomedical concepts from
medline. Bioinformatics, 24(11):1410–1412.

Xu Ling, Jing Jiang, Xin He, Qiaozhu Mei, Chengxi-
ang Zhai, and Bruce Schatz. 2007. Generating gene
summaries from biomedical literature: A study of
semi-structured summarization. Information Process-
ing and Management, 43:1777–1791, March.

Yue Lu, Hui Fang, and Chengxiang Zhai. 2009. An
empirical study of gene synonym query expansion
in biomedical information retrieval. Information Re-
trieval, 12:51–68, February.
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Abstract

The relationship between small molecules
and proteins has attracted attention from the
biomedical research community. In this pa-
per a text mining method of extracting small-
molecule and protein pairs from natural text
is presented, based on a semi-supervised ma-
chine learning approach. The technique has
been applied to the complete collection of
MEDLINE abstracts and pairs were extracted
and evaluated. The results show the feasibility
of the bootstrapping system, which will subse-
quently be further investigated and improved.

1 Introduction

Information extraction has become a major task in
text-mining. A large number of studies have been
carried out with the objective of developing tech-
niques to overcome the highly ambiguous and vari-
able nature of natural language for the extraction of
information from scientific text (Song et al., 2006).
Natural language processing (NLP) of biomedical
text has been initiated and used for different knowl-
edge discovery tasks such as the extraction of rela-
tionships between different types of biological ob-
jects.

Relationships between proteins and small
molecules are of particular concern in the biomed-
ical research domain. The importance of target
specific small molecule research is vital in the
scientific community’s understanding of numerous
biological processes with potential discoveries
yielding various translational benefits and outcomes
to public health and industry. While there has been

a great number of traditional studies already com-
pleted in this field, the underlying difficulty with this
type of research has been trying to understand how
one molecule interacts with a target protein. Given
the biological background, many researchers in
Cheminformatics and Metabolomics are attempting
to find the connections between small molecules
and other biological entities in order to bridge the
chemical and biological domains.

Of the few reported text mining approaches to this
problem, Temkin and Gilder (2003) was concerned
with the extraction of protein and small molecule in-
teraction, and used a rule-based approach utilising
a lexical analyser and context free grammar. Jiao
and Wild (2009) presented a technique for detect-
ing protein and small molecule interaction using a
maximum entropy based learning method; this work
also uses corpus-based machine learning. The main
drawback of both of these studies is that they require
a fully annotated corpus which is difficult to gener-
ate.

1.1 The bootstrapping method

At present a gold standard annotated corpus is not
available, and constructing a reasonable annotated
corpus would require an infeasible amount of man-
ual work. Our proposed solution to this problem
is to develop a semi-supervised machine learning
method. In this paper a bootstrapping algorithm is
presented which requires only unannotated training
texts and a handful of protein small molecule pairs,
known as seeds. The basic work of a bootstrap-
ping system can be presented as an expansion en-
gine which uses the initial seed pairs fed into the
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system to generate patterns that are used, in turn, to
find more pairs. The operation of the algorithm is
controlled by certain criteria that are delivered from
a measurement of the quality or selectivity of pat-
terns and discovered pairs.

Bootstrapping systems have been maturely used
for information extraction purposes in other research
domains, and it has been empirically shown to be
a powerful method in learning lexico-syntactic pat-
terns for extracting specific relations (Riloff and
Jones, 1999). Bootstrapping systems can operate
with a greatly reduced number of training examples.
A bootstrapping system seems promising for the
purpose of relation extraction, making it a suitable
candidate method for protein and small molecule
pair extraction.

2 Implementation

The typical bootstrapping method was tailored in
order to improve its suitability for our extraction
task, operating in the biomedical literature resource
MEDLINE. The bootstrapping architecture is pre-
sented in Figure 1. The whole collection of MED-
LINE was filtered using a co-occurrence approach
and a named entity recogniser. In this way the
sentences which contained both a protein and a
small molecule were selected. The structure of pat-
terns which are suitable to extract protein and small
molecule pairs from MEDLINE was defined. Each
sentence is tokenized and then normalised based on
the results of syntactic parsing in order to obtain a
more generalised view of the pattern. In the fol-
lowing sections, we describe in more detail these as-
pects.

2.1 Protein and small molecule recognition

Two dictionary-based named entity recognisers
were used to detect the names of proteins and small
molecules in the full collection of MEDLINE ab-
stracts, with the two source dictionaries constructed
using the resources UniProt (Apweiler et al., 2004)
and ChEBI (De Matos et al., 2006) respectively. The
following example shows the two recognisers iden-
tify a chemical object and a protein object in a sen-
tence from a MEDLINE extract:

<chebi>Paracetamol</chebi>, 100 mg/kg, in-
hibited <uniprot>COX-1</uniprot> in stomach

Figure 1: Extraction system architecture

mucosa ex vivo much less effectively than in other
tissues.

2.2 Sentence analysis for normalisation

It was anticipated that variations in tense and other
language characteristics would cause problems in
pattern generation. We therefore applied a list of
normalisation steps for pattern generation. The sur-
rounding context in the biomedical text is not nor-
mally useful and makes it difficult to identify the text
and observe a clear sentence structure. The parsing
result normalises patterns by eliminating non-useful
components in a sentence. The step of normalisation
hence increases the quality of the pattern.

The complete list of normalisation steps is as fol-
lows:

1. Replaced the representation of measurement
units, such as mg/L and ml/day.

2. Employed the part-of-speech (POS) tagger GE-
NIA (Tsuruoka et al., 2005) to analyse each to-
ken, and the tokens which are weakly related to
the sentence structure were removed. So that,
the only remaining tokens are the head noun of
a noun phrase (NP), the verb phrase, and prepo-
sitional phrase chunks.

3. Finally a simple rule to identify the head noun
was defined. In a general case, for a NP se-
quence, the last token is considered as the head
noun. When the last token is a single character,
the second last token is considered as the head
noun.
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Table 1: An example of a generated pattern
Seed tuple: Paracetamol, COX-1
Found string: “CHEBI, UNIT, inhibit UNIPROT
in mucosa than in tissue.”
Pattern: NP List1, UNIT, inhibit NP List2
Constraints: NP List1=“CHEBI*”

NP List2=“UNIPROT*”
Keywords: “,UNIT,inhibit”

The above example after these normalisation
steps becomes:

CHEBI*, UNIT, inhibit UNIPROT* in mucosa
than in tissue.

where CHEBI* and UNIPROT* are the seeds in
context.

2.3 Bootstrapping

The bootstrapping system is applied to the nor-
malised sentences. The process starts with 100
high precision protein small molecule pairs col-
lected from the ChEBI ontology. These pairs were
retrieved by querying the ChEBI sub-ontology for
the relation “has role”. From the resulting data we
extracted small molecules that are enzyme inhibitors
together with the name of the enzyme.

2.3.1 Pattern generation and pair extraction

The concept of a bootstrapping system is that us-
ing a high precision seed pair to start the extrac-
tion engine, the system can effectively learn the pat-
tern construction rule and the pattern constraints.
Searching for the seed pairs in the corpus returns
strings which are candidate extraction patterns for
other pairs. The candidate patterns are made up of
‘slots’ and ‘context strings’, where the slots are ei-
ther of type small-molecule or protein, and context
is the text connecting the slots and the words imme-
diately before and after the pair. By analysing the
surrounding context of the slots new elements of the
pattern are discovered, which can subsequently be
used to search for new small-molecule protein pairs.
The process of deriving a pattern from the above ex-
ample is shown in Table 1.

The generated pattern can then be used to search
the corpus and find other matching contexts. New
pairs are retrieved from the matching context by
simply locating the protein and small molecule
names from the same positions as they are in the pat-

tern.
For instance, the pattern produced in Table 1 is

matched against a normalised sentence “data sug-
gest CHEBI, UNIT, inhibit UNIPROT”, extracting
the new pair <trifluoperazine, CaMKII>.

2.3.2 Evaluating seeds and patterns

The quality of the pattern is critical since pat-
terns that generate a bad pair can introduce more
false positive seeds. Therefore, within a bootstrap-
ping system it is necessary to have a stage of pattern
evaluation. Estimations of the confidence score of
a pattern can be used as one of the stopping criteria.
We implemented an evaluation step for both patterns
and pairs based on an evaluation method developed
by Agichtein and Gravano (2000). Adapting the ap-
proach to this work, if patterni predicts tuple t =
<chemical, protein>, and there is already a tuple
t� = <chemical, protein�> with high confidence,
and chemical from t is same as chemical from t�,
then we could define this as a positive match of pat-
tern (Ppositive), otherwise the pattern is considered
as a negative match (Pnegative). So that the confi-
dence score of pattern (P ) is estimated as:

Conf(P ) =
Ppositive

Ppositive + Pnegative
(1)

To evaluate the pairs we again employ the method
described by Agichtein and Gravano (2000). The
confidence of a particular pair is a function of the
number of patterns that generate it. Equation 2
shows how to calculate a confidence score for tuple
T , where P is the set of patterns that derive T . Ci is
the context that also contains T , Match(Ci, Pi) is
the degree of match of Ci and Pi.

Conf(T ) = 1−
�|P |

I=0 (1− (Conf (Pi) · Match (Ci, Pi)))

(2)

3 Results and discussion

Table 2 shows the top 10 generated patterns ranked
by the frequency that they appear in MEDLINE. As
can be seen the patterns all have very simple struc-
tures. Simple patterns are more likely to be produc-
tive, i.e the simpler the structure of the pattern, the
more pairs it generates. However, simple structures
are also likely to generate more false negative pairs.
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The pairs produced by these top 10 patterns were
collected, and the confidence score then calculated
using equation 1. The result implies that the confi-
dence score of a pattern, and in turn the selectivity
and productivity of the pattern, are strongly associ-
ated with the pattern’s structure.

Table 2: The top 10 comment patterns
Frequency Pattern Confidence
68 UNIPROT* CHEBI* CHEBI 0.16
61 CHEBI* UNIPROT* UNIPROT 0.15
51 CHEBI* UNIPROT* be 0.10
49 CHEBI* UNIPROT* CHEBI 0.10
41 UNIPROT* CHEBI* be 0.21
40 CHEBI* UNIPROT* 0.08
38 UNIPROT* CHEBI* UNIPROT 0.16
37 UNIPROT* CHEBI* 0.30
26 be CHEBI* UNIPROT* 0.26
24 UNIPROT* CHEBI CHEBI* CHEBI 0.17

3.1 Quality of the extracted pairs

One hundred pairs extracted by first and second gen-
eration patterns were randomly selected for manual
inspection by a domain expert curator. It was found
that over 60% were valid pairs. From further exami-
nation of the cases together with their extraction pat-
terns, it can be seen that the patterns have a high con-
fidence score, ensuring the quality of the extracted
pair. For instance, from the original text Paraceta-
mol, 100 mg/kg, inhibited COX-1 in stomach mucosa
ex vivo much less effectively than in other tissues, the
pattern “CHEBI*, UNIT, inhibit UNIPROT*” with
0.62 confidence score derives a correct pair <Parac-
etamol, COX-1>.

Generally speaking, simple patterns are more
likely to have lower confidence scores. However it
was also found that the pattern quality heavily de-
pends on the quality and reliability of the name en-
tity recognition (NE) system.

4 Conclusions and future work

We have presented a method of detecting small
molecule and protein pairs in MEDLINE abstracts.
It employs semi-supervised machine learning meth-
ods to enable patterns to be automatically generated,
rather than requiring human input. The approach can
be used for high throughput text mining applications
where manual curation is unrealistic.

The first and second iteration of results are
promising and show that the approach enables many

useful small molecule protein pairs to be extracted
from MEDLINE using just a small number of seed
pairs as input. The approach makes use of a rigor-
ous method of evaluating the quality of generated
patterns and extracted pairs. Manual inspection has
been used to validate these preliminary results and
has shown that approximately half of the discovered
pairs represent valid small molecule protein relation-
ships, and we expect to improve this significantly.

In future we will develop the method further
and analyse the results after further algorithm iter-
ations, enabling discovery of new patterns and con-
sequently new pairs of proteins and small molecules
that are currently undetected.
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Abstract

Evidence Based Medicine (EBM) is the prac-
tice of using the knowledge gained from the
best medical evidence to make decisions in
the effective care of patients. This medi-
cal evidence is extracted from medical docu-
ments such as research papers. The increas-
ing number of available medical documents
has imposed a challenge to identify the ap-
propriate evidence and to access the quality
of the evidence. In this paper, we present
an approach for the automatic grading of ev-
idence using the dataset provided by the 2011
Australian Language Technology Association
(ALTA) shared task competition. With the
feature sets extracted from publication types,
Medical Subject Headings (MeSH), title, and
body of the abstracts, we obtain a 73.77%
grading accuracy with a stacking based ap-
proach, a considerable improvement over pre-
vious work.

1 Introduction

“Evidence Based Medicine (EBM) is the conscien-
tious, explicit, and judicious use of current best evi-
dence in making decisions about the care of individ-
ual patients” (Sackett et al., 1996). EBM requires to
identify the best evidence, understand the method-
ology and strength of the approaches reported in
the evidence, and bring relevant findings into clin-
ical practice. Davidoff et al. (1995) express EBM in
terms of five related ideas. Their ideas imply that
the conclusions should be derived based on the best
evidence available, the clinical decisions should be

made based on the conclusions derived, and the per-
formance of the clinical decisions should be evalu-
ated constantly. Thus, physicians practicing EBM
should be constantly aware of the new ideas and
the best methodologies available based on the most
recent literature. But the amount of clinical docu-
ments available is increasing everyday. For exam-
ple, Pubmed, a service of the US National Library of
Medicine contains more than 21 million citations for
biomedical literature from MEDLINE, life science
journals, and online books (last updated on Decem-
ber 7, 2011) 1. The abundance of digital informa-
tion makes difficult the task of evaluating the quality
of results presented and the significance of the con-
clusions drawn. Thus, it has become an important
task to grade the quality of evidence so that the most
significant evidence is incorporated into the clinical
practices.

There are several scale systems available to grade
medical evidence. Some of them are: hierarchy
of evidence proposed by Evans (2003), Grading of
Recommendations Assessment, Development, and
Evaluation (GRADE) scale by GRADE (2004), and
Strength of Recommendation Taxonomy (SORT)
scale by Ebell et al. (2004). The SORT scale ad-
dresses the quality, quantity, and consistency of evi-
dence and proposes three levels of ratings: A, B, and
C. Grade A is recommended based on the consistent,
good-quality patient-oriented evidence, grade B is
based on the inconsistent or limited-quality patient-
oriented evidence, and grade C is based on consen-
sus, disease-oriented evidence, usual practice, ex-
pert opinion or case studies.

1http://www.ncbi.nlm.nih.gov/books/NBK3827/
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The Australasian Language Technology Associa-
tion (ALTA) 2011 organized the shared task compe-
tition2 to build an automatic evidence grading sys-
tem for EBM based on the SORT grading scale. We
carry out our experiments using the data set provided
for the competition and compare the accuracy of
grading the evidence by applying basic approaches
and an ensemble (stacking) based approach of clas-
sification. We show that the later approach can
achieve 73.77% of grading accuracy, a significant
improvement over the basic approaches. We further
extend our experiments to show that, using feature
sets generated from the method and conclusion sec-
tions of the abstracts helps to obtain higher accuracy
in evidence grading than using a feature set gener-
ated from the entire body of the abstracts.

2 Related Work

To the best of our knowledge, automatic evidence
grading based on a grading scale was initiated by
Sarker et al. (2011). Their work was based on the
SORT scale to grade the evidence using the corpus
developed by Molla-Aliod (2010). They showed
that using only publication types as features could
yield an accuracy of 68% while other information
like publication types, journal names, publication
years, and article titles could not significantly help
to improve the accuracy of the grading. Molla-Aliod
and Sarker (2011) worked on the evidence grading
problem of 2011 ALTA shared task and achieved
an accuracy of 62.84% using three sequential clas-
sifiers, each trained by one of the following feature
sets: word n-grams from the abstract, publication
types, and word n-grams from the title. They ap-
plied a three way classification approach where the
instances classified as A or C were removed from
the test set and labeled as such, while instances
classified as B were passed to the next classifier in
the pipeline. They repeated this process until they
reached the end of three sequential classifiers.

Most of the EBM related work is focused on ei-
ther the identification of important statements from
the medical abstracts or the classification of med-
ical abstracts to facilitate the retrieval of impor-
tant documents. Work by Demner-Fushman et al.
(2006), Dawes et al. (2007), Kim et al. (2011) au-

2http://www.alta.asn.au/events/sharedtask2011

tomatically identify the key statements in the med-
ical abstracts and classify them into different levels
that are considered important for EBM practitioners
in making decisions. Kilicoglu et al. (2009) worked
on recognizing the clinically important medical ab-
stracts using an ensemble learning method (stack-
ing). They used different combinations of feature
vectors extracted from documents to classify the ev-
idence into relevant or non relevant classes. They
approached the problem as a binary classification
problem without using any grading scales.

Systematic Reviews (SRs) are very important
to support EBM. Creating and updating SRs is
highly inefficient and needs to identify the best evi-
dence. Cohen et al. (2010) used a binary classifica-
tion system to identify the documents that are most
likely to be included in creating and updating SRs.

In this work, we grade the quality of evidence
based on the SORT scale, that is different from most
of the existing works related to classification of ab-
stracts and identification of key statements of ab-
stracts. We work on the same problem as by Molla-
Aliod and Sarker (2011) but, we undertake the prob-
lem with a different approach and use different sets
of features.

3 Dataset

We use the data of 2011 ALTA shared task compe-
tition that contains three different sets: training, de-
velopment and test set. The number of evidence in-
stances present in each set is shown in Table 1. Each
data set consists of instances with grades A, B, or C
based on the SORT scale. The distribution of evi-
dence grades is shown in Table 2.

Data Set No. of Evidence Instances
Training Set 677
Development Set 178
Test Set 183

Table 1: Evidence per data set

The evidence instances were obtained from the
corpus developed by Molla-Aliod and Santiago-
Martinez (2011). The corpus was generated based
on the question and the evidence based answer for
the question along with SOR grade obtained from
the “Clinical Inquiries” section of the Journal of
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Grades Training
set (%)

Development
set (%)

Test set
(%)

A 31.3 27.0 30.6
B 45.9 44.9 48.6
C 22.7 28.1 20.8

Table 2: Evidence distribution per grade

Family Practice (JFP). A sample question from the
JFP Clinical Inquiries section is “How does smoking
in the home affect children with asthma?”. Each ev-
idence contains at least one or more publications de-
pending upon from which publications the evidence
was generated. Each publication is an XML file con-
taining information such as abstract title, abstract
body, publication types, and MeSH terms. Each
publication is assigned at least one publication type
and zero or more MeSH terms. The MeSH terms
vocabulary 3 is developed and maintained by the
National Library of Medicine and is used in rep-
resentation, indexing and retrieval of medical doc-
uments. Some of the medical document retrieval
work emphasizes the use of MeSH terms in the ef-
ficient retrieval of documents (Trieschnigg et al.,
2009; Huang et al., 2011). MeSH terms are also
used in document summarization (Bhattacharya et
al., 2011).

Figure 1: Sample data file

Each data set contains an additional grade file
with the information related to the evidence in-
stances, their grades, and the publications. A sam-
ple of the file is shown in Figure 1. The first column
contains the evidence id, the second column contains
the grades A, B, or C of the evidence based on the
SORT scale, and the remaining columns show the
publication id of each publication in the evidence.

3http://www.nlm.nih.gov/mesh

The problem in this task is to analyze the publica-
tions in each evidence provided and classify them
into A, B or C.

The dataset available for our research has ab-
stracts in two different formats. One of them con-
tains abstracts divided into sections: background,
objective, method, result, and conclusion. The other
format contains abstracts with all the information in
a single block without any sections. A sample of an
abstract having only four sections in the given data
is shown below:

Objectives: To determine the effectiveness of a muscle
strengthening program compared to a stretching program in
women with fibromyalgia (FM).

Methods: Sixty-eight women with FM were randomly as-
signed to a 12 week, twice weekly exercise program consisting
of either muscle strengthening or stretching. Outcome measures
included muscle strength (main outcome variable), flexibility,
weight, body fat, tender point count, and disease and symptom
severity scales.

Results: No statistically significant differences between
groups were found on independent t tests. Paired t tests revealed
twice the number of significant improvements in the strengthen-
ing group compared to the stretching group. Effect size scores
indicated that the magnitude of change was generally greater in
the strengthening group than the stretching group.

Conclusions: Patients with FM can engage in a specially
tailored muscle strengthening program and experience an im-
provement in overall disease activity, without a significant exer-
cise induced flare in pain. Flexibility training alone also results
in overall improvements, albeit of a lesser degree.

In the abstract above, we see that the approaches
applied for the study are described in the method
section, and the outcome and its effectiveness are
described in the conclusion section.

4 Proposed Methodology

In this paper we propose a system to identify the
correct grade of an evidence given publications in
the evidence. We deal with the problem of evi-
dence grading as a classification problem. In evi-
dence grading, basic approaches have been shown
to have poor performance. Molla-Aliod and Sarker
(2011) showed that a basic approach of using simple
bag-of-word features and a Naive Bayes classifier
achieved 45% accuracy and proposed a sequential
approach to improve the accuracy at each step. Our
preliminary studies of applying the simple classifi-
cation approach also showed similar results. Here,
we propose a stacking based approach (Wolpert,
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1992) of evidence grading. Stacking based approach
builds a final classifier by combining the predictions
made by multiple classifiers to improve the predic-
tion accuracy. It involves two steps. In the first step,
multiple base-level classifiers are trained with dif-
ferent feature sets extracted from a dataset and the
classifiers are used to predict the classes of a sec-
ond dataset. Then, a higher level classifier is trained
using the predictions made by the base-level clas-
sifiers on the second dataset and used to predict the
classes of the actual test data. In this approach, base-
level classifiers are trained independent of each other
and allowed to predict the classes. Based on the
predictions made by these base-level classifiers, the
higher level classifier learns from those predictions
and makes a new prediction that is the final class.

Our stacking based approach of classification uses
five feature sets. In the first step of classification, we
train five classifiers using different feature sets per
classifier and use the classifiers to predict the grades
of the development dataset. Thus, at the end of the
first step, five different predictions on the develop-
ment dataset are obtained. In the second step, a new
classifier is trained using the grades predicted by the
five classifiers as features. This new classifier is then
used to predict the grades of the test dataset.

5 Features

We extracted six sets of features from the publica-
tions to perform our experiments. They are as fol-
lows:

1. Publication types
2. MeSH terms
3. Abstract title
4. Abstract body
5. Abstract method section
6. Abstract conclusion section

For feature set 1, we extracted 30 distinct publi-
cation types from the training data. For the MeSH
terms feature set, we selected 452 unique MeSH
terms extracted from the training data. The publi-
cations contained the descriptor name of the MeSH
terms having an attribute “majortopicyn” with value
‘Y’ or ‘N’. As MeSH terms feature set, we selected
only those MeSH term descriptor names having ma-
jortopicyn=‘Y’.

We extracted the last four sets of features from
the title, body, method, and conclusion sections of
the abstracts. Here, the body of an abstract means
the whole content of the abstract, that includes back-
ground, objective, method, result, and conclusion
sections. We applied some preprocessing steps to
generate these feature sets. We also applied a feature
selection technique to reduce the number of features
and include only the high informative features from
these feature sets. The details about preprocess-
ing and feature selection techniques are described in
Section 6.

We performed all the experiments on the basis of
evidence, i.e. we created a single feature vector per
evidence. If an evidence contained more than one
publication, we generate its features as the union of
the features extracted from all its publications.

The grades of the evidence in the SORT scale
are based on the quality of evidence, basis of ex-
periments, the methodologies used, and the types of
analysis done. Grades also depend upon the effec-
tiveness of the approach used in the experiments.
The method section of an abstract contains the in-
formation related to the basis of the experiments,
such as randomized controlled trails, systematic re-
view, cohort studies, and the methods used in their
research. The conclusion section of the abstract
usually contains the assertion statements about how
strongly the experiment supports the claims. Anal-
ysis of the contents of abstracts shows that the in-
formation needed for grading on SORT scale is typ-
ically available in the method and conclusion sec-
tions, more than in the other sections of the abstracts.
Thus, we used the method and conclusion sections
of the abstracts to generate two different feature sets
so that only the features more likely to be important
in grading using the SORT rating would be included.

Separating method and conclusion sections of
the abstracts

In order to extract features from the method and con-
clusion sections, we should separate them from the
body of abstracts, which is a challenging task for
those abstracts without section headers. Of the to-
tal number of abstracts, more than one-third of the
abstracts do not contain the section headers. In or-
der to separate these sections, we used a very simple
approach based on the number of sentences present
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in the method and conclusion sections, and the body
of the abstracts. We used the following information
to separate the method and conclusion sections from
these abstracts: i) Order of sections in the abstracts,
ii) Average number of sentences in the method and
conclusion sections of the abstracts having sections,
and iii) Average number of sentences in the entire
body of the abstracts not having sections. All the ab-
stracts having section headers contained the sections
in the same order: background, objective, method,
result and conclusion. From the available training
dataset, we calculated:

i. The average number of sentences in the method
(4.14) and conclusion (2.11) sections of the abstracts di-
vided into sections

ii. The average number of sentences (8.78) of the ab-
stracts not having sections

Based on these values, we fragmented the ab-
stracts that do not have the section headers and sepa-
rated the method and conclusion sections from them.
Table 3 shows how the method and conclusion sec-
tions of those abstracts were generated. For exam-
ple, the fourth row of the table says that, if an ab-
stract without section headers has 6, 7 or 8 sentences
(let it be n), then the 3rd, 4th and 5th sentences were
considered as the method section, and the nth sen-
tence was considered as the conclusion section.

Total sentences in
Abstracts(n)

Method Conclusion

1 None 1
2 or 3 1 n
4 or 5 2 and 3 n
6 or 7 or 8 2, 3 and 4 n
More than 8 3, 4 and 5 n-1 and n

Table 3: Selecting method and conclusion of the abstracts
having a single block

6 Experiments and Results

This section describes the two sets of experiments
performed to compare the performance of the stack-
ing based approach and the effectiveness of the base-
level classifiers used. The first set of experiments
was done to provide a baseline comparison against
our stacking based approach. The second set con-
sists of five experiments to evaluate different con-

figurations of stack based classifiers. The basic ap-
proach of classification implies the use of a single
classifier trained by using a single feature vector.

We applied preprocessing steps to generate fea-
ture sets from the title, body, method and conclusion
sections of the abstracts. The preprocessing steps
were: detecting sentences using OpenNLP Sentence
Detector4, stemming words in each sentence using
Porter Stemmer (Porter, 1980), changing the sen-
tences into lower-case, and removing punctuation
characters from the sentences. After the preprocess-
ing step, we generated features from the unigrams,
bigrams and trigrams in each part. We removed
those features from the feature sets that contained
the stopwords listed by Pubmed5 or contained any
token having a length less than three characters. To
remove the less informative features, we calculated
the information gain of the features in the training
data using Weka (Hall et al., 2009) and selected only
the top 500 high informative features for each fea-
ture set. We used the Weka SVM classifier for all the
experiments. Based on the best result obtained af-
ter a series of experiments run with different kernel
functions and regularization parameters, we chose
the SVM classifier with a linear kernel and regular-
ization parameter equals 1 for all the experiments.
We used a binary weight for all the features.

6.1 First set of experiments
In the first set, we performed nine experiments using
the basic classification approach and one experiment
using the stacking based approach. The details of
the experiments and the combinations of the features
used in them are as shown in Table 4.

The first six experiments in the table were imple-
mented by applying a basic approach of classifica-
tion and each using only a single set of features. Ex-
periments 7, 8, and 9 were similar to the first six
experiments except, they used more than one set of
features to create the feature vector. Each feature in
the experiments 7, 8, and 9 encode the section of its
origin. For example, if feature abdomen is present
in method as well as conclusion sections, it is rep-
resented as two distinct features conc abdomen and
method abdomen. In experiment 10, we applied

4http://incubator.apache.org/opennlp
5http://www.ncbi.nlm.nih.gov/books/NBK3827

/table/pubmedhelp.T43/?report=objectonly)
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the stacking approach of classification using five
base-level classifiers. The base-level classifiers in
this experiment are the basic classifiers used in ex-
periments 1 to 5.

Exp.
No.

Features used Exp. type

1. Publication types

Basic approach

2. MeSH terms
3. Abstract title
4. Abstract method
5. Abstract conclusion
6. Abstract body

7. Publication types,
MeSH terms

8.

Publication types,
MeSH terms,
Abstract title,
Abstract body

9.

Publication types,
MeSH terms,
Abstract title,
Abstract method,
Abstract conclusion

10.

Publication types

Stacking based
approach

MeSH terms
Abstract title
Abstract method
Abstract conclusion

Table 4: Experiments to compare basic approaches to a
stacking based approach

Figure 2 shows the results of the 10 experiments
described in Table 4 in the same order, from 1st to
10th place and the result of the experiment by Molla-
Aliod and Sarker (2011). The results show that
the stacking based approach gives the highest ac-
curacy (73.77%), outperforming all the basic ap-
proaches applying any combination of feature sets.
The stacking based approach outperforms the base-
line of a single layered classification approach (Exp
9) that uses all the five sets of features. Molla-Aliod
and Sarker (2011) showed that a simple approach of
using a single classifier and bag-of-words features
could not achieve a good accuracy (45.9%) and pro-
posed a new approach of using a sequence of classi-
fiers to achieve a better result. Similar to their simple
approach, our basic approaches could not achieve
good results, but their performance is comparable
to Molla-Aliod and Sarker (2011)’s baseline system.
The result of our stacking based approach shows that
our approach has a better accuracy than the sequen-
cial classification approach (62.84%) proposed by

Figure 2: Comparison of accuracy of basic approaches to
a stacking based approach. X-axis shows the experiments
and Y-axis shows the accuracy of the experiments. The
first nine experiments are based on the basic approach
and the tenth experiment is based on the stacking based
approach.

Molla-Aliod and Sarker (2011).
Our stacking based approach works on two lev-

els. In the first level, the base-level classifiers pre-
dict the grades of the evidence. In the next level,
these predictions are used to train a new classifier
that learns from the predictions to identify the grades
correctly. Moreover, the five feature sets used in our
experiments were unrelated to each other. For ex-
ample, the features present in MeSH headings were
different from the features used in publication types,
and similarly, the features present in the method sec-
tion of the abstract were different from the features
present in the conclusion section. Each base-level
classifier trained by one of these feature sets is spe-
cialized in that particular feature set. Thus, using
the predictions made by these specialized base-level
classifiers to train a higher level classifier helps to
better predict the grades, this cannot be achieved by
a single classifier trained by a set of features (Exp.
1, 2, 3, 4, 5, 6), or a group of different feature sets
(Exp. 7, 8, 9).

6.2 Second set of experiments

In the second set of experiments, we compared five
experiments performed varying the base-level clas-
sifiers used in our stack based approach. Experi-
ments 1 and 2 were performed using a single base-
level classifier, that means that the second classifier
is trained on only one feature. Experiments 3 and 4
were performed by using four base-level classifiers,
and experiment 5 was performed using five base-
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level classifiers. The 5th experiment in this set is
same as the 10th experiment in the first set. The de-
tails about the feature sets used in each experiment
are shown in Table 5.

Exp.
No.

Features used No. of Base level
classifiers

1.

Publication types,

1MeSH terms,
Abstract title,
Abstract body

2.

Publication types,

1
MeSH terms,
Abstract title,
Abstract method,
Abstract conclusion

3.

Publication types

4MeSH terms
Abstract title
Abstract body

4.

Publication types

4
MeSH terms
Abstract title
Abstract method,
Abstract conclusion

5.

Publication types

5
MeSH terms
Abstract title
Abstract method
Abstract conclusion

Table 5: Experiments to compare stacking based ap-
proach

Figure 3 shows the accuracy of the five experi-
ments shown in Table 5 in the same order. It shows
that the accuracy of 1st and 2nd experiments is lower
than the accuracy of 3rd, 4th, and 5th experiments.
In these two experiments, a feature vector generated
from the prediction of a single base-level classifier
is used to train the higher level classifier, that is not
sufficient to make a correct decision.

Experiments 3, 4, and 5 show a considerable im-
provement in the accuracy of the grading. Compar-
ing the results of experiments 3 and 4, we see that
the 4th experiment has higher accuracy than the 3rd

one. The difference between these experiments was
the use of features from the method and conclusion
sections of the abstracts in the 4th experiment, while
using features from the entire body of abstracts in
the 3rd experiment. The higher accuracy in the 4th

experiment shows that the method and conclusion
sections of the experiment contain high informative
text that is important for evidence grading, while

Figure 3: Comparison of accuracy of the stacking based
approaches. X-axis shows the experiments and Y-axis
shows the accuracy of the experiments. 1st and 2nd ex-
periments use only one base-level classifier, 3rd and 4th

experiment are based on four base-level classifiers and
5th one uses five base-level classifiers.

the body of abstracts may contain some information
that is not relevant to the task. The same analysis
can also be inferred from the results of experiment
8 and 9 in the first set of experiments. The high-
est accuracy obtained in the 5th experiment of apply-
ing 5 base-level classifiers shows that identifying the
sections of the abstracts containing high informative
features and using a sufficient number of base-level
classifiers can help to achieve a good accuracy in ev-
idence grading.

7 Error Analysis

The result obtained by the stacking based approach
(5th experiment in Table 5) using five base-level clas-
sifiers gave a higher error rate in predicting grades
A and C, compared to the error rate in predict-
ing grade B. Most of the error is the misclassifica-
tion of A to C and vice versa. One of the possi-
ble reasons of this might be due to the use of the
feature set extracted from the conclusion section.
Among the five base-level classifiers used in the ex-
periment, the one trained by the features extracted
from the conclusion sections has the lowest accu-
racy (5th experiment in Figure 2). We evaluated the
text contained in the conclusion section of the ab-
stracts in our dataset. The section mostly contains
the assertion statements having the words showing
strong positive/negative meanings. Conclusion of A
grade evidence mostly contains the information that
strongly asserts the claim (e.g. emollient treatment
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significantly reduced the high-potency topical cor-
ticosteroid consumption in infants with AD), while
that of C grade evidence is not strong enough to as-
sert the claim (e.g. PDL therapy should be consid-
ered among the better established approaches in the
treatment of warts, although data from this trial sug-
gest that this approach is probably not superior). It
seems that the problem might be because of not pro-
cessing the negations appropriately. So, in order to
preserve some negation information present in the
conclusion sections, we performed another experi-
ment by merging words no, not, nor with their suc-
cessor word to create a single token from the two
words. This approach still could not reduce the mis-
classification. Thus, the simple approach of extract-
ing unigram, bigram, and trigram features from the
conclusion section might not be sufficient and might
need to include higher level analysis related to as-
sertion/certainty of the statements to reduce the mis-
classification of the evidence.

Other possible reasons of the misclassification
of the evidence might be the imbalanced data set.
Our dataset (Table 2) contains higher number of in-
stances with grade B than those with grades A and C.
Moreover, the number of publications per evidence
is not uniform, that ranges from 1 to 8 publications
per evidence in the test data. Analyzing the results,
we found that misclassification of evidence having
only one publication is higher than that of the evi-
dence having more than one publication. If an ev-
idence contains only one publication, the features
of the evidence extracted from a single publication
might not be sufficient to accurately grade the evi-
dence and might lead to misclassification.

In order to evaluate the appropriateness of our
approach in extracting the method and conclusion
sections, we performed a manual inspection of ab-
stracts. We could not revise all the abstracts to ver-
ify the approach. Thus, we randomly selected 25
abstracts without section headers from the test data
and viewed the content in them. We found that the
conclusion section was appropriately extracted in al-
most all abstracts, while the selection of method sec-
tion was partially effective. Our approach was based
on the assumption that all the abstracts having many
sentences have all the sections (background, objec-
tive, method, result, and conclusion). But we found
that the abstracts do not follow the same format, and

the start sentence of the method section is not con-
sistent. Even a long abstract might sometimes start
with the method section, and sometimes the objec-
tive section might not be present in the abstracts.
This could lead to increase the error in our grading
system.

8 Conclusion

This paper presents an approach of grading the med-
ical evidence applying a stacking based classifier
using the features from publication types, MeSH
terms, abstract body, and method, and conclusion
sections of the abstracts. The results show that
this approach achieves an accuracy of 73.77%, that
is significantly better than the previously reported
work. Here, we present two findings: 1) We show
that the stacking based approach helps to obtain a
better result in evidence grading than the basic ap-
proach of classification. 2) We also show that the
method and conclusion sections of the abstracts con-
tain important information necessary for evidence
grading. Using the feature sets generated from these
two sections helps to achieve a higher accuracy than
by using the feature set generated from the entire
body of the abstracts.

In this work, all the information available in the
method and conclusion sections of the abstracts is
treated with equal weight. Evidence grading should
not depend upon specific disease names and syn-
dromes, but should be based on how strong the facts
are presented. We would like to extend our ap-
proach by removing the words describing specific
disease names, disease syndromes, and medications,
and giving higher weight to the terms that describe
the assertion of the statements. In our current work,
we apply a simple approach to extract the method
and conclusion sections from the abstracts not hav-
ing sections. Improving the approach by using a ma-
chine learning algorithm that can more accurately
extract the sections might help to increase the accu-
racy of grading. Including the information about the
strength of assertions made in the conclusion sec-
tions could also help in boosting the accuracy. Fu-
ture work would also include testing the effective-
ness of our approach on other diverse data sets hav-
ing complex structures of the evidence, or on a dif-
ferent grading scale.
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Abstract 

Gene name identification is a fundamental 
step to solve more complicated text mining 
problems such as gene normalization and pro-
tein-protein interactions. However, state-of-
the-art name identification methods are not 
yet sufficient for use in a fully automated sys-
tem. In this regard, a relaxed task, 
gene/protein sentence identification, may 
serve more effectively for manually searching 
and browsing biomedical literature. In this pa-
per, we set up a new task, gene/protein sen-
tence classification and propose an ensemble 
approach for addressing this problem. Well-
known named entity tools use similar gold-
standard sets for training and testing, which 
results in relatively poor performance for un-
known sets. We here explore how to combine 
diverse high-precision gene identifiers for 
more robust performance. The experimental 
results show that the proposed approach out-
performs BANNER as a stand-alone classifier 
for newly annotated sets as well as previous 
gold-standard sets. 

1 Introduction 

With the rapidly increasing biomedical literature, 
text mining has become popular for finding bio-
medical information in text. Among others, named 
entity recognition (NER) for bio-entities such as 
genes and proteins is a fundamental task because 

extracting biological relationships begins with enti-
ty identification. However, NER in biomedical 
literature is challenging due to the irregularities 
and ambiguities in bio-entities nomenclature (Yang 
et al., 2008). In particular, compound entity names 
make this problem difficult because it also requires 
deciding word boundaries. 

Recent bio-text competitions such as JNLPBA 
(Kim et al., 2004) and BioCreative (Lu et al., 2011; 
Smith et al., 2008) have evaluated NER systems 
for gene mentions. Even though progress has been 
made in several areas, gene identification methods 
are not yet sufficient for real-world use without 
human interaction (Arighi et al., 2011). Thus, at 
the present, a realistic suggestion is to use these 
algorithms as an aid to human curation and infor-
mation retrieval (Altman et al., 2008). 

In this paper, we define a new task, gene/protein 
sentence classification. A gene or protein sentence 
means a sentence including at least one specific 
gene or protein name. This new task has ad-
vantages over gene mention identification. First, 
gene name boundaries are not important at the sen-
tence level and human judges will agree more in 
their judgments. Second, highlighting gene sen-
tences may be more useful in manual search and 
browsing environments since this can be done 
more accurately and with less distraction from in-
correct annotations. 

To classify gene/protein sentences, we here pro-
pose an ensemble approach to combine different 
NER identifiers. Previous NER approaches are 
mostly developed on a small number of gold-
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standard sets including GENIA (Kim et al., 2003) 
and BioCreative (Smith et al., 2008) corpora. The-
se sets help to find regular name patterns in a lim-
ited set of articles, but also limit the NER 
performance for real-world use. In the proposed 
approach, we use a Semantic Model and a Priority 
Model along with BANNER (Leaman and 
Gonzalez, 2008). The Semantic and Priority Mod-
els are used to provide more robust performance on 
gene/protein sentence classification because they 
utilize larger resources such as SemCat and Pub-
Med○R  to detect gene names. 

For experiments, we created three new gold-
standard sets to include cases appearing in the most 
recent publications. The experimental results show 
that our approach outperforms machine learning 
classifiers using unigrams and substring features as 
well as stand-alone BANNER classification on five 
gold-standard datasets. 

The paper is organized as follows. In Section 2, 
the ensemble approach for gene/protein sentence 
classification is described. Section 3 explains the 
gold-standard sets used for our experiments. Sec-
tion 4 presents and discusses the experimental re-
sults. Conclusions are drawn in Section 5. 

2 Methods 

 
Figure 1. Method Overview. 

 
Figure 1 shows the overall framework for our pro-
posed approach. We basically assume that a main 
NER module works as a strong predictor, i.e., the 
majority of outputs obtained from this module are 
correct. We here use BANNER (Leaman and 
Gonzalez, 2008) as the main NER method because 
it adopts features and methods which are generally 
known to be effective for gene name recognition. 
While BANNER shows good performance on 

well-known gold-standard sets, it suffers from rela-
tively poor performance on unknown examples. To 
overcome this problem, we combine BANNER 
with two other predictors, a Sematic Model and a 
Priority Model. First, the Semantic Model and the 
Priority Model do not use previous gold-standard 
sets for training. Second, these two models learn 
name patterns in different ways, i.e., semantic rela-
tionships for the Semantic Model and positional 
and lexical information for the Priority Model. 
This combination of a strong predictor and two 
weaker but more general predictors can respond 
better to unknown name patterns. 

As described above, the proposed method main-
ly relies on outputs from different NER methods, 
whereas word features can still provide useful evi-
dence for discriminating gene and non-gene sen-
tences. Hence, we alternatively utilize word 
features such as unigrams and substrings along 
with NER features. For NER features only, the 
output is the sum of binary decisions from three 
NER modules. For word and NER features, the 
Huber classifier (Kim and Wilbur, 2011) is trained 
to combine the features. The parameter set in the 
Huber classifier is optimized to show the best clas-
sification performance on test sets. The following 
subsections describe each feature type used for 
gene sentence classification. 

2.1 Word Features 

Unigrams are a set of words obtained from to-
kenizing sentences on white space. All letters in 
unigrams are converted to lower case.  

Substrings are all contiguous substrings of a sen-
tence, sized three to six characters. This substring 
feature may help reduce the difference between 
distributions on training and test sets (Huang et al., 
2008). Substrings encode the roots and morpholo-
gy of words without identifying syllables or stems. 
They also capture neighboring patterns between 
words. 

2.2 BANNER 

BANNER is a freely available tool for identifying 
gene mentions. Due to its open-source policy and 
Java implementation, it has become a popular tool. 

BANNER uses conditional random fields (CRF) 
as a discriminative method and utilizes a set of fea-
ture types that are known to be good for identify-
ing gene names. The feature sets used are 
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orthographic, morphological and shallow syntax 
features (Leaman and Gonzalez, 2008): 
 
(1) The part of speech (POS) of a token in a sen-
tence. 
(2) The lemma of a word. 
(3) 2, 3 and 4-character prefixes and suffixes. 
(4) 2 and 3 character n-grams including start-of-
token and end-of-token indicators. 
(5) Word patterns by converting upper-case letters, 
lower-case letters and digits to their corresponding 
representative characters (A, a, 0). 
(6) Numeric normalization by converting digits to 
“0”s. 
(7) Roman numerals. 
(8) Names of Greek letters. 
 

Even though BANNER covers most popular 
feature types, it does not apply semantic features or 
other post-processing procedures such as abbrevia-
tion processing. However, these features may not 
have much impact for reducing performance since 
our goal is to classify gene sentences, not gene 
mentions. 

2.3 Semantic Model  

The distributional approach to semantics (Harris, 
1954) has become more useful as computational 
power has increased, and we have found this ap-
proach helpful in the attempt to categorize entities 
found in text. We use a vector space approach to 
modeling semantics (Turney and Pantel, 2010) and 
compute our vectors as described in (Pantel and 
Lin, 2002) except we ignore the actual mutual in-
formation and just include a component of 1 if the 
dependency relation occurs at all for a word, else 
the component is set to 0. We constructed our vec-
tor space from all single tokens (a token must have 
an alphabetic character) throughout the titles and 
abstracts of the records in the whole of the Pub-
Med database based on a snapshot of the database 
taken in January 2012. We included only tokens 
that occurred in the data sufficient to accumulate 
10 or more dependency relations. There were just 
over 750 thousand token types that satisfied this 
condition and are represented in the space. We de-
note this space by h. We then took all the single 
tokens and all head words from multi-token strings 
in the categories “chemical”, “disease”, and 
“gene/protein” from an updated version of the  

SemCat database (Tanabe et al., 2006) and placed 
all the other SemCat categories similarly processed 
into a category we called “other”. We consider on-
ly the tokens in these categories that also occur in 
our semantic vector space h and refer to these sets 
as 

Chemicalh , 
Diseaseh , 

inGene/Proteh , 
Otherh . Table 1 shows 

the size of overlaps between sets. 
 
 Chemicalh Diseaseh  inGene/Proteh  Otherh

Chemicalh 54478 209 4605 5495 

Diseaseh  8801 1139 169 

inGene/Proteh   76440 9466 

Otherh    127337 
Table 1. Pairwise overlap between sets representing the 
different categories. 

 
Class '

Chemicalh '
Diseaseh  

'
inGene/Proteh  

'
Otherh

Strings 49800 7589 70832 113815 
Ave. Prec. 0.8680 0.7060 0.9140 0.9120 
Table 2. Row two contains the number of unique strings 
in the four different semantic classes studied. The last 
row shows the mean average precisions from a 10-fold 
cross validation to learn how to distinguish each class 
from the union of the other three. 
 

In order to remove noise or ambiguity in the 
training set, we removed the tokens that appeared 
in more than one semantic class as follows. 
 

 
 

 
 inGene/ProteDiseaseChemicalOther

'
Other

DiseaseChemicalinGene/Prote
'

inGene/Prote

inGene/ProteChemicalDisease
'
Disease

inGene/ProteDiseaseChemical
'
Chemical

hhhhh

hhhh

hhhh

hhhh









       

   (1)

 
 

We then applied Support Vector Machine learn-
ing to the four resulting disjoint semantic classes in 
a one-against-all strategy to learn how to classify 
into the different classes. We used 31064.1 C  
based upon the size of the training set. As a test of 
this process we applied this same learning with 10-
fold cross validation on the training data and the 
results are given in the last row of Table 2. 

This Semantic Model is an efficient and general 
way to identify words indicating gene names. Un-
like other NER approaches, this model decides a 
target class solely based on a single word. Howev-
er, evaluating all tokens from sentences may in-
crease incorrect predictions. A dependency parser 
analyzes a sentence as a set of head- and depend-
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ent-word combinations. Since gene names likely 
appear in describing a relationship with other enti-
ties, a name indicating a gene mention will be 
mostly placed in a dependent position. Thus, we 
first apply the C&C CCG parser (Curran et al., 
2007), and evaluate words in dependent positions 
only. 
 

2.4 Priority Model 

The Semantic Model detects four different catego-
ries for a single word. However, the Priority Model 
captures gene name patterns by analyzing the order 
of words and the character strings making up 
words. Since gene names are noun phrases in gen-
eral, we parse sentences and identify noun phrases 
first. These phrases are then evaluated using the 
Priority Model. 

The Priority Model is a statistical language 
model for named entity recognition (Tanabe and 
Wilbur, 2006). For named entities, a word to the 
right is more likely to be the word determining the 
nature of the entity than a word to the left in gen-
eral.  

Let T1 be the set of training data for class C1 and 
T2 for class C2. Let   At   denote the set of all to-

kens used in names contained in 
21 TT  . For each 

token tα, A , it is assumed that there are associ-
ated two probabilities pα and qα, where pα is the 
probability that the appearance of the token tα  in a 
name indicates that name belongs to class C1 and 
qα is the probability that tα is a more reliable indi-
cator of the class of a name than any token to its 
left. Let )()2()1( ktttn    be composed of the 

tokens on the right in the given order. Then the 
probability of n belonging to class C1 can be com-
puted as follows. 
 

      
 


k

i

k

ij
jii

k

j
j qpqqpnCp

2 1
)()()(

2
)()1(1 11| 

 (2) 

 
A limited memory BFGS method (Nash and 

Nocedal, 1991) and a variable order Markov model 
(Tanabe and Wilbur, 2006) are used to obtain pα   
and qα. An updated version of SemCat (Tanabe and 
Wilbur, 2006) was used to learn gene names. 

2.5 Semantic and Priority Models for High-
Precision Scores 

The Semantic and Priority Models learn gene 
names and other necessary information from the 
SemCat database, where names are semantically 
categorized based on UMLS○R  (Unified Medical 
Language System) Semantic Network. Even 
though the Semantic and Priority Models show 
good performance on names in SemCat, they can-
not avoid noise obtained from incorrect pre-
processing, e.g., parsing errors. The use of a gen-
eral category for training may also limit perfor-
mance. To obtain high-precision scores for our 
ensemble approach, it is important to reduce the 
number of false positives from predictions. Hence, 
we apply the Semantic and Priority Models on 
training sets, and mark false positive cases. These 
false positives are automatically removed from 
predictions on test sets. These false positive cases 
tend to be terms for entities too general to warrant 
annotation. 

Table 3 shows the classification performance 
with and without false positive corrections on 
training data. For both Semantic and Priority Mod-
els, precision rates are increased by removing false 
positives. Even though recall drops drastically, this 
does not cause a big problem in our setup since 
these models try to detect gene names which are 
not identified by BANNER. 
 

 SEM SEMFP PM PMFP

Accuracy 0.7907 0.7773 0.7805 0.8390 
Precision 0.7755 0.8510 0.7405 1.0000 
Recall 0.8323 0.6852 0.8799 0.6856 
F1 0.8029 0.7592 0.8042 0.8135 

Table 3. Performance changes on training set for the 
Semantic Model (SEM) and the Priority Model (PM). 
FP indicates that learned false positives were removed 
from predictions. 

3 Datasets 

For experiments, we rigorously tested the proposed 
method on gene mention gold-standard sets and 
newly annotated sets. GENETAG (Smith et al., 
2008) is the dataset released for BioCreative I and 
BioCreative II workshops. Since it is well-known 
for a gene mention gold-standard set, we used 
GENETAG as training data. 

For test data, two previous gold-standard sets 
were selected and new test sets were also built for 
gene sentence classification. YAPEX (Franzen et 
al., 2002) and JNLPBA (Kim et al., 2004) are con-
sidered of moderate difficulty because they are 
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both related to GENIA corpus, a well-known gold-
standard set. However, Disease, Cell Line and 
Reptiles are considered as more difficult tasks be-
cause they represent new areas and contain recent-
ly published articles. The annotation guideline for 
new test sets basically followed those used in 
GENETAG (Tanabe et al., 2005), however do-
mains, complexes, subunits and promoters were 
not included in new sets. 
 

(1) “Disease” Set: This set of 60 PubMed docu-
ments was obtained from two sources. Fifty of the 
documents were obtained from the 793 PubMed 
documents used to construct the AZDC (Leaman et 
al., 2009). They are the fifty most recent among 
these records. In addition to these fifty documents, 
ten documents were selected from PubMed on the 
topic of maize to add variety to the set and because 
one of the curators who worked with the set had 
experience studying the maize genome.  These ten 
were chosen as recent documents as of early March 
2012 and which contained the text word maize and 
discussed genetics.  The whole set of 60 docu-
ments were annotated by WJW to produce a gold 
standard. 
 

(2) “CellLine” Set: This set comprised the most 
recent 50 documents satisfying the query “cell 
line[MeSH]” in PubMed on March 15, 2012. This 
query was used to obtain documents which discuss 
cell lines, but most of these documents also discuss 
genes and for this reason the set was expected to be 
challenging. The set was annotated by WJW and 
DC and after independently annotating the set they 
reconciled differences to produce a final gold 
standard. 
 

(3) “Reptiles” Set: This set comprised the most 
recent 50 documents satisfying the query “reptiles 
AND genes [text]” in PubMed on March 15, 2012. 
This set was chosen because it would have little 
about human or model organisms and for this rea-
son it was expected to be challenging.  The set was 
annotated by WJW and DC and after independent-
ly annotating the set they reconciled differences to 
produce a final gold standard. 
 

For both “CellLine” and “Reptiles” Sets, the 
most recent data was chosen in an effort to make 
the task more challenging. Presumably such docu-
ments will contain more recently created names 

and phrases that do not appear in the older training 
data. This will then pose a more difficult test for 
NER systems. 

Table 4 shows all datasets used for training and 
testing. The new sets, “Disease”, “CellLine” and 
“Reptiles” are also freely available at 
http://www.ncbi.nlm.nih.gov/CBBresearch/Wilbur/
IRET/bionlp.zip 
 

 Positives Negatives Total 
GENETAG 10245 9755 20000 
YAPEX 1298 378 1676 
JNLPBA 17761 4641 22402 
Disease 345 251 596 
CellLine 211 217 428 
Reptiles 179 328 507 

Table 4. Datasets. “GENETAG” was used for training 
data and others were used for test data. “YAPEX” and 
“JNLPBA” were selected from previous gold-standard 
corpora. “Disease”, “Cell Line” and “Reptiles” are new-
ly created from recent publications and considered as 
difficult sets. 

4 Results and Discussion  

In this paper, our goal is to achieve higher-
prediction performance on a wide range of gene 
sentences by combining multiple gene mention 
identifiers. The basic assumption here is that there 
is a strong predictor that performs well for previ-
ously known gold-standard datasets. For this 
strong predictor, we selected BANNER since it 
includes basic features that are known to give good 
performance. 
 

 Accuracy Precision Recall F1 
GENETAG 0.9794 0.9817 0.9779 0.9799 
YAPEX 0.9051 0.9304 0.9483 0.9392 
JNLPBA 0.8693 0.9349 0.8976 0.9159 
Disease 0.8591 0.9223 0.8261 0.8716 
Cell Line 0.8925 0.9146 0.8626 0.8878 
Reptiles 0.8994 0.8478 0.8715 0.8595 

Table 5. Performance of BANNER on training and test 
datasets. 

 
Table 5 presents the gene sentence classification 

performance of BANNER on training and test sets. 
We emphasize that performance here means that if 
BANNER annotates a gene/protein name in a sen-
tence, that sentence is classified as positive, other-
wise it is classified as negative. BANNER used 
GENETAG as training data, hence it shows excel-
lent classification performance on the same set. 
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 Unigrams Substrings BANNER Ensemble Uni+Ensemble Sub+Ensemble
YAPEX 0.9414 0.9491 0.9685 0.9704 0.9624 0.9678 
JNLPBA 0.9512 0.9504 0.9584 0.9651 0.9625 0.9619 
Disease 0.8255 0.8852 0.9238 0.9501 0.9573 0.9610 
CellLine 0.8174 0.9004 0.9281 0.9539 0.9429 0.9496 
Reptiles 0.6684 0.7360 0.8696 0.9049 0.9001 0.8937 

Table 6. Average precision results on test sets for different feature combinations. 
 

 Unigrams Substrings BANNER Ensemble Uni+Ensemble Sub+Ensemble
YAPEX 0.8735 0.8819 0.9321 0.9196 0.9298 0.9336 
JNLPBA 0.8902 0.8938 0.9111 0.9197 0.9262 0.9264 
Disease 0.7449 0.7884 0.8479 0.8894 0.8957 0.9043 
CellLine 0.7346 0.8057 0.8698 0.9017 0.9052 0.8957 
Reptiles 0.6257 0.6816 0.8499 0.8199 0.8547 0.8547 

Table 7. Breakeven results on test sets for different feature combinations. 
 

 
 Just one fiber gene was revealed in this strain. 

 
 This transcription factor family is characterized by 

a DNA-binding alpha-subunit harboring the Runt 
domain and a secondary subunit, beta, which binds 
to the Runt domain and enhances its interaction 
with DNA.  

  
Figure 2. False positive examples including misleading 
words. 
 
YAPEX and JNLPBA are gold-standard sets that 
partially overlap the GENIA corpus. Since 
BANNER utilizes features from previous research 
on GENETAG, YAPEX and JNLPBA, we expect 
good performance on these data sets. For that rea-
son, we created the three additional gold-standard 
sets to use in this study, and we believe the per-
formance on these sets is more representative of 
what could be expected when our method is ap-
plied to cases recently appearing in the literature. 

Table 6 show average precision results for the 
different methods and all the test sets. GENETAG 
is left out because BANNER is trained on 
GENETAG. We observe improved performance of 
the ensemble methods over unigrams, substrings 
and BANNER. The improvement is small on 
YAPEX and JNLPBA, but larger for Disease, 
CellLine and Reptiles. We see that unigrams and 
substrings tend to add little to the plain ensemble. 

The MAP (Mean Average Precision) values in 
Table 6 are in contrast to the breakeven results in 
Table 7, where we see that unigrams and sub-
strings included with the ensemble generally give 
improved results.  Some of the unigrams and sub-
strings are specific enough to detect gene/protein 

names with high accuracy, and improve precision 
in top ranks in a way that cannot be duplicated by 
the annotations coming from Semantic or Priority 
Models or BANNER. In addition, substrings may 
capture more information than unigrams because 
of their greater generality. 

Some of our errors are due to false positive NER 
identifications. By this we mean a token was clas-
sified as a gene/protein by BANNER or the Se-
mantic or Priority Models. This often happens 
when the name indeed represents a gene/protein 
class, which is too general to be marked positive 
(Figure 2). A general way in which this problem 
could be approached is to process a large amount 
of literature discussing genes or proteins and look 
for names that are marked as positives by one of 
the NER identifiers, and which appear frequently 
in plural form as well as in the singular. Such 
names are likely general class names, and have a 
high probability to be false positives. 

Another type of error will arise when unseen to-
kens are encountered. If such tokens have string 
similarity to gene/protein names already encoun-
tered in the SemCat data, they may be recognized 
by the Priority Model. But there will be completely 
new strings. Then one must rely on context and 
this may not be adequate. We think there is little 
that can be done to solve this short of better lan-
guage understanding by computers. 

There is a benefit in considering whole sentenc-
es as opposed to named entities. By considering 
whole sentences, name boundaries become a non-
issue. For this reason, one can expect training data 
to be more accurate, i.e., human judges will tend to 
agree more in their judgments. This may allow for 
improved training and testing performance of ma-
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chine learning methods. We believe it beneficial 
that human users are directed to sentences that con-
tain the entities they seek without necessity of 
viewing the less accurate entity specific tagging 
which they may then have to correct. 

5 Conclusions 

We defined a new task for classifying gene/protein 
sentences as an aid to human curation and infor-
mation retrieval. An ensemble approach was used 
to combine three different NER identifiers for im-
proved gene/protein sentence recognition. Our ex-
periments show that one can indeed find improved 
performance over a single NER identifier for this 
task. An additional advantage is that performance 
at this task is significantly more accurate than 
gene/protein NER. We believe this improved accu-
racy may benefit human users of this technology. 
We also make available to the research community 
three gold-standard gene mention sets, and two of 
these are taken from the most recent literature ap-
pearing in PubMed. 
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Abstract

Datasets that answer difficult clinical ques-
tions are expensive in part due to the need for
medical expertise and patient informed con-
sent. We investigate the effect of small sample
size on the performance of a text categoriza-
tion algorithm. We show how to determine
whether the dataset is large enough to train
support vector machines. Since it is not pos-
sible to cover all aspects of sample size cal-
culation in one manuscript, we focus on how
certain types of data relate to certain proper-
ties of support vector machines. We show that
normal vectors of decision hyperplanes can
be used for assessing reliability and internal
cross-validation can be used for assessing sta-
bility of small sample data.

1 Introduction

Every patient visit generates data, some on paper,
some stored in databases as structured form fields,
some as free text. Regardless of how they are
stored, all such data are to be used strictly for pa-
tient care and for billing, not for research. Patient
health records are maintained securely according to
the provisions of the Health Insurance Portability
and Accountability Act (HIPAA). Investigators must
obtain informed consent from patients whose data
will be used for other purposes. This means defin-
ing which data will be used and how they will be
used. In addition to writing protocols and obtain-
ing consent from patients, medical experts must ei-
ther manually codify important information or teach
a machine how to do it. All of these labor-intensive

tasks are expensive. No one wants to collect more
data than is necessary.

Our research focuses on answering difficult neu-
ropsychiatric questions such as, “Who is at higher
risk of dying by suicide?” or “Who is a good
candidate for epilepsy surgery evaluation?” Large
amounts of data that might answer these questions
exist in the form of text dictated by clinicians or
written by patients and thus unavailable. Parallel
to the collection of such data, we explored whether
small datasets can be used to build reliable methods
of making this information available. Here, we in-
vestigate how text classification training size relates
to certain aspects of linear support vector machines.
We hypothesize that a sufficiently large training sub-
set will generate stable and reliable performance es-
timates of a classifier. On the other hand, if the
dataset is too small, then even small changes to
the training size will change the performance of a
classifier and manifest unstable and unreliable esti-
mates. We introduce quantitive definitions for sta-
bility and reliability and give empirical evidence on
how they work.

2 Background

How much data is needed for reliable and stable
analysis? This question has been answered for most
univariate problems, and a few solutions exist for
multivariate problems, but no widely accepted an-
swer is available for sparse and high-dimensional
data. Nonetheless, we will review the few sample
size calculation methods that have been used for ma-
chine learning.
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Hsieh et al. (1998) described a method for calcu-
lating the sample size needed for logistic and lin-
ear regression models. The multivariate problem
was simplified to a series of univariate two-sample t-
tests on the input variables. A variance inflation fac-
tor was used to correct for the multi-dimensionality
which quantifies the severity of multicollinearity in
the least squares regression: collinearity deflates
and non-collinearity inflates sample size estima-
tion. Computer simulations were done on low-
dimensional and continuous data, so it is not known
whether the method is applicable to text categoriza-
tion.

Guyon et al. (1998) addressed the problem of de-
termining what size test set guarantees statistically
significant results in a character recognition task, as
a function of the expected error rate. This method
does not assume which learner will be used. Instead,
it requires specific parameters that describe hand-
writing data collection properties such as between-
writers variance and within-writer variance. The
downside of this method is that it must assume the
worst-case scenario: a large variance in data and a
low error rate for the classifier. For this reason larger
datasets are recommended.

Dobbin et al. (2008) and Jianhua Hu (2005) fo-
cused only on sample size for a classifier that learns
from gene expression data. No assumptions were
made about the classifier, only about the data struc-
ture. All gene expressions were measured on a con-
tinuous scale that denotes some luminescence cor-
responding to the relative abundance of nucleic acid
sequences in the target DNA strand. The data, re-
gardless of size, can be qualified using just one pa-
rameter, fold change, which measures changes in the
expression level of a gene under two different con-
ditions. Furthermore, the fold change can be stan-
dardized for compatibility with other biological ex-
periments: with a lower standardized fold change,
more samples are needed, and with more genes,
more samples are needed. There is a strong assump-
tion about data makeup, but no assumption is made
about the classifier. This solution allows for small
sample sizes but does not generalize to text classifi-
cation data.

Way et al. (2010) evaluated the performance of
various classifiers and featured a selection technique
in the presence of different training sample sizes.

Experiments were conducted on synthetic data, with
two classes drawn from multivariate Gaussian dis-
tributions with unequal means and either equal or
unequal covariance matrices. The conclusion was
that support vector machines with a radial kernel
performed slightly better than the LDA when the
training sample size was small. Only certain combi-
nations of feature selection and classification meth-
ods work well with small sample sizes. We will use
similar assumptions for sparse and high-dimensional
data.

Most recently, Juckett (2012) developed a method
for determining the number of documents needed for
a gold standard corpus. The sample size calculation
was based on the concept of capture probabilities.
It is defined as the normalized sum of probabilities
over all words of interest. For example, if the re-
quired capture probability is 0.95 for a set of med-
ical words, when using larger corpora that contain
these words, it must first be calculated how many
documents are needed to capture the same probabil-
ity in the target corpus. This method is specific to
linguistic research on annotated corpora, where the
probabilities of individual words in the sought cor-
pora must match the probabilities of words in the
target domain. This method focuses solely on the
data structure and does not assume an algorithm or
the task that it will serve. The downside is a higher
sample size.

When reviewing various methods for sample size
calculation, we found that as more assumptions can
be made, fewer data are needed for meaningful anal-
ysis. Assumptions can be made about data structure
and quality, the task the data serve, feature selection,
and the classifier. Our approach exploits a scenario
where the task, the feature selection, and the classi-
fier are known.

3 Data

We used four data sets to test our hypothesis: ver-
sicolor and virginica samples from the Iris dataset
(VV), newswires about corn and wheat from the
ModApte split of the Reuters-21578 dataset (WCT
and WCE), suicide notes reprinted in Shneidman
and Farberow (1957) (SN), and ubiquitous question-
naire patient interviews (UQ). Properties of these
data are summarized in Table 1.
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The first dataset was created by Anderson (1935)
and introduced to the world of statistics by Fisher
(1936). Since then it has been used on countless oc-
casions to benchmark machine learning algorithms.
Each row of data has four variables to describe the
shape of an iris calyx: sepal length, sepal width,
petal length, and petal width. The dataset contains
50 measurements for each of three subspecies of the
iris flower: setosa, versicolor, and virginica. All
measurements of the setosa calyx are separable from
the rest of the data and thus were not used in our ex-
periments. Instead, we used data corresponding to
versicolor and virginica (VV), which is more inter-
esting because of a small class overlap. The noise is
introduced mostly by sepal width and sepal length.

The second dataset was created by Lewis and
Ringuette (1994) and is the one most commonly
used to benchmark text classification algorithms.
The collection is composed of 21,578 short news
stories from the Reuters news agency. Some stories
have manually assigned topics, like “earn,” “acq,” or
“money-fx,” and others do not. In order to make the
dataset comparable across different uses, a “Modi-
fied Apte” (“ModApte”) split was proposed by Apté
et al. (1994). It has 9,603 training and 3,299 exter-
nal testing documents, a total of 135 distinct topics,
with at least one topic per document. The most fre-
quent topic is “earn,” which appears in 3,964 docu-
ments. Here, we used only the “wheat” and “corn”
categories, which appear 212 and 181 times in the
training set along with 71 and 56 cases in the test
set. These topics are semantically related, so it is
no surprise that 59 documents in the training set
and 22 documents in test set have both labels. This
gives a total of 335 unique training instances and
105 unique test instances. Interestingly, it is eas-
ier to distinguish “corn” news from “not corn just
wheat” news than it is to distinguish “wheat” from
“not wheat just corn.” The latter seems to be a good
dataset for benchmarking sample size calculation.
We will refer to the “wheat” versus “not wheat”
training set as WCT and the “wheat” versus “not
wheat” external test set as WCE.

The third dataset was extracted from the appendix
in Shneidman and Farberow (1957). It contains 66
suicide notes (SN) organized into two categories: 33
genuine and 33 simulated. The authors of the notes
were matched in both groups by gender (male), race

(white), religion (Protestant), nationality (native-
born U.S. citizens), and age (25-59). Authors of the
simulated suicide notes were screened for personal-
ity disorders or tendencies toward morbid thoughts
that would exclude them from the study. Individu-
als enrolled in the study were asked to write a sui-
cide note as if they were going to take their own life.
Notes were anonymized, digitized, and prepared for
text processing (Pestian et al., 2010).

The fourth dataset was collected in a clinical con-
trolled trial at Cincinnati Children’s Hospital Med-
ical Center Emergency Department. Sixty patients
were enrolled, 30 with suicidal behavior and 30 con-
trols from the orthopedic service. The suicidal be-
havior group comprised 15 females and 15 males
with an average age of ≈ 15.7 years (SD ≈ 1.15).
The control group included 15 females and 15 males
with an average age of ≈ 14.3 years (SD ≈ 1.21).
The interview consisted of five open-ended ubiqui-
tous questions (UQ): “Does it hurt emotionally?”
“Do you have any fear?” “Are you angry?” “Do
you have any secrets?” and “Do you have hope?”
The interviews were recorded in an audio format,
transcribed by a medical transcriptionist, and pre-
pared for analysis by removing the sections of the
interview where the questions were asked. To pre-
serve the UQ structure, n-grams from each of the
five questions were separated (Pestian et al., 2012).

VV SN UQ WCT WCE
Samples (m) 100 66 60 335 105
Classes 2 2 2 2 2
Class balance 100% 100% 100% 58% 48%
Min row freq 100 2 2 3 0
Max row freq 100 66 60 335 105
Min cell value 1 0 0 0 0
Max cell value 7.9 102.045 64 117 892
Features (n) 4 60 7,282 7,132 7,132
Sparsity 0% 60% 92.3% 97% 98%

Table 1: Four very different benchmark data: versicolor
and virginica (VV) from iris data, representing a dense,
low-dimensional dataset; suicide notes (SN) from Clues
to Suicide (Shneidman and Farberow, 1957), represent-
ing a mildly sparse, high-dimensional dataset; ubiquitous
questionnaires, (UQ) representing a sparse, extremely
high-dimensional dataset; and “wheat” versus “not wheat
just corn” (WCT and WCE) from the “ModApte” split
of Reuters-21578 data, representing an unbalanced, ex-
tremely sparse, high-dimensional dataset.
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4 Methods

Feature extraction. Every text classification algo-
rithm starts with feature engineering. Documents
in the UQ, WCT, and WCE sets were represented
by a bag-of-n-grams model (Manning and Schuetze,
1999; Manning et al., 2008). Every document was
tokenized, and frequencies of unigrams, bigrams,
and trigrams were calculated. All digit numbers
that appeared in a document were converted to the
same token (”NUMB”). Documents become row
vectors and n-grams become column vectors in a
large sparse matrix. Each n-gram has its own dimen-
sion, with the exception of UQ data, where n-grams
are represented separately for each of the five ques-
tions. Neither stemming nor a stop word list were
applied to the textual data. Suicide notes (SN) were
not represented by n-grams. In previous studies, we
found that the structure of the note and its emotional
content are indicative of suicidality, not its seman-
tic content. Hence, the SN dataset is represented
by the frequency of 23 emotions assigned by men-
tal health professionals, the frequency of 34 parts of
speech, and by three readability scores: Flesch, Fog,
and Kincaid.

Feature weighting. Term weighting was chosen
ad hoc. UQ, WCT, and WCE had a logarithmic
term frequency (log-tf) as local weighting and an in-
verse document frequency (idf) as global weighting
but were derived only from the training data (Salton
and Buckley, 1988; Nakov et al., 2001).

Feature selection. To speed up calculations, the
least frequent features were removed from the SN,
UQ, WCT, and WCE datasets (see minimum row
frequency in Table 1). Further optimization of the
feature space was done using an information gain
filter (Guyon and Elisseeff, 2003; Yang and Peder-
sen, 1997). Depending on the experiment, some of
the features with the lowest information gain were
removed. For example, IG = 0.4 means that 40%
of the features, those with a higher information gain,
were kept, and the other 60%, those with a lower in-
formation gain, were removed. Lastly, all row vec-
tors in UQ, WCT, and WCE were normalized to
unit length (Joachims, 1998).

Learning algorithm. We used linear support vec-
tor machines (SVM) to learn from the data. Sup-
port vector machines are described in great detail in

Figure 1: Normal vector w of a hyperplane.

Schlkopf and Smola (2001). We will focus on just
two aspects: properties of the normal vector of de-
cision hyperplane (see Figure 1) and internal cross-
validation (see Figure 2). SVM is in essence a sim-
ple linear classifier:

f(x) = sgn(〈w,x〉+ b) (1)

where x is an input vector that needs to be classified,
〈·, ·〉 is the inner product, w is a weight vector with
the same dimensionality as x, and b is a scalar. The
function f outputs +1 if x belongs to the first class
or −1 if x belongs to the second class. SVM differs
from other linear classifiers on how w is computed.
Contrary to other classifiers, it does not solve w di-
rectly. Instead, it uses convex optimization to find
vectors from the training set that can be used for cre-
ating the largest margin between training examples
from the first and second class. Hence, the solution
to w is in the form of the linear combination of co-
efficients and training vectors:

w =

m∑
i=1

αiyixi (2)

where m is the number of training vectors, αi ≥ 0
are Lagrange multipliers, yi ∈ {−1, 1} are numer-
ical codes for class labels, and xi are training row
vectors. Vector w is perpendicular to the decision
boundary, and its proper name in the context of
SVM is the normal vector of decision hyperplane1

(see Figure 1). One of the properties of SVM is that
outlying training vectors are not used in w. These
vectors have the corresponding coefficient αi = 0.
In fact, these vectors can be removed from the train-
ing set and the convex optimization procedure will

1If R with SVM from the e1071 package is used,
the command to obtain the normal vector is w =
c(t(model$coefs)% ∗ %model$SV).
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result in exactly the same solution. We can use this
property to probe how reliable training data are for
the classification task. If we have enough data that
we can randomly remove some, what is left will re-
sult in w∗ ≈ w. On the other hand, if we do not
have enough data, then random removal of training
data will result in a very different equation, because
the decision boundary changes and w∗ 6= w.

Reliability of performance. The relationship be-
tween w∗ and w can be measured. We introduce the
SVM reliability index (SRI):

SRI(w∗,w) = |r(w∗,w)| (3)

=
|
∑n

i=1(w
∗
i −w∗)(wi −w)|√∑n

i=1(w
∗
i −w∗)2

√∑n
i=1(wi −w)2

which is the absolute value of the Pearson product-
moment correlation coefficient between convex op-
timization solution w∗ corresponding to a training
subset and w corresponding to the full dataset2.
Pearson’s correlation coefficient discovers linear de-
pendency between two normally distributed random
variables and has its domain on a continuous seg-
ment between −1 and +1. In our case, we are
looking for a strong linear dependency between con-
stituents of the training weight vector w∗i and con-
stituents of the full dataset weight vector wi. Some
numerical implementations of SVM cause the out-
put values for the class labels to switch. We cor-
rected for this effect by applying absolute value to
the Pearson’s coefficient, resulting in SRI ∈ [0, 1].
We did not have a formal proof on how SRI relates
to SVM performance. Instead, we showed empir-
ical evidence for the relationship based on a few
small benchmark data. Stability of performance.
SVM generalization performance is usually mea-
sured using cross-validation accuracy. In particu-
lar, we use balanced accuracy because it gives bet-
ter evidence for a drop in performance when solving
unbalanced problems. Following Guyon and Elis-
seeff (2003) and many others, we divided the data
into three sets: test, training, and validation. Mean
test balanced accuracy aT is estimated using strati-
fied Monte Carlo cross-validation (MCCV), where

2We experimented with Pearson’s correlation, Spearman’s
correlation, one-way intraclass correlation, Cosine correlation,
Cronbach’s coefficient, and Krippendorff’s coefficients and
found that Pearson’s correlation coefficient works well with
both low-dimensional and high-dimensional spaces.

Figure 2: Estimation and resampling: mean test balanced
accuracy and mean validation balanced accuracy should
match. To prevent overfitting, tuning machine learning
should be guided by mean validation accuracy and con-
firmed by mean test accuracy. This procedure requires
the “develop” set to be large enough to give reliable and
stable estimates.

the proportion of the training set to the test set is
varied between 0.06 and 0.99. Mean validation bal-
anced accuracy aV (MVA) is estimated using K-
fold cross-validation (also known as internal cross-
validation), where K = m

2 and m is the number
of training cases. In the case of the “wheat” versus
“not wheat just corn” dataset, we have, in addition,
the external validation set WCE and corresponding
mean external balanced accuracy aE . Correct esti-
mation of the learner’s generalization performance
should result in all three accuracies being equal:
aT ≈ aV ≈ aE . Furthermore, we want all three ac-
curacies to be the same regardless of the amount of
data. If we have enough data that we can randomly
remove some, what is left will result in aV ∗ ≈ aV ∗∗

.
On the other hand, if we do not have enough data,
then random removal of training data will result in
very different accuracy estimations: aV ∗ 6= aV ∗∗

.
Sample size calculation. We do not have a good

way of predicting how much data will be needed to
solve a problem with a small p-value, but this is a
matter of convenience. Rather than looking to the
future, we can simply ask if what we have now is
enough. If we can build a classifier that gives re-
liable and stable estimates of performance, we can
stop collecting data. Reliability is measured by SRI,
while stability is measured by MVA, not as a single
value but merely as a function of the training size:

SRI(t) = |r(wtm,wm)| and (4)

aT (t) = aT tm
(5)

where t is a proportion of the training data, t ∈
(0, 1), m is size of the full dataset, and tm is the
actual number of training instances. To quantify the
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ability of the dataset to produce classification mod-
els with reliable and stable performance estimates,
we need two more measures: sample dispersion of
SRI and sample dispersion of MVA:

cSRI(t ≥ p) =
sSRI(t≥p)

SRI(t ≥ p)
and (6)

cMV A(t ≥ p) =
saT (t≥p)

aT (t ≥ p)
(7)

defined as the coefficient of variation of all SRI or
MVA measurements for training data sizes greater
than pṁ. For example, we want to know if our 10-
fold cross-validation (CV) for a dataset that has 400
training samples is reliable and stable. 10-fold CV
is 0.9 of training data, so we need to measure SRI
and MVA for different proportions of training data,
t = {0.90, 0.91, . . . , 0.99}, and then calculate dis-
persion for cSRI(t ≥ 0.9) and cMV A(t ≥ 0.9). Nu-
merical calculations will give us sense of good and
bad dispersion across different datasets.

5 Results

Do I have enough data? The first set of experi-
ments was done with untuned algorithms. We set the
SVM parameter to C = 1 and did not use any fea-
ture selection. Figure 3 shows four examples of how
SVM performance depends on the training set size.
The performance was measured using mean test bal-
anced accuracy, MVA, and SRI. Numerical calcu-
lations showed that VV needs at least 30 randomly
selected training examples to produce reliable and
stable results with high accuracy. cSRI(t ≥ 0.75)
is 0.005 and cMV A(t ≥ 0.75) is 0.016. SN was
not encouraging regarding the estimated accuracy;
SRI dropped, suggesting that the SVM decision hy-
perplanes are unreliable. Mental health profession-
als can distinguish between genuine and simulated
notes about 63% of time. Machine learning does
it correctly about 73% of time if text structure and
emotional content are used. Even so, the sample
size calculation yields high dispersion (cSRI(t ≥
0.75) = 0.134 and cMV A(t ≥ 0.75) = 0.082).
UQ is small and high-dimensional, and yet the re-
sults were reliable and stable (cSRI(t ≥ 0.75) =
0.015 and cMV A(t ≥ 0.75) = 0.023). Patients
enrolled in the UQ study also received the Sui-
cide Ideation Questionnaire (Raynolds, 1987) and

the Columbia-Suicide Severity Rating Scale (Pos-
ner et al., 2011). We found that UQ was no dif-
ferent from the structured questionnaires. UQ de-
tects suicidality mostly by emotional pain and hope-
lessness, which were mildly present in four control
patients. Other instruments returned errors because
the same few teenagers reported risky behavior and
morbid thoughts. WCT produced reliable and sta-
ble accuracy estimates, but no large amounts of data
could be removed (cSRI(t ≥ 0.75) = 0.010 and
cMV A(t ≥ 0.75) = 0.053). It seems that WCE
is somehow different from WCT, or it might be a
case of overfitting, which causes the mean test ac-
curacy to diverge from MVA as the training dataset
gets smaller. Algorithm tuning. No results should
be regarded as satisfactory until a thorough param-
eter space search has been completed. Each step of
a text classification algorithm can be improved. To
attempt a complete description of the dependency
of a minimal viable sample size on text classifica-
tion would be both impossible and futile, since new
methods are discovered every day. However, to start
somewhere, we focused only on the feature selection
and SVM parameter C 3. Feature selection removes
noise from data. Parameter C informs the convex
optimization process about the expected noise level.
If both parameters are set correctly, we should see
an improvement in the reliability and stability of
the results. There are several methods for tuning
SVM; the most commonly used but computation-
ally expensive is internal cross-validation (Duan et
al., 2003; Chapelle et al., 2002). Figure 5 shows
the results of the parameter tuning procedure. VV
and SN are not extremely high-dimensional, so we
tuned just parameter C. MVA maxima were found
at C = 0.45 with VV, C = 0.05 with SN, C = 0.4
and IG = 0.1584 with UQ, and C = 2.5 and
IG = 0.8020 with WCT. Do I have enough data
after algorithm tuning? Internal cross-validation
(MVA) did not improve dispersion universally (see
Table 2). VV improved on reliability but not stabil-
ity. SN scored much better on both measures, but
we do not yet know what the cutoff for having a
low enough dispersion is. UQ did worse on all mea-
sures after tuning. WCT improved greatly on mean

3Please note that most SVM implementations do not allow
for simultaneous feature selection and internal cross-validation.
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VV SN UQ WCT and WCE

Figure 3: SRI index (S), MVA accuracy (V) and mean test accuracy (T) averaged over 120 repetitions and different
training data sizes. Linear SVM with C = 1 and no feature selection. VV (cSRI(t ≥ 0.75) = 0.005 and cMV A(t ≥
0.75) = 0.016), UQ (cSRI(t ≥ 0.75) = 0.015 and cMV A(t ≥ 0.75) = 0.023), and WCT (cSRI(t ≥ 0.75) = 0.010
and cMV A(t ≥ 0.75) = 0.053) gave stable and reliable estimates, but SN did not (cSRI(t ≥ 0.75) = 0.134 and
cMV A(t ≥ 0.75) = 0.082).

VV SN UQ WCT

Figure 4: MVA (internal cross-validation) parameter tuning results. Maxima were found at C = 0.45 with VV,
C = 0.05 with SN, C = 0.4 and IG = 0.1584 with UQ, and C = 2.5 and IG = 0.8020 with WCT.

VV SN UQ WCT and WCE

Figure 5: SRI index (S), MVA accuracy (V), and mean test accuracy (T) averaged over 60 repetitions and different
training data sizes. Tuned classification algorithms: VV with C = 0.45 and no feature selection, SN with C = 0.05
and no feature selection, UQ with C = 0.4 and IG = 0.1584, and WCT with C = 2.5 and IG = 0.8020. Stability
and reliability: VV had cSRI(t ≥ 0.75) = 0.003 and cMV A(t ≥ 0.75) = 0.018), SN had cSRI(t ≥ 0.75) = 0.085
and cMV A(t ≥ 0.75) = 0.075, UQ had cSRI(t ≥ 0.75) = 0.025 and cMV A(t ≥ 0.75) = 0.024, and WCT had
cSRI(t ≥ 0.75) = 0.025 and cMV A(t ≥ 0.75) = 0.011.
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test accuracy, mean external validation, and stability
dispersion (see Figure 5). It would be interesting to
see if improvement on both reliability dispersion and
stability dispersion would bring mean test accuracy
and mean external validation even closer together.

aT (t ≥ 0.75) cSRI(t ≥ 0.75) cMV A(t ≥ 0.75)
VV no tuning 0.965 0.005 0.016
SN no tuning 0.744 0.134 0.082
UQ no tuning 0.946 0.015 0.023
WCT no tuning 0.862 0.010 0.053
VV with tuning 0.970 0.003 0.018
SN with tuning 0.755 0.085 0.075
UQ with tuning 0.941 0.025 0.024
WCT with tuning 0.946 0.025 0.011

Table 2: Sample size calculation before and after tuning
with internal cross-validation (MVA). Even though mean
test accuracy (aT (t ≥ 0.75)) improved for VV, SN, and
WCT, reliability and stability did not improve univer-
sally. Internal cross-validation alone might not be ade-
quate for tuning classification algorithms for all data.

6 Discussion

Sample size calculation data for a competition
and for problem-solving. In general, there might be
two conflicting objectives when calculating whether
what we have collected is a large enough dataset. If
the objective is to have a shared task with many par-
ticipants and, thus, many unknowns, the best course
of action is to assume the weakest classifier: uni-
grams with no feature weighting or selection trained
using the simplest logistic regression. On the other
hand, if the problem is to be solved with only one
classifier and the least amount of data, then the
strongest assumptions about the data and the algo-
rithm are required.

The fallacy of untuned algorithms. After years
of working with classification algorithms to solve
difficult patient care problems, we have found that
a large amount of data is not needed; usually sam-
ples measured in the hundreds will suffice, but this
is only possible when a thorough parameter space
search is conducted. It seems that reliability and
stability dispersions are good measures of how well
the algorithm is tuned to the data without overfitting.
Moreover, we now have a new direction for thinking
about optimizing classification algorithms: instead
of focusing solely on accuracy, we can also measure
the dispersion and see whether this is a better indi-

cator of what would happen with unevaluated data.
There is a great deal of data available, but very little
that can be used for training.

What to measure? VC-bound, span-bound, ac-
curacy, F1, reliability, and stability dispersions are
just a few examples of indicators of how well our
models fit. What we have outlined here is how
one of the many properties of SVM, the property
of the normal vector, can be used to obtain insights
into data. Normal vectors are constructed using La-
grangian multipliers and support vectors; accuracy
is constructed using a sign function on decision val-
ues. It is feasible that other parts of SVM may be
more suited to algorithm tuning and calculation of
minimum viable training size.

7 Conclusion

Power and sample size calculations are very impor-
tant in any domain that requires extensive expertise.
We do not want to collect more data than necessary.
There is, however, a scarcity of research in sample
size calculation for machine learning. Nonetheless,
the existing results are consistent: the more that can
be assumed about the data, the problem and the al-
gorithm, the fewer data are needed.

We proposed two independent measures for eval-
uating whether available datasets are sufficiently
large: reliability and stability dispersions. Reliabil-
ity dispersion measures indirectly whether the deci-
sion hyperplane is always similar and how much it
varies, while stability dispersion measures how well
we are generalizing and how much variability there
is. If the sample size is large enough, we should
always get the same decision hyperplane with the
same generalization accuracy.

With little empirical evidence, we can conclude
that classifier performance measured by just a single
K in a cross-validation test is not sufficient. K must
be be varied, and other measures must be present,
such as the SVM reliability index, that support or
contradict the generalization accuracy estimates. We
suggest that other measures for sample size calcula-
tion and algorithm tuning may exist and there is still
much to be learned about the mechanics of support
vector machines.
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Abstract

There has been an active development of cor-
pora and annotations in the BioNLP commu-
nity. As those resources accumulate, a new
issue arises about the reusability. As a solu-
tion to improve the reusability of corpora and
annotations, we presentPubAnnotation, a per-
sistent and sharable repository, where various
corpora and annotations can be stored together
in a stable and comparable way. As a position
paper, it explains the motivation and the core
concepts of the repository and presents a pro-
totype repository as a proof-of-concept.

1 Introduction

Corpora with high-quality annotation is regarded in-
dispensable for the development oflanguage pro-
cessing technology (LT), e.g.natural language pro-
cessing (NLP)or textmining. Biology is one of the
fields which have strong needs for LT, due to the
high productivity of new information, most of which
is published in literature. There have been thus an
active development of corpora and annotations for
theNLP for biology (BioNLP). Those resources are
certainly an invaluable asset of the community.

As those resources accumulate, however, a new
issue arises about the reusability: the corpora and
annotations need to be sharable and comparable. For
example, there are a number of corpora that claim to
have annotations for protein or gene names, e.g, Ge-
nia (Kim et al., 2003), Aimed (Bunescu et al., 2004),
and Yapex (Franźen et al., 2002). To reuse them, a
user needs to be able to compare them so that they
can devise a strategy on how to use them. It is how-
ever known that often the annotations in different

corpora are incompatible to each other (Wang et al.,
2010): while one is considered as a protein name in
a corpus, it may not be the case in another.

A comparison of annotations in different corpora
could be made directly or indirectly. If there is an
overlap between two corpora, a direct comparison
of them would be possible. For example, there are
one1, two2 and three3 PubMed abstracts overlapped
between Genia - Yapex, Genia - Aimed, and Yapex
- Aimed corpora, respectively. When there is no or
insufficient overlap, an indirect comparison could be
tried (Wang et al., 2010). In any case, there are a
number of problems that make it costly and trouble-
some, though not impossible, e.g. different formats,
different ways of character encoding, and so on.

While there have been a few discussions about
the reusability of corpora and annotations (Cohen et
al., 2005; Johnson et al., 2007; Wang et al., 2010;
Campos et al., 2012), as a new approach, we present
PubAnnotation, a persistent and sharable storage or
repository, where various corpora and annotations
can be stored together in a stable and comparable
way. In this position paper, after the motivation and
background are explained in section 1, the initial de-
sign and a prototype implementation of the storage
are presented in section 2 and 3, respectively and fu-
ture works are discussed in section 4.

2 Design

Figure 1 illustrates the current situation of cor-
pus annotation in the BioNLP community, which
we consider problematic. In the community, there

1PMID-10357818
2PMID-8493578, PMID-8910398
3PMID-9144171, PMID-10318834, PMID-10713102
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Figure 1: Usual setup of PubMed text annotation

are several central sources of texts, e.g. PubMed,
PubMed Central (PMC), and so on. In this work,
we consider only PubMed as the source of texts for
brevity, but the same concept should be applicable
to other sources. Texts from PubMed are mostly the
title and abstract of literature indexed in PubMed.
For an annotation project, text pieces from a source
database (DB) are often copied in a local storage and
annotations are attached to them.

Among others, the problem we focus on in this
situation is the variations that are made to the texts.
Suppose that there are two groups who happen to
produce annotations to a same PubMed abstract.
The abstract will be copied to the local storages of
the two groups (illustrated as the local storage 1 and
2 in the figure). There are however at least two rea-
sons that may cause the local copies to be different
from the abstract in PubMed, and also to be different
from each other even though they are copies of the
same PubMed abstract:

Versioning This variation is made by PubMed. The
text in PubMed is changed from time to time
for correction, change of policy, and so on. For
example, Greek letters, e.g.,α, are spelled out,
e.g.,alpha, in old entries, but in recent entries
they are encoded as they are in Unicode. For
the reason, there is a chance that copies of the
same entry made at different times (snapshots,
hereafter) may be different from each other.

Conversion This variation is made by individual
groups. The texts in a local storage are some-
times changed for local processing. For exam-
ple, most of the currently available NLP tools
(for English), e.g., POS taggers and parsers that

Figure 2: Persistent text/annotation repository

Figure 3: Text/annotation alignment for integration

are developed based on Penn Treebank, can-
not treat Unicode characters appropriately. For
such NLP tools to be used, all the Unicode
characters need to be converted to ASCII char-
acter sequences in local copies. Sometimes, the
result of some pre-processing, e.g. tokeniza-
tion, also remains in local copies.

The problem of text variation may not be such a
problem that makes the reuse of corpora and anno-
tations extremely difficult, but a problem that makes
it troublesome, raising the cost of the entire commu-
nity substantially.

To remedy the problem, we present, a persistent
and sharable storage of corpora and annotations,
which we callPubAnnotation. Figure 2 illustrates
an improved situation we aim at with PubAnnota-
tion. The key idea is to maintain all the texts in
PubAnnotation in their canonical form, to which all
the corresponding annotations are to be aligned. For
texts from PubMed, the canonical form is defined to
be exactly the same as in PubMed. With the defini-
tion, a text entry in PubAnnotation needs to be up-
dated (uptodatein the figure) as the corresponding
text in PubMed changes (versioning). Accordingly,
the annotations belonging to the entry also need to
be re-aligned (alignment).

There also would be a situation where a variation
of a text entry is required for some reason, e.g. for
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Figure 4: Text/annotation alignment example

application of an NLP tool that cannot handle Uni-
code characters. Figure 3 illustrates a required pro-
cess to cope with such a situation: first, the text is
exported in a desired form (conversionin the fig-
ure); second, annotations are made to the text; and
third, the annotations are aligned back to the text in
its canonical form in the repository.

Figure 4 shows an example of text conversion
and annotation alignment that are required when the
Enju parser (Miyao and Tsujii, 2008) needs to be
used for the annotation of protein names. The ex-
ample text includes a Greek letter,ε, which Enju
cannot properly handle. As Enju expects Greek
letters to be spelled out with double equal signs
on both sides, the example text is converted as so
when it is exported into a local storage. Based
on the pre-processing by Enju, the two text spans,
CD==epsilon== andCD4, are annotated as pro-
tein names. When they are imported back to PubAn-
notation, the annotations are re-aligned to the canon-
ical text in the repository. In this way, the texts
and annotations can be maintained in their canon-
ical form and in alignment respectively in PubAn-
notation. In the same way, existing annotations, e.g.
Genia, Aimed, Yapex, may be imported in the repos-
itory, as far as their base texts are sufficiently similar
to the canonical entries so that they can be aligned
reliably. In this way, various existing annotations
may be integrated in the repository,

To enable all the processes described so far, any
two versions of the same text need to be aligned, so
that the places of change can be detected. Text align-
ment is therefore a key technology of PubAnnota-
tion. In our implementation of the prototype repos-
itory, the Hunt-McIlroy’s longest common subse-
quence (LCS) algorithm (Hunt and McIlroy, 1976),
as implemented in thediff-lcs ruby gem pack-
age, is used for the alignment.

Figure 5: DB schema of persistent annotation repository

3 Prototype implementation

As a proof-of-concept, a prototype repository has
been implemented. One aspect considered seriously
is thescalability, as repository is intended to be “per-
sistent”. Therefore it is implemented on a relational
database (Ruby on Rails with PostgreSQL 9.1.3), in-
stead of relying on a plain file system.

Figure 5 shows the database schema of the reposi-
tory.4 Three tables are created fordocuments, anno-
tations, and (annotation)contexts, respectively. The
annotations are stored in a stand-off style, each of
which belongs to adocumentand also to ananno-
tation context(context, hereafter). A context rep-
resents a set of annotations sharing the same set of
meta-data, e.g., the type of annotation and the an-
notator. For brevity, we only considered PubMed as
the source DB, and named entity recognition (NER)-
type annotations, which may be simply represented
by the attributes,begin, end, andlabel.

The prototype repository provides a RESTful in-
terface. Table 1 shows some example which can be
accessed with the standard HTTP GET method. A
new entry can be created in the repository using a
HTTP POST method with data in JSON format. Fig-
ure 6 shows an example of JSON data for the cre-
ation of annotations in the repository. Note that, the
base text of the annotations needs to be passed to-
gether with the annotations, so that the text can be
compared to the canonical one in the repository. If a
difference is detected, the repository will try to align
the annotations to the text in the repository.

4Although not shown in the figure, all the records are stored
with the date of creation.
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http://server url/pmid/8493578
to retrieve the document record of a specific PMID

http://server url/pmid/8493578.ascii
same as above, but in US-ASCII encoding (Unicode characters are converted to HTML entities).

http://server url/pmid/8493578/annotations
to retrieve all the annotations to the specific document.

http://server url/pmid/8493578/contexts
to retrieve all the annotation contexts created to the specific document.

http://server url/pmid/8493578/annotations?context=genia-protein
to retrieve all the annotations that belong to genia-protein context.

http://server url/pmid/8493578/annotations.json?context=genia-protein
the same as above, but in JSON format.

Table 1: Examples of RESTful interface of the prototype repository

{
"document":

{"pmid":"8493578",
"text":"Regulation ..."},

"context":
{"name":"genia-protein"},

"annotations":
[

{"begin":51,"end":56,
"label":"Protein",
{"begin":75,"end":97,
"label":"Protein",

]
}

Figure 6: The JSON-encoded data for the creation of two
protein annotations to the document of PMID:8493578.

4 Discussions and conclusions

The current state of the design and the prototype
implementation are largely incomplete, and there is
a much room for improvement. For example, the
database schema has to be further developed to store
texts from various source DBs, e.g., PMC, and to
represent various types of annotations, e.g., relations
and events. The issue of governance is yet to be
discussed. We, however, hope the core concepts
presented in this position paper to facilitate discus-
sions and collaborations of the community and the
remaining issues to be addressed in near future.
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Abstract 

The package insert (aka drug product label) is 
the only publicly-available source of infor-
mation on drug-drug interactions (DDIs) for 
some drugs, especially newer ones. Thus, an 
automated method for identifying DDIs in 
drug package inserts would be a potentially 
important complement to methods for identi-
fying DDIs from other sources such as the 
scientific literature. To develop such an algo-
rithm, we created a corpus of Federal Drug 
Administration approved drug package insert 
statements that have been manually annotated 
for pharmacokinetic DDIs by a pharmacist 
and a drug information expert. We then evalu-
ated three different machine learning algo-
rithms for their ability to 1) identify 
pharmacokinetic DDIs in the package insert 
corpus and 2) classify pharmacokinetic DDI 
statements by their modality (i.e., whether 
they report a DDI or no interaction between 
drug pairs). Experiments found that a support 
vector machine algorithm performed best on 
both tasks with an F-measure of 0.859 for 
pharmacokinetic DDI identification and 0.949 
for modality assignment. We also found that 
the use of syntactic information is very helpful 
for addressing the problem of sentences con-
taining both interacting and non-interacting 
pairs of drugs. 

1 Introduction 

Package inserts (PIs, aka drug product label) are 
the primary source of information for newly ap-
proved drugs and a potentially authoritative source 
of drug information from a medical-legal stand-

point (Marroum & Gobburu 2002). Among the 
information provided by PIs are drug-drug interac-
tions (DDIs): known and predicted drug combina-
tions that could lead to a clinically meaningful 
alteration in the effect of one of the drugs. The 
United States Federal Drug Administration (FDA) 
mandates that PIs for FDA-approved drugs include 
both observed and predicted clinically significant 
DDIs, as well as the results of pharmacokinetic 
studies that establish the absence of effect (FDA. 
2010). Moreover, the PI is the only publically-
available source of information on DDIs for some 
drugs, especially newer ones (Dal-Ré et al. 2010). 
Hence, an automated method for identifying DDIs 
from drug PIs would be an important complement 
to methods for identifying DDIs from other 
sources such as the scientific literature. In this pa-
per we describe the creation of a new corpus of 
FDA-approved drug package insert statements that 
have been manually annotated for pharmacokinetic 
DDIs. We then discuss how three different ma-
chine learning algorithms were evaluated for their 
ability to 1) identify pharmacokinetic DDIs in drug 
package inserts and 2) classify pharmacokinetic 
DDI statements by their modality (i.e., whether 
they report a DDI or that a drug pair does not in-
teract).  

2 Materials and Methods 

2.1 The DDI Corpus and Schema 

A corpus of annotated statements derived from 
FDA-approved drug PIs was created for use as 
training and test data while developing automated 
DDI extraction algorithms. The statements were 
derived from PIs using a strategy that ensured there 
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would be a representative sample of statements 
that 1) unambiguously identified interacting drug 
pairs, 2) unambiguously identified non-interacting 
drug pairs, and 3) included no mention of interact-
ing drug pairs. Previous experience by our research 
group suggested that the manner in which DDI 
statements are described in PIs has changed over 
time in response to changing FDA regulations. 
Most notably, an FDA guidance document issued 
in 1999 was (to our knowledge) the first to explic-
itly suggest the inclusion of brief descriptions of 
pharmacokinetic DDI studies within specific sec-
tions of drug PIs (FDA. 1999). To account for this, 
investigators selected 64 PIs using a strategy that 
ensured the corpus would have a balanced sample 
of statements from drugs marketed before and after 
2000. For the purpose of this study we designated 
all PIs for drugs marketed prior to 2000 as “older” 
and those for drugs marketed in or after 2000 as 
“newer.” PIs were downloaded from the DailyMed 
website,1 and the entire “Drug Interactions” and 
“Clinical Pharmacology” sections were selected as 
text sources from “newer” PIs. For “older” PIs, 
which often lacked these two sections, investiga-
tors chose a section containing an apparent interac-
tion statement and one randomly-selected section. 

DDIs are typically classified as occurring by 
either pharmacodynamic or pharmacokinetic 
mechanisms. A pharmacodynamic DDI involves 
the additive or synergistic amplification of a drug’s 
effect. In a pharmacokinetic (PK) DDI, one drug, 
called a precipitant, affects (inhibits or induces) 
the absorption, distribution, metabolism, or excre-
tion of another drug, called the object. To simplify 
our task, we decided to focus specifically on PK 
DDIs. Prior to annotating the PI statements, a 
schema was created for the entities that the investi-
gators considered important components of a PK 
DDI.  The schema modeled drugs as having two 
characteristics, type and role. The type of drug 
could be active ingredient (e.g., simvastatin), 
drug product (e.g., Zocor), or metabolite 
(e.g., beta-OH-simvastatin). Drugs annotated as 
metabolite also referred to the active ingre-
dient parent compound. The role of a drug could 
be either an object or a precipitant. Two oth-
er properties were provided to model each PK 
DDI: 1) whether the statement from which the DDI 
was identified suggested an observed effect or a 
                                                           
1 http://dailymed.nlm.nih.gov/   

lack of an observed effect between two coadminis-
tered drugs (i.e., positive vs negative modali-
ty statements), and 2) whether the statement 
included quantitative or qualitative data in describ-
ing an interaction or non-interaction between a 
drug pair (i.e., quantitative vs qualitative 
statements). Finally, the segment of text in which 
the interaction claim was made was annotated as 
an interaction phrase. With the corpus and 
schema in place, drugs and PK DDIs present in the 
PI statements were then annotated by two inde-
pendent reviewers using Knowtator, an annotation 
tool integrated with the Protégé ontology editor 
(Ogren 2006).   

One annotator was a pharmacist and DDI 
expert, and the other a librarian specializing in 
drug information retrieval. To help the annotators, 
co-investigator RB ran the NCBO Annotator (Jon-
quet, Shah & Musen 2009) over the corpus using 
the RxNorm drug terminology (Nelson et al. 2011) 
to pre-annotate as many active ingredients and 
drug products as possible. The annotators reviewed 
these “pre-annotations” while identifying entities 
that missed during the pre-annotation process. Co-
investigator HH used Knowtator to calculate inter-
annotator agreement statistics from the annotators’ 
initial annotation sets. RB then worked with the 
two annotators to achieve consensus on the final 
corpus of annotated DDI statements. 

2.2 Setting up the DDI statement extraction 
experiment 

Once the set of DDI annotations was compiled, we 
devised two machine learning tasks.  The first task 
was to determine whether two drugs mentioned in 
a statement taken from a PI are noted as either in-
teracting or not interacting with each other by 
pharmacokinetic mechanisms (i.e., does the state-
ment report a PK DDI with the drug pair of either 
a positive or negative modality?). The second task 
was to determine the modality of a given PK DDI. 
The first task did not include determining the roles 
of the drugs if an interaction is found, i.e., which 
member of the pair of drug mentions is the precipi-
tant and which one is the object. To enable the ex-
ploration of the performance of multiple machine 
learning methods, we divided two-thirds of the 
annotated PI statements into a development set and 
one-third into a blind test set. PI statements anno-
tated as reporting DDIs were stratified within the 
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two sets using a random selection method that en-
sured a representative balance of sentence distance 
between drug mentions, DDI modality, DDI type, 
and drug PI age designation (see above).  State-
ments not containing an interaction were stratified 
by sentence distance between drug mentions, and 
PI age designation. Stratification was done on the 
level of statements. Thus, statements taken from 
the same package insert may have been distributed 
over the development and test set. 

We observed that 99% of corpus statements 
annotated as a PK DDI mentioned an interacting 
drug pair within a three sentence region. Thus, we 
created a baseline dataset by iterating through PI 
statements in the development set and identifying 
all drug pair mentions that occurred within a three-
sentence span. Throughout the remainder of this 
paper we refer to the statements identified by this 
process as instances.  

Instances containing drug pairs that were 
manually annotated as participating in an interac-
tion (either with positive or negative modality) 
were labeled as positive instances for the extraction 
task; all other pairs were labeled as negative in-
stances. Prior to generating features for machine 
learning, each instance was pre-processed. Num-
bers (e.g. “1”, “34”, “5.2”, etc.) were replaced by 
the string “num” to make them more meaningful to 
a learning algorithm across instances. This allowed 
the algorithm to associate numerical references 
with each other using a general pattern, instead of 
learning phrases with specific numbers (e.g. the 
phrase “num mg” may be significant, whereas “10 
mg” may be less significant).  Similarly, to abstract 
away from specific names, the names of drug 
products, active ingredients, and metabolites in 
each statement were replaced by the string 
“drugname”. This forces the learning algorithm to 
generalize over the participants of interactions, 
preventing it from identifying interactions based on 
the identity of the participants. 

In the baseline dataset, each instance’s pre-
processed sentence text was translated to bigrams 
using TagHelper, a text analysis program written 
on top of the Weka machine learning software 
(Hall et al. 2009; Rosé et al. 2008).  Bigrams are a 
comprehensive set of consecutive word pairs that 
appear in a sentence.  Words in bigrams were 
stemmed by TagHelper to facilitate learning more 
general concepts conveyed by phrases. For exam-
ple, the commonly occurring phrases “increases 

auc” and “increased auc” are stemmed to “increase 
auc” and then merged to the bigram. The baseline 
set of instances was loaded into Weka and three 
models were built using three different machine 
learning algorithms.  The three algorithms were a 
rule learner (“JRip”), a decision tree (“J48”), and 
an SVM algorithm (“SMO”).  Algorithm parame-
ters were left at Weka defaults and 10-fold cross-
validation was used to develop each model. 

Exploration of Weka predictions from the 
baseline dataset showed that a major source of con-
fusion for the machine learning algorithms was an 
inability to distinguish between pairs of drugs that 
do and do not interact within the same sentence. A 
frequent source of this kind of occurrence in the 
package insert text was coordinate structures such 
as “Drug A interacts with Drugs B and C”, where 
“B and C” is a coordinate structure.  For such sen-
tences, the baseline dataset contains the interacting 
pairs (A,B) and (A,C), along with the non-
interacting pair (B,C).  However, because all three 
pairs are represented by the same set of bigrams, it 
is obvious that information from bigrams alone is 
insufficient to distinguish which pairs interact and 
which simply co-occur within the sentence.  

Another problem was that of multiple men-
tions of the same drug within an instance’s sen-
tence span, as, for example, in the sentence “Co-
administration of A and B leads to increased AUC 
levels for B.” Because the annotators had identified 
only one drug mention per annotated interaction, 
the algorithms incorrectly considered other men-
tions of the same drug as part of a non-interacting 
pair. Two solutions were implemented to help alle-
viate these problems.  First, the dataset was con-
densed to a set of instances with unique drug pairs 
and sentence spans.  If any of the baseline instanc-
es contributing to the condensed instance contained 
interactions, the condensed instance was said to 
contain an interaction. In this way, multiple drug 
mentions within a sentence span containing an in-
teraction would translate to a single instance repre-
senting an interaction between the two drugs. 

Second, two natural language dependency 
parsers were used to extract extra features from the 
sentence text for each instance: the Stanford NLP 
Parser (Klein & Manning 2003) and ClearParser 
(Choi 2011).  Following approaches to relation 
extraction proposed in other domains e.g., (Bunes-
cu & Mooney 2005), the dependency structure 
produced by each parser was searched for the 
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shortest path between the pair of drug mentions of 
the instance.  The words on this path were 
stemmed using the Stanford NLP Tools stemmer 
(Stanford NLP 2011), and added to the dataset as 
the instance’s “syntactic path”. 

Once a statement is classified as describing a 
PK DDI between two drugs, it is important to 
know if there is an observed effect or a lack of ef-
fect between two coadministered drugs (i.e., posi-
tive vs negative modality statements). To present 
the learning algorithms with the most relevant 
training data, modality prediction was treated as a 
separate task from interaction prediction.  Devel-
opment and test sets were created in the same 
manner as for interaction prediction, however in-
stances that did not represent interactions were ex-
cluded. Only bigram features were used for 
modality prediction.  Model training and testing 
proceeded in the same manner as for interaction 
prediction. 

3 Results 

A total of 208 multi-sentence sections were ex-
tracted from 64 PIs. Prior to consensus, inter-
annotator agreement between the two annotators 
on PK DDI, active ingredient, drug product, me-
tabolite mentions and was found to be 60%, 
96.3%, 99.5%, and 60.8% respectively. The major-
ity of disagreements about DDIs were due to a ten-
dency of one annotator to incorrectly annotate 
some pharmacodynamic DDIs as PK DDIs. Also, 
one annotator incorrectly assumed that all metabo-
lites had been pre-annotated and so did not actively 
attempt to annotate metabolite entities. These and 
other minor issues were corrected and full consen-
sus was reached by both annotators. The final drug 
package insert PK DDI corpus contains 592 PK 
DDIs, 3,351 active ingredient mentions, 234 drug 
product mentions, and 201 metabolite mentions.2 

Tables 1 and 2 provide more details on the mo-
dality and drug types present in the 592 consensus 
PK DDI statements. Table 1 shows that 388 state-

                                                           
2 http://purl.org/NET/nlprepository/PI-PK-DDI-Corpus  

ments indicated that a PK DDI would occur be-
tween a drug pair, while 204 statements indicated 
that an interaction would not occur. The table also 
shows that 204 statements reported quantitative 
measures while 388 did not. Table 2 shows that the 
majority (86%) of PK DDI statements reported 
interactions by stating the two active ingredients 
involved in the DDI, with a much smaller propor-
tion using a drug product in the description. Also, 
35 DDI statements reported an effect on a drug 
metabolite. 

A total of 11,048 PI instances were generated 
for the baseline dataset. This was reduced to 5,015 
instances after condensing the instances down to 
unique drug pairs and sentence spans. In the final 
dataset, about a third of instances were drug pairs 
within the same sentence (1,583). The rest were 
split between drug pairs in adjacent sentences 
(1,717), and drug pairs with two sentences of sepa-
ration (1,715).  The dataset included 542 interac-
tions of which 493 included the drug pair within a 
single sentence.  355 interactions were positive 
modality and 187 negative; 360 were qualitative, 
182 quantitative. 1,636 instances were categorized 
as “new” based on drug release data while 3,379 
were classified as “old”. 

Results for interaction and modality prediction 
are shown in Table 3. For both the interaction and 
modality prediction tasks, the SVM algorithm 
(SMO) outperformed the rule learner (Jrip) and 
decision tree (J48). On the test set which was not 
used in training, the SVM classifier identified PK 
DDIs with an F-measure of 0.859 vs 0.762 for the 
rule learner and 0.802 for the decision tree algo-
rithm. All algorithms performed quite well on the 
modality classification task but the SVM algorithm 
performed best with an F-measure of 0.949 vs 
0.929 (rule learner) and 0.917 (decision tree). 

4 Discussion 

The automatic identification of DDIs in unstruc-
tured text is a topic that is gaining much interest. 
This work makes an important contribution to the 
field by being the first to demonstrate that machine 
learning can be applied quite effectively to the task 
of extracting PK DDIs from FDA-approved PIs.  

Interaction Type   
Modality Qualitative Quantitative Total 
Negative 202 2 204 
Positive 186 202 388 
Total 388 204 592 

Table 1. PK DDI statement modality shown by in-
teraction type. 
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Object Type   
Precipitant Type Active ingredient Drug product Metabolite Total 
Active ingredient 506 14 34 554 
Drug product 37 - 1 38 
Total 543 14 35 592 

Table 2. A summary of consensus annotated PK DDIs by precipitant and object type. 

As our work focuses on extracting PK DDIs, it is 
most similar to that of Karnik et al. (Karnik et al. 
2011) who explored the performance of an “all 
paths” graph kernel (Airola et al. 2008) on a corpo-
ra of PK DDIs derived from 219 MEDLINE ab-
stracts. The best performing algorithm in their 
experiments had an F-measure of 0.658 which is 
considerably less than the F-measure of 0.859 that 
our SVM achieved. However, the two results are 
not directly comparable because of unknown dif-
ferences between the corpora. For example, it may 
be that PIs use more standard language patterns to 
report PK DDIs than what is found in MEDLINE 
abstracts. In future work we will explore how well 
the SVM algorithm performs over MEDLINE ab-
stracts and contrast any differences between the 
two DDI sources that might affect NLP. 

The only other project we are aware of that fo-
cused explicitly on extracting PK DDIs from un-
structured text is that of Tari et al. (Tari et al. 
2010), who evaluated a rule-based algorithm for 
extracting PK DDIs from papers and abstracts in 
the scientific literature. In this study the authors 
distinguished between explicit DDIs (statements 
indicating a direct observation of a PK effect from 
a give drug combination) and implicit DDIs (DDIs 
that can be inferred based on claims about drug 
metabolic properties extracted from scientific 
texts). The algorithm was ran over ~17 million 
MEDLINE abstracts and the output DDIs were 
compared with a reference standard set of 494 
DDIs identified manually from 265 DrugBank 
drug pages. The algorithm’s recall of DrugBank 
interactions was only 12%. However, a manual 
inspection of the results found that 78% of the 
DDIs extracted by the algorithm were valid based 
on the source texts, even though they were not pre-
sent in their reference standard. These results are 
important because they suggest that the set of DDIs 
present in DrugBank are incomplete and highlight 
the need for corpora derived from other text 
sources such as the one we developed from drug 
PIs for this study. 

A larger body of research exists for the task of 
extracting DDIs of any type (i.e., PK or pharmaco-
dynamic DDIs). Ten research papers were present-
ed at the recent “Challenge Task on Drug-Drug 
Interaction Extraction” held at the 2011 SemEval 
Conference (Segura-Bedmar, Martinez & Sanchez-
Cisneros 2011).  All systems in this challenge were 
tested against the “DrugDDI corpus”; a set of 579 
documents from the DrugBank database with 
3,160 manually-annotated DDIs (Segura-Bedmar, 
Martinez & Pablo-Sanchez 2010). The best per-
forming system in this challenge utilized an en-
semble learning approach (Thomas et al. 2011) and 
produced an F-measure of 0.657. The  second best 
performing method utilized composite kernels, a 
method that combines feature-based and kernel-
based methods, and was found to perform with an 
F-measure of 0.64 (Chowdhurry et al. 2011). Airo-
la et al’s “all paths” graph kernel (mentioned 
above) performed much more poorly on the Drug-
DDI corpora than on the Karnik’s PK-DDI corpus 
(F-measure 0.16 vs 0.658). The authors note that 
there were significant differences between in the 
two corpora with regards to the length and com-
plexity of the sentences reporting DDIs . 

To the best of our knowledge, only one other 
NLP study that has focused specifically on drug 
interactions reported in drug product labeling (Ru-
brichi & Quaglini 2012). The investigators com-
pared the ability of an SVM classifier and a 
conditional random fields (CRF) classifier for as-
signing 13 semantic labels to Italian language text 
present in the interaction section of  “Summary of 
Product Characteristics” documents (the Italian 
equivalent of PIs). The investigators explored the 
influence of a range of features on classifier per-
formance, including orthographical, neighboring 
word, syntactic, parts of speech, and dictionary 
features. When all features were employed, the 
SVM had slightly better performance than the CRF 
classifier (micro-averaged F-measure: 91.41 vs 
91.13, macro-averaged F-measure: 84.99 vs 
80.83).  
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Jrip J48 SMO 

Model (dataset) Prec Recall F Prec Recall F Prec Recall F 

Baseline (development) 0.588 0.656 0.62 0.584 0.573 0.578 0.639 0.677 0.658 
Stanford Parser (develop-
ment) 0.762 0.68 0.719 0.809 0.804 0.807 0.851 0.815 0.833 

ClearParser (development) 0.787 0.793 0.79 0.822 0.791 0.806 0.828 0.887 0.856 

Stanford Parser (test) 0.778 0.665 0.717 0.828 0.832 0.83 0.843 0.838 0.84 

ClearParser (test) 0.764 0.76 0.762 0.85 0.76 0.802 0.836 0.883 0.859 

Modality (test) 0.963 0.897 0.929 0.887 0.948 0.917 0.941 0.957 0.949 
Table 3. Results for interaction prediction on the baseline, development, and blind test set. Also shown are re-
sults for modality prediction for the blind test set (results over the development set are similar but not shown). 

One key difference between the Rubrichi study 
and ours is that the task of tagging unstructured 
text with semantic elements that describe a DDI is 
not the same as classifying whether or not a state-
ment containing a drug pair is reporting a DDI be-
tween the drugs. The difference is especially 
apparent when considering coordinate structures 
such as “Drug A interacts with Drugs B and C”, 
Semantic tagging would be useful for identifying 
the drug entities but is not useful (on its own) for 
identifying which of the three drug pairs interact 
with each other.  

It is interesting to note that most recent work on 
DDI extraction had not made the distinction be-
tween PK and pharmacodynamic DDIs that is 
standard in the fields of pharmacology and phar-
macy. This distinction might be relevant to DDI 
extraction because the two types of interactions are 
discovered in distinct ways that might lead to sig-
nificant differences in how they are described in 
scientific documents. For example, there is a fairly 
standard set of in vitro experiments and clinical 
trials that have been a routine part of drug devel-
opment for more than a decade (FDA. 1999). The 
same is not true for pharmacodynamic DDIs, 
which are more challenging to study because they 
involve additive and synergistic effects that are not 
necessarily related to a drug’s dose or clearance. 
Since it is reasonable that the methods used to in-
vestigate a DDI strongly influences its description, 
we think future work should examine if PK and 
pharmacodynamic DDI descriptions are different 
enough to warrant distinct DDI extraction efforts. 

An error analysis of the final dataset suggested 
some reasons for cases where the machine learning 
algorithms misclassified instances. Instances that 
were not interactions, but were classified as such, 
contained a large number of sentences with de-

scriptions of studies or biochemical processes and 
measurements.  These types of statements may 
share a number of features with actual interactions 
(e.g. numerical data, changing levels of drug, etc.) 
without containing an interaction.  There also re-
main cases where several drug names occur and 
the classifiers were unable to differentiate between 
the interacting pair and non-interacting pairs. Un-
fortunately, no such clear pattern was apparent for 
instances that descrived interactions, but were clas-
sified as containing no interaction statement. A 
number of large sentences were observed in these 
instances, suggesting sentence complexity may 
play a role, increasing the difficulty of natural lan-
guage parsing. 

Analysis of the attribute weights assigned by 
the SVM  algorithm (SMO) after training for inter-
action prediction shows some commonality regard-
less of whether the data was processed by the 
Stanford Parser or the ClearParser. For example, 
19 out of the 20 most significant features identified 
by the algorithm from the dataset when processed 
by the Stanford Parser were words on the syntactic 
path; one less than when the dataset was processed 
by the ClearParser. Common significant features 
include words such as “coadminister”, “auc”, 
“pharmacokinetic”, and “absorption”.  The algo-
rithm placed greater importance on the words “in-
crease” and “decrease” when the dataset was 
processed by the Stanford Parser, while the words 
“reduce” and “enhance” received greater attribute 
weights when the data was processed by the 
ClearParser. A similar analysis of the SVM algo-
rithm developed for PK DDI modality prediction 
shows that bigrams with the words “no” or “not” 
are clearly the features of most importance to the 
model. 

211



We also note that the algorithm’s performance 
on the test set of PI statements is very similar to 
the algorithm’s performance over the development 
set (see Table 3). We think that this finding is 
largely due to the careful stratification approach 
we used when creating the development and test 
sets. It might also be possible that the features in 
the unstructured PI text do not vary greatly be-
tween PIs regardless of their age. However, Table 
2 shows that our PK DDI corpora had considerable 
variation in terms of quantitative vs qualitative and 
positive vs negative DDI statements. Thus, we an-
ticipate that the SVM algorithm’s performance will 
be maintained when ran against a much larger PI 
corpus and future work will test how well the algo-
rithm generalizes to other sets of PIs.  

5 Conclusion 

We created a new, publically available, corpus of 
FDA-approved drug PI statements that have been 
manually annotated for PK DDIs by a pharmacist 
and a drug information expert. Also, we evaluated 
three different machine learning algorithms for 
their ability to 1) identify PK DDIs in drug PIs and 
2) classify PK DDI statements by their modality 
(i.e., whether they report a DDI or no interaction 
between drug pairs). Experiments found that an 
SVM algorithm performed best on both tasks with 
an F-measure of 0.859 for PK DDI identification 
and 0.949 for modality assignment. We found that 
the use of syntactic information is very helpful for 
addressing the problem of sentences containing 
both interacting and non-interacting pairs of drugs. 
The strong performance of our algorithm for PK 
DDIs suggests that approaching pharmacokinetic 
and pharmacodynamic interactions as different 
NLP tasks is a potentially promising approach for 
advancing automated DDI extraction. Given the 
marked difference in performance between our 
extraction methods and previous work, we are 
planning further experiments to establish whether 
this difference reflects the comparative simplicity 
of the extraction task represented by our corpus, 
some specific strength of the applied extraction 
methods, or some other factor. 
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Abstract 

Publications that report genotype-drug inte-

raction findings, as well as manually curated 

databases such as DrugBank and PharmGKB 

are essential to advancing pharmacogenomics, 

a relatively new area merging pharmacology 

and genomic research. Natural language 

processing (NLP) methods can be very useful 

for automatically extracting knowledge such 

as gene-drug interactions, offering researchers 

immediate access to published findings, and 

allowing curators a shortcut for their work.   

We present a corpus of gene-drug interac-

tions for evaluating and training systems to 

extract those interactions.  The corpus in-

cludes 551 sentences that have a mention of a 

drug and a gene from about 600 journals 

found to be relevant to pharmacogenomics 

through an analysis of gene-drug relationships 

in the PharmGKB knowledgebase.  

We evaluated basic approaches to auto-

matic extraction, including gene and drug co-

occurrence, co-occurrence plus interaction 

terms, and a linguistic pattern-based method.  

The linguistic pattern method had the highest 

precision (96.61%) but lowest recall (7.30%), 

for an f-score of 13.57%. Basic co-occurrence 

yields 68.99% precision, with the addition of 

an interaction term precision increases slightly 

(69.60%), though not as much as could be ex-

pected. Co-occurrence is a reasonable base-

line method, with pattern-based being a prom-

ising approach if enough patterns can be gen-

erated to address recall. The corpus is availa-

ble at http://diego.asu.edu/index.php/projects 

1 Introduction 

Pharmacogenomics is a relatively new area of 

biomedical research that merges pharmacology and 

molecular genomics, among other disciplines, and 

focuses on studying the effects of genetic variabili-

ty on drug toxicity and efficacy, on the discovery 

of novel genomic targets for drug development, 

and on the identification and functional characteri-

zation of polymorphisms relevant to drug action.  

Thus, publications that report genotype-drug find-

ings and manually curated databases that collect 

such findings, like PharmGKB and DrugBank 

(Hewett et al., 2002; Wishart, 2006) are of para-

mount importance to the field.  However, manual 

curation is expensive and time consuming, and 

cannot keep up with the ever increasing number of 

publications.  Natural language processing (NLP) 

methods can be very useful for automatically ex-

tracting such gene-drug interactions, offering re-

searchers immediate access to published findings, 

and allowing curators a shortcut for their work. 

 Consider for example a sentence contain-

ing an interaction NLP can help extract:  ―Only the 

epsilon4 allele of APOE was found to make a sig-

nificant (P = 0.002) but small contribution to war-

farin dose requirement.‖ (PMID: 16847429).  We 

can easily see that in the sentence, an APOE allele 

interacts with the drug warfarin in its dose re-

quirement.   Furthermore, at a higher level of ab-

straction, the sentence can help researchers infer 

that APOE affects the metabolic processes targeted 

by the drug warfarin. 

 NLP researchers attacking an interaction 

extraction project such as this one, will usually 

start by identifying the entities involved in the ex-

tractions and the terms that indicate such interac-

tions.  Assuming named entity recognition (NER) 

systems exist for the entities in question (or a dic-

tionary is available for direct match), the main 

concern becomes extracting true interactions.  A 

gold standard corpus would then need to be identi-

fied or created in order to evaluate and develop 

interaction extraction approaches, starting with the 
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simplest ones.  We aim to support advancement in 

the area of gene-drug interaction extraction 

through the construction of a corpus for that task 

that offers advantages not available in another sim-

ilar corpus.  Also for that support we report on a 

study of the capabilities of different methods for 

that form of extraction. 

To achieve our aim, we describe a new 

corpus of gene-drug interactions, and compare the 

performance of two basic approaches plus the re-

implementation of a more advanced pattern-based 

approach measured against this corpus.  We do not 

seek in this publication to advance the extraction 

methods themselves, but allow a side-to-side com-

parison of approaches on a single corpus. 

 The sentences in the corpus (a total of 551) 

were randomly selected from sentences that in-

clude both a gene and a drug mention from the ab-

stracts published on a selection of journals that 

have articles relevant to pharmacogenomics. In 

general, annotations include interactions evident 

from the sentence, if any, also noting when men-

tioned genes or drugs are not involved in interac-

tions.  All sentences were annotated by the main 

author, with a second and third annotator verifying 

26% of the corpus.  The corpus is publicly availa-

ble online along with other supplementary mate-

rials including the annotation guide
1
.  

 The extraction methods evaluated include 

co-occurrence of a gene and a drug, co-occurrence 

of a gene and a drug plus a recognized interaction 

term, and one that uses specific linguistic patterns 

for classification based on (Coulet, Shah, Garten, 

Musen, & Altman, 2010).  The linguistic pattern 

method had the highest precision (96.61%) but 

lowest recall (7.30%), for an f-score of 13.57%. 

Basic co-occurrence yields 68.99% precision, with 

the addition of an interaction term increasing pre-

cision slightly (69.60%), though not as much as 

could be expected.  Analysis of our results show 

that performance could be immediately improved 

by improving the fundamental entity-recognition 

of drugs and genes.  

2 Related Work 

A good portion of the work presented here follows 

prior approaches to high quality protein-protein 

interaction (PPI) corpora development and extrac-

                                                           
1 http://diego.asu.edu/index.php/projects 

tion.  Given that our corpus contains genes and 

proteins as entities, procedures used to create PPI 

corpora were a useful resource.  A variety of anno-

tation decisions made were informed by the work 

of Pyysalo et. al. on their BioInfer corpus (Pyysalo 

et al., 2007).  A detailed annotation guide used in 

their work was referenced in annotation rules in 

this work.  Other corpora, such as the ones used in 

Biocreative challenges, have also made valuable 

contributions to PPI extraction progress (Haken-

berg et al., 2010; Krallinger, Leitner, Rodriguez-

Penagos, & Valencia, 2008). 

 Unlike for PPI interaction extraction, there 

are very limited currently available corpora that 

can be used for automatic gene-drug interaction 

extraction system development and evaluation.  

One corpus that contains those interactions is a 300 

sentence corpus by Ahlers et al. (Ahlers, Fiszman, 

Demner-Fushman, Lang, & Rindflesch, 2007).  

The Ahlers et. al. corpus include the biological 

interaction categories of inhibit, and stimulate in 

addition to interaction annotations for genes and 

drugs.  Our corpus does not contain those addition-

al categories directly, but the interaction words that 

are annotated in our corpus can indicate such cate-

gories as well as others.  All in all, our focus was 

on creating a corpus that could be used for evalua-

tion of basic as well as complex approaches, and 

allow machine-learning based systems to be 

trained on it. 

Current systems for extracting gene-drug 

interactions are based on entity co-occurrence and 

some include matching of relationship terms.  

Those systems commonly use statistical formulas 

for ranking the relevance of results.  Polysearch, 

Pharmspresso, and others are examples of such 

systems (Cheng et al., 2008; Garten & Altman, 

2009).  Some systems integrate linguistic patterns 

into their methods, such as those by Coulet et. al. 

and Tari et. al. (Luis Tari, Jörg Hakenberg, Gracie-

la Gonzalez, & Baral, 2009).  The system by Cou-

let et al. explores the value of dependency graph 

information for relationship extraction.  Another 

result of Coulet et. al.'s work was the Phare ontol-

ogy that includes concepts relevant to those rela-

tionships, which we utilize in this work. The value 

of such collections of interaction-indicating terms 

has been highlighted before in the biomedical rela-

tionship extraction context (Bui, Nualláin, Bouch-

er, & Sloot, 2010; Chowdhary, Zhang, & Liu, 

2009). 
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3 Materials and Methods  

3.1  Corpus design. 

The purpose for the creation of the new corpus was 

to create a resource that NLP developers can use to 

train and test gene-drug interaction extraction sys-

tems.  The corpus was based on articles from jour-

nals that are known to contain pharmacogenomic 

relationships.  Genes and drugs were automatically 

tagged and then 551 sentences that contain both a 

gene and drug were randomly selected for annota-

tion.  The corpus and sentence selection process is 

described in the following subsections.  

 

Journal Selection.  A list of journals relevant to 

pharmacogenomics was generated by extracting 

the journal names from articles that have been cu-

rated in PharmGKB as containing evidence of 

gene-drug relationships. This list was generated 

from their downloadable ―relationships‖ file, 

which contains the abstract IDs of articles with 

manually curated gene-drug relationships.  591 

journal names were obtained this way.  The goal of 

using only those journals is to make the corpus 

representative of typical sentences containing a 

gene and drug from literature known to report 

pharmacogenomic findings. 
 

Sentence processing. All abstracts in PubMed from 

the relevant journal names were downloaded. A 

sentence splitter program from OpenNLP was used 

to extract sentences from the abstracts (―The 

OpenNLP Homepage,‖ n.d.).  A total of 

22,601,402 sentences were processed.  

 

Identification of entites.  Previous work in pharma-

cogenomics relationship extraction has shown ef-

fective results by classifying relationships after 

identifying sentences with entities of interest 

through dictionary matching techniques (Garten & 

Altman, 2009; Rebholz-Schuhmann et al., 2007).  

Our work takes a similar approach, but utilizes a 

machine-learning based method, BANNER, for 

gene recognition, as it was shown to have better 

performance than a dictionary-based method 

(Leaman & Gonzalez, 2008). Drugs were recog-

nized through the use of dictionary matching.  The 

dictionaries used for drugs were based on drug 

names available at DrugBank.  Exact full token 

matching of drug terms was used to identify them 

in sentences. Although incorrectly tagged (false 

entity) genes and drugs were corrected by annota-

tors, they did not add entities missed by NER rec-

ognition. A second round of annotation will correct 

this when we shift focus to NER. 

 Terms indicative of an interaction for add-

ing to basic co-occurrence relationship extraction 

were extracted from the Phare ontology.  The 

terms acquired were from rdfs labeled text in the 

―object properties‖ in the ontology.  Object proper-

ties are elements of the ontology that describe rela-

tionships between classes such as gene and drugs, 

yielding 168 unique terms after stemming. 

 

Sentence selection.  The initial annotation effort 

that is the focus of this paper was aimed at com-

pleting around 500 sentences as a proof of concept, 

with a total of 1,500 to be completed in the second 

phase of this project.  Random selection of sen-

tences that include a gene and a drug, in contrast to 

balanced positive and negative selection, was used 

to make the corpus reflect typical sentences poten-

tially containing an interaction that can be easily 

extracted from the source articles after simple 

(drug and gene) concept tagging, which is the most 

basic approach to interaction extraction.  The ran-

domized ratio of positive and negative interactions 

in the corpus is useful for training classification 

systems that operate on similarly pre-processed 

sentences to account for that naturally occurring 

ratio. 

 

3.2  Annotation. 

An annotation tool named STAV was used to 

create annotations (―stav,‖ n.d.).  Customization of 

the tool was performed to match the types of anno-

tations needed for the corpus.  The identified enti-

ties were formatted for use with the tool.  Annota-

tions created with the tool were stored in the Bi-

oNLP shared task file format. That format is com-

patible with a variety of existing systems for rela-

tionship extraction.  

 

Annotation guidelines. Based on a review of litera-

ture on related annotation guidelines for relation-

ships such as PPIs, an initial annotation guideline 

was created based on a small sample of sentences.  

The guide was iteratively refined through annota-

tion of additional sentences, until considered suffi-

ciently stable for release to additional annotators.   

The guideline was refined to achieve a bal-

ance of complexity and clarity to assist annotators.  
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Only a few (5-10) example sentences per annotator 

have been discussed in person.  The explicit writ-

ten instructions in the guide were relied on more 

than in-person example sentence discussions to 

train annotators to handle the complicated content 

of the corpus and avoid over-influencing the anno-

tators, as noted that is possible with the overuse of 

those examples (Hovy & Lavid, 2008). 

 The first annotator, a student with a Bache-

lor of Science (BS) in Biology, was the main anno-

tator and author of the guidelines. The second and 

third annotators are PhD students in Biomedical 

Informatics, the second with a BS in Biology and 

10 years nursing experience, and the other with a 

Bachelor of Technology in Bioinformatics.  Week-

ly annotation meetings were done on individual 

bases.  A short checklist of things to look for in 

annotations was distributed in addition to the 

guidelines. 

 

Annotations.  The following describes major anno-

tation categories and subcategories in the corpus:  

 

 Interaction  Genes and drugs are annotated 

simply as ―having an interaction‖ broadly un-

derstood as having an ―action, effect, or influ-

ence‖ on each other.  All gene-drug interac-

tions annotated must have at least one interac-

tion term that helps explain the interaction.  

Additional properties that were annotated and 

a brief explanation of their purpose include: 

o Direct/Indirect:  Describes the complexi-

ty in the interaction statements. An ―indi-

rect‖ interaction is one where the presence 

of an intermediary entity is needed for se-

mantic understanding of the interaction. 

o Explicit/Inferred:  Records if an infe-

rence had to be made on whether the inte-

raction was present because an interaction 

was not explicitly stated. 

 Non-interaction 
o Shared Entity:  An entity connected to 

both a gene and a drug that don't interact 

with each other.  In contrast to an interme-

diary entity. 

 Interaction Term  Terms that are descriptive 

of the interaction (as defined earlier).  These 

terms are helpful for capturing more specifical-

ly the type of interaction present.  

 Intermediary Entity  These are non-gene, 

non-drug entities that are closely connected to 

the interaction.  They are entities that are 

needed for understanding of the full semantic 

meaning of gene-drug interactions.  These enti-

ties are not annotated themselves but they are 

used to determine the indirectness property. 

 

Examples of these categories can be seen in the 

sentence: ―Using standard steady-state kinetic 

analysis, it was demonstrated that paclitaxel was a 

possible uncompetitive inhibitor to NAT activity in 

cytosols based on the decrease in apparent values 

of K(m) and V(max).‖ (PMID: 11955677).  This 

sentence includes an interaction between the drug 

paclitaxel and gene NAT.  An interaction term that 

helps establish that the interaction is present is ―in-

hibitor‖.  ―Cytosols‖ is where the NAT inhibition 

activity can occur and represents an intermediary 

entity that is needed in the semantic meaning of the 

interaction. 

 The broad definition of interaction was 

used to make progress toward annotations includ-

ing, and in turn being representative of, the most 

general form of gene-drug interaction that is de-

scribed in the source abstracts.  We chose to first 

concentrate on getting good inter-annotator agree-

ment using the general definition before consider-

ing additionally annotating specific biological inte-

raction types.  Annotated interactions are required 

to have at least one annotated interaction term (al-

though terms do not have to be from the predefined 

list) to ensure that specific and identifiable lan-

guage is present that justifies the annotation.   

 The subcategories included were added to 

record the linguistic complexity in which the inte-

ractions and non-interactions are described.  Re-

cording that complexity can help system develop-

ers handle its presence when trying to automatical-

ly recognize interaction statements.  Additionally, 

the annotation properties of speculation, negation, 

and nesting were allowed but not separately anno-

tated in interaction annotations.  

 Each annotator reported annotation time 

estimates.  Total time spent on annotations includ-

ing meetings but not other work (e.g. guideline 

development) was approximately 80 hours for the 

primary annotator and 20 hours combined for other 

annotators.  Hard sentences to annotate required 

research into source articles and entities described.   
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Evaluation of the Corpus. Around 26% of the cor-

pus was annotated by a second and third annotator.  

A program was created for IAA scoring, account-

ing for nested entities and equivalent entities in-

cluding abbreviations.  Manual review was used to 

verify the program’s scores.   Example sentences 

from the corpus discussed with annotators were not 

used for IAA scoring. 

 

3.3  Relationship Extraction methods. 

Three basic methods for extracting interactions 

were implemented for evaluation. The basic me-

thod, co-occurrence, is inherent to the corpus as all 

sentences are selected based on both entities being 

present in them. Thus, in co-occurrence, any men-

tion of a gene and a drug together in a sentence 

represents an interaction between those entities. 

Co-occurrence plus interaction terms, the 

second method tried, identifies that interactions are 

present only when sentences contain an interaction 

word from a predefined list.  The list of interaction 

terms obtained from the Phare ontology was fil-

tered by removing common stop words. Also, a 

filter was applied to only use terms greater than 

two letters in size.  Those filters were used to avoid 

unneeded matches from common words. 

 The linguistic pattern based extraction me-

thod developed for this evaluation was based on 

the work by Coulet et. al.  Specific linguistic pat-

terns described in that work were used to classify 

the presence of interactions between genes and 

drugs.  A program named Graph Spider was used 

to match the specified patterns within sentences 

(Shepherd & Clegg, 2008).  The Stanford Parser 

was used to generate dependency graphs for use 

with the pattern recognition in Graph Spider.   

 The dependency rules designed by Coulet. 

et. al. were entered into Graph Spider using the 

metapattern language (MPL) designed by the 

Graph Spider authors.  MPL is a pattern formalism 

that can be used to match dependency subgraph 

patterns in dependency parsed text.  After depen-

dency graphs were generated for processing in 

Graph Spider, text representing genes and drugs in 

the graphs were converted to general tags for those 

entity types.  Those conversions were made to al-

low the patterns in MPL to be generalizable.  

 Java programs were created to reformat 

and score the subgraph pattern match results made 

by Graph Spider.  Scoring used text character posi-

tions (spans) of entities included in annotations.  

True positives were recorded when pairs of entity 

spans in Graph Spider subgraph results matched 

annotated pairs of entity spans labeled as having 

interactions.  False positives and false negatives 

were similarly assessed using entity spans.  A ma-

nual evaluation of pattern matched output com-

pared to annotations was performed to ensure ac-

curacy. 

 A condition applied in the pattern based 

system was that the patterns can match up to four 

modifier words for each individual gene and drug 

in interaction pattern matches.  Those words are 

additional words that modify the meaning of the 

gene or drug in the interaction.  The limit was in-

cluded for practical reasons, as hand coding of pat-

terns in MPL is complex.  The rules described by 

Coulet et. al. did not specify any limit on modifier 

words but the difference in results by including a 

realistic limit is predicted to be negligible. 

4 Results  

A total of 551 sentences are annotated, with 781 

interactions present in them. There are 351 in-

stances of non-interactive entities in the same set.   

The average length of sentences is 28.1 words.  

Table 1 describes further properties of the corpus.   

 

Annotation Analysis. The inter-annotator agree-

ment scores are reported as accuracy and Cohen’s 

kappa.  Kappa was chosen due to its widespread 

use and therefore comparability with other work in 

corpus creation.  Accuracy is found by the number 

of instances agreed on divided by the total in-

stances annotated.  A total of 144 sentences were 

used for the scoring.  Annotators 1 and 2, 1 and 3, 

and 2 and 3 were compared using 92, 52, and 61 

sentences respectively.  IAA results with the main 

categories of interaction vs. non-interaction are 

shown in Table 2. 
 

 

Sentences Tokens (with 

punctuation) 

Words (tokens with 

no punctuation) 

551 18,585 15,464 

Table 1.  Statistics describing corpus properties. 

 1 & 2 1 & 3 2 & 3 

Accuracy 81.1% 74.2% 73.0% 

Kappa 45.7% 30.5% 11.4% 

Table 2.  Inter-annotator agreement results. 
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 IAA scores were found for all annotated 

subcategories.  Those subcategories are DirectEx-

plicit, IndirectExplicit, IndirectInferred for interac-

tions and SharedEntity for non-interactions.  Their 

ranges of scores with all annotator pair groups us-

ing accuracy scores are 72-79%, 40-69%, 62-82%, 

50-60% and kappa scores are 31-58%, 1-27%, -4-

31%, 0-4% respectively.  Those scores are created 

by selecting main category inter-annotator matches 

(e.g. interaction) and calculating the IAA between 

the annotated subcategories. 

In some sentences, annotators missed 

doing annotations for gene-drug instances that the 

other annotator added. IAA scores did not include 

annotations made by only one annotator.  Confir-

mation with annotators was made that annotations 

not made were not intended to represent non-

interactions.  The percentage of missed inter-

annotator instances was approximately 20%.  Fu-

ture work will be to improve the inter-annotator 

annotation process so that those instances are not 

missed for IAA scoring.  While some annotations 

were missed in IAA scoring, annotations by the 

primary annotator that are included in the corpus 

contain all instances (none missed) from the source 

text to our knowledge.
 

I

D 

Contents Agree

ment 

Sentence text 

A One direct expli-

cit interaction 

Y This suggests that galantamine (GAL), a cholinesterase inhibitor, could be 

effective when seeking to prolong abstinence in recently detoxified alcohol-

ics. (PMID: 16328375) 

B One indirect ex-

plicit and four 

shared entity 

non-interactions  

Y They are widely distributed and mediate all of the known biologic effects of 

angiotensin II (AngII) through a variety of signal transduction systems, in-

cluding activation of phospholipases C and A2, inhibition of adenylate cyc-

lase, opening of calcium channels, and activation of tyrosine kinases. (PM-

ID: 9892138) 

C One indirect ex-

plicit interaction 

N The results of studies of perfused rat hearts with completely inhibited crea-

tine kinase show significantly decreased work capacity and respectively, 

energy fluxes, in these hearts in spite of significant activation of adenylate 

kinase system (Dzeja et al. this volume). (PMID: 9746326) 

Table 3.  Example sentences from the corpus.

 

Table 4.  Extraction system performances.    

Note that sentences were selected based on co-

occurrence of a gene and a drug, thus recall is 

100% for that method, as it essentially defines 

the corpus. 

 

 

The scoring methods used were instance 

level scoring instead of sentence level scoring.  In 

the instance level scoring each gene-drug instance 

counted in performance scores.   

 A caveat about the pattern-based system 

scoring should be noted.  That caveat was that the 

Graph Spider software used was unable to process 

approximately 10% (around 50) of the sentences in 

the corpus due to errors.  The pattern-based system 

is likely to have scored slightly higher if it could 

have processed those sentences. 

5 Discussion 

5.1  Analyses of interaction extraction methods 

performance. 

Interaction  

Extractor Type 

Precision 

(TP/TP+FP) 

Recall 

(TP/TP+

FN) 

F1-Score 

(2*((P*R)/(

P+R))) 

Co-occurrence 68.99%  

(781/1132) 

100.00% 

(781/781) 

 

81.65% 

Co-occurrence 

plus int. terms 

69.60% 

(664/954) 

85.02% 

(664/781) 

76.54% 

Pattern-based 96.61% 

(57/59)  

7.30% 

(57/781) 

13.57% 
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The f-score of co-occurrence with and without in-

teraction terms showed better performance than the 

pattern-based interaction extractions, which was 

expected. Pattern based methods, particularly those 

where the patterns were manually created, are typi-

cally very high in precision and very low in recall, 

as they are highly dependant on the specific pat-

terns included for recognition. Although recall was 

low, users who want very high confidence interac-

tion predictions or interactions of a very specific 

type can benefit from the pattern-based system’s 

demonstrated high precision. Co-occurrence can 

suit users who want to focus on recall. 

Coulet et al. reported their system scored a 

precision of 70% for exact match and 87.7% for 

exact or incomplete match but true classification.  

Our results are similar to their 87.7% results in 

both percentage and scoring method.  The method 

that allows incompleteness accepts matches that 

accurately identify core pharmacogenomic rela-

tionships but don’t need to correctly match modifi-

er words.  Our scoring is similar in not needing to 

match modifier words.  The similarity in results 

indicates that we correctly implemented the system 

that Coulet et al. designed.  That indication does 

have the limitation that the 10% of sentences una-

ble to be processed may have affected the results. 

An example of a more complex interaction 

that was matched by co-occurrence with an inte-

raction term but not the pattern-based method was 

―Moreover, S-nitrosylation of thioredoxin was also 

significantly augmented after atorvastatin treat-

ment.‖ (PMID: 15289372).  In that sentence, an 

interaction occurred where thioredoxin's (gene) S-

nitrosylation was augmented by atorvastatin 

(drug).  Analysis of the dependency graphs used by 

the pattern-based system revealed some reasons 

why it was unable to identify the interaction.  

 The pattern-based system uses a rule that 

applies to that sentence: a potential pattern se-

quence match can be ―interrupted‖ by a dependen-

cy that does not fit accepted patterns.  In the non-

classified sentence, the entities ―was‖ and ―aug-

mented‖ were terms that caused the pattern match-

ing to be interrupted.  Both ―was‖ and ―aug-

mented‖ are not nouns or prepositions.  They both 

also are needed in the dependency subgraph that 

connects the gene and drug together.  Those parts 

of speech are not allowed to be chained together in 

the pattern-based system's patterns.  That deviation 

from the allowed patterns caused the system to 

miss that interaction. 

Adding patterns with more diversity in al-

lowed parts of speech in series of interaction terms 

that connect genes and drugs in interactions can 

improve recall performance.  A review of parts of 

speech (POS) in missed matches showed that some 

misses were due to no verb POS tags being present 

in interaction descriptions.  That can occur when 

verbs are in their nominalized form or other situa-

tions.  Mining the corpus for both part of speech 

and dependency graph patterns can identify pat-

terns that are able to correct those misses.  Also, 

the POS tagger included with the parser mis-

tagged a variety of words.  Using a higher perfor-

mance tagger or one trained on biomedical text 

may help with pattern matches.  

Ahlers et. al. also reported relationship ex-

traction performance from a new system with their 

gene-drug corpus.  That system achieved a preci-

sion of 73% and recall of 50% extracting an anno-

tation category including gene-drug relationships.  

The system is built upon an earlier system and an 

important part of its capabilities comes from spe-

cialized linguistic rules it uses.  The corpus in-

cluded in this work can be useful for further devel-

opment of systems that integrate such rules with 

other methods to improve extraction performances. 

Some characteristics were notable about 

the results of the methods using co-occurrence 

with and without interaction terms.  The perfor-

mances found of those methods may be specific to 

an increased amount of gene-drug interactions 

found in the journals used compared to other jour-

nals.  Also, the use of interaction terms from the 

Phare ontology was expected to increase precision 

because they were found from predicted pharma-

cogenomic relationships.  The co-occurrence with 

interaction terms method resulted in only approx-

imately equaling the precision of basic co-

occurrence.  One possible reason for that is the 

terms were originally found partly with disease 

relationships.  They therefore can be less relevant 

to gene-drug interactions.   

 

5.2  Analyses of annotations 

Table 2 includes that the general interaction anno-

tations had the kappa values 46%, 30%, 11% 

which are considered only moderate to low scores 

by common rating methods.  Some IAA scores, 

such as kappa, include a correction for chance 
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agreement probability.  An intentional design 

choice was made in the corpus to allow an unba-

lanced but natural ratio of interactions to non-

interactions.  That imbalance increased kappa’s 

correction.  Although our reasonably high IAA 

scores with accuracy helped increase the kappa 

score, they were not enough to offset the correction 

and bring kappa above the moderate score.   

 An article by Strijbos et. al. states that 

kappa can have a strict chance agreement correc-

tion in the case of few categories (Strijbos, Mar-

tens, Prins, & Jochems, 2006).  Given that general 

interaction scores were only based on the catego-

ries of present or absent, kappa may have been 

overly strict with the correction.  If that correction 

in our data is not strict, but justified, than that indi-

cates how further improving our annotation 

process can be valuable.  Further investigation will 

go into understanding what statistics may be useful 

for scoring given the corpus properties.  Explora-

tion will also continue with talking to annotator s 

about what may be causing disagreement.  That 

exploration will help reveal ways to improve IAA. 

 Subcategories showed mixed results in 

their IAA performances.  The subcategories with 

the highest IAA scores may indicate that those 

subcategories are more clearly defined than others 

in the annotation guide. 

 Reviewing some annotated sentences can 

help clarify how the IAA results occurred.  All an-

notators agreed the drug galantamine has a direct 

explicit interaction with cholinesterase in sentence 

A in Table 3.  Such an interaction description is 

simply described and an annotator has reported 

that type of interaction being the easiest to identify.   

 Agreement was found with all annotators 

for annotations in sentence B in Table 3.  It was 

readily understandable to annotators that calcium 

and other signal transduction systems do not have 

an interaction simply for all being a part of those 

types of systems. 

 An example of a sentence with annotator 

disagreement was sentence C in table 3. Although 

endogenously produced in this case, the nested 

entity creatine was considered a drug due to being 

relevant to creatine in its exogenous drug form. 

 The occurrence of multiple properties, 

such as inhibition and effects on hearts can make it 

difficult to follow the logic of the interaction be-

tween creatine and adenylate kinase (enzyme).  

The interaction annotation can be hard for annota-

tors to find due to that complexity and the subtle-

ness of the ―in spite of‖ phrase describing the ne-

gated effect between the drug and gene.  The inte-

raction is negated but that still is considered an 

interaction by the annotation rules used. 

   

5.3  Future Work 

As mentioned before, the corpus will grow from 

around 500 sentences that it has right now to 

around 1,500.  The larger the corpus expands to be, 

the more representative it will become of gene-

drug interactions.  Other future work includes work 

with more advanced interaction extraction systems. 

Along with this publication, a version of 

the corpus with high confidence in annotations will 

be released.  Given that this is an initial work, a 

relatively modest amount of annotation revisions 

may occur with a few periodic later version releas-

es of the corpus to improve its quality. 

 Unfortunately no tagger is perfect so as 

annotations proceed, drugs or genes that were 

missed by the tagger can be investigated to further 

understand why that occurred.  An example of a 

commonly missed drug was acetylcholine.  Ace-

tylcholine was picked up as a drug if it was spelled 

out, but not if it was abbreviated as ACh and it is 

commonly abbreviated.   

6 Conclusion 

The extraction results indicated that the systems 

tested can be utilized and built upon according to 

user preferences in precision, recall, or specific 

interaction terms.  The corpus presented here offers 

valuable utility to system developers working to-

ward achieving favorable balances of precision and 

recall in gene-drug interaction extractions.  The 

growth of that corpus will also increasingly benefit 

the developers working on those extractions.  That 

type of extraction is important to advancing work 

in pharmacogenomics by retrieving knowledge for 

individuals working in the field.  
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Abstract 

A preliminary work on symptom name recog-

nition from free-text clinical records (FCRs) 

of traditional Chinese medicine (TCM) is de-

picted in this paper. This problem is viewed as 

labeling each character in FCRs of TCM with 

a pre-defined tag (“B-SYC”, “I-SYC” or “O-

SYC”) to indicate the character’s role (a be-

ginning, inside or outside part of a symptom 

name). The task is handled by Conditional 

Random Fields (CRFs) based on two types of 

features. The symptom name recognition F-

Measure can reach up to 62.829% with recog-

nition rate 93.403% and recognition error rate 

52.665% under our experiment settings. The 

feasibility and effectiveness of the methods 

and reasonable features are verified, and sev-

eral interesting and helpful results are shown. 

A detailed analysis for recognizing symptom 

names from FCRs of TCM is presented 

through analyzing labeling results of CRFs. 

1 Introduction
*
 

Traditional Chinese medicine (TCM), a comple-

mentary medical theory to western medicine, pro-

vides a distinct way to view our human life (Pal, 

2002; Barnes, et al., 2004; Molassiotis, et al., 

2005). Moreover, it has shown that TCM 

knowledge, which is accumulated in clinical prac-

tice, has become one of the most important sources 

of modern biomedical research (Zhou, et al., 2010). 

                                                           
*Corresponding author 

In recent years, Data Mining and Machine 

Learning have been more than ever before applied 

to TCM clinical research, such as establishing 

TCM diagnosis expert systems for supporting deci-

sion making (Wang, et al., 2004; Huang and Chen, 

2007; Zhang, et al., 2008). However, most of the 

works are based on manually well-structured da-

tasets. 

Because of the high cost of manually structuring 

and maintaining free-text clinical records (FCRs) 

of TCM, large volume of such datasets has not 

been exploited effectively (Zhou, et al., 2010), alt-

hough they are significant for discovering new 

knowledge or capturing medical regularities. 

Therefore, developing appropriate information ex-

traction methods for handling FCRs of TCM is an 

urgent need to reduce the manual labor for re-

searchers. 

Automatically extracting meaningful infor-

mation and knowledge from FCRs of TCM is chal-

lenging in Data Mining and Machine Learning 

fields (Zhou, et al., 2010). As the basis, symptom 

name recognition or extraction from FCRs of TCM 

is in an early stage. To the best of our knowledge, 

there has little work to solve this problem (Wang, 

et al., 2010; Wang, et al., 2012). Symptom name 

recognition from FCRs of TCM was firstly at-

tempted in (Wang, et al., 2010) through normaliz-

ing the symptom names in clinical records based 

on literal similarity and remedy-based similarity 

methods but not directly recognizing original clini-

cal symptom names from FCRs of TCM. In 2012, 

Wang, et al. proposed a framework of automatic 

diagnosis of TCM for practice. Symptom name 

recognition is one part of the framework and simp-
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ly attempted through a literal similarity method 

without detailed analysis (summarized procedures 

for the previous wok are shown in figure 1). 

 

Figure 1. Simple Conclusions of the Previous Work. 

Named Entity Recognition (NER) has been 

widely studied. There have been lots of methods 

for Chinese NER (Zhang, et al., 2003; Wu, et al., 

2003; Gao, et al., 2005; Fu and Luke, 2005; Zhou, 

2006; Duan and Zhang, 2011). However, these 

methods cannot be directly applied on symptom 

name recognition from FCRs of TCM due to big 

differences of characteristics of the corpus (Wang, 

et al., 2012). There are also several related work on 

English NER, but Chinese NER has more chal-

lenges because of the distinct characteristics of 

Chinese (Wu, et al., 2003). 

In this paper, the task of symptom name recog-

nition from FCRs of TCM is studied. The symp-

tom names are recognized through finding their 

description boundaries from FCRs of TCM, and 

the method is described in section 2. Several rea-

sonable and helpful features are introduced for 

CRFs to label the characters in FCRs of TCM with 

pre-defined boundary tags to indicate their roles (a 

beginning, inside or outside part of a symptom 

name) (presented in section 3). At last, several in-

teresting and valuable experimental results are 

shown in section 4 and a conclusion is given in 

section 5. 

2 Symptom Name Recognition from FCRs 

of TCM 

The task of symptom name recognition from FCRs 

of TCM can be treated as detecting the boundaries 

of the symptom name descriptions in the sentences 

of FCRs of TCM. Therefore, this task can be 

viewed as labeling each tagging unit (e.g. word) in 

the sentences with a pre-defined tag indicating 

whether the unit is a beginning, inside, or outside 

part of a symptom name. 

Generally, the tagging unit is word (Ramshaw 

and Marcus, 1995). However, there is no natural 

segmentation for words in Chinese sentences. 

Therefore, Chinese word segmentation problem 

has to face up firstly (Gao, et al., 2005). Because of 

the characteristics of FCRs of TCM (Wang, et al., 

2012), automatically segmenting FCRs of TCM 

into words is not trivial and common Chinese word 

segmentation methods are not suitable. In order to 

tackle this problem, Chinese character is settled as 

the basic tagging unit. An example sentence of the 

labeling task is shown in figure 2. 

 

Figure 2. An Example Sentence of the Symptom Name 

Recognition Task. 

In figure 2, each character is labeled with a pre-

defined tag (“B-SYC”, “I-SYC” or “O-SYC”). The 

meaning of each tag is defined in table 1. 

Tag Meaning 

B-SYC Beginning of a TCM symptom name 

I-SYC Inside a TCM symptom name 

O-SYC Outside the TCM symptom names 

Table 1. Meanings of the Pre-defined Tags. 

Consequently, a recognized symptom name 

should start with a character labeled with “B-SYC” 

and end before the character whose corresponding 

label changes from “I-SYC” to “B-SYC” or “O-

SYC” for the first time. The labeling task can be 

formulated as follows: 

Given a FCR 1 2x ,x ,...,xnx , where x i  is a 

Chinese character, the goal is to build a annotator 

p  to accurately label x  with the credible corre-

sponding tag sequence ( )py x , where 

1 2= y ,y ,..., yny  and y {B-SYC,I-SYC,O-SYC}n  . 

This task can be effectively done by CRFs (Sha 

and Pereira, 2003) based on a training dataset 

which is consisted of pairs of sequences ( , )x y . 
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3 Conditional Random Fields for Symp-

tom Name Recognition 

3.1 Conditional Random Fields 

A Conditional Random Field can be defined as an 

undirected graphical model (see figure 3) which 

consists of a sequence of vertices representing ran-

dom variables 
1 2( , ,..., )nY Y YY  and edges repre-

senting conditional dependencies, conditioned on 

1 2( , ,..., )nX X XX . The random variable 
iY  only 

has edges with its predecessor 
1iY 
 and successor 

1iY 
, thus, random variables 

1 2, ,..., nY Y Y  obey the 

Markov property and form a linear Markov chain. 

 

Figure 3. An Undirected Graphical Structure for a Con-

ditional Random Field. 

Then the conditional probability of a label se-

quence given an input sequence can be defined as:  
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Where f  is a global feature vector (Sha and 

Pereira, 2003) and each element of f  is an arbi-

trary feature selection function 
kf  ( [1, ]k K , 

where K  is the number of feature functions).   is 

a weight vector comprised by the learned weight 

k  for each feature function. More detailed de-

scription is that,  
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( )Z x  in the equation is a normalization factor 

which is the sum over all possible label sequences 
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The most likely label sequence for an input se-

quence x  is:  

argmax ( | )p
y

y y x  

It can be found with the Viterbi algorithm. We 

use the CRF++ tool in the experiments, which pro-

vides an efficient implementation for CRFs by us-

ing the limited-memory quasi-Newton algorithm 

for training the models (Sha and Pereira, 2003; 

Lafferty, et al., 2001) and the default settings of 

CRF++ are used. 

3.2 Features for Labeling 

It is difficult to analyze the syntactic structure of 

the content in FCRs of TCM which has narrative 

form, concise style and nonstandard description 

characteristics. Therefore, no higher level syntactic 

features, such as POS tags or NP chunks, can be 

used at the moment. Through analyzing FCRs of 

TCM, two types of representative and reasonable 

features (i.e. literal features and positional features) 

are exploited. The features are introduced and their 

reasonableness is explained by examples as fol-

lows. 

Literal Features: the simplest and the most ob-

vious features for determining the boundaries of 

symptom name descriptions are literal features. For 

example, according to the observation that after a 

word which is used to specify time (e.g. “昨日” 

(yesterday)) there would usually follow a symptom 

name description, such as “肠鸣” (borborygmus). 

The best approach to get such features is to di-

vide the content of FCRs of TCM into words. 

However, as described before, Chinese word seg-

mentation is not trivial work. Fortunately, seg-

menting the content into n-grams is considerable 

and reasonable, because the indicating words 

would be mixed in the n-gram segments and could 

be helpful to determine the boundaries of symptom 

name descriptions. 

Furthermore, the FCRs of TCM have a concise 

style, i.e. the length of the clauses in FCRs of TCM 

is short and words are usually used in their brief 

form. Therefore, the n-grams as the literal features 

need not be too long. In general, the average length 

of a Chinese word approximates 2 (Nie, et al., 

2000). Consequently, the value of n  should set to 

range from 1 to 3. Moreover, according to the intu-

ition that “the distance between current character 

and its related n-grams in FCRs of TCM would not 

be too far”, the context window size, which is the 

fragment scope picking up literal features (i.e. n-
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grams (see examples in table 2)) in FCRs of TCM, 

would not be too large. Otherwise it would bring 

about noisy information, thereby reducing the la-

beling precision. The context window size in our 

experiment is specified smaller then 4. 

Feature 

Type 

Context Window 

Size (CWS) 

Literal feature examples 

under different CWS 

Unigram 

Features 

(Uni) 

1 Ci-1, Ci, Ci+1 

2 Ci-2, Ci-1, Ci, Ci+1, Ci+2 

3 
Ci-3, Ci-2, Ci-1, Ci,  

Ci+1, Ci+2, Ci+3 

4 
Ci-4, Ci-3, Ci-2, Ci-1,  

Ci, Ci+1, Ci+2, Ci+3, Ci+4 

Bigram 

Features 

(Big) 

1 Ci-1Ci, Ci Ci+1 

2 
Ci-2Ci-1, Ci-1Ci,  

CiCi+1, Ci+1Ci+2 

3 
Ci-3Ci-2, Ci-2Ci-1, Ci-1Ci, 

CiCi+1, Ci+1Ci+2, Ci+2Ci+3 

4 

Ci-4Ci-3, Ci-3Ci-2, Ci-2Ci-1,  

Ci-1Ci, CiCi+1, Ci+1Ci+2,  

Ci+2Ci+3, Ci+3Ci+4 

Trigram 

Features 

(Tri) 

1 Ci-1CiCi+1 

2 
Ci-2Ci-1Ci, Ci-1CiCi+1,  

CiCi+1Ci+2 

3 

Ci-3Ci-2Ci-1, Ci-2Ci-1Ci,  

Ci-1CiCi+1, CiCi+1Ci+2, 

Ci+1Ci+2Ci+3 

4 

Ci-4Ci-3Ci-2Ci-1,  

Ci-3Ci-2Ci-1Ci,  

Ci-2Ci-1CiCi+1,  

Ci-1CiCi+1Ci+2,  

CiCi+1Ci+2Ci+3,  

Ci+1Ci+2Ci+3Ci+4 

Table 2. Literal Feature Examples Used in the Experi-

ments. Ci is the character at current position i in one 

clause. 

Positional Features: positions of characters in 

FCRs of TCM are also helpful. They are assistant 

features to determine the boundaries of symptom 

name descriptions. 

The start of a sentence would be usually a com-

mon character (i.e. its corresponding label is “O-

SYC”) rather than the beginning of a symptom 

name description. On the contrary, the starting po-

sitions of the following clauses have higher proba-

bilities to be labeled with “B-SYC”. Taking the 

FCR “昨日肠鸣, 失气多, 心中不适” (Yesterday, 

the patient had borborygmus and more farting, and 

his/her heart was uncomfortable) as an example, it 

starts with a common word “昨日” (yesterday) 

followed by a symptom name “肠鸣” (borboryg-

mus). And at the same time, following clauses all 

start with symptom name descriptions. 

The example of positional features is shown in 

figure 4. 

 

Figure 4. Example of Positional Features. 

In figure 4, one “[SubSID-POS]” represents a 

positional feature, and SubSID is the index of cur-

rent clause in a FCR and POS indicates the posi-

tion of a character in current clause. 

4 Experiments 

In this section, the proposed method for symptom 

name recognition from TCM FCRs is evaluated, 

and the usefulness of the introduced features is 

verified based on a TCM clinical dataset. The re-

sults are depicted bellow. 

4.1 Experimental Datasets 

In this paper, a clinical record dataset (CRD) is 

used. It contains 11613 FCRs of TCM and was 

collected by TCM doctors during their routine di-

agnostic work. The Chinese characters in FCRs of 

CRD are annotated with tags “B-SYC”, “I-SYC”, 

and “O-SYC”. The number of each type of tags is 

69193, 104243 and 142860, respectively. There are 

4235 unique symptom names in CRD, and the 

amount of annotated symptom names is 69193. 

 Training 

Data 

Test 

Data 

Number of Unique Symptom 

Names 
1813 3463 

Amount of Symptom Names 17339 51854 

Number of Each Type of Tags 

(“B-SYC”, “I-SYC”, “O-SYC”) 

17339, 

25738, 

35995 

51854, 

78505, 

106865 

Table 3. Detailed Information of the Training and Test 

Datasets. 

CRD is divided into two sub-datasets (i.e. a 

training dataset (3483 FCRs, 25% of CRD) and a 

test dataset (8130 FCRs, 75% of CRD)). For con-
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venience, all numbers (e.g. integers, decimals and 

fractions, etc.) in CRD are uniformly replaced by a 

English character “N” in advance. Detailed infor-

mation of training and test datasets is listed in table 

3. 

4.2 Evaluation Metrics 

A new method for symptom name recognition 

from FCRs of TCM is proposed and two types of 

features are introduced. To evaluate the feasibility 

and effectiveness of the method and features, two 

groups of evaluation metrics are designed: (1) for 

assessing the ability of symptom name recognition, 

symptom name recognition rate, recognition error 

rate and recognition F-Measure are defined; (2) for 

giving a detailed analysis, the labeling precision, 

recall, and F-Measure are exercised. The detailed 

explanations of these metrics are described below. 

Symptom name recognition rate (RRdet), 

recognition error rate (RERdet) and recognition 

F-Measure (RFMdet): these metrics are designed 

for assessing capability of the proposed method for 

symptom name recognition from TCM FCRs. If 

and only if the boundary of a symptom name is 

labeled accurately (i.e. starting with “B-SYC” and 

ending with the first change from “I-SYC” to “B--

SYC” or “O-SYC”), the recognized symptom 

name is correct. Higher RRdet and lower RERdet are 

achieved; better symptom name recognition per-

formance RFMdet would be obtained. RRdet, RERdet 

and RFMdet are formulated as follows.  

| |

| |
det

NSDC
RR

NCS
  

| | | |

| |
det

SD NSDC
RER

SD


  

2 (1 )

1

det det
det

det det

DR DER
RFM

DR DER

  


 
 

Where | |NSDC  is the number of symptom 

name recognized correctly from the test dataset, 

| |NCS  is the number of clinical symptom names 

in the test dataset, and | |SD  is the number of 

symptom name recognized. 

Labeling precision (Prelab), recall (Reclab) and 

F-Measure (FMlab): the metrics (Prelab, Reclab and 

FMlab) are used to evaluate the performance of la-

beling Chinese character sequences of FCRs of 

TCM for giving a detailed analysis. They are de-

fined below. 

| |

| |
lab

NCLC
Pre

NCL
  

| |

| |
lab

NCL
Rec

NC
  

2 lab lab
lab

lab lab

Pre Rec
FM

Pre Rec

 



 

Where | |NCLC  is the number of characters la-

beled correctly with their corresponding tags, 

| |NCL  is the number of characters labeled with 

tags, and | |NC  is the number of characters should 

be labeled. 

4.3 Evaluation of Symptom Name Recogni-

tion Ability 

Comprehensive evaluations of symptom name 

recognition ability using CRFs with reasonable 

features are shown in figure 5, 6 and 7. These fig-

ures show that CRFs with reasonable features for 

symptom name recognition from FCRs of TCM is 

feasible. The best RFMdet 62.829% (RRdet 93.403% 

and RERdet 52.665%) is achieved under settings 

CWS 3  and features Uni+Big+Tri used. 

 

Figure 5. Symptom Name Recognition Rate. 

It obviously shows in figures 5, 6 and 7 that lit-

eral features and positional features are helpful to 

symptom name recognition from FCRs of TCM. 

More types of features are used; better recognition 

performance would be obtained in most cases. 

When CWS 1  and referred features changed 

from unigram literal features to the combination of 

unigram and bigram literal features, the highest 

growth about 3.925% of RFMdet is achieved (the 
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RRdet increases from 87.586% to 93.034% and the 

RERdet decreases from 56.173% to 53.118%). 

 

Figure 6. Symptom Name Recognition Error Rate. 

 

Figure 7. Symptom Name Recognition F-Measure. 

As described previously, the context information 

is helpful to symptom name recognition. However, 

the context window size should not be too large. In 

figures 5, 6 and 7, it clearly shows that when CWS 

increase RRdet and RFMdet are improved and 

RFMdet is reduced. When CWS grows too large 

(larger than 3 here), RRdet and RFMdet begin, never-

theless, to descend and RERdet is raised in most 

every cases. 

Moreover, positional features are complemen-

tary features to literal features for symptom name 

recognition from FCRs of TCM. It vividly shows 

in figures 5, 6 and 7 that RRdet and RFMdet would 

be improved and RERdet would be reduced more or 

less when literal features combined with positional 

features. The highest elevation can reach 0.297% if 

the combination features of trigram literal features 

and positional features are used and CWS 1 . 

4.4 Evaluation of Labeling Performance and 

Detailed Analysis for Symptom Name 

Recognition 

In this part, firstly, an evaluation for labeling per-

formance is given, and then a detailed analysis for 

symptom name recognition from FCRs of TCM 

using CRFs with reasonable features would be de-

scribed. 

The results of Prelab and FMlab under different 

situations are shown in figure 8 and 9, respectively. 

The Reclab here are all 100%. It can be seen from 

these figures that the FMlab can reach nearly up to 

97.596% with corresponding Prelab 95.305%. The 

results can also demonstrate the feasibility of the 

proposed method for symptom name recognition 

from FCRs of TCM and the worth of the repre-

sentative and reasonable features introduced in this 

paper. The properties of literal features and posi-

tional features, which are just described in section 

4.3, are also reflected in figures 8 and 9. 

 
Figure 8. Results of Prelab under Different Situations. 

 
Figure 9. Results of FMlab under Different Situations. 

Although RRdet can achieve a very high perfor-

mance, however, RERdet is also too high. In figures 

8 and 9, high labeling results was gotten. It implies 

that the probable position of the symptom name 

can be found in TCM FCRs, but the exact bounda-

ries of the symptom name descriptions cannot be 

detected accurately yet. 

More careful results are listed in table 4. In this 

table, the average labeling Prelab of labels “B-
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SYC” and “O-SYC” are always higher than the 

global average precision, but the average Prelab of 

“I-SYC” is lower than the global average precision. 

It implies that the performance of labeling the end 

position of a symptom name description is worse 

than the other position’s. In other words, the judg-

ment on whether “I-SYC” or “O-SYC” is more 

difficult. Therefore, as the future work, how to ac-

curately determine the end of a symptom name 

description should be paid more attention to. 

 CWS = 1 CWS = 2 CWS = 3 CWS = 4 

Global 

P 
94.186% 94.526% 94.616% 94.540% 

B 

P 95.184% 95.472% 95.519% 95.429% 

R 94.135% 94.243% 94.238% 94.113% 

F 94.656% 94.853% 94.873% 94.765% 

I 

P 93.085% 93.586% 93.772% 93.713% 

R 93.791% 94.181% 94.267% 94.201% 

F 93.434% 93.879% 94.016% 93.953% 

O 

P 94.533% 94.781% 94.819% 94.738% 

R 94.501% 94.916% 95.056% 94.996% 

F 94.514% 94.845% 94.934% 94.864% 

Table 4. Detailed Results of Average Prelab, Reclab and 

FMlab for Each Type of Labels. “B”, “I” and “O” are 

short forms of “B-SYC”, “I-SYC” and “O-SYC”, re-

spectively. 

5 Conclusion 

In this paper, a preliminary work on symptom 

name recognition from FCRs of TCM is described, 

and a feasible method based on CRFs with reason-

able features is investigated. Through the experi-

ments, the specialties, usage and effectiveness of 

the introduced features are verified. 

In future, particular syntactic structure and 

grammatical rules for FCRs of TCM need to be 

defined and studied based on the characteristics of 

FCRs of TCM. On the one hand, they can help the 

TCM doctors and researchers to understand the 

clinical records deeper (Spasic, et al., 2005; Zhou, 

et al., 2010), and on the other hand, technically, 

they are good for filtering and reducing feature size 

and providing basics and adequate evidence for 

symptom name normalization process and auto-

matic diagnosis procedure. 
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Abstract

The most accurate approaches to Word Sense
Disambiguation (WSD) for biomedical docu-
ments are based on supervised learning. How-
ever, these require manually labeled training
examples which are expensive to create and
consequently supervised WSD systems are
normally limited to disambiguating a small set
of ambiguous terms. An alternative approach
is to create labeled training examples automat-
ically and use them as a substitute for manu-
ally labeled ones. This paper describes a large
scale WSD system based on automatically la-
beled examples generated using information
from the UMLS Metathesaurus. The labeled
examples are generated without any use of la-
beled training data whatsoever and is therefore
completely unsupervised (unlike some previ-
ous approaches). The system is evaluated on
two widely used data sets and found to outper-
form a state-of-the-art unsupervised approach
which also uses information from the UMLS
Metathesaurus.

1 Introduction

The information contained in the biomedical liter-
ature that is available in electronic formats is use-
ful for health professionals and researchers (West-
brook et al., 2005). The amount is so vast that
it is difficult for researchers to identify informa-
tion of interest without the assistance of automated
tools (Krallinger and Valencia, 2005). However,
processing these documents automatically is made
difficult by the fact that they contain terms that
are ambiguous. For example, “culture” can mean

“laboratory procedure” (e.g. “In peripheral blood
mononuclear cell culture”) or “anthropological cul-
ture” (e.g. “main accomplishments of introducing a
quality management culture”). These lexical ambi-
guities are problematic for language understanding
systems.

Word sense disambiguation (WSD) is the process
of automatically identifying the meanings of am-
biguous terms. Some WSD systems for the biomed-
ical domain are only able to disambiguate a small
number of ambiguous terms (see Section 2). How-
ever, for WSD systems to be useful in applications
they should be able to disambiguate all ambiguous
terms. One way to create such a WSD system is to
automatically create the labeled data that is used to
train supervised WSD systems. Several approaches
(Liu et al., 2002; Stevenson and Guo, 2010; Jimeno-
Yepes and Aronson, 2010) have used information
from the UMLS Metathesaurus1 to create labeled
training data that have successfully been used to cre-
ate WSD systems.

A key decision for any system that automatically
generates labeled examples is the number of exam-
ples of each sense to create, known as the bias of the
data set. It has been shown that the bias of a set of la-
beled examples affects the performance of the WSD
system it is used to train (Mooney, 1996; Agirre and
Martı́nez, 2004b). Some of the previous approaches
to generating labeled data relied on manually anno-
tated examples to determine the bias of the data sets
and were therefore not completely unsupervised.

This paper describes the development of a large
scale WSD system that is able to disambiguate all

1http://www.nlm.nih.gov/research/umls/
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terms that are ambiguous in the UMLS Metathe-
saurus. The system relies on labeled examples that
are created using information from UMLS. Various
bias options are explored, including ones that do not
make use of information from manually labeled ex-
amples, and thus we can create a completely unsu-
pervised system. Evaluation is carried out on two
standard datasets (the NLM-WSD and MSH-WSD
corpora). We find that WSD systems can be cre-
ated without using any information from manually
labeled examples and that their performance is bet-
ter than a state-of-the-art unsupervised approach.

The remainder of this paper is organized as fol-
lows. Previous approaches to WSD in biomedical
documents are described in the next Section. Section
3 presents the methods used to identify bias in the
labeled examples and WSD system. Experiments in
which these approaches are compared are described
in Section 4 and their results in Section 5.

2 Background

Many WSD systems for the biomedical domain are
based on supervised learning (McInnes et al., 2007;
Xu et al., 2007; Stevenson et al., 2008; Yepes and
Aronson, 2011). These systems require labeled
training data, examples of an ambiguous term la-
beled with the correct meaning. Some sets of labeled
data have been developed for the biomedical domain
(Weeber et al., 2001; Savova et al., 2008; Jimeno-
Yepes et al., 2011). However, these data sets only
contain examples for a few hundred terms and can
only be used to develop WSD systems to identify
the meanings of those terms. The process of creat-
ing labeled examples is extremely time-consuming
and difficult (Artstein and Poesio, 2008), making it
impractical to create labeled examples of all possible
ambiguous terms found in biomedical documents.

Two alternative approaches have been explored to
develop systems which are able to disambiguate all
ambiguous terms in biomedical documents. The first
makes use of unsupervised WSD algorithms (see
Section 2.1) and the second creates labeled data au-
tomatically and uses it to train a supervised WSD
system (see Section 2.2).

2.1 Unsupervised WSD

Unsupervised WSD algorithms make use of infor-
mation from some knowledge source, rather than re-
lying on training data.

Humphrey et al. (2006) describe an unsupervised
system which uses semantic types in UMLS to dis-
tinguish between the possible meanings of ambigu-
ous words. However, it cannot disambiguate be-
tween senses with the same semantic type, i.e., it
is not possible for the system to recognise all sense
distinctions.

The Personalised Page Rank (PPR) system
(Agirre et al., 2010; Jimeno-Yepes and Aronson,
2010) relies on a a graph-based algorithm similar
to the Page Rank algorithm originally developed for
use in search engines (Brin, 1998). It performs
WSD by converting the UMLS Metathesaurus into
a graph in which the possible meanings of ambigu-
ous words are nodes and relations between them are
edges. Disambiguation is carried out by providing
the algorithm with a list of senses that appear in the
text that is being disambiguated. This information is
then combined with the graph and a ranked list of the
possible senses for each ambiguous word generated.

Unsupervised systems have the advantage of be-
ing able to disambiguate all ambiguous terms. How-
ever, the performance of unsupervised systems that
have been developed for biomedical documents is
lower than that of supervised ones.

2.2 Automatic Generation of Labeled Data

Automatic generation of labeled data for WSD com-
bines the accuracy of supervised approaches with
the ability of unsupervised approaches to disam-
biguate all ambiguous terms. It was first suggested
by Leacock et al. (1998). Their approach is based
on the observation that some terms in a lexicon oc-
cur only once and, consequently, there is no doubt
about their meaning. These are referred to as being
monosemous. Examples for each possible meaning
of an ambiguous term are generated by identifying
the closest monosemous term (the monosemous rel-
ative) in the lexicon and using examples of that term.
Variants of the approach have been applied to the
biomedical domain using the UMLS Metathesaurus
as the sense inventory.
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Liu et al. (2002) were the first to apply the
monosemous relatives approach to biomedical WSD
and use it to disambiguate a set of 35 abbreviations.
They reported high precision but low recall, indicat-
ing that labeled examples could not be created for
many of the abbreviations. Jimeno-Yepes and Aron-
son (2010) applied a similar approach and found
that it performed better than a number of alternative
approaches on a standard evaluation resource (the
NLM-WSD corpus) but did not perform as well as
supervised WSD. Stevenson and Guo (2010) com-
pared two techniques for automatically creating la-
beled data, including the monosemous relatives ap-
proach. They found that the examples which were
generated were as good as manually labeled exam-
ples when used to train a supervised WSD system.
However, Stevenson and Guo (2010) relied on la-
beled data to determine the number of examples of
each sense to create, and therefore the bias of the
data set. Consequently their approach is not com-
pletely unsupervised since it could not be applied to
ambiguous terms that do not have labeled training
data available.

3 Approach

3.1 WSD System

The WSD system is based on a supervised approach
that has been adapted for the biomedical domain
(Stevenson et al., 2008). The system was tested on
the NLM-WSD corpus (see Section 4.1) and found
to outperform alternative approaches.

The system can exploit a wide range of fea-
tures, including several types of linguistic informa-
tion from the context of an ambiguous term, MeSH
codes and Concept Unique Identifiers (CUIs) from
the UMLS Metathesaurus. However, computing
these features for every example is a time consum-
ing process and to make the system suitable for large
scale WSD it was restricted to using a smaller set
of features. Previous experiments (Stevenson et al.,
2008) showed that this only leads to a small drop in
disambiguation accuracy while significantly reduc-
ing the computational cost of generating features.

3.1.1 Features
Two types of context words are used as features:

the lemmas of all content words in the same sen-

tence as the ambiguous word and the lemmas of all
content words in a±4-word window around the am-
biguous term. A list of corpus-specific stopwords
was created containing terms that appear frequently
in Medline abstracts but which are not useful for dis-
ambiguation (e.g. “abstract”, “conclusion”). Any
lemmas found in this list were not used as features.

3.1.2 Learning algorithm
Disambiguation is carried out using the Vector

Space Model, a memory-based learning algorithm
in which each occurrence of an ambiguous word is
represented as a vector created using the features ex-
tracted to represent it (Agirre and Martı́nez, 2004a).
The Vector Space Model was found to outperform
other learning algorithms when evaluated using the
NLM-WSD corpus (Stevenson et al., 2008).

During the algorithm’s training phase a single
centroid vector, ~Csj , is generated for each possible
sense, sj . This is shown in equation 1 where T is
the set of training examples for a particular term and
sense(~t) is the sense associated with the vector ~t.

~Csj =

∑
~ti ε T :sense(~ti)=sj

~ti

|~ti ε T : sense(~ti) = sj |
(1)

Disambiguation is carried out by comparing the
vector representing the ambiguous word, ~a, against
the centroid of each sense using the cosine metric,
shown in equation 2, and choosing the one with the
highest score.

score(sj ,~a) = cos( ~Csj ,~a) =
~Csj .~a

| ~Csj ||~a|
(2)

Note that the learning algorithm does not ex-
plicitly model the prior probability of each possi-
ble sense, unlike alternative approaches (e.g. Naive
Bayes), since it was found that including this infor-
mation did not improve performance.

3.2 Automatically generating training
examples

The approaches used for generating training exam-
ples used here are based on the work of Stevenson
and Guo (2010), who describe two approaches:

1. Monosemous relatives

2. Co-occurring concepts
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Both approaches are provided with a set of ambigu-
ous CUIs from the UMLS Metathesaurus, which
represent the possible meanings of an ambiguous
term, and a target number of training examples to be
generated for each CUI. Each CUI is associated with
at least one term and each term is labeled with a lex-
ical unique identifier (LUI) which represents a range
of lexical variants for a particular term. The UMLS
Metathesaurus contains a number of data files which
are exploited within these techniques, including:

AMBIGLUI: a list of cases where a LUI is linked
to multiple CUIs.

MRCON: every string or concept name in the
Metathesaurus appears in this file.

MRCOC: co-occuring concepts.

For the monosemous relatives approach, the
strings of monosemous LUIs of the target CUI
and its relatives are used to search Medline to re-
trieve training examples. The monosemous LUIs re-
lated to a CUI are defined as any LUIs associated
with the CUI in the MRCON table and not listed in
AMBIGLUI table.

The co-occurring concept approach works differ-
ently. Instead of using strings of monosemous LUIs
of the target CUI and its relatives, the strings associ-
ated with LUIs of a number of co-occurring CUIs of
the target CUI and its relatives found in MRCOC ta-
ble are used. The process starts by finding the LUIs
of the top n co-occurring CUIs of the target CUI.
These LUIs are then used to form search queries.
The query is quite restrictive in the beginning and re-
quires all terms appear in the Medline citations files.
Subsequently queries are made less restrictive by re-
ducing the number of required terms in the query.

These techniques were used to generate labeled
examples for all terms that are ambiguous in the
2010 AB version of the UMLS Metathesaurus.2 The
set of all ambiguous terms was created by analysing
the AMBIGLUI table, to identify CUIs that are asso-
ciated with multiple LUIs. The Medline Baseline
Repository (MBR)3 was also analysed and it was
found that some terms were ambiguous in this re-
source, in the sense that more than one CUI had been

2Stevenson and Guo (2010) applied them to a small set of
examples from the NLM-WSD data set (see Section 4.1).

3http://mbr.nlm.nih.gov

assigned to an instance of a term, but could not be
identified from the AMBIGLUI table. The final list
of ambiguous CUIs was created by combining those
identified from the AMBIGLUI table and those find
in the MBR. This list contained a total of 103,929
CUIs.

Both techniques require large number of searches
over the Medline database and to carry this out ef-
ficiently the MBR was indexed using the Lucene
Information Retrieval system4 and all searches ex-
ecuted locally.

Examples were generated using both approaches.
The monosemous relatives approach generated ex-
amples for 98,462 CUIs and the co-occurring con-
cepts for 98,540. (Examples generated using the
monosemous relatives approach were preferred for
the experiments reported later.) However, neither
technique was able to generate examples for 5,497
CUIs, around 5% of the total. This happened when
none of the terms associated with a CUI returned
any documents when queried against the MBR and
that CUI does not have any monosemous relatives.
An example is C1281723 “Entire nucleus pulpo-
sus of intervertebral disc of third lumbar vertebra”.
The lengthy terms associated with this CUI do not
return any documents when used as search terms
and, in addition, it is only related to one other CUI
(C0223534 “Structure of nucleus pulposus of inter-
vertebral disc of third lumbar vertebra”) which is it-
self only connected to C1281723. Fortunately there
are relatively few CUIs for which no examples could
be generated and none of them appear in the MBR,
suggesting they refer to UMLS concepts that do not
tend to be mentioned in documents.

3.3 Generating Bias

Three different techniques for deciding the number
of training examples to be generated for each CUI
(i.e. the bias) were explored.

Uniform Bias (UB) uses an equal number of
training examples to generate centroid vectors for
each of the possible senses of the ambiguous term.

Gold standard bias (GSB) is similar to the uni-
form bias but instead of being the same for all pos-
sible CUIs the number of training examples for each
CUI is determined by the number of times it appears

4http://lucene.apache.org/
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in a manually labeled gold standard corpus. Assume
t is an ambiguous term and Ct is the set of possible
meanings (CUIs). The number of training examples
used to generate the centroid for that CUI, Ec, is
computed according to equation 3 where Gc is the
number of instances in the gold standard corpus an-
notated with CUI c and n is a constant which is set
to 100 for these experiments.5

Ec =
Gc∑

ci ε Ct
Gci,t

.n (3)

The final technique, Metamap Baseline Repos-
itory Bias (MBB), is based on the distribution of
CUIs in the MBR. The number of training examples
are generated in a similar way to the gold standard
bias with MBR being used instead of a manually la-
beled corpus and is shown in equation 4 whereMc is
the number of times the CUI c appears in the MBR.

Ec =
Mc∑

ci ε Ct
Mci

.n (4)

For example, consider the three possible CUIs as-
sociated with term “adjustment” in the NLM-WSD
corpus: C0376209, C0456081 and C06832696.
The corpus contains 18 examples of C0376209,
62 examples of C0456081 and 13 of C0683269.
Using equation 3, the number of training exam-
ples when GSB is applied for C0376209 is 20,
67 for C0456081 and 14 for C0683269. In the
Metamap Baseline Repository files, C0376209 has
a frequency count of 98046, C0456081 a count of
292809 and C0683269 a count of 83530. Therefore
the number of training examples used for the three
senses when applying MBB is: 21 for C0376209, 62
for C0456081 and 18 for C0683269.

4 Evaluation

4.1 Data sets

We evaluate our system on two datasets: the NLM-
WSD and MSH-WSD corpora.

5Small values for Ec are rounded up to ensure that any rare
CUIs have at least one training example.

6These CUIs are obtained using the mappings from NLM-
WSD senses to CUIs available on the NLM website: http:
//wsd.nlm.nih.gov/collaboration.shtml

The NLM-WSD corpus7 (Weeber et al., 2001) has
been widely used for experiments on WSD in the
biomedical domain, for example (Joshi et al., 2005;
Leroy and Rindflesch, 2005; McInnes et al., 2007;
Savova et al., 2008). It contains 50 ambiguous terms
found in Medline with 100 examples of each. These
examples were manually disambiguated by 11 an-
notators. The guidelines provided to the annotators
allowed them to label a senses as “None” if none
of the concepts in the UMLS Metathesaurus seemed
appropriate. These instances could not be mapped
onto UMLS Metathesaurus and were ignored for our
experiments.

The larger MSH-WSD corpus (Jimeno-Yepes et
al., 2011) contains 203 strings that are associated
with more than one possible MeSH code in the
UMLS Metathesaurus. 106 of these are ambiguous
abbreviations, 88 ambiguous terms and 9 a combi-
nation of both. The corpus contains up to 100 ex-
amples for each possible sense and a total of 37,888
examples of ambiguous strings taken from Medline.
Unlike the NLM-WSD corpus, all of the instances
can be mapped to the UMLS Metathesaurus and
none was removed from the dataset for our exper-
iments.

The two data sets differ in the way the number
of instances of each sense was determined. For
the NLM-WSD corpus manual annotation is used to
decide the number of instances that are annotated
with each sense of an ambiguous term. However,
the NLM-MSH corpus was constructed automati-
cally and each ambiguous term has roughly the same
number of examples of each possible sense.

4.2 Experiments

The WSD system described in Section 3 was tested
using each of the three techniques for determining
the bias, i.e. number of examples generated for each
CUI. Performance is compared against various alter-
native approaches.

Two supervised approaches are included. The
first, most frequent sense (MFS) (McCarthy et al.,
2004), is widely used baseline for supervised WSD
systems. It consists of assigning each ambiguous
term the meaning that is more frequently observed
in the training data. The second supervised approach

7http://wsd.nlm.nih.gov
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is to train the WSD system using manually labeled
examples from the NLM-WSD and MSH-WSD cor-
pora. 10-fold cross validation is applied to evaluate
this approach.

Performance of the Personalised Page Rank ap-
proach described in Section 2.1 is also provided to
allow comparison with an unsupervised algorithm.
Both Personalised Page Rank and the techniques
we employ to generate labeled data, base disam-
biguation decisions on information from the UMLS
Metathesaurus.

The performance of all approaches is measured
in terms of the percentage of instances which are
correctly disambiguated for each term with the av-
erage across all terms reported. Confidence inter-
vals (95%) computed using bootstrap resampling
(Noreen, 1989) are also shown.

5 Results

Results of the experiments are shown in Table 1
where the first three rows show performance of the
approach described in Section 3 using the three
methods for computing the bias (UB, MMB and
GSB). MFS and Sup refer to the Most Frequent
Sense supervised baseline and using manually la-
beled examples, respectively, and PPR to the Per-
sonalised PageRank approach.

When the performance of the approaches us-
ing automatically labeled examples (UB, MMB and
GSB) is compared it is not surprising that the best re-
sults are obtained using the gold standard bias since
this is obtained from manually labeled data. Results
using this technique for computing bias always out-
perform the other two, which are completely unsu-
pervised and do not make use of any information
from manually labeled data. However, the improve-
ment in performance varies according to the corpus,
for the NLM-WSD corpus there is an improvement
of over 10% in comparison to UB while the corre-
sponding improvement for the MSH-WSD corpus is
less than 0.5%.

A surprising result is that performance obtained
using the uniform bias (UB) is consistently better
than using the bias obtained by analysis of the MBR
(MMB). It would be reasonable to expect that in-
formation about the distribution of CUIs in this cor-
pus would be helpful for WSD but it turns out that

making no assumptions whatsoever about their rel-
ative frequency, i.e., assigning a uniform baseline,
produces better results.

The relative performance of the supervised (MFS,
Sup and GSB) and unsupervised approaches (UB,
MMB and PPR) varies according to the corpus. Un-
surprisingly using manually labeled data (Sup) out-
performs all other approaches on both corpora. The
supervised approaches also outperform the unsuper-
vised ones on the NLM-WSD corpus. However, for
the MSH-WSD corpus all of the unsupervised ap-
proaches outperform the MFS baseline.

A key reason for the differences in these results is
the different distributions of senses in the two cor-
pora, as shown by the very different performance of
the MFS approach on the two corpora. This is dis-
cussed in more detail later (Section 5.2).

Comparison of the relative performance of the un-
supervised approaches (UB, MMB and PPR) shows
that training a supervised system with the automat-
ically labeled examples using a uniform bias (UB)
always outperforms PPR. This demonstrates that
this approach outperforms a state-of-the-art unsu-
pervised algorithm that relies on the same infor-
mation used to generate the examples (the UMLS
Metathesaurus).

5.1 Performance by Ambiguity Type

The MSH-WSD corpus contains both ambiguous
terms and abbreviations (see Section 4.1). Perfor-
mance of the approaches on both types of ambiguity
are shown in Table 2.

MSH-WSD Ambiguity Type
Approach Abbreviation Term

UB 91.40 [91.00, 91.75] 72.68 [72.06, 73.32]

MMB 84.43 [83.97, 84.89] 69.45 [68.86, 70.10]

GSB 90.82 [90.45, 91.22] 73.96 [73.40, 74.62]

MFS 52.43 [51.73, 53.05] 51.76 [51.11, 52.36]

Sup. 97.41 [97.19, 97.62] 91.54 [91.18, 91.94]

PPR 86.40 [86.00, 86.85] 68.40 [67.80, 69.14]

Table 2: WSD evaluation results for abbreviations and
terms in the MSH-WSD data set.

The relative performance of the different ap-
proaches on the terms and abbreviations is similar to
the entire MSH-WSD data set (see Table 1). In par-
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Corpus
Approach Type NLM-WSD MSH-WSD

UB Unsup. 74.00 [72.80, 75.29] 83.19 [82.87, 83.54]

MMB Unsup. 71.18 [69.94, 72.38] 78.09 [77.70, 78.46]

GSB Sup. 84.28 [83.12, 85.36] 83.39 [83.08, 83.67]

MFS Sup. 84.70 [83.67, 85.81] 52.01 [51.50, 52.45]

Sup Sup. 90.69 [89.87, 91.52] 94.83 [94.63, 95.02]

PPR Unsup. 68.10 [66.80, 69.23] 78.60 [78.23, 78.90]

Table 1: WSD evaluation results on NLM-WSD and MSH-WSD data sets.

ticular using automatically generated examples with
a uniform bias (UB) outperforms using the bias de-
rived from the Medline Baseline Repository (MBR)
while using the gold standard baseline (GSB) im-
proves results slightly for terms and actually reduces
them for abbreviations.

Results for all approaches are higher when disam-
biguating abbreviations than terms which is consis-
tent with previous studies that have suggested that
in biomedical text abbreviations are easier to disam-
biguate than terms.

5.2 Analysis

An explanation of the reason for some of the re-
sults can be gained by looking at the distributions
of senses in the various data sets used for the ex-
periments. Kullback-Leibler divergence (or KL di-
vergence) (Kullback and Leibler, 1951) is a com-
monly used measure for determining the difference
between two probability distributions. For each term
t, we define S as the set of possible senses of t,
the sense probability distributions of t as D and D′.
Then the KL divergence between the sense probabil-
ity distributions D and D′ can be calculated accord-
ing to equation 5.

KL(D||D′) =
∑
s ε S

D(s). log
D(s)
D′(s)

(5)

The three techniques for determining the bias de-
scribed in Section 3.3 each generate a probability
distribution over senses. Table 2 shows the average
KL divergence when the gold standard distribution
obtained from the manually labeled data (GSB) is
compared with the uniform bias (UB) and bias ob-
tained by analysing the Medline Baseline Reposi-
tory (MMB).

Corpus
Avg. KL Divergence NLM-WSD MSH-WSD
KL(GSB||MMB) 0.5649 0.4822
KL(GSB||UB) 0.4600 0.0406

Table 3: Average KL divergence of sense probability dis-
tributions in the NLM-WSD and MSH-WSD data sets.

The average KL divergence scores in the table
are roughly similar with the exception of the much
lower score obtained for the gold-standard and uni-
form bias for the MSH-WSD corpus (0.0406). This
is due to the fact that the MSH-WSD corpus was
designed to have roughly the same number of ex-
amples for each sense, making the sense distribu-
tion close to uniform (Jimeno-Yepes et al., 2011).
This is evident from the MFS scores for the MSH-
WSD corpus which are always close to 50%. This
also provides as explanation of why performance us-
ing automatically generated examples on the MSH-
WSD corpus only improves by a small amount when
the gold standard bias is used (see Table 1). The gold
standard bias simply does not provide much addi-
tional information to the WSD system. The situa-
tion is different in the NLM-WSD corpus, where the
MFS score is much higher. In this case the additional
information available in the gold standard sense dis-
tribution is useful for the WSD system and leads to
a large improvement in performance.

In addition, this analysis demonstrates why per-
formance does not improve when the bias gener-
ated from the MBR is used. The distributions which
are obtained are different from the gold standard
and are therefore mislead the WSD system rather
than providing useful information. The difference
between these distributions would be expected for
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the MSH-WSD corpus, since it contains roughly the
same number of examples for each possible sense
and does not attempt to represent the relative fre-
quency of the different senses. However, it is sur-
prising to observe a similar difference for the NLM-
WSD corpus, which does not have this constraint.
The difference suggests the information about CUIs
in the MBR, which is generated automatically, has
some limitations.

Table 4 shows a similar analysis for the MSH-
WSD corpus when abbreviations and terms are con-
sidered separately and supports this analysis. The
figures in this table show that the gold standard and
uniform distributions are very similar for both ab-
breviations and terms, which explains the similar re-
sults for UB and GSB in Table 2. However, the gold
standard distribution is different from the one ob-
tained from the MBR. The drop in performance of
MMB compared with GBS in Table 2 is a conse-
quence of this.

Ambiguity Type
Avg. KL Divergence Abbreviation Term
KL(GSB||MMB) 0.4554 0.4603
KL(GSB||UB) 0.0544 0.0241

Table 4: Average KL divergence for abbreviations and
terms in the MSH-WSD data set.

6 Conclusion

This paper describes the development of a large
scale WSD system based on automatically labeled
examples. We find that these examples can be gener-
ated for the majority of CUIs in the UMLS Metathe-
saurus. Evaluation on the NLM-WSD and MSH-
WSD data sets demonstrates that the WSD system
outperforms the PPR approach without making any
use of labeled data.

Three techniques for determining the number of
examples to use for training are explored. It is
found that a supervised approach (which makes use
of manually labeled data) provides the best results.
Surprisingly it was also found that using information
from the MBR did not improve performance. Anal-
ysis showed that the sense distributions extracted
from the MBR were different from those observed
in the evaluation data, providing an explanation for

this result.
Evaluation showed that accurate information

about the bias of training examples is useful for
WSD systems and future work will explore other un-
supervised ways of obtaining this information. Al-
ternative techniques for generating labeled examples
will also be explored. In addition, further evaluation
of the WSD system will be carried out, such as ap-
plying it to an all words task and within applications.
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Montréal, Canada, June 8, 2012. c©2012 Association for Computational Linguistics

Boosting the protein name recognition performance

by bootstrapping on selected text

Yue Wang and Jin-Dong Kim

Database Center for Life Science,

Research Organization of Information and Systems

2-11-16 Yayoi, Bunkyo-ku, Tokyo, Japan 113-0032

{wang,jdkim}@dbcls.rois.ac.jp

Abstract

When only a small amount of manually anno-

tated data is available, application of a boot-

strapping method is often considered to com-

pensate for the lack of suf�cient training ma-

terial for a machine-learning method. The

paper reports a series of experimental results

of bootstrapping for protein name recogni-

tion. The results show that the performance

changes signi�cantly according to the choice

of text collection where the training samples

to bootstrap, and that an improvement can be

obtained only with a well chosen text collec-

tion.

1 Introduction

While machine learning-based approaches are be-

coming more and more popular for the development

of natural language processing (NLP) systems, cor-

pora with annotation are regarded as a critical re-

source for the training process. Nonetheless, the cre-

ation of corpus annotation is an expensive and time-

consuming work (Cohen et al., 2005), and it is of-

ten the case that lack of suf�cient annotation hinders

the development of NLP systems. Bootstrapping

method (Becker et al., 2005; Vlachos and Gasperin,

2006) can be considered as a way to automatically

in�ate the amount of corpus annotation to comple-

ment the lack of suf�cient annotation.

In this study, we report the experimental results on

the effect of bootstrapping for the training of protein

name recognizers, particularly in the situation when

we have only a small amount of corpus annotations.

In summary, we begin with a small corpus with

manual annotation for protein names. A named en-

tity tagger trained on the small corpus is applied to

a big collection of text, to obtain more annotation.

We hope the newly created annotation to be precise

enough so that the training of a protein tagger can

bene�t from the increased training material.

We assume that the accuracy of a bootstrapping

method (Ng, 2004) depends on two factors: the ac-

curacy of the bootstrap tagger itself and the similar-

ity of the text to the original corpus. While accuracy

of the bootstrap tagger may be maximized by �nd-

ing the optimal parameters of the applied machine

learning method, the choice of text where the origi-

nal annotations will bootstrap may also be a critical

factor for the success of the bootstrapping method.

Experimental results presented in this paper con-

�rm that we can get a improvement by using a boot-

strapping method with a well chosen collection of

texts.

The paper is organized as follows. Section 2 intro-

duces the two datasets used in this paper. Following

that, in Section 3, we brie�y introduce the experi-

ments performed in our research. The experimental

results are demonstrated in Section 4. The research

is concluded in Section 5 and in the meanwhile, fu-

ture work is discussed.

2 Datasets

2.1 The cyanobacteria genome database

Cyanobacteria are prokaryotic organisms that have

served as important model organisms for studying

oxygenic photosynthesis and have played a signi�-
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cant role in the Earthfs history as primary producers

of atmospheric oxygen (Nakao et al., 2010).

The cyanobacteria genome database (abbreviated

to CyanoBase1) includes the annotations to the

PubMed text. In total, 39 species of the cyanobacte-

ria are covered in the CyanoBase.

In our cyanobacteria data (henceforth, the Kazusa

data for short), 270 abstracts were annotated by two

independent annotators. We take the entities, about

which both of the annotators agreed with each other.

In total, there are 1,101 entities in 2,630 sentences.

The Kazusa data was split equally into three sub-

sets and the subsets were used in turn as the training,

development and testing sets in the experiments.

2.2 The BioCreative data

The BioCreative data, which was used for the

BioCreative II gene mention task2, is described as

the tagged gene/protein names in the PubMed text.

The training set is used in the research, and totally

there are 15,000 sentences in the dataset.

Unlike other datasets, the BioCreative data was

designed to contain sentences both with and without

protein names, in a variety of contexts. Since the

collection is made to explicitly compile positive and

negative examples for protein recognition, there is a

chance that the sample of text is not comprehensive,

and gray-zone expressions may be missed.

The reason that we chose the BioCreative data

for the bootstrapping is that, the BioCreative data

(henceforth, the BC2 data for short) is the collection

for the purpose of training and evaluation of protein

name taggers.

3 Experiment summary

In the following experiments, the NERSuite3, a

named entity tagger based on Conditional Random

Fields (CRFs) (Lafferty et al., 2001; Sutton and Mc-

Callum, 2007), is used. The NERSuite is executable

open-source and serves as a machine learning sys-

tem for named entity recognition (NER). The sigma

value for the L2-regularization is optimizable and in

our experiments, we tune the sigma value between

10−1 to 104.

1http://genome.kazusa.or.jp/cyanobase
2http://www.biocreative.org/
3http://nersuite.nlplab.org/

As mentioned in Section 2.1, the three subsets of

Kazusa data are used for training, tuning and testing

purposes, in turn. We experimented with all the six

combinations.

Experiments were performed to compare three

different strategies. First, with the baseline strat-

egy, the protein tagger is trained only on the Kazusa

training set. The sigma value is optimized on the

tuning set, and the performance is evaluated on the

test set. It is the most typical strategy particularly

when it is believed there is a suf�cient training ma-

terial.

Second, with the bootstrapping strategy, the

Kazusa training set is used as the seed data. A tag-

ger for bootstrapping (bootstrap tagger, hereafter) is

trained on the seed data, and applied to the BC2 data

to bootstrap the training examples. Another pro-

tein tagger (application tagger) is then trained on the

bootstrapped BC2 data together with the seed data.

The Kazusa tuning set is used to optimize the two

sigma values for the two protein taggers, and the

performance is evaluated on the test set. With this

strategy, we wish the bootstrapped examples com-

plement the lack of suf�cient training examples.

Experiment Seed BT BT+SS

E1 368 647 647 (1,103)

E2 368 647 647 (1,103)

E3 366 759 759 (1,200)

E4 366 769 590 (1,056)

E5 367 882 558 (1,068)

E6 367 558 558 (1,068)

Table 1: The number of positive examples used in each

experiment. The �BT� column shows the number of posi-

tive examples obtained by the bootstrapping in the 15,000

BC2 sentences. In the last column, the �gures in paren-

theses are the number of the selected sentences.

Third, the bootstrapping with sentence selection

strategy is almost the same with the bootstrapping

strategy, except that the second tagger is trained after

the non-relevant sentences are �ltered out from the

BC2 data. Here, non-relevant sentences mean those

that are not tagged by the the bootstrap tagger. With

this strategy, we wish an improvement with the boot-

strapping by removing noisy data. Table 1 shows the

number of the seed and bootstrapped examples used

for the three strategies. It is observed that the seed

241



Training Tuning Testing Baseline BT BT+SS

E1 A B C 63.7/29.2/40.0 [102] 61.3/25.9/36.4 [104-101] 61.7/38.2/47.1 [104-104]

E2 A C B 65.2/36.9/47.1 [103] 67.7/35.0/46.1 [104-101] 61.7/46.7/53.2 [104-104]

E3 B C A 75.3/36.4/49.1 [102] 75.2/31.3/44.2 [102-101] 67.1/40.0/50.1 [102-101]

E4 B A C 68.5/33.8/45.3 [102] 70.2/28.9/40.9 [104-101] 66.7/36.5/47.2 [101-102]

E5 C B A 77.7/35.1/48.3 [101] 71.8/27.7/40.0 [104-102] 70.9/38.3/49.7 [100-101]

E6 C A B 73.0/39.1/50.9 [101] 76.1/32.2/45.3 [100-102] 67.7/41.8/51.7 [100-102]

Table 2: Experimental results of using the Kazusa and BC2 data (Precision/Recall/F-score). �BT� and �SS� represent

the bootstrapping and sentence selection strategies, respectively. The �gures in square brackets are the sigma values

optimized in the experiments.

annotation bootstrap only on a small portion of the

BC2 data set, e.g., 1,103 vs. 15,000 sentences in the

case of E1 (less than 10%), suggesting that a large

portion of the data set may be irrelevant to the origi-

nal data set.

4 Experimental results

The experimental results of all the six combinations

are shown in Table 2. The use of the three subsets,

denoted by A, B, C, of the Kazusa data set for train-

ing, tuning and testing in each experiment is spec-

i�ed in �training�, �tuning� and �testing� columns.

The results of the baseline strategy that uses only

the Kazusa data are shown in the �baseline� column,

whereas the results with the bootstrapping methods

with and without sentence selection are shown in the

last two columns. As explained in Section 3, the

sigma values are optimized using the tuning set for

each experiment. Note that for bootstrapping, we

need two sigma values for the bootstrapping tagger

and the application tagger. See section 3.

The performance of named entity recognition is

measured in terms of precision, recall and F-score.

For matching criterion, in order to avoid underesti-

mation, instead of the exact matching, system per-

formance is evaluated under a soft matching, the

overlapping matching criterion. That is, if any part

of the annotated protein/gene names is recognized

by the NER tagger, we will regard that as a correct

answer.

4.1 Results with the bootstrapping strategy

Comparing the two columns, �baseline� and �BT�,

we observe that the use of bootstrapping may lead

to a degradation of the performance. Note that the

sigma values are optimized on the development set

for each experiment, and the text for bootstrapping

is BC2 corpus which is expected to be similar to the

Kazusa corpus, but still it is observed that the boot-

strapping does not work, suggesting that the text col-

lection may not yet similar enough.

4.2 Results with bootstrapping with sentence

selection

Comparing the last column (the �BT+SS� column)

to the �baseline� column, we observe that the appli-

cation of the bootstrapping method with sentence se-

lection consistently improves the performance. The

improvement is sometimes signi�cant, e.g., 7.1% of

difference in F-score in the case of E1, but some-

times not, e.g., only 0.8% in the case of E6, but the

performance is improved in the every experiments.

The results con�rm our assumption that the choice

of text for bootstrapping is important, and that the

sentence selection is a stable method for the choice

of text.

5 Conclusion and future work

In order to compensate for the lack of suf�cient

training data for a CRF-based protein name recog-

nizer, the potential of a bootstrapping method has

been explored through a series of experiments. The

BC2 data was chosen for the bootstrapping as the

data set was one collected for protein name recogni-

tion.

Our initial experiment showed that the seed anno-

tations bootstrapped only on a very small portion of

the BC2 data set, suggesting that a big portion of the

data set might be less relevant to the seed corpus.

From a series of experiments, it was observed that

the performance of protein name recognition was al-

ways improved with bootstrapping by selecting only
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the sentences where the seed annotations bootstrap,

and by using them as an additional training data.

The goal was to be able to predict more possible

protein mentions (recall) at a relatively satisfactory

level of the quality (precision). The experimental

results suggest us, in order to achieve the goal, the

choice of text collection is important for the success

of the use of a bootstrapping method.

For the future work, we would like to take use of

the original annotations in the BC2 data. A �ltering

strategy (Wang, 2010) will be performed. Instead of

completely using the output of the Kazusa-trained

tagger, we compare the output of the Kazusa-trained

tagger with the BioCreative annotations. If the en-

tity is recognized by the tagger and also annotated

in the BioCreative data, then the annotation to this

entity will be kept. The entity will be regarded as

a true positive according to the BioCreative annota-

tions. Otherwise, we will remove the annotation to

the entity from the BioCreative annotations.

Further, we also would like to combine the boot-

strapping with the �ltering. Besides keeping the true

positives, we also want to include some false pos-

itives from the bootstrapping. Because these false

positives helps in improving the recall, when the tag-

ger is applied to the Kazusa testing subset. To dis-

criminate this strategy from the bootstrapping and

�ltering strategies, different sigma value should be

used.
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