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Introduction

The NAACL 2012 Workshop on Statistical Machine Translation (WMT-2012) took place on Thursday
and Friday, June 7–8, 2012 in Montreal, Canada, immediately following the Conference of the North-
American Chapter of the Association for Computational Linguistics - Human Language Technologies
(NAACL HLT).

This is the seventh time this workshop has been held. The first time it was held at HLT-NAACL 2006 in
New York City, USA. In the following years the Workshop on Statistical Machine Translation was held
at ACL 2007 in Prague, Czech Republic, ACL 2008, Columbus, Ohio, USA, EACL 2009 in Athens,
Greece, ACL 2010 in Uppsala, Sweden, and EMNLP 2011 in Edinburgh, Scotland.

The focus of our workshop was to use parallel corpora for machine translation. Recent experimentation
has shown that the performance of SMT systems varies greatly with the source language. In this
workshop we encouraged researchers to investigate ways to improve the performance of SMT systems
for diverse languages, including morphologically more complex languages, languages with partial free
word order, and low-resource languages.

Prior to the workshop, in addition to soliciting relevant papers for review and possible presentation,
we conducted three shared tasks: a translation task, a quality estimation task, and a task to test
automatic evaluation metrics. The results of the shared tasks were announced at the workshop, and
these proceedings also include an overview paper for the shared tasks that summarizes the results, as
well as provides information about the data used and any procedures that were followed in conducting
or scoring the task. In addition, there are short papers from each participating team that describe their
underlying system in greater detail.

Like in previous years, we have received a far larger number of submission than we could accept for
presentation. This year we have received 45 full paper submissions and 39 shared task submissions. In
total WMT-2012 featured 20 full paper oral presentations and 39 shared task poster presentations.

The invited talk was given by Salim Roukos (IBM Research, USA), entitled “Deployment of Statistical
Machine Translation for the IBM Enterprise”.

We would like to thank the members of the Program Committee for their timely reviews. We also
would like to thank the participants of the shared task and all the other volunteers who helped with the
evaluations.

Chris Callison-Burch, Philipp Koehn, Christof Monz, Matt Post, Radu Soricut, and Lucia Specia

Co-Organizers
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WMT 5-year Retrospective Best Paper Award

Last year we created a WMT 5-year Retrospective Best Paper Award. This year we selected the best
paper from 2007’s Workshop on Statistical Machine Translation, which was collocated with ACL in
Prague. The goals of this retrospective award are to recognize high-quality work that has stood the test
of time, and to highlight the excellent work that appears at WMT.

The WMT12 program committee voted on the best paper from a list of eight nominated papers. Six of
these were nominated by high citation counts, which we defined as having 10 or more citations in the
ACL anthology network (excluding self-citations), and more than 30 citations on Google Scholar. We
also opened the nomination process to the committee, which yielded two further nomination for papers
that did not reach the citation threshold but were deemed to be excellent.

The program committee decided to award the WMT 5-year Retrospective Best Paper Award to:

Alon Lavie and Abhaya Agarwal. 2007. METEOR: An Automatic Metric for MT Evaluation with High
Levels of Correlation with Human Judgments. In Proceedings of the Workshop on Statistical Machine
Translation. Pages 228-231.

Like last year’s best paper award winner, Lavie and Agarwal’s publication was a short paper describing
the authors’ submission to one of the WMT shared tasks. WMT07 introduced a new shared task to
evaluate the quality of automatic metrics for machine translation quality by comparing the metrics’
rankings to human rankings of MT systems. In the shared task, METEOR demonstrated higher
correlation than BLEU (the de facto standard) across a variety of human evaluation measures, including
adequacy and fluency, ranking the translations of whole sentences, and ranking the translation of smaller
constituents within sentences.

The program committee members who selected Lavie and Agarwal’s paper pointed out that METEOR is
the only metric that has managed to compete with BLEU for attention in the MT world without a major
funder backing the metric. They pointed out that TER and HTER have also become prominent, but it
is not clear whether that would have happened without backing from DARPA. Furthermore, METEOR
has contributed substantially to improving the assessment of the quality of MT systems by showing the
importance of word similarity beyond surface form.

In many ways this paper represents the ideals of the WMT workshops. It introduced a novel approach
to the automatic evaluation of machine translation and demonstrated the metric’s value empirically by
comparing it to other state-of-the-art metrics on a public data set.

Congratulations to Alon Lavie and Abhaya Agarwal for their excellent work!
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Mark Fishel, Rico Sennrich, Maja Popović and Ondřej Bojar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

Class error rates for evaluation of machine translation output
Maja Popovic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

SPEDE: Probabilistic Edit Distance Metrics for MT Evaluation
Mengqiu Wang and Christopher Manning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Quality estimation for Machine Translation output using linguistic analysis and decoding features
Eleftherios Avramidis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Black Box Features for the WMT 2012 Quality Estimation Shared Task
Christian Buck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Linguistic Features for Quality Estimation
Mariano Felice and Lucia Specia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

PRHLT Submission to the WMT12 Quality Estimation Task
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A. R. Fonollosa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Joshua 4.0: Packing, PRO, and Paraphrases
Juri Ganitkevitch, Yuan Cao, Jonathan Weese, Matt Post and Chris Callison-Burch . . . . . . . . . . 283

Syntax-aware Phrase-based Statistical Machine Translation: System Description
Ulrich Germann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

QCRI at WMT12: Experiments in Spanish-English and German-English Machine Translation of News
Text

Francisco Guzman, Preslav Nakov, Ahmed Thabet and Stephan Vogel . . . . . . . . . . . . . . . . . . . . . 298

The RWTH Aachen Machine Translation System for WMT 2012
Matthias Huck, Stephan Peitz, Markus Freitag, Malte Nuhn and Hermann Ney . . . . . . . . . . . . . 304

Machine Learning for Hybrid Machine Translation
Sabine Hunsicker, Chen Yu and Christian Federmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

Towards Effective Use of Training Data in Statistical Machine Translation
Philipp Koehn and Barry Haddow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Joint WMT 2012 Submission of the QUAERO Project
Freitag Markus, Peitz Stephan, Huck Matthias, Ney Hermann, Niehues Jan, Herrmann Teresa,

Waibel Alex, Hai-son Le, Lavergne Thomas, Allauzen Alexandre, Buschbeck Bianka, Crego Joseph
Maria and Senellart Jean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

LIMSI @ WMT12
Hai-Son Le, Thomas Lavergne, Alexandre Allauzen, Marianna Apidianaki, Li Gong, Aurélien
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Abstract

Human assessment is often considered the

gold standard in evaluation of translation sys-

tems. But in order for the evaluation to

be meaningful, the rankings obtained from

human assessment must be consistent and

repeatable. Recent analysis by Bojar et

al. (2011) raised several concerns about the

rankings derived from human assessments of

English-Czech translation systems in the 2010

Workshop on Machine Translation. We extend

their analysis to all of the ranking tasks from

2010 and 2011, and show through an exten-

sion of their reasoning that the ranking is nat-

urally cast as an instance of finding the mini-

mum feedback arc set in a tournament, a well-

known NP-complete problem. All instances

of this problem in the workshop data are ef-

ficiently solvable, but in some cases the rank-

ings it produces are surprisingly different from

the ones previously published. This leads to

strong caveats and recommendations for both

producers and consumers of these rankings.

1 Introduction

The value of machine translation depends on its util-

ity to human users, either directly through their use

of it, or indirectly through downstream tasks such

as cross-lingual information extraction or retrieval.

It is therefore essential to assess machine transla-

tion systems according to this utility, but there is a

widespread perception that direct human assessment

is costly, unreproducible, and difficult to interpret.

Automatic metrics that predict human utility have

therefore attracted substantial attention since they

are at least cheap and reproducible given identical

data conditions, though they are frequently and cor-

rectly criticized for low interpretability and correla-

tion with true utility. Their use (and abuse) remains

contentious.

The organizers of the annual Workshop on Ma-

chine Translation (WMT) have taken a strong stance

in this debate, asserting the primacy of human eval-

uation. Every annual report of their findings since

2007 has included a variant of the following state-

ment:

It is our contention that automatic mea-

sures are an imperfect substitute for hu-

man assessment of translation quality.

Therefore, we define the manual evalua-

tion to be primary, and use the human

judgments to validate automatic metrics.

(Callison-Burch et al., 2011)

The workshop’s human evaluation component has

been gradually refined over several years, and as a

consequence it has produced a fantastic collection of

publicly available data consisting primarily of pair-

wise judgements of translation systems made by hu-

man assessors across a wide variety of languages

and tasks. Despite superb effort in the collection of

these assessments, less attention has been focused

on the final product derived from them: a totally-

ordered ranking of translation systems participating

in each task. Many of the official workshop results

depend crucially on this ranking, including the eval-

uation of both machine translation systems and auto-

matic metrics. Considering the enormous costs and

consequences of the ranking, it is important to ask:

is the method of constructing it accurate? The num-

ber of possible rankings is combinatorially large—

with at least ten systems (accounting for more than
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half the cases we analyzed) there are over three mil-

lion possible rankings, and with at least twenty (oc-

curring a few times), there are over 1018 possible

rankings. Exceptional care is therefore required in

producing the rankings.

Bojar et al. (2011) observed a number of discrep-

ancies in the ranking of English-Czech systems from

the 2010 workshop, making these questions ever

more pressing. We extend their analysis in several

ways.

1. We show, through a logical extension of their

reasoning about flaws in the evaluation, that

the final ranking can be naturally cast as an in-

stance of the minimal feedback arc set problem,

a well-known NP-Hard problem.

2. We analyze 25 tasks that were evaluated using

pairwise assessments from human annotators in

2010 and 2011.

3. We produce new rankings for each of the tasks,

which are in some cases surprisingly different

from the published rankings.

4. We identify a new set of concerns about sources

of error and uncertainty in the data.

2 Human Assessment as Pairwise Ranking

The workshop has conducted a variety of different

manual evaluation tasks over the last several years,

but its mainstay has been the relative ranking task.

Assessors are presented with a source sentence fol-

lowed by up to five translations, and are asked to

rank the translations from best to worst, with ties

allowed. Since it is usually infeasible to collect in-

dividual judgements for all sentences for all pairs of

systems on each task, consecutive sequences of three

sentences were randomly sampled from the test data,

with each sentence in each sequence presented to the

same annotator. Some samples were presented mul-

tiple times to the same assessor or to multiple asses-

sors in order to measure intra- and inter-annotator

agreement rates. Since there are often more than

five systems participating in the campaign, the can-

didate translations are likewise sampled from a pool

consisting of the machine translations and a human

reference translation, which is included for quality

JHU 1 JHU≺BBN-COMBO

BBN-COMBO 2 JHU≺RWTH

RWTH 3 JHU≺RWTH-COMBO

RWTH-COMBO 3 JHU≺CMU

CMU 4 BBN-COMBO≺RWTH

BBN-COMBO≺RWTH-COMBO

BBN-COMBO≺CMU

RWTH≡RWTH-COMBO

RWTH≺CMU

RWTH-COMBO≺CMU

Figure 1: Example human relative ranking of five sys-

tems (left) and the inferred pairwise rankings (right) on

a single sentence from the WMT 2010 German-English

campaign.

control purposes. It is important to note that the al-

gorithm used to compute the published final rank-

ings included all of this data, including comparisons

against the reference and the redundant assessments

used to compute inter-annotator agreement.

The raw data obtained from this process is a large

set of assessments. Each assessment consists of a

list of up to five systems (including the reference),

and a partial or total ordering of the list. The relative

ranking of each pair of systems contained in the list

is then taken to be their pairwise ranking. Hence a

single assessment of five systems yields ten implicit

pairwise rankings, as illustrated in Figure 1.

3 From Pairwise to Total Ranking

Given these pairwise rankings, the question now be-

comes: how do we decide on a total ordering of

the systems? In the WMT evaluation, this total or-

dering has two critical functions: it is published as

the official ranking of the participating systems; and

it is used as the ground truth against which auto-

matic evaluation metrics are graded, using Spear-

man’s rank correlation coefficient (without ties) as

the measure of accuracy. Choosing a total order is

non-trivial: there are N ! possible orderings of N
systems. Even with relatively small N of the work-

shop, this number can grow extremely large (over

1025 in the worst case of 25 systems).

The method used to generate the published rank-

ings is simple. For each system A among the set

S of ranked systems (which includes the reference),
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compute the number of times that A is ranked better

than or equivalent to any system B ∈ S, and then

divide by the total number of comparisons involv-

ing A, yielding the following statistic for system A,

which we call WMT-OFFICAL.

score(A) =
∑

B∈S count(A � B)∑
B∈S,3∈{≺,≡,�}, count(A3B)

(1)

The systems are ranked according to this statistic,

with higher scores resulting in a better rank.

Bojar et al. (2011) raise many concerns about this

method for ranking the systems. While we refer the

reader to their paper for a detailed analysis, we focus

on two issues here:

• Since ties are rewarded, systems may be un-

duly rewarded for merely being similar to oth-

ers, rather than clearly better. This is of particu-

lar concern since there is often a cohort of very

similar systems in the pool, such as those based

on very similar techniques.

• Since the reference is overwhelmingly favored

by the assessors, those systems that are more

frequently compared against the reference in

the random sample will be unfairly penalized.

These observations suggest that the statistic

should be changed to reward only outright wins in

pairwise comparisons, and to lessen the number of

comparisons to the reference. While they do not

recommend a specific sampling rate for comparisons

against the reference, the logical conclusion of their

reasoning is that it should not be sampled at all. This

yields the following statistic similar to one reported

in the appendices of the WMT proceedings, which

we call HEURISTIC 2.

score(A) =

∑
B∈S−ref count(A ≺ B)∑

B∈S−ref,3∈{≺,≡,�}, count(A3B)
(2)

However, the analysis by Bojar et al. (2011) goes

further and suggests disregarding the effect of ties

altogether by removing them from the denominator.

This yields their final recommended statistic, which

we call BOJAR.

score(A) =

∑
B∈S−ref count(A ≺ B)∑

B∈S−ref,3∈{≺,�}, count(A3B)
(3)

Superficially, this appears to be an improve-

ment. However, we observe in the rankings that

two anonymized commercial systems, denoted ON-

LINEA and ONLINEB, consistently appear at or near

the top of the rankings in all tasks. It is natural to

wonder: even if we leave out the reference from

comparisons, couldn’t a system still be penalized

simply by being compared against ONLINEA and

ONLINEB more frequently than its competitors? On

the other hand, couldn’t a system be rewarded sim-

ply by being compared against a bad system more

frequently than its competitors?

There are many possible decisions that we could

make, each leading to a different ranking. However,

there is a more fundamental problem: each of these

heuristic scores is based on statistics aggregated over

completely incomparable sets of data. Any total

ordering of the systems must make a decision be-

tween every pair of systems. When that ranking is

computed using scores computed with any of Equa-

tions 1 through 3, we aggregate over completely dif-

ferent sets of sentences, rates of comparison with

other systems, and even annotators! Deriving sta-

tistical conclusions from such comparisons is at best

suspect. If we want to rank A and B relative to each

other, it would be more reliable to aggregate over

the same set of sentences, same rates of comparison,

and the same annotators. Fortunately, we have this

data in abundance: it is the collection of pairwise

judgements that we started with.

4 Pairwise Ranking as a Tournament

The human assessments are a classic example of a

tournament. A tournament is a graph of N vertices

with exactly
(
N
2

)
directed edges—one between each

pair of vertices. The edge connecting each pair of

vertices A and B points to whichever vertex which

is worse in an observed pairwise comparison be-

tween them. Tournaments are a natural represen-

tation of many ranking problems, including search

results, transferable voting systems, and ranking of

sports teams.1

Consider the simple weighted tournament de-

picted in Figure 2. This tournament is acyclic, which

means that we can obtain a total ordering of the ver-

1The original motivating application was modeling the peck-

ing order of chickens (Landau, 1951).
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A

B

C

D

3

2

1

1

1

2

Consistent ranking: A ≺ B ≺ C ≺ D

Ranking according to Eq. 1: A ≺ C ≺ B ≺ D

Figure 2: A weighted tournament and two different rank-

ings of its vertices.

tices that is consistent with all of the pairwise rank-

ings simply by sorting the vertices topologically. We

start by choosing the vertex with no incoming edges

(i.e. the one that wins in all pairwise comparisons),

place it at the top of the ranking, and remove it along

with all of its outgoing edges from the graph. We

then repeat the procedure with the remaining ver-

tices in the graph, placing the next vertex behind

the first one, and so on. The result is a ranking that

preserves all of the pairwise rankings in the original

graph.

This example also highlights a problem in Equa-

tion 1. Imagine an idealized case in which the con-

sistent ranking of the vertices in Figure 2 is their true

ranking, and furthermore that this ranking is unam-

biguous: that is, no matter how many times we sam-

ple the comparison A with B, the result is always

that A ≺ B, and likewise for all vertices. If the

weights in this example represented the number of

random samples for each system, then Equation 1

will give the inaccurate ranking shown, since it pro-

duces a score of 2
5 for B and 2

4 for C.

Tournaments can contain cycles, and as we will

show this is often the case in the WMT data. When

this happens, a reasonable solution is to minimize

the discrepancy between the ranking and the ob-

served data. We can do this by reversing a set of

edges in the graph such that (1) the resulting graph

is acyclic, and (2) the summed weights of the re-

versed edges is minimized. A set of edges satisfying

these constraints is called the minimum feedback arc

set (Figure 3).

The feedback arc set problem on general graphs

E

F

G

H

3

2

1

2

1

2

Figure 3: A tournament with a cycle on vertices E, F ,

and G. The dotted edge is the only element of a minimum

feedback arc set: reversing it produces an acyclic graph.

Algorithm 1 Minimum feedback arc set solver

Input: Graph G = (V,E), weights w : E → R+

Initialize all costs to∞
Let cost(∅)← 0
Add ∅ to agenda A
repeat

Let R̂← argminR∈A cost(R)
Remove R̂ from A . R̂ is a partial ranking

Let U ← V \R̂ . set of unranked vertices

for each vertex v ∈ U do

Add R̂ ∪ v to agenda

Let c←
∑

v′∈U :〈v′,v〉∈E w(〈v′, v〉)
Let d← cost(R̂) + c
Let cost(R̂∪{v})← min(cost(R̂∪{v}), d)

until argminR∈A cost(h) = V

is one of the 21 classic problems shown to be

NP-complete by Karp (1972).2 Finding the mini-

mum feedback arc set in a tournament was shown

to be NP-hard by Alon (2006) and Charbit et al.

(2007). However, the specific instances exhibited

in the workshop data tend to have only a few cy-

cles, so a relatively straightforward algorithm (for-

malized above for completeness) solves them ex-

actly without much difficulty. The basic idea is to

construct a dynamic program over the possible rank-

ings. Each item in the dynamic program represents

a ranking of some subset of the vertices. An item

is extended by choosing one of the unranked ver-

tices and appending it to the hypothesis, adding to

its cost the weights of all edges from the other un-

ranked vertices to the newly appended vertex (the

2Karp proved NP-completeness of the decision problem that

asks whether there is a feedback arc set of size k; NP-hardness

of the minimization problem follows.
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Task name #sys #pairs Task name #sys #pairs

2010 Czech-English 12 5375 2011 English-French individual 17 9086

2010 English-Czech 17 13538 2011 English-German syscomb 4 4374

2010 English-French 19 7962 2011 English-German individual 22 12996

2010 English-German 18 13694 2011 English-Spanish syscomb 4 5930

2010 English-Spanish 16 5174 2011 English-Spanish individual 15 11130

2010 French-English 24 8294 2011 French-English syscomb 6 3000

2010 German-English 25 10424 2011 French-English individual 18 6986

2010 Spanish-English 14 11307 2011 German-English syscomb 8 3844

2011 Czech-English syscomb 4 2602 2011 German-English individual 20 9079

2011 Czech-English individual 8 4922 2011 Spanish-English syscomb 6 4156

2011 English-Czech syscomb 2 2686 2011 Spanish-English individual 15 5652

2011 English-Czech individual 10 17875 2011 Urdu-English tunable metrics 8 6257

2011 English-French syscomb 2 880

Table 1: The set of tasks we analyzed, including the number of participating systems (excluding the reference, #sys),

and the number of implicit pairwise judgements collected (including the reference, #pairs).

edges to be reversed). This hypothesis space should

be familiar to most machine translation researchers

since it closely resembles the search space defined

by a phrase-based translation model (Koehn, 2004).

We use Dijkstra’s algorithm (1959) to explore it ef-

ficiently; the complete algorithm is simply a gener-

alization of the simple algorithm for acyclic tourna-

ments described above.

5 Experiments and Analysis

We experimented with 25 relative ranking tasks pro-

duced by WMT 2010 (Callison-Burch et al., 2010)

and WMT 2011 (Callison-Burch et al., 2011); the

full set is shown in Table 1. For each task we con-

sidered four possible methods of ranking the data:

sorting by any of Equation 1 through 3, and sort-

ing consistent with reversal of a minimum feedback

arc set (MFAS). To weight the edges for the latter

approach, we simply used the difference in num-

ber of assessments preferring one system over the

other; that is, an edge from A to B is weighted

count(A ≺ B)− count(A � B). If this quantity is

negative, there is instead an edge from B to A. The

purpose of this simple weighting is to ensure a so-

lution that minimizes the number of disagreements

with all available evidence, counting each pairwise

comparison as equal.3

3This is not necessarily the best choice of weighting. For

instance, (Bojar et al., 2011) observe that human assessments of

WMT-OFFICIAL MFAS BOJAR

(Eq 1) (Eq 3)

ONLINE-B CU-MARECEK ONLINE-B

CU-BOJAR ONLINE-B CU-BOJAR

CU-MARECEK CU-BOJAR CU-MARECEK

CU-TAMCHYNA CU-TAMCHYNA CU-TAMCHYNA

UEDIN CU-POPEL CU-POPEL

CU-POPEL UEDIN UEDIN

COMMERCIAL2 COMMERCIAL1 COMMERCIAL2

COMMERCIAL1 COMMERCIAL2 COMMERCIAL1

JHU JHU JHU

CU-ZEMAN CU-ZEMAN CU-ZEMAN

38 0 69

Table 2: Different rankings of the 2011 Czech-English

task. Only the MFAS ranking is acyclic with respect to

pairwise judgements. The final row indicates the weight

of the voilated edges.

An MFAS solution written in Python took only a

few minutes to produce rankings for all 25 tasks on a

2.13 GHz Intel Core 2 Duo processor, demonstrating

that it is completely feasible despite being theoreti-

cally intractible. One value of computing this solu-

tion is that it enables us to answer several questions,

shorter sentences tend to be more consistent with each other, so

perhaps they should be weighted more highly. Unfortunately,

it is not clear how to evaluate alternative weighting schemes,

since there is no ground truth for such meta-evaluations.
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ONLINEB LIUM ≺ ONLINEB 1 RWTH-COMBO

RWTH-COMBO UPV-COMBO ≺ CAMBRIDGE 6 CMU-HYPOSEL-COMBO

CMU-HYPOSEL-COMBO JHU ≺ CAMBRIDGE 1 DCU-COMBO

CAMBRIDGE LIMSI ≺ UEDIN 1 ONLINEB

LIUM LIMSI ≺ CMU-HYPOSEL-COMBO 1 LIUM

DCU-COMBO LIUM-COMBO ≺ CAMBRIDGE 1 CMU-HEAFIELD-COMBO

CMU-HEAFIELD-COMBO LIUM-COMBO ≺ NRC 3 UPV-COMBO

UPV-COMBO RALI ≺ UEDIN 1 NRC

NRC RALI ≺ UPV-COMBO 4 CAMBRIDGE

UEDIN RALI ≺ JHU 1 UEDIN

JHU RALI ≺ LIUM 3 JHU-COMBO

LIMSI LIG ≺ UEDIN 6 LIMSI

JHU-COMBO BBN-COMBO ≺ NRC 3 RALI

LIUM-COMBO BBN-COMBO ≺ UEDIN 5 LIUM-COMBO

RALI BBN-COMBO ≺ UPV-COMBO 5 BBN-COMBO

LIG BBN-COMBO ≺ JHU 4 JHU

BBN-COMBO RWTH ≺ UPV-COMBO 3 RWTH

RWTH CMU-STATXFER ≺ JHU 1 LIG

CMU-STATXFER CMU-STATXFER ≺ LIG 1 ONLINEA

ONLINEA ONLINEA ≺ RWTH 1 CMU-STATXFER

HUICONG ONLINEA ≺ JHU 2 HUICONG

DFKI HUICONG ≺ LIG 3 DFKI

CU-ZEMAN DFKI ≺ RWTH 3 GENEVA

GENEVA DFKI ≺ CMU-STATXFER 1 CU-ZEMAN

Table 3: 2010 French-English reranking with MFAS solver. The left column shows the optimal ranking, while the

center shows the pairwise rankings that are violated by this ranking, along with their edge weights. The right column

shows the ranking under WMT-OFFICIAL (Eq. 1), originally published as two separate tables.

both about the pairwise data itself, and the proposed

heuristic ranking of Bojar et al. (2011).

5.1 Cycles in the Pairwise Rankings

Our first experiment checks for cycles in the tourna-

ments. Only nine were acyclic, including all eight

of the system combination tasks, each of which con-

tained only a handful of systems. The most inter-

esting, however, is the 2011 English-Czech individ-

ual task. This task is notable because the heuristic

rankings do not produce a ranking that is consistent

with all of the pairwise judgements, even though one

exists. The three rankings are illustrated side-by-

side in Table 2. One obvious problem is that neither

heuristic score correctly identifies CU-MARECEK as

the best system, even though it wins pairwise com-

parisons against all other systems (the WMT 2011

proceedings do identify it as a winner, despite not

placing it in the highest rank).

On the other hand, the most difficult task to dis-

entangle is the 2010 French-English task (Table 3),

which included 25 systems (individual and system

combinations were evaluated as a group for this task,

despite being reported in separate tables in official

results). Its optimal ranking with MFAS still vio-

lates 61 pairwise ranking samples — there is sim-

ply no sensible way to put these systems into a to-

tal order. On the other hand, the heuristic rankings

based on Equations 1 through 3 violate even more

comparisons: 107, 108, and 118, respectively. Once

again we see a curious result in the top of the heuris-

tic rankings, with system ONLINEB falling several

spots below the top position in the heurstic ranking,

despite losing out only to LIUM by one vote.

Our major concern, however, is that over half of

the tasks included cycles of one form or another in

the tournaments. This represents a strong inconsis-
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tency in the data.

5.2 Evaluation of Heuristic Scores

Taking the analysis above further, we find that the

total number of violations of pairwise preferences

across all tasks stands at 396 for the MFAS solution,

and at 1140, 1215, 979 for Equations 1 through 3.

This empirically validates the suggestion by Bojar

et al. (2011) to remove ties from both the numera-

tor and denominator of the heuristic measure. On

the other hand, despite the intuitive arguments in its

favor, the empirical evidence does not strongly fa-

vor any of the heuristic measures, all of which are

substantially worse than the MFAS solution.

In fact, HEURISTIC 2 (Eq. 2) fails quite spec-

tacularly in one case: on the ranking of the sys-

tems produced by the tunable metrics task of WMT

2011 (Figure 4). Apart from producing a ranking

very inconsistent with the pairwise judgements, it

achieves a Spearman’s rank correlation coefficent

of 0.43 with the MFAS solution. By comparison,

WMT-OFFICIAL (Eq. 1) produces the best ranking,

with a correlation of 0.93 with the MFAS solution.

The two heuristic measures obtain an even lower

correlation of 0.19 with each other. This difference

in the two rankings was noted in the WMT 2011

report; however comparison with the MFAS ranker

suggests that the published rankings according to the

official metric are about as accurate as those based

on other heuristic metrics.

6 Discussion

Unfortunately, reliably ranking translation systems

based on human assessments appears to be a difficult

task, and it is unclear that WMT has succeeded yet.

Some results presented here, such as the complete

inability to obtain a sensible ordering on the 2010

French-English task—or to produce an acyclic tour-

nament on more than half the tasks—indicate that

further work is needed, and we feel that the pub-

lished results of the human assessment should be re-

garded with a healthy skepticism. There are many

potential sources of uncertainty in the data:

• It is quite rare that one system is uniformly bet-

ter than another. Rather, one system will tend

to perform better in aggregate across many sen-

tences. The number of sentences on which this

MFAS Ranking HEURISTIC 2 Ranking

CMU-BLEU CU-SEMPOS-BLEU

CMU-BLEU-SINGLE NUS-TESLA-F

CU-SEMPOS-BLEU CMU-BLEU

RWTH-CDER CMU-BLEU-SINGLE

CMU-METEOR STANFORD-DCP

STANFORD-DCP CMU-METEOR

NUS-TESLA-F RWTH-CDER

SHEFFIELD-ROSE SHEFFIELD-ROSE

Table 4: Rankings of the WMT 2011 tunable metrics

task. MFAS finds a near-optimal solution, violating only

six judgements with reversals of CMU-METEOR ≺ CMU-

BLEU and STANFORD-DCP ≺ CMU-BLEU-SINGLE. In

contrast, the HEURISTIC2 (Eq. 2) solution violates 103

pairwise judgements.

improvement can be reliably observed will vary

greatly. In many cases, it may be less than the

number of samples.

• Individual assessors may be biased or mali-

cious.

• The reliability of pairwise judgements varies

with sentence length, as noted by Bojar et al.

(2011).

• The pairwise judgements are not made directly,

but inferred from a larger relative ranking.

• The pairwise judgements are not independent,

since each sample consists of consecutive sen-

tences from the same document. It is likely

that some systems are systematically better or

worse on particular documents.

• The pairwise judgements are not independent,

since many of the assessments are intention-

ally repeated to assess intra- and inter-annotator

agreement.

• Many of the systems will covary, since they are

often based on the same underlying techniques

and software.

How much does any one or all of these factors

affect the final ranking? The technique described

above does not even attempt to address this ques-

tion. Indeed, modeling this kind of data still ap-

pears to be unsolved: a recent paper by Wauthier
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and Jordan (2011) on modeling latent annotator bias

presents one of the first attempts at solving just one

of the above problems, let alone all of them.

Simple hypothesis testing of the type reported in

the workshop results is simply inadequate to tease

apart the many interacting effects in this type of

data and may lead to many unjustified conclusions.

The tables in the Appendix of Callison-Burch et al.

(2011) report p-values of up to 1%, computed for

every pairwise comparison in the dataset. However,

there are over two thousand comparisons in this ap-

pendix, so even at an error rate of 1% we would ex-

pect more than twenty to be wrong. Making matters

worse, many of the p-values are in fact much than

higher than 1%. It is quite reasonable to assume

that hundreds of the pairwise rankings inferred from

these tables are incorrect, or at least meaningless.

Methods for multiple hypothesis testing (Benjamini

and Hochberg, 1995) should be explored.

In short, there is much work to be done. This pa-

per has raised more questions than it answered, but

we offer several recommendations.

• We recommend against using the metric pro-

posed by Bojar et al. (2011). While their anal-

ysis is very insightful, their proposed heuristic

metric is not substantially better than the met-

ric used in the official rankings. If anything, an

MFAS-based ranking should be preferred since

it can minimize discrepancies with the pairwise

rankings, but as we have discussed, we believe

this is far from a complete solution.

• Reconsider the use of total ordering, especially

for the evaluation of automatic metrics. As

demonstrated in this paper, there are many pos-

sible ways to generate a total ordering, and the

choice of one may be arbitrary. In some cases

there may not be enough evidence to support a

total ordering, or the evidence is contradictory,

and committing to one may be a source of sub-

stantial noise in the gold standard for evaluating

automatic metrics.

• Consider a pilot study to clearly identify which

sources of uncertainty in the data affect the

rankings and devise methods to account for it,

which may involve redesigning the data collec-

tion protocol. The current approach is designed

to collect data for a variety of different goals,

including intra- and inter-annotator agreement,

pairwise coverage, and maximum throughput.

However, some of goals are at cross-purposes

in that they make it more difficult to make reli-

able statistical inferences about any one aspect

of the data. Additional care should be taken

to minimize dependencies between the samples

used to produce the final ranking.

• Encourage further detailed analysis of the ex-

isting datasets, perhaps through a shared task.

The data that has been amassed so far through

WMT is the best available resource for mak-

ing progress on solving the difficult problem of

producing reliable and repeatable human rank-

ings of machine translation systems. However,

this problem is not solved yet, and it will re-

quire sustained effort to make that progress.
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Abstract

This paper presents the results of the WMT12
shared tasks, which included a translation
task, a task for machine translation evaluation
metrics, and a task for run-time estimation of
machine translation quality. We conducted a
large-scale manual evaluation of 103 machine
translation systems submitted by 34 teams.
We used the ranking of these systems to mea-
sure how strongly automatic metrics correlate
with human judgments of translation quality
for 12 evaluation metrics. We introduced a
new quality estimation task this year, and eval-
uated submissions from 11 teams.

1 Introduction

This paper presents the results of the shared tasks
of the Workshop on statistical Machine Translation
(WMT), which was held at NAACL 2012. This
workshop builds on six previous WMT workshops
(Koehn and Monz, 2006; Callison-Burch et al.,
2007; Callison-Burch et al., 2008; Callison-Burch
et al., 2009; Callison-Burch et al., 2010; Callison-
Burch et al., 2011). In the past, the workshops have
featured a number of shared tasks: a translation task
between English and other languages, a task for au-
tomatic evaluation metrics to predict human judg-
ments of translation quality, and a system combina-
tion task to get better translation quality by combin-
ing the outputs of multiple translation systems. This
year we discontinued the system combination task,
and introduced a new task in its place:

• Quality estimation task – Structured predic-
tion tasks like MT are difficult, but the dif-

ficulty is not uniform across all input types.
It would thus be useful to have some mea-
sure of confidence in the quality of the output,
which has potential usefulness in a range of set-
tings, such as deciding whether output needs
human post-editing or selecting the best trans-
lation from outputs from a number of systems.
This shared task focused on sentence-level es-
timation, and challenged participants to rate
the quality of sentences produced by a stan-
dard Moses translation system on an English-
Spanish news corpus in one of two tasks:
ranking and scoring. Predictions were scored
against a blind test set manually annotated with
relevant quality judgments.

The primary objectives of WMT are to evaluate
the state of the art in machine translation, to dissem-
inate common test sets and public training data with
published performance numbers, and to refine eval-
uation methodologies for machine translation. As
with previous workshops, all of the data, transla-
tions, and collected human judgments are publicly
available.1 We hope these datasets form a valuable
resource for research into statistical machine transla-
tion, system combination, and automatic evaluation
or automatic prediction of translation quality.

2 Overview of the Shared Translation Task

The recurring task of the workshop examines trans-
lation between English and four other languages:
German, Spanish, French, and Czech. We created a

1http://statmt.org/wmt12/results.html
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test set for each language pair by translating newspa-
per articles. We additionally provided training data
and two baseline systems.

2.1 Test data

The test data for this year’s task was created by hir-
ing people to translate news articles that were drawn
from a variety of sources from November 15, 2011.
A total of 99 articles were selected, in roughly equal
amounts from a variety of Czech, English, French,
German, and Spanish news sites:2

Czech: Blesk (1), CTK (1), E15 (1), denı́k (4),
iDNES.cz (3), iHNed.cz (3), Ukacko (2),
Zheny (1)

French: Canoe (3), Croix (3), Le Devoir (3), Les
Echos (3), Equipe (2), Le Figaro (3), Libera-
tion (3)

Spanish: ABC.es (4), Milenio (4), Noroeste (4),
Nacion (3), El Pais (3), El Periodico (3), Prensa
Libre (3), El Universal (4)

English: CNN (3), Fox News (2), Los Angeles
Times (3), New York Times (3), Newsweek (1),
Time (3), Washington Post (3)

German: Berliner Kurier (1), FAZ (3), Giessener
Allgemeine (2), Morgenpost (3), Spiegel (3),
Welt (3)

The translations were created by the professional
translation agency CEET.3 All of the translations
were done directly, and not via an intermediate lan-
guage.

Although the translations were done profession-
ally, we observed a number of errors. These errors
ranged from minor typographical mistakes (I was
terrible. . . instead of It was terrible. . . ) to more
serious errors of incorrect verb choices and nonsen-
sical constructions. An example of the latter is the
French sentence (translated from German):

Il a gratté une planche de béton, perdit des
pièces du véhicule.
(He scraped against a concrete crash bar-
rier and lost parts of the car.)

2For more details see the XML test files. The docid tag
gives the source and the date for each document in the test set,
and the origlang tag indicates the original source language.

3http://www.ceet.eu/

Here, the French verb gratter is incorrect, and the
phrase planche de béton does not make any sense.

We did not quantify errors, but collected a number
of examples during the course of the manual evalua-
tion. These errors were present in the data available
to all the systems and therefore did not bias the re-
sults, but we suggest that next year a manual review
of the professionally-collected translations be taken
prior to releasing the data in order to correct mis-
takes and provide feedback to the translation agency.

2.2 Training data

As in past years we provided parallel corpora to train
translation models, monolingual corpora to train lan-
guage models, and development sets to tune system
parameters. Some statistics about the training mate-
rials are given in Figure 1.

2.3 Submitted systems

We received submissions from 34 groups across 18
institutions. The participants are listed in Table 1.
We also included two commercial off-the-shelf MT
systems, three online statistical MT systems, and
three online rule-based MT systems. Not all systems
supported all language pairs. We note that the eight
companies that developed these systems did not sub-
mit entries themselves, but were instead gathered by
translating the test data via their interfaces (web or
PC).4 They are therefore anonymized in this paper.
The data used to construct these systems is not sub-
ject to the same constraints as the shared task partic-
ipants. It is possible that part of the reference trans-
lations that were taken from online news sites could
have been included in the systems’ models, for in-
stance. We therefore categorize all commercial sys-
tems as unconstrained when evaluating the results.

3 Human Evaluation

As with past workshops, we placed greater empha-
sis on the human evaluation than on the automatic
evaluation metric scores. It is our contention that
automatic measures are an imperfect substitute for
human assessment of translation quality. Therefore,
we define the manual evaluation to be primary, and

4We would like to thank Ondřej Bojar for harvesting the
commercial entries, Christian Federmann for the statistical MT
entries, and Hervé Saint-Amand for the rule-based MT entries.
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Europarl Training Corpus

Spanish↔ English French↔ English German↔ English Czech↔ English
Sentences 1,965,734 2,007,723 1,920,209 646,605

Words 56,895,229 54,420,026 60,125,563 55,642,101 50,486,398 53,008,851 14,946,399 17,376,433
Distinct words 176,258 117,481 140,915 118,404 381,583 115,966 172,461 63,039

News Commentary Training Corpus

Spanish↔ English French↔ English German↔ English Czech↔ English
Sentences 157,302 137,097 158,840 136,151

Words 4,449,786 3,903,339 3,915,218 3,403,043 3,950,394 3,856,795 2,938,308 3,264,812
Distinct words 78,383 57,711 63,805 53,978 130,026 57,464 136,392 52,488

United Nations Training Corpus

Spanish↔ English French↔ English
Sentences 11,196,913 12,886,831

Words 318,788,686 365,127,098 411,916,781 360,341,450
Distinct words 593,567 581,339 565,553 666,077

109 Word Parallel Corpus

French↔ English
Sentences 22,520,400

Words 811,203,407 668,412,817
Distinct words 2,738,882 2,861,836

CzEng Training Corpus

Czech↔ English
Sentences 14,833,358

Words 200,658,857 228,040,794
Distinct words 1,389,803 920,824

Europarl Language Model Data

English Spanish French German Czech
Sentence 2,218,201 2,123,835 2,190,579 2,176,537 668,595
Words 59,848,044 60,476,282 63,439,791 53,534,167 14,946,399

Distinct words 123,059 181,837 145,496 394,781 172,461

News Language Model Data

English Spanish French German Czech
Sentence 51,827,706 8,627,438 16,708,622 30,663,107 18,931,106
Words 1,249,883,955 247,722,726 410,581,568 576,833,910 315,167,472

Distinct words 2,265,254 926,999 1,267,582 3,336,078 2,304,933

News Test Set

English Spanish French German Czech
Sentences 3003

Words 73,785 78,965 81,478 73,433 65,501
Distinct words 9,881 12,137 11,441 14,252 17,149

Figure 1: Statistics for the training and test sets used in the translation task. The number of words and the number of
distinct words (case-insensitive) is based on the provided tokenizer.
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ID Participant
CMU Carnegie Mellon University (Denkowski et al., 2012)
CU-BOJAR Charles University - Bojar (Bojar et al., 2012)
CU-DEPFIX Charles University - DEPFIX (Rosa et al., 2012)
CU-POOR-COMB Charles University - Bojar (Bojar et al., 2012)
CU-TAMCH Charles University - Tamchyna (Tamchyna et al., 2012)
CU-TECTOMT Charles University - TectoMT (Dušek et al., 2012)
DFKI-BERLIN German Research Center for Artificial Intelligence (Vilar, 2012)
DFKI-HUNSICKER German Research Center for Artificial Intelligence - Hunsicker (Hunsicker et al., 2012)
GTH-UPM Technical University of Madrid (López-Ludeña et al., 2012)
ITS-LATL Language Technology Laboratory @ University of Geneva (Wehrli et al., 2009)
JHU Johns Hopkins University (Ganitkevitch et al., 2012)
KIT Karlsruhe Institute of Technology (Niehues et al., 2012)
LIMSI LIMSI (Le et al., 2012)
LIUM University of Le Mans (Servan et al., 2012)
PROMT ProMT (Molchanov, 2012)
QCRI Qatar Computing Research Institute (Guzman et al., 2012)
QUAERO The QUAERO Project (Markus et al., 2012)
RWTH RWTH Aachen (Huck et al., 2012)
SFU Simon Fraser University (Razmara et al., 2012)
UEDIN-WILLIAMS University of Edinburgh - Williams (Williams and Koehn, 2012)
UEDIN University of Edinburgh (Koehn and Haddow, 2012)
UG University of Toronto (Germann, 2012)
UK Charles University - Zeman (Zeman, 2012)
UPC Technical University of Catalonia (Formiga et al., 2012)
COMMERCIAL-[1,2] Two commercial machine translation systems
ONLINE-[A,B,C] Three online statistical machine translation systems
RBMT-[1,3,4] Three rule-based statistical machine translation systems

Table 1: Participants in the shared translation task. Not all teams participated in all language pairs. The translations
from the commercial, online, and rule-based systems were crawled by us, not submitted by the respective companies,
and are therefore anonymized. Anonymized identifiers were chosen so as to correspond with the WMT11 systems.
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Language Pair Num Label Labels per
Systems Count System

Czech-English 6 6,470 1,078.3
English-Czech 13 11,540 887.6
German-English 16 7,135 445.9
English-German 15 8,760 584.0
Spanish-English 12 5,705 475.4
English-Spanish 11 7,375 670.4
French-English 15 6,975 465.0
English-French 15 7,735 515.6
Overall 103 61,695 598

Table 2: A summary of the WMT12 ranking task, show-
ing the number of systems and number of labels (rank-
ings) collected for each of the language translation tasks.

use the human judgments to validate automatic met-
rics.

Manual evaluation is time consuming, and it re-
quires a large effort to conduct on the scale of our
workshop. We distributed the workload across a
number of people, beginning with shared-task par-
ticipants and interested volunteers. This year, we
also opened up the evaluation to non-expert anno-
tators hired on Amazon Mechanical Turk (Callison-
Burch, 2009). To ensure that the Turkers provided
high quality annotations, we used controls con-
structed from the machine translation ranking tasks
from prior years. Control items were selected such
that there was high agreement across the system de-
velopers who completed that item. In all, there were
229 people who participated in the manual evalua-
tion, with 91 workers putting in more than an hour’s
worth of effort, and 21 putting in more than four
hours. After filtering Turker rankings against the
controls to discard Turkers who fell below a thresh-
old level of agreement on the control questions,
there was a collective total of 336 hours of usable
labor. This is similar to the total of 361 hours of
labor collected for WMT11.

We asked annotators to evaluate system outputs
by ranking translated sentences relative to each
other. This was our official determinant of trans-
lation quality. The total number of judgments col-
lected for each of the language pairs is given in Ta-
ble 2.

3.1 Ranking translations of sentences

Ranking translations relative to each other is a rea-
sonably intuitive task. We therefore kept the instruc-
tions simple:

You are shown a source sentence followed
by several candidate translations.
Your task is to rank the translations from
best to worst (ties are allowed).

Each screen for this task involved judging trans-
lations of three consecutive source segments. For
each source segment, the annotator was shown the
outputs of five submissions, and asked to rank them.
We refer to each of these as ranking tasks or some-
times blocks.

Every language task had more than five partici-
pating systems — up to a maximum of 16 for the
German-English task. Rather than attempting to get
a complete ordering over the systems in each rank-
ing task, we instead relied on random selection and
a reasonably large sample size to make the compar-
isons fair.

We use the collected rank labels to assign each
system a score that reflects how highly that system
was usually ranked by the annotators. The score for
some systemA reflects how frequently it was judged
to be better than other systems. Specifically, each
block in whichA appears includes four implicit pair-
wise comparisons (against the other presented sys-
tems). A is rewarded once for each of the four com-
parisons in which A wins, and its score is the num-
ber of such winning pairwise comparisons, divided
by the total number of non-tying pairwise compar-
isons involving A.

This scoring metric is different from that used in
prior years in two ways. First, the score previously
included ties between system rankings. In that case,
the score for A reflected how often A was rated as
better than or equal to other systems, and was nor-
malized by all comparisons involving A. However,
this approach unfairly rewards systems that are sim-
ilar (and likely to be ranked as tied). This is prob-
lematic since many of the systems use variations of
the same underlying decoder (Bojar et al., 2011).

A second difference is that this year we no longer
include comparisons against reference translations.
In the past, reference translations were included
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among the systems to be ranked as controls, and
the pairwise comparisons were used in determin-
ing the best system. However, workers have a very
clear preference for reference translations, so includ-
ing them unduly penalized systems that, through
(un)luck of the draw, were pitted against the ref-
erences more often. These changes are part of a
broader discussion of the best way to produce the
system ranking, which we discuss at length in Sec-
tion 4.

The system scores are reported in Section 3.3.
Appendix A provides detailed tables that contain
pairwise head-to-head comparisons between pairs of
systems.

3.2 Inter- and Intra-annotator agreement in
the ranking task

Each year we calculate the inter- and intra-annotator
agreement for the human evaluation, since a reason-
able degree of agreement must exist to support our
process as a valid evaluation setup. To ensure we
had enough data to measure agreement, we occa-
sionally showed annotators items that were repeated
from previously completed items. These repeated
items were drawn from ones completed by the same
annotator and from different annotators.

We measured pairwise agreement among anno-
tators using Cohen’s kappa coefficient (κ) (Cohen,
1960), which is defined as

κ =
P (A)− P (E)

1− P (E)

where P (A) is the proportion of times that the anno-
tators agree, and P (E) is the proportion of time that
they would agree by chance. Note that κ is basically
a normalized version of P (A), one which takes into
account how meaningful it is for annotators to agree
with each other, by incorporating P (E). Note also
that κ has a value of at most 1 (and could possibly
be negative), with higher rates of agreement result-
ing in higher κ.

We calculate P (A) by examining all pairs of
systems which had been judged by two or more
judges, and calculating the proportion of time that
they agreed that A > B, A = B, or A < B. In
other words, P (A) is the empirical, observed rate at
which annotators agree, in the context of pairwise

comparisons. P (A) is computed similarly for intra-
annotator agreement (i.e. self-consistency), but over
pairwise comparisons that were annotated more than
once by a single annotator.

As for P (E), it should capture the probability that
two annotators would agree randomly. Therefore:

P (E) = P (A>B)2 + P (A=B)2 + P (A<B)2

Note that each of the three probabilities in P (E)’s
definition are squared to reflect the fact that we are
considering the chance that two annotators would
agree by chance. Each of these probabilities is com-
puted empirically, by observing how often annota-
tors actually rank two systems as being tied. We
note here that this empirical computation is a depar-
ture from previous years’ analyses, where we had
assumed that the three categories are equally likely
(yielding P (E) = 1

9 + 1
9 + 1

9 = 1
3 ). We believe that

this is a more principled approach, which faithfully
reflects the motivation of accounting for P (E) in the
first place.

Table 3 gives κ values for inter-annotator and
intra-annotator agreement. These give an indica-
tion of how often different judges agree, and how
often single judges are consistent for repeated judg-
ments, respectively. The exact interpretation of the
kappa coefficient is difficult, but according to Lan-
dis and Koch (1977), 0 − 0.2 is slight, 0.2 − 0.4
is fair, 0.4 − 0.6 is moderate, 0.6 − 0.8 is sub-
stantial, and 0.8 − 1.0 is almost perfect. Based on
these interpretations, the agreement for sentence-
level ranking is fair for inter-annotator and moder-
ate for intra-annotator agreement. Consistent with
previous years, intra-annotator agreement is higher
than inter-annotator agreement, except for English–
Czech.

An important difference from last year is that the
evaluations were not constrained only to workshop
participants, but were made available to all Turk-
ers. The workshop participants were trusted to com-
plete the tasks in good faith, and we have multiple
years of data establishing general levels of inter- and
intra-annotator agreement. Their HITs were unpaid,
and access was limited with the use of a qualifica-
tion. The Turkers completed paid tasks, and we used
controls to filter out fraudulent and unconscientious
workers.
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INTER-ANNOTATOR AGREEMENT INTRA-ANNOTATOR AGREEMENT

LANGUAGE PAIRS P (A) P (E) κ P (A) P (E) κ

Czech-English 0.567 0.405 0.272 0.660 0.405 0.428
English-Czech 0.576 0.383 0.312 0.566 0.383 0.296
German-English 0.595 0.401 0.323 0.733 0.401 0.554
English-German 0.598 0.394 0.336 0.732 0.394 0.557
Spanish-English 0.540 0.408 0.222 0.792 0.408 0.648
English-Spanish 0.504 0.398 0.176 0.566 0.398 0.279
French-English 0.568 0.406 0.272 0.719 0.406 0.526
English-French 0.519 0.388 0.214 0.634 0.388 0.401
WMT12 0.568 0.396 0.284 0.671 0.396 0.455
WMT11 0.601 0.362 0.375 0.722 0.362 0.564

Table 3: Inter- and intra-annotator agreement rates for the WMT12 manual evaluation. For comparison, the WMT11
rows contain the results from the European languages individual systems task (Callison-Burch et al. (2011), Table 7).

Agreement rates vary widely across languages.
For inter-annotator agreements, the range is 0.176 to
0.336, while intra-annotator agreement ranges from
0.279 to 0.648. We note in particular the low agree-
ment rates among judgments in the English-Spanish
task, which is reflected in the relative lack of statis-
tical significance Table 4. The agreement rates for
this year were somewhat lower than last year.

3.3 Results of the Translation Task
We used the results of the manual evaluation to an-
alyze the translation quality of the different systems
that were submitted to the workshop. In our analy-
sis, we aimed to address the following questions:

• Which systems produced the best translation
quality for each language pair?

• Which of the systems that used only the pro-
vided training materials produced the best
translation quality?

Table 4 shows the system ranking for each of the
translation tasks. For each language pair, we define
a system as ‘winning’ if no other system was found
statistically significantly better (using the Sign Test,
at p ≤ 0.10). In some cases, multiple systems are
listed as winners, either due to a large number of par-
ticipants or a low number of judgments per system
pair, both of which are factors that make it difficult
to achieve statistical significance.

As in prior years, unconstrained online systems
A and B are among the best for many tasks, with

a few notable exceptions. CU-DEPFIX, which post-
processes the output of ONLINE-B, was judged as
the best system for English-Czech. For the French-
English and English-French tasks, constrained sys-
tems came out on top, with LIMSI appearing both
times. Consistent with prior years, the rule-based
systems performed very well on the English-German
task. A rule-based system also had a good showing
for English-Spanish, but not really anywhere else.
Among the systems competing in all tasks, no sin-
gle system consistently appeared among the top en-
trants. Participants that competed in all tasks tended
to fair worse, with the exception of UEDIN. Addi-
tionally, KIT appeared in four tasks and was a con-
strained winner each time.

4 Methods for Overall Ranking

Last year one of the long papers published at WMT
criticized our method for compiling the overall rank-
ing for systems in the translation task (Bojar et
al., 2011). This year another paper shows some
additional potential inconsistencies in the rankings
(Lopez, 2012). In this section we delve into a de-
tailed analysis of a variety of methods that use the
human evaluation to create an overall ranking of sys-
tems.

In the human evaluation, we collect ranking judg-
ments for output from five systems at a time. We in-
terpret them as 10 ·

(
5×4
2

)
pairwise judgments over

systems and use these to analyze how each system
faired compared against each of the others. Not all
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Czech-English
3,603–3,718 comparisons/system

System C? >others
ONLINE-B • N 0.65
UEDIN ? Y 0.60
CU-BOJAR Y 0.53
ONLINE-A N 0.53
UK Y 0.37
JHU Y 0.32

Spanish-English
1,527–1,775 comparisons/system

System C? >others
ONLINE-A • N 0.62
ONLINE-B • N 0.61
QCRI ? Y 0.60
UEDIN •? Y 0.58
UPC Y 0.57
GTH-UPM Y 0.52
RBMT-3 N 0.51
JHU Y 0.48
RBMT-4 N 0.46
RBMT-1 N 0.42
ONLINE-C N 0.42
UK Y 0.19

French-English
1,437–1,701 comparisons/system

System C? >others
LIMSI •? Y 0.63
KIT •? Y 0.61
ONLINE-A • N 0.59
CMU •? Y 0.57
ONLINE-B • N 0.57
UEDIN Y 0.55
LIUM Y 0.52
RWTH Y 0.52
RBMT-1 N 0.46
RBMT-3 N 0.46
UK Y 0.44
SFU Y 0.44
RBMT-4 N 0.43
JHU Y 0.41
ONLINE-C N 0.32

English-Czech
2,652–3,146 comparisons/system

System C? >others
CU-DEPFIX • N 0.66
ONLINE-B N 0.63
UEDIN ? Y 0.56
CU-TAMCH N 0.56
CU-BOJAR ? Y 0.54
CU-TECTOMT ? Y 0.53
ONLINE-A N 0.53
COMMERCIAL-1 N 0.48
COMMERCIAL-2 N 0.46
CU-POOR-COMB Y 0.44
UK Y 0.44
SFU Y 0.36
JHU Y 0.32

English-Spanish
2,013–2,294 comparisons/system

System C? >others
ONLINE-B • N 0.65
RBMT-3 N 0.58
ONLINE-A • N 0.56
PROMT N 0.55
UPC ? Y 0.52
UEDIN ? Y 0.52
RBMT-4 N 0.46
RBMT-1 N 0.45
ONLINE-C N 0.43
UK Y 0.41
JHU Y 0.36

English-French
1,410–1,697 comparisons/system

System C? >others
LIMSI •? Y 0.66
RWTH Y 0.62
ONLINE-B N 0.60
KIT •? Y 0.59
LIUM Y 0.55
UEDIN Y 0.53
RBMT-3 N 0.52
ONLINE-A N 0.51
PROMT N 0.51
RBMT-1 N 0.48
JHU Y 0.44
UK Y 0.40
RBMT-4 N 0.39
ONLINE-C N 0.39
ITS-LATL N 0.36

German-English
1,386–1,567 comparisons/system
System C? >others
ONLINE-A • N 0.65
ONLINE-B • N 0.65
QUAERO Y 0.61
RBMT-3 N 0.60
UEDIN ? Y 0.60
RWTH ? Y 0.56
KIT ? Y 0.55
LIMSI Y 0.54
QCRI Y 0.52
RBMT-1 N 0.51
RBMT-4 N 0.50
ONLINE-C N 0.43
DFKI-BERLIN Y 0.40
UK Y 0.37
JHU Y 0.34
UG Y 0.17

English-German
1,777–2,160 comparisons/system

System C? >others
ONLINE-B • N 0.64
RBMT-3 N 0.63
RBMT-4 • N 0.58
RBMT-1 N 0.56
LIMSI ? Y 0.55
ONLINE-A N 0.54
UEDIN-WILLIAMS ? Y 0.51
KIT ? Y 0.50
DFKI-HUNSICKER N 0.48
UEDIN ? Y 0.47
RWTH ? Y 0.47
ONLINE-C N 0.47
UK Y 0.45
JHU Y 0.43
DFKI-BERLIN Y 0.25

C? indicates whether system is constrained (unhighlighted rows): trained only using supplied training data, standard
monolingual linguistic tools, and, optionally, LDC’s English Gigaword.
• indicates a win: no other system is statistically significantly better at p-level ≤ 0.10 in pairwise comparison.
? indicates a constrained win: no other constrained system is statistically better.

Table 4: Official results for the WMT12 translation task. Systems are ordered by their > others score, reflecting how
often their translations won in pairwise comparisons. For detailed head-to-head comparisons, see Appendix A.
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pairwise comparisons detect statistical significantly
superior quality of either system, and we note this
accordingly.

It is desirable to additionally produce an overall
ranking. In the past evaluation campaigns, we used
two different methods to obtain such a ranking, and
this year we use yet another one. In this section, we
discuss each of these overall ranking methods and a
few more.

4.1 Rank Ranges

In the first human evaluation, we use fluency and
adequacy judgments on a scale from 1 to 5 (Koehn
and Monz, 2006). We normalized the scores on a
per-sentence basis, thus converting them to a rela-
tive ranking in a 5-system comparison. We listed
systems by the average of these scores over all sen-
tences, in which they were judged.

We did not report ranks, but rank ranges. To
give an example: if a system scored neither sta-
tistically significantly better nor statistically signif-
icantly worse than 3 other systems, we assign it the
rank range 1–4. The given evidence is not sufficient
to rank it exactly, but it does rank somewhere in the
top 4.

In subsequent years, we did not continue the re-
porting of rank ranges (although they can be ob-
tained by examining the pairwise comparison ta-
bles), but we continued to report systems as win-
ners whenever there was not statistically signifi-
cantly outperformed by any other system.

4.2 Ratio of Wins and Ties

In the following years (Callison-Burch et al., 2007;
Callison-Burch et al., 2008; Callison-Burch et al.,
2009; Callison-Burch et al., 2010; Callison-Burch et
al., 2011), we abandoned the idea of using fluency
and adequacy judgments, since they showed to be
less reliable than simple ranking of system transla-
tions. We also started to interpret the 5-system com-
parison as a set of pairwise comparisons.

Systems were then ranked by the ratio of how of-
ten they were ranked better or equal to any of the
other systems.

Given a set J of sentence-level judgments
(s1, s2, c) where s1 ∈ S and s2 ∈ S are two sys-

tems and

c =


win if s1 better than s2

tie if s1 equal to s2

loss if s1 worse than s2

(1)

then we can count the total number of wins and ties
of a system s as

win(s) = |{(s1, s2, c) ∈ J : s = s1, c = win}|+
|{(s1, s2, c) ∈ J : s = s2, c = loss}|

loss(s) = |{(s1, s2, c) ∈ J : s = s1, c = loss}|+
|{(s1, s2, c) ∈ J : s = s2, c = win}|

tie(s) = |{(s1, s2, c) ∈ J : s = s1, c = tie}|+
|{(s1, s2, c) ∈ J : s = s2, c = tie}|

(2)
and rank systems by the ratio

score(s) =
win(s) + tie(s)

win(s) + loss(s) + tie(s)
(3)

This ratio was used for the official rankings over
the last five years.

4.3 Ratio of Wins (Ignoring Ties)
Bojar et al. (2011) present a persuasive argument
that our ranking scheme is biased towards systems
that are similar to many other systems. Given that
most of the systems are based on phrase-based mod-
els trained on the same training data, this is indeed a
valid concern.

They suggest ignoring ties, and using as ranking
score instead the following ratio:

score(s) =
win(s)

win(s) + loss(s)
(4)

This ratio is used for the official ranking this year.

4.4 Minimizing Pairwise Ranking Violations
Lopez (2012, in this volume) argues against using
aggregate statistics over a set of very diverse judg-
ments. Instead, a ranking that has the least number
of pairwise ranking violations is said to be preferred.

If we define the number of pairwise wins as

win(s1, s2) = |{(s1, s2, c) ∈ J : c = win}|+
|{(s2, s1, c) ∈ J : c = loss}|

(5)
then we define a count function for pairwise order
violations as
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score(s1, s2) = max(0,win(s2, s1)− win(s1, s2))
(6)

Given a bijective ranking function R(s)→ i with
the codomain of consecutive integers starting at 1,
the total number of pairwise ranking violations is de-
fined as

score(R) =
∑

R(si)<R(sj)

score(si, sj) (7)

Finding the optimal rankingR that minimizes this
score is not trivial, but given the number of systems
involved in this evaluation campaign, it is quite man-
ageable.

4.5 Most Probable Ranking
We now introduce a variant to Lopez’s ranking
method. We motivate it first.

Consider the following scenario:

win(A,B) = 20 win(B,A) = 0
win(B,C) = 40 win(C,B) = 20
win(C,A) = 60 win(A,C) = 40

Since this constitutes a circle, there are three
rankings with the minimum number of 20 violation
(ABC, BCA, CAB).

However, we may want to take the ratio of wins
and losses for each pairwise ranking into account.
Using maximum likelihood estimation, we can de-
fine the probability that system s1 is better than sys-
tem s2 on a randomly drawn sentence as

p(s1 > s2) =
win(s1, s2)

win(s1, s2) + win(s2, s1)
(8)

We can then go on to define5 the probability of a
5Sketch of derivation:

p(s1 > s2 > s3) = p(s1 first)p(s2 second|s1 first)

(chain rule)

p(s1 first) = p(s1 > s2 and s1 > s3)

= p(s1 > s2)p(s1 > s3)

(independence assumption)

p(s2 sec.|s1 first) = p(s2 second)

(independence assumption)

= p(s2 > s3)

ranking of three systems as:

p(s1 > s2 > s3) = p(s1 > s2)p(s1 > s3)p(s2 > s3)
(9)

This function scores the three rankings in the ex-
ample above as follows:

p(A > B > C) = 20
20

40
100

40
60 = 0.27

p(B > C > A) = 40
60

0
20

60
100 = 0

p(C > A > B) = 60
100

20
60

20
20 = 0.20

One disadvantage of this and the previous rank-
ing method is that they do not take advantage of all
available evidence. Consider the example:

win(A,B) = 100 win(B,A) = 0
win(A,C) = 60 win(C,A) = 40
win(B,C) = 50 win(C,B) = 50

Here, system A is clearly ahead, but how about B
and C? They are tied in their pairwise comparison.
So, both ABC and ACB have no pairwise ranking
violations and their most probable ranking score, as
defined above, is the same.
B is clearly worse than A, but C has a fighting

chance, and this should be reflected in the ranking.
The following two overall ranking methods over-
come this problem.

4.6 Monte Carlo Playoffs
The sports world is accustomed to the problem of
finding a ranking of sports teams, but being only able
to have pairwise competitions (think basketball or
football). One strategy is to stage playoffs.

Let’s say there are 4 systems: A,B, C, andD. As
in well-known play-off fashion, they are first seeded.
In our case, this happens randomly, say, 1:A, 2:B,
3:C, 4:D (for simplicity’s sake).

First round: A plays against D, B plays against
C. How do they play? We randomly select a sen-
tence on which they were compared (no ties). If A
is better according to human judgment than D, then
A wins.

Let’s say, A wins against D, and B loses against
C. This leads us to the final A against C and the
3rd place game D against B, in which, say, A and D
win. The resulting final ranking is ACDB.

We repeat this a million times with a different ran-
dom seeding every time, and compute the average
rank, which is then used for overall ranking.
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Bojar Lopez Most Probable MC Playoffs Expected Wins
1 0.641: ONLINE-B RBMT-4 RBMT-4 6.16: ONLINE-B 0.640 (1-2): ONLINE-B

2 0.627: RBMT-3 ONLINE-B ONLINE-B 6.39: RBMT-3 0.622 (1-2): RBMT-3
3 0.577: RBMT-4 RBMT-3 RBMT-3 6.98: RBMT-4 0.578 (3-5): RBMT-4
4 0.557: RBMT-1 RBMT-1 RBMT-1 7.32: RBMT-1 0.553 (3-6): RBMT-1
5 0.547: LIMSI ONLINE-A ONLINE-A 7.46: LIMSI 0.543 (3-7): LIMSI

6 0.537: ONLINE-A UEDIN-WILLIAMS LIMSI 7.57: ONLINE-A 0.534 (4-8): ONLINE-A

7 0.509: UEDIN-WILLIAMS LIMSI UEDIN-WILLIAMS 7.87: UEDIN-WILLIAMS 0.511 (5-9): UEDIN-WILLIAMS

8 0.503: KIT KIT KIT 7.98: KIT 0.503 (6-11): KIT

9 0.476: DFKI-HUNSICKER DFKI-HUNSICKER DFKI-HUNSICKER 8.32: UEDIN 0.477 (7-13): UEDIN

10 0.475: UEDIN ONLINE-C ONLINE-C 8.38: DFKI-HUNSICKER 0.472 (8-13): DFKI-HUNSICKER

11 0.470: RWTH UEDIN UEDIN 8.41: ONLINE-C 0.470 (8-13): ONLINE-C

12 0.470: ONLINE-C UK UK 8.44: RWTH 0.468 (8-13): RWTH

13 0.448: UK RWTH RWTH 8.72: UK 0.447 (10-14): UK

14 0.435: JHU JHU JHU 8.87: JHU 0.434 (12-14): JHU

15 0.249: DFKI-BERLIN DFKI-BERLIN DFKI-BERLIN 11.15: DFKI-BERLIN 0.249 (15): DFKI-BERLIN

Table 5: Overall ranking with different methods (English–German)

4.7 Expected Wins
In European national football competitions, each
team plays against each other team, and at the end
the number of wins decides the rankings.6 We can
simulate this type of tournament as well with Monte
Carlo methods. However, in the limit, each team will
be on average ranked based on its expected number
of wins in the competition. We can compute the ex-
pected number of wins straightforward as

score(si) =
1

|S| − 1

∑
j,j 6=i

p(si > sj) (10)

Note that this is very similar to Bojar’s method of
ranking systems, with one additional and important
twist. We can rewrite Equation 4, the variant that
ignores ties, as:

score(si) = win(si)
win(si)+loss(si)

(11)

=
∑

j,j 6=i win(si,sj)∑
j,j 6=i win(si,sj)+loss(si,sj)

(12)

This section’s Equation 10 can be rewritten as:

score(si) =
1

|S|
∑
j,j 6=i

win(si, sj)

win(si, sj) + loss(si, sj)

(13)
The difference is that the new overall ranking

method normalizes the win ratios per pairwise rank-
ing. And this makes sense, since it overcomes one

6They actually play twice against each other, to balance out
home field advantage, which is not a concern here.

problem with our traditional and Bojar’s ranking
method.

Previously, some systems were put at an dis-
advantage, if they are compared more frequently
against good systems than against bad systems. This
could happen, if participants were not allowed to
rank their own systems (a constraint we enforced
in the past, but no longer). This was noticed by
judges a few years ago, when we had instant re-
porting of rankings during the evaluation period. If
you have one of the best systems and carry out a lot
of human judgments, then competitors’ systems will
creep up higher, since they are not compared against
your own (very good) system anymore, but more fre-
quently against bad systems.

4.8 Comparison

Table 5 shows the different rankings for English–
German, a rather typical example. The table dis-
plays the ranking of the systems according to five
different methods, alongside with system scores ac-
cording to the ranking method: the win ratio (Bo-
jar), the average rank (MC Playoffs), and the ex-
pected win ratio (Expected Wins). For the latter, we
performed bootstrap resampling and computed rank
ranges that lie in a 95% confidence interval. You
can find the tables for the other language pairs in the
annex.

The win-based methods (Bojar, MC Playoffs, Ex-
pected Wins) give very similar rankings — exhibit-
ing mostly just the occasional pairwise flip or for
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many language pairs the ranking is identical. The
same is true for the two methods based on pairwise
rankings (Lopez, Most Probable). However, the two
types of ranking lead to significantly different out-
comes.

For instance, the win-based methods are pretty
sure that ONLINE-B and RBMT-3 are the two top
performers. Bootstrap resampling of rankings ac-
cording to Expected Wins ranking draws a clear
line between them and the rest. However, Lopez’s
method ranks RBMT-4 first. Why? In direct com-
parison of the three systems, RBMT-4 beats statis-
tically insignificantly ONLINE-B 45% wins against
42% wins and essentially ties with RBMT-3 41%
wins against 41% wins (ONLINE-B beats RBMT-3
49%–35%, p ≤ 0.01).

We use Bojar’s method as our official method for
ranking in Table 4 and as the human judgments that
we used when calculating how well automatic eval-
uation metrics correlate with human judgments.

4.9 Number of Judgments Needed

In general, there are not enough judgments to rank
systems unambiguously. How many judgments do
we need?

We may extrapolate this number from the num-
ber of judgments we have. Figure 2 provides some
hints. The outlier is Czech–English, for which only
6 systems were submitted and we can separate them
almost completely even at p-level 0.01. For all the
other language pairs, we can only draw for around
40% of the pairwise comparisons conclusions with
that level of statistical significance.

Since the plots also contains the ratio of signifi-
cant conclusions when sub-sampling the number of
judgments, we obtain curves with a clear upward
slope. For English–Czech, for which we were able
to collect much more judgments, we can draw over
60% significant conclusions. The curve for this lan-
guage pair does not look much different than the
other languages, suggesting that doubling the num-
ber of judgments should allow similar levels for
them as well.

5 Metrics Task

In addition to allowing us to analyze the translation
quality of different systems, the data gathered during
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Figure 2: Ratio of statistically significant pairwise com-
parisons at different p-levels, based on number of pair-
wise judgments collected.
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Metric IDs Participant
AMBER National Research Council Canada (Chen et al., 2012)
METEOR CMU (Denkowski and Lavie, 2011)
SAGAN-STS FaMAF, UNC, Argentina (Castillo and Estrella, 2012)
SEMPOS Charles University (Macháček and Bojar, 2011)
SIMBLEU University of Sheffield (Song and Cohn, 2011)
SPEDE Stanford University (Wang and Manning, 2012)
TERRORCAT University of Zurich, DFKI, Charles U (Fishel et al., 2012)
BLOCKERRCATS, ENXERRCATS, WORD-
BLOCKERRCATS, XENERRCATS, POSF

DFKI (Popovic, 2012)

Table 6: Participants in the metrics task.

the manual evaluation is useful for validating auto-
matic evaluation metrics. Table 6 lists the partici-
pants in this task, along with their metrics.

A total of 12 metrics and their variants were sub-
mitted to the metrics task by 8 research groups. We
provided BLEU and TER scores as baselines. We
asked metrics developers to score the outputs of
the machine translation systems and system com-
binations at the system-level and at the segment-
level. The system-level metrics scores are given in
the Appendix in Tables 29–36. The main goal of
the metrics shared task is not to score the systems,
but instead to validate the use of automatic metrics
by measuring how strongly they correlate with hu-
man judgments. We used the human judgments col-
lected during the manual evaluation for the transla-
tion task and the system combination task to calcu-
late how well metrics correlate at system-level and
at the segment-level.

5.1 System-Level Metric Analysis
We measured the correlation of the automatic met-
rics with the human judgments of translation qual-
ity at the system-level using Spearman’s rank cor-
relation coefficient ρ. We converted the raw scores
assigned to each system into ranks. We assigned a
human ranking to the systems based on the percent
of time that their translations were judged to be bet-
ter than the translations of any other system in the
manual evaluation (Equation 4).

When there are no ties, ρ can be calculated using
the simplified equation:

ρ = 1− 6
∑
d2

i

n(n2 − 1)
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System-level correlation for translations into English
SEMPOS .94 .92 .94 .80 .90
AMBER .83 .79 .97 .85 .86
METEOR .66 .89 .95 .84 .83

TERRORCAT .71 .76 .97 .88 .83
SIMPBLEU .89 .70 .89 .82 .82

TER -.89 -.62 -.92 -.82 .81
BLEU .89 .67 .87 .81 .81

POSF .66 .66 .87 .83 .75
BLOCKERRCATS -.64 -.75 -.88 -.74 .75
WORDBLOCKEC -.66 -.67 -.85 -.77 .74

XENERRCATS -.66 -.64 -.87 -.77 .74
SAGAN-STS .66 n/a .91 n/a n/a

Table 7: System-level Spearman’s rho correlation of the
automatic evaluation metrics with the human judgments
for translation into English, ordered by average absolute
value.
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System-level correlation for translations out of English
SIMPBLEU .83 .46 .42 .94 .66

BLOCKERRCATS -.65 -.53 -.47 -.93 .64
ENXERRCATS -.74 -.38 -.47 -.93 .63

POSF .80 .54 .37 .69 .60
WORDBLOCKEC -.71 -.37 -.47 -.81 .59

TERRORCAT .65 .48 .58 .53 .56
AMBER .71 .25 .50 .75 .55

TER -.69 -.41 -.45 -.66 .55
METEOR .73 .18 .45 .82 .54

BLEU .80 .22 .40 .71 .53
SEMPOS .52 n/a n/a n/a n/a

Table 8: System-level Spearman’s rho correlation of the
automatic evaluation metrics with the human judgments
for translation out of English, ordered by average abso-
lute value.

where di is the difference between the rank for
systemi and n is the number of systems. The pos-
sible values of ρ range between 1 (where all systems
are ranked in the same order) and−1 (where the sys-
tems are ranked in the reverse order). Thus an auto-
matic evaluation metric with a higher absolute value
for ρ is making predictions that are more similar to
the human judgments than an automatic evaluation
metric with a lower absolute ρ.

The system-level correlations are shown in Ta-
ble 7 for translations into English, and Table 8 out
of English, sorted by average correlation across the
language pairs. The highest correlation for each
language pair and the highest overall average are
bolded. Once again this year, many of the metrics
had stronger correlation with human judgments than
BLEU. The metrics that had the strongest correlation
this year were SEMPOS for the into English direc-
tion and SIMPBLEU for the out of English direc-
tion.

5.2 Segment-Level Metric Analysis

We measured the metrics’ segment-level scores with
the human rankings using Kendall’s tau rank corre-
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Segment-level correlation for translations into English
SPEDE07-PP .26 .28 .26 .21 .25

METEOR .25 .27 .25 .21 .25
AMBER .24 .25 .23 .19 .23

SIMPBLEU .19 .17 .19 .13 .17
TERRORCAT .18 .19 .18 .19 .19

XENERRCATS .17 .18 .18 .13 .17
POSF .16 .18 .15 .12 .15

WORDBLOCKEC .15 .16 .17 .13 .15
BLOCKERRCATS .07 .08 .08 .06 .07

SAGAN-STS n/a n/a .21 .20 n/a

Table 9: Segment-level Kendall’s tau correlation of the
automatic evaluation metrics with the human judgments
for translation into English, ordered by average correla-
tion.
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Segment-level correlation for translations out of English
METEOR .26 .18 .21 .16 .20
AMBER .23 .17 .22 .15 .19

TERRORCAT .18 .19 .18 .18 .18
SIMPBLEU .2 .13 .18 .10 .15

ENXERRCATS .20 .11 .17 .09 .14
POSF .15 .13 .15 .13 .14

WORDBLOCKEC .19 .1 .17 .1 .14
BLOCKERRCATS .13 .04 .12 .01 .08

Table 10: Segment-level Kendall’s tau correlation of the
automatic evaluation metrics with the human judgments
for translation out of English, ordered by average corre-
lation.
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lation coefficient. We calculated Kendall’s tau as:

τ =
num concordant pairs - num discordant pairs

total pairs

where a concordant pair is a pair of two translations
of the same segment in which the ranks calculated
from the same human ranking task and from the cor-
responding metric scores agree; in a discordant pair,
they disagree. In order to account for accuracy- vs.
error-based metrics correctly, counts of concordant
vs. discordant pairs were calculated specific to these
two metric types. The possible values of τ range
between 1 (where all pairs are concordant) and −1
(where all pairs are discordant). Thus an automatic
evaluation metric with a higher value for τ is mak-
ing predictions that are more similar to the human
judgments than an automatic evaluation metric with
a lower τ .

We did not include cases where the human rank-
ing was tied for two systems. As the metrics produce
absolute scores, compared to five relative ranks in
the human assessment, it would be potentially un-
fair to the metric to count a slightly different met-
ric score as discordant with a tie in the relative hu-
man rankings. A tie in automatic metric rank for
two translations was counted as discordant with two
corresponding non-tied human judgments.

The correlations are shown in Table 9 for trans-
lations into English, and Table 10 out of English,
sorted by average correlation across the four lan-
guage pairs. The highest correlation for each lan-
guage pair and the highest overall average are
bolded. For the into English direction SPEDE and
METEOR tied for the highest segment-level correla-
tion. METEOR performed the best for the out of En-
glish direction, with AMBER doing admirably well
in both the into- and the out-of-English directions.

6 Quality Estimation task

Quality estimation aims to provide a quality indica-
tor for machine translated sentences at various gran-
ularity levels. It differs from MT evaluation, because
quality estimation techniques do not rely on refer-
ence translations. Instead, quality estimation is gen-
erally addressed using machine learning techniques
to predict quality scores. Potential applications of
quality estimation include:

• Deciding whether a given translation is good
enough for publishing as is

• Informing readers of the target language only
whether or not they can rely on a translation

• Filtering out sentences that are not good
enough even for post-editing by professional
translators

• Selecting the best translation among options
from multiple systems.

This shared-task provides a first common ground
for development and comparison of quality estima-
tion systems, focusing on sentence-level estimation.
It provides training and test datasets, along with
evaluation metrics and a baseline system. The goals
of this shared task are:

• To identify new and effective quality indicators
(features)

• To identify alternative machine learning tech-
niques for the problem

• To test the suitability of the proposed evalua-
tion metrics for quality estimation systems

• To establish the state of the art performance in
the field

• To contrast the performance of regression and
ranking techniques.

The task provides datasets for a single language
pair, text domain and MT system: English-Spanish
news texts produced by a phrase-based SMT sys-
tem (Moses) trained on Europarl and News Com-
mentaries corpora provided in the WMT10 transla-
tion task. As training data, translations were man-
ually annotated for quality in terms of post-editing
effort (1-5 scores) and were provided together with
their source sentences, reference translations, and
post-edited translations (Section 6.1). The shared-
task consisted on automatically producing quality-
estimations for a blind test-set, where English source
sentences and their MT-translations were used as in-
puts. Hidden (and subsequently publicly-released)
manual effort-annotations of those translations (ob-
tained in the same fashion as for the training data)
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were used as reference labels to evaluate the per-
formance of the participating systems (Section 6.1).
Participants also had full access to the translation
engine-related resources (Section 6.1) and could use
any additional external resources. We have also pro-
vided a software package to extract baseline quality
estimation features (Section 6.3).

Participants could submit up to two systems for
two variations of the task: ranking, where par-
ticipants submit a ranking of translations (no ties
allowed), without necessarily giving any explicit
scores for translations, and scoring, where partici-
pants submit a score for each sentence (in the [1,5]
range). Each of these subtasks is evaluated using
specific metrics (Section 6.2).

6.1 Datasets and resources

Training data
The training data used was selected from data

available from previous WMT shared-tasks for
machine-translation: a subset of the WMT10
English-Spanish test set, and a subset of the WMT09
English-Spanish test set, for a total of 1832 sen-
tences.

The training data consists of the following re-
sources:

• English source sentences

• Spanish machine-translation outputs, created
using the SMT Moses engine

• Effort scores, created by using three profes-
sional post-editors using guidelines describ-
ing Post-Editing (PE) effort from highest effort
(score 1) to lowest effort (score 5)

• Post-Editing output, created by a pool of pro-
fessional post-editors starting from the source
sentences and the Moses translations; these PE
outputs were created before the effort scores
were elicited, and were shown to the PE-effort
judges to facilitate their effort estimates

• Spanish translation outputs, created as part of
the WMT machine-translation shared-task as
reference translations for the English source
sentences (independent of any MT output).

The guidelines used by the PE-effort judges to as-
sign scores 1-5 for each of the 〈source, MT-output,
PE-output〉 triplets are the following:

[1] The MT output is incomprehensible, with lit-
tle or no information transferred accurately. It
cannot be edited, needs to be translated from
scratch.

[2] About 50-70% of the MT output needs to be
edited. It requires a significant editing effort in
order to reach publishable level.

[3] About 25-50% of the MT output needs to be
edited. It contains different errors and mis-
translations that need to be corrected.

[4] About 10-25% of the MT output needs to be
edited. It is generally clear and intelligible.

[5] The MT output is perfectly clear and intelligi-
ble. It is not necessarily a perfect translation,
but requires little or no editing.

Providing reliable effort estimates turned out to
be a difficult task for the PE-effort judges, even in
the current set-up (with post edited outputs available
for consultation). To eliminate some of the noise
from these judgments, we performed an intermedi-
ate cleaning step, in which we eliminated the sen-
tences for which the difference between the max-
imum score and the minimum score assigned be-
tween the three judges was > 1. We started the
data-creation process from a total of 2000 sentences
for the training set, and the final 1832 sentences we
selected as training data were the ones that passed
through this intermediate cleaning step.

Besides score disagreement, we noticed another
trend on the human judgements of PE-effort. Some
judges tend to give more moderate scores (in the
middle of available range), while others like to com-
mit also to scores that are more in the extremes of
the available range. Since the quality estimation task
would be negatively influenced by having most of
the scores in the middle of the range, we have chosen
to compute the final effort scores as an weighted av-
erage between the three PE-effort scores, with more
weight given to the judges with higher standard de-
viation from their own mean score. We have used
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weights 3, 2, and 1 for the three PE-effort judges ac-
cording to this criterion. There is an additional ad-
vantage resulting from this weighted average score:
instead of obtaining average numbers only at val-
ues x.0, x.33, and x.66 (for unweighted average)7,
the weighted averages are spread more evenly in the
range [1, 5].

A few variations of the training data were pro-
vided, including version with cases restored and a
version detokenized. In addition, engine-internal
information from Moses such as phrase and word
alignments, detailed model scores, etc. (parameter
-trace), n-best lists and stack information from the
search graph as a word graph (parameter -output-
word-graph) as produced by the Moses engine were
provided.

The rationale behind releasing this engine-
internal data was to make it possible for this shared-
task to address quality estimation using a glass-box
approach, that is, making use of information from
the internal workings of the MT engine.

Test data
The test data was a subset of the WMT12 English-

Spanish test set, consisting of 442 sentences. The
test data consists of the following files:

• English source sentences

• Spanish machine-translation outputs, created
using the same SMT Moses engine used to cre-
ate the training data

• Effort scores, created by using three profes-
sional post-editors8 using guidelines describing
PE effort from highest effort (score 1) to lowest
effort (score 5)

The first two files were the input for the quality-
estimation shared-task participating systems. Since
the Moses engine used to create the MT outputs was
the same as the one used for generating the train-
ing data, the engine-internal resources are the same

7These three values are the only ones possible given the
cleaning step we perform prior to averaging the scores, which
ensures that the difference between the maximum score and the
minimum score is at most 1.

8The same post-editors that were used to create the training
data were used to create the test data.

as the ones we released as part of the training data
package.

The effort scores were released after the partic-
ipants submitted their shared-task submission, and
were solely used to evaluate the submissions accord-
ing to the established metrics. The guidelines used
by the PE-effort judges to assign 1-5 scores were the
same as the ones used for creating the training data.
We have used the same criteria to ensure the con-
sistency of the human judgments. The initial set of
candidates consisted of 604 sentences, of which only
442 met this criteria. The final scores used as gold-
values have been obtained using the same weighted-
average scheme as for the training data.

Resources
In addition to the training and test materials, we

made several additional resources that were used for
the baseline QE system and/or the SMT system that
produced the training and test datasets:

• The SMT training corpus: source and target
sides of the corpus used to train the Moses en-
gine. These are a concatenation of the Eu-
roparl and the news-commentary data sets from
WMT10 that were tokenized, cleaned (remov-
ing sentences longer than 80 tokens) and true-
cased.

• Two Language models: 5-gram LM generated
from the interpolation of the two target cor-
pora after tokenization and truecasing (used
by Moses) and a trigram LM generated from
the two source corpora and filtered to remove
singletons (used by the baseline QE system).
We also provided unigram, bigram and trigram
counts (used in the baseline QE system).

• An IBM Model 1 table that generated by
Giza++ using the SMT training corpora.

• A word-alignment file as produced by the
grow-diag-final heuristic in Moses for the SMT
training set.

• A phrase table with word alignment informa-
tion generated from the parallel corpora.

• The Moses configuration file used for decod-
ing.
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6.2 Evaluation metrics

Ranking metrics
For the ranking task, we defined a novel met-

ric that provides some advantages over a more tra-
ditional ranking metrics like Spearman correlation.
Our metric, called DeltaAvg, assumes that the refer-
ence test set has a number associated with each en-
try that represents its extrinsic value. For instance,
using the effort scale we described in Section 6.1,
we associate a value between 1 and 5 with each
sentence, representing the quality of that sentence.
Given these values, our metric does not need an ex-
plicit reference ranking, the way the Spearman rank-
ing correlation does.9 The goal of the DeltaAvg met-
ric is to measure how valuable a proposed ranking
(which we call a hypothesis ranking) is according to
the extrinsic values associated with the test entries.

We first define a parameterized version of this
metric, called DeltaAvg[n]. The following notations
are used: for a given entry sentence s, V (s) repre-
sents the function that associates an extrinsic value
to that entry; we extend this notation to a set S, with
V (S) representing the average of all V (s), s ∈ S.
Intuitively, V (S) is a quantitative measure of the
“quality” of the set S, as induced by the extrinsic
values associated with the entries in S. For a set
of ranked entries S and a parameter n, we denote
by S1 the first quantile of set S (the highest-ranked
entries), S2 the second quantile, and so on, for n
quantiles of equal sizes.10 We also use the notation
Si,j =

⋃j
k=i Sk. Using these notations, we define:

DeltaAvgV [n] =

∑n−1
k=1 V (S1,k)

n− 1
− V (S) (14)

When the valuation function V is clear from the con-
text, we write DeltaAvg[n] for DeltaAvgV [n]. The
parameter n represents the number of quantiles we
want to split the set S into. For instance, n = 2
gives DeltaAvg[2] = V (S1) − V (S), hence it mea-
sures the difference between the quality of the top

9A reference ranking can be implicitly induced according to
these values; if, as in our case, higher values mean better sen-
tences, then the reference ranking is defined such that higher-
scored sentences rank higher than lower-scored sentences.

10If the size |S| is not divisible by n, then the last quantile
Sn is assumed to contain the rest of the entries.

quantile (top half) S1 and the overall quality (rep-
resented by V (S)). For n = 3, DeltaAvg[3] =
(V (S1)+V (S1,2)/2−V (S) = ((V (S1)−V (S))+
(V (S1,2 − V (S)))/2, hence it measures an aver-
age difference across two cases: between the quality
of the top quantile (top third) and the overall qual-
ity, and between the quality of the top two quan-
tiles (S1∪S2, top two-thirds) and the overall quality.
In general, DeltaAvg[n] measures an average differ-
ence in quality across n − 1 cases, with each case
measuring the impact in quality of adding an addi-
tional quantile, from top to bottom. Finally, we de-
fine:

DeltaAvgV =

∑N
n=2 DeltaAvgV [n]

N − 1
(15)

whereN = |S|/2. As before, we write DeltaAvg for
DeltaAvgV when the valuation function V is clear
from the context. The DeltaAvg metric is an aver-
age across all DeltaAvg[n] values, for those n values
for which the resulting quantiles have at least 2 en-
tries (no singleton quantiles). The DeltaAvg metric
has some important properties that are desired for a
ranking metric (see Section 6.4 for the results of the
shared-task that substantiate these claims):

• it is non-parametric (i.e., it does not depend on
setting particular parameters)

• it is automatic and deterministic (and therefore
consistent)

• it measures the quality of a hypothesis rank-
ing from an extrinsic perspective (as offered by
function V )

• its values are interpretable: for a given set of
ranked entries, a value DeltaAvg of 0.5 means
that, on average, the difference in quality be-
tween the top-ranked quantiles and the overall
quality is 0.5

• it has a high correlation with the Spearman rank
correlation coefficient, which makes it as use-
ful as the Spearman correlation, with the added
advantage of its values being extrinsically in-
terpretable.
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In the rest of this paper, we present results for
DeltaAvg using as valuation function V the Post-
Editing effort scores, as defined in Section 6.1.

We also report the results of the ranking task using
the more-traditional Spearman correlation.

Scoring metrics
For the scoring task, we use two metrics that have

been traditionally used for measuring performance
for regression tasks: Mean Absolute Error (MAE) as
a primary metric, and Root of Mean Squared Error
(RMSE) as a secondary metric. For a given test set
S with entries si, 1 ≤ i ≤ |S|, we denote by H(si)
the proposed score for entry si (hypothesis), and by
V (si) the reference value for entry si (gold-standard
value). We formally define our metrics as follows:

MAE =

∑N
i=1 |H(si)− V (si)|

N
(16)

RMSE =

√∑N
i=1(H(si)− V (si))2

N
(17)

where N = |S|. Both these metrics are non-
parametric, automatic and deterministic (and there-
fore consistent), and extrinsically interpretable. For
instance, a MAE value of 0.5 means that, on aver-
age, the absolute difference between the hypothe-
sized score and the reference score value is 0.5. The
interpretation of RMSE is similar, with the differ-
ence that RMSE penalizes larger errors more (via
the square function).

6.3 Participants
Eleven teams (listed in Table 11) submitted one or
more systems to the shared task, with most teams
submitting for both ranking and scoring subtasks.
Each team was allowed up to two submissions (for
each subtask). In the descriptions below participa-
tion in the ranking is denoted (R) and scoring is de-
noted (S).

Baseline system (R, S): the baseline system used
the feature extraction software (also provided
to all participants). It analyzed the source and
translation files and the SMT training corpus
to extract the following 17 system-independent
features that were found to be relevant in previ-
ous work (Specia et al., 2009):

• number of tokens in the source and target
sentences
• average source token length
• average number of occurrences of the tar-

get word within the target sentence
• number of punctuation marks in source

and target sentences
• LM probability of source and target sen-

tences using language models described in
Section 6.1
• average number of translations per source

word in the sentence: as given by IBM 1
model thresholded so that P (t|s) > 0.2,
and so that P (t|s) > 0.01 weighted by
the inverse frequency of each word in the
source side of the SMT training corpus
• percentage of unigrams, bigrams and tri-

grams in frequency quartiles 1 (lower fre-
quency words) and 4 (higher frequency
words) in the source side of the SMT train-
ing corpus
• percentage of unigrams in the source sen-

tence seen in the source side of the SMT
training corpus

These features are used to train a Support Vec-
tor Machine (SVM) regression algorithm using
a radial basis function kernel with the LIBSVM
package (Chang and Lin, 2011). The γ, ε and C
parameters were optimized using a grid-search
and 5-fold cross validation on the training set.
We note that although the system is referred to
as a “baseline”, it is in fact a strong system.
Although it is simple it has proved to be ro-
bust across a range of language pairs, MT sys-
tems, and text domains. It is a simpler variant
of the system used in (Specia, 2011). The ratio-
nale behind having such a strong baseline was
to push systems to exploit alternative sources
of information and combination / learning ap-
proaches.

SDLLW (R, S): Both systems use 3 sets of fea-
tures: the 17 baseline features, 8 system-
dependent features from the decoder logs of
Moses, and 20 features developed internally.
Some of these features made use of additional
data and/or resources, such as a secondary
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ID Participating team
PRHLT-UPV Universitat Politecnica de Valencia, Spain (González-Rubio et al., 2012)

UU Uppsala University, Sweden (Hardmeier et al., 2012)
SDLLW SDL Language Weaver, USA (Soricut et al., 2012)

Loria LORIA Institute, France (Langlois et al., 2012)
UPC Universitat Politecnica de Catalunya, Spain (Pighin et al., 2012)

DFKI DFKI, Germany (Avramidis, 2012)
WLV-SHEF University of Wolverhampton & University of Sheffield, UK (Felice and Specia, 2012)

SJTU Shanghai Jiao Tong University, China (Wu and Zhao, 2012)
DCU-SYMC Dublin City University, Ireland & Symantec, Ireland (Rubino et al., 2012)

UEdin University of Edinburgh, UK (Buck, 2012)
TCD Trinity College Dublin, Ireland (Moreau and Vogel, 2012)

Table 11: Participants in the WMT12 Quality Evaluation shared task.

MT system that was used as pseudo-reference
for the hypothesis, and POS taggers for both
languages. Feature-selection algorithms were
used to select subsets of features that directly
optimize the metrics used in the task. System
“SDLLW M5PbestAvgDelta” uses a resulting
15-feature set optimized towards the AvgDelta
metric. It employs an M5P model to learn a
decision-tree with only two linear equations.
System “SDLLW SVM” uses a 20-feature set
and an SVM epsilon regression model with ra-
dial basis function kernel with parameters C,
gamma, and epsilon tuned on a development
set (305 training instances). The model was
trained with 10-fold cross validation and the
tuning process was restarted several times us-
ing different starting points and step sizes to
avoid overfitting. The final model was selected
based on its performance on the development
set and the number of support vectors.

UU (R, S): System “UU best” uses the 17 base-
line features, plus 82 features from Hardmeier
(2011) (with some redundancy and some over-
lap with baseline features), and constituency
trees over input sentences generated by the
Stanford parser and dependency trees over both
input and output sentences generated by the
MaltParser. System “UU bltk” uses only the
17 baseline features plus constituency and de-
pendency trees as above. The machine learn-
ing component in both cases is SVM regres-
sion (SVMlight software). For the ranking task,

the ranking induced by the regression output
is used. The system uses polynomial kernels
of degree 2 (UU best) and 3 (UU bltk) as well
as two different types of tree kernels for con-
stituency and dependency trees, respectively.
The SVM margin/error trade-off, the mixture
proportion between tree kernels and polyno-
mial kernels and the degree of the polynomial
kernels were optimised using grid search with
5-fold cross-validation over the training set.

TCD (R, S): “TCD M5P-resources-only” uses
only the baseline features, while “TCD M5P-
all” uses the baseline and additional features.
A number of metrics (used as features in
TCD M5P-all) were proposed which work in
the following way: given a sentence to eval-
uate (source sentence for complexity or target
sentence for fluency), it is compared against
some reference data using similarity mea-
sures (various metrics which compare distri-
butions of n-grams). The training data was
used as reference, along with the Google n-
grams dataset. Several learning methods were
tested using Weka on the training data (10-
fold cross-validation). The system submission
uses the M5P (regression with decision trees)
algorithm which performed best. Contrary to
what had been observed on the training data
using cross-validation, “TCD M5P-resources-
only” performs better than “TCD M5P-all” on
the test data.
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PRHLT-UPV (R, S): The system addresses the
task using a regression algorithm with 475 fea-
tures, including the 17 the baseline features.
Most of the features are defined as word scores.
Among them, the features obtained form a
smoothed naive Bayes classifier have shown to
be particularly interesting. Different methods
to combine word-level scores into sentence-
level features were investigated. For model
building, SVM regression was used. Given
the large number of features, the training data
provided as part of the task was insufficient
yielding unstable systems with not so good per-
formance. Different feature selection methods
were implemented to determine a subset of rel-
evant features. The final submission used these
relevant features to train an SVM system whose
parameters were optimized with respect to the
final evaluation metrics.

UEDIN (R, S): The system uses the baseline fea-
tures along with some additional features: bi-
nary features for named entities in source using
Stanford NER Tagger; binary indicators for oc-
currence of quotes or parenthetical segments,
words in upper case and numbers; geometric
mean of target word probabilities and proba-
bility of worst scoring word under a Discrim-
inative Word Lexicon Model; Sparse Neural
Network directly mapping from source to tar-
get (using the vector space model) with source
and target side either filtered to relevant words
or hashed to reduce dimensionality; number of
times at least a 3-gram is seen normalized by
sentence length; and Levenshtein distance of
either source or translation to closest entry of
the SMT training corpus on word or character
level. An ensemble of neural networks opti-
mized for RMSE was used for prediction (scor-
ing) and ranking. The contribution of new fea-
tures was tested by adding them to the baseline
features using 5-fold cross-validation. Most
features did not result in any improvement over
the baseline. The final submission was a com-
bination of all feature sets that showed im-
provement.

SJTU (R, S): The task is treated as a regression
problem using the epsilon-SVM method. All
features are extracted from the official data, in-
volving no external NLP tools/resources. Most
of them come from the phrase table, decod-
ing data and SMT training data. The focus
is on special word relations and special phrase
patterns, thus several feature templates on this
topic are extracted. Since the training data is
not large enough to assign weights to all fea-
tures, methods for estimating common strings
or sequences of words are used. The training
data is divided in 3/4 for training and 1/4 for
development to filter ineffective features. Be-
sides the baseline features, the final submission
contains 18 feature templates and about 4 mil-
lion features in total.

WLV-SHEF (R, S): The systems integrates novel
linguistic features from the source and target
texts in an attempt to overcome the limitations
of existing shallow features for quality estima-
tion. These linguistically-informed features in-
clude part-of-speech information, phrase con-
stituency, subject-verb agreement and target
lexicon analysis, which are extracted using
parsers, corpora and auxiliary resources. Sys-
tems are built using epsilon-SVM regression
with parameters optimised using 5-fold cross-
validation on the training set and two differ-
ent feature sets: “WLV-SHEF BL” uses the 17
baseline features plus 70 linguistically inspired
features, while “WLV-SHEF FS” uses a larger
set of 70 linguistic plus 77 shallow features (in-
cluding the baseline). Although results indicate
that the models fall slightly below the baseline,
further analysis shows that linguistic informa-
tion is indeed informative and complementary
to shallow indicators.

DFKI (R, S): “DFKI morphPOSibm1LM” (R) is
a simple linear interpolation of POS 6-gram
language model scores, morpheme 6-gram lan-
guage model scores, IBM 1 scores (both “di-
rect” and “inverse”) for POS 4-grams and for
morphemes. The parallel News corpora from
WMT10 is used as extra data to train the lan-
guage model and the IBM 1 model. “DFKI cfs-
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plsreg” and “DFKI grcfs-mars” (S) use a col-
lection of 264 features generated containing
the baseline features and additional resources.
Numerous methods of feature selection were
tested using 10-fold cross validation on the
training data, reducing these to 23 feature sets.
Several regression and (discretized) classifica-
tion algorithms were employed to train predic-
tion models. The best-performing models in-
cluded features derived from PCFG parsing,
language quality checking and LM scoring, of
both source and target, besides features from
the SMT search graph and a few baseline fea-
tures. “DFKI cfs-plsreg” uses a Best First
correlation-based feature selection technique,
trained with Partial Least Squares Regression,
while “DFKI grcfs-mars” uses a Greedy Step-
wise correlation-based feature selection tech-
nique, trained with multivariate adaptive re-
gression splines.

DCU-SYMC (R, S): Systems are based on a clas-
sification approach using a set of features that
includes the baseline features. The manually
assigned quality scores provided for each MT
output in the training set were rounded in or-
der to apply classification algorithms on a lim-
ited set of classes (integer values from 1 to 5).
Three classifiers were combined by averaging
the predicted classes: SVM using sequential
minimal optimization and RBF kernel (parame-
ters optimized by grid search), Naive Bayes and
Random Forest. “DCU-SYMC constrained” is
based on a set of 70 features derived only from
the data provided for the task. These include
a set of features which attempt to model trans-
lation adequacy using a bilingual topic model
built using Latent Dirichlet Allocation. “DCU-
SYMC unconstrained” is based on 308 fea-
tures including the constrained ones and oth-
ers extracted using external tools: grammatical-
ity features extracted from the source segments
using the TreeTagger part-of-speech tagger, an
English precision grammar, the XLE parser and
the Brown re-ranking parser and features based
on part-of-speech tag counts extracted from the
MT output using a Spanish TreeTagger model.

Loria (S): Several numerical or boolean features
are computed from the source and target sen-
tences and used to train an SVM regression al-
gorithm with linear (“Loria SVMlinear”) and
radial basis function (“Loria SVMrbf”) as ker-
nel. For the radial basis function, a grid search
is performed to optimise the parameter γ. The
official submission use the baseline features
and a number of features proposed in previous
work (Raybaud et al., 2011), amounting to 66
features. A feature selection algorithm is used
in order to remove non-informative features.
No additional data other than that provided for
the shared task is considered. The training data
is split into a training part (1000 sentences) and
a development part (832 sentences) to learn the
regression model and optimise the parameters
of the regression and for feature selection.

UPC (R, S): The systems use several features on
top of the baseline features. These are mostly
based on different language models estimated
on reference and automatic Spanish transla-
tions of the news-v7 corpus. The automatic
translations are generated by the system used
for the shared task. N-gram LMs are esti-
mated on word forms, POS tags, stop words
interleaved by POS tags, stop-word patterns,
plus variants in which the POS tags are re-
placed with the stem or root of each target
word. The POS tags on the target side are ob-
tained by projecting source side annotations via
automatic alignments. The resulting features
are: the perplexity of each additional language
model, according to the two translations, and
the ratio between the two perplexities. Addi-
tionally, features that estimate the likelihood
of the projection of dependency parses on the
two translations are encoded. For learning, lin-
ear SVM regression is used. Optimization was
done via 5-fold cross-validation on a develop-
ment data. Features are encoded by means of
their z-scores, i.e. how many standard devia-
tions the observed value is above or below the
mean. A variant of the system, “UPC-2” uses
an option of SVMLight that removes inconsis-
tent points from the training set and retrains the
model until convergence.
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6.4 Results

Here we give the official results for the ranking and
scoring subtasks followed by a discussion that high-
lights the main findings of the task.

Ranking subtask
Table 12 gives the results for the ranking sub-

task. The table is sorted from best to worse using
the DeltaAvg metric scores (Equation 15) as pri-
mary key and the Spearman correlation scores as
secondary key.

The winning submissions for the ranking subtask
are SDLLW’s M5PbestDeltaAvg and SVM entries,
which have DeltaAvg scores of 0.63 and 0.61, re-
spectively. The difference with respect to all the
other submissions is statistically significant at p =
0.05, using pairwise bootstrap resampling (Koehn,
2004). The state-of-the-art baseline system has a
DeltaAvg score of 0.55 (Spearman rank correla-
tion of 0.58). Five other submissions have perfor-
mances that are not different from the baseline at a
statistically-significant level (p = 0.05), as shown
by the gray area in the middle of Table 12. Three
submissions scored higher than the baseline system
at p = 0.05 (systems above the middle gray area),
which indicates that this shared-task succeeded in
pushing the state-of-the-art performance to new lev-
els. The range of performance for the submissions
in the ranking task varies from a DeltaAvg of 0.65
down to a DeltaAvg of 0.15 (with Spearman values
varying from 0.64 down to 0.19).

In addition to the performance of the official sub-
mission, we report here results obtained by var-
ious oracle methods. The oracle methods make
use of various metrics that are associated in a or-
acle manner to the test input: the gold-label Ef-
fort metric for “Oracle Effort”, the HTER metric
computed against the post-edited translations as ref-
erence for “Oracle HTER”, and the BLEU metric
computed against the same post-edited translations
as reference for “Oracle (H)BLEU”.11 The “Oracle
Effort” DeltaAvg score of 0.95 gives an upperbound
in terms of DeltaAvg for the test set used in this
evaluation. It basically indicates that, for this set,

11We use the (H)BLEU notation to underscore the use of
Post-Edited translations as reference, as opposed to using ref-
erences that are not the product of a Post-Editing process, as for
the traditional BLEU metric.

the difference in PE effort between the top-quality
quantiles and the overall quality is 0.95 on average.
We would like to emphasize here that the DeltaAvg
metric does not have any a-priori range for its values.
The upperbound, for instance, is test-dependent, and
therefore an “Oracle Effort” score is useful for un-
derstanding the performance level of real system-
submissions. The “Oracle HTER” DeltaAvg score
of 0.77 is a more realistic upperbound for the cur-
rent set. Since the HTER metric is considered a
good approximation for the effort required in post-
editing, ranking the test set based on the HTER
scores (from lowest HTER to highest HTER) pro-
vides a good oracle comparison point. The oracle
based on (H)BLEU gives a lower DeltaAvg score,
which can be interpreted to mean that the BLEU
metric provides a lower correlation to post-editing
effort compared to HTER. We also note here that
there is room for improvement between the highest-
scoring submission (at DeltaAvg 0.63) and the “Ora-
cle HTER” DeltaAvg score of 0.77. We are not sure
if this difference can be bridged completely, but hav-
ing measured a quantitative difference between the
current best-performance and a realistic upperbound
is an important achievement of this shared-task.

Scoring subtask
The results for the scoring task are presented in

Table 13, sorted from best to worse by using the
MAE metric scores (Equation 16) as primary key
and the RMSE metric scores (Equation 17) as sec-
ondary key.

The winning submission is SDLLW’s
M5PbestDeltaAvg, with an MAE of 0.61 and
an RMSE of 0.75 (the difference with respect to
all the other submissions is statistically significant
at p = 0.05, using pairwise bootstrap resam-
pling (Koehn, 2004)). The strong, state-of-the-art
quality-estimation baseline system is measured to
have an MAE of 0.69 and RMSE of 0.82, with six
other submissions having performances that are
not different from the baseline at a statistically-
significant level (p = 0.05), as shown by the gray
area in the middle of Table 13). Five submissions
scored higher than the baseline system at p = 0.05
(systems above the middle gray area), which
indicates that this shared-task also succeeded in
pushing the state-of-the-art performance to new
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System ID DeltaAvg Spearman Corr
• SDLLW M5PbestDeltaAvg 0.63 0.64

• SDLLW SVM 0.61 0.60
UU bltk 0.58 0.61
UU best 0.56 0.62

TCD M5P-resources-only* 0.56 0.56
Baseline (17FFs SVM) 0.55 0.58

PRHLT-UPV 0.55 0.55
UEdin 0.54 0.58
SJTU 0.53 0.53

WLV-SHEF FS 0.51 0.52
WLV-SHEF BL 0.50 0.49

DFKI morphPOSibm1LM 0.46 0.46
DCU-SYMC unconstrained 0.44 0.41

DCU-SYMC constrained 0.43 0.41
TCD M5P-all* 0.42 0.41

UPC 1 0.22 0.26
UPC 2 0.15 0.19

Oracle Effort 0.95 1.00
Oracle HTER 0.77 0.70

Oracle (H)BLEU 0.71 0.62

Table 12: Official results for the ranking subtask of the WMT12 Quality Evaluation shared-task. The winning submis-
sions are indicated by a • (the difference with respect to other systems is statistically significant with p = 0.05). The
systems in the gray area are not significantly different from the baseline system. Entries with * represent submissions
for which a bug-fix was applied after the submission deadline.
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System ID MAE RMSE
• SDLLW M5PbestDeltaAvg 0.61 0.75

UU best 0.64 0.79
SDLLW SVM 0.64 0.78

UU bltk 0.64 0.79
Loria SVMlinear 0.68 0.82

UEdin 0.68 0.82
TCD M5P-resources-only* 0.68 0.82

Baseline (17FFs SVM) 0.69 0.82
Loria SVMrbf 0.69 0.83

SJTU 0.69 0.83
WLV-SHEF FS 0.69 0.85

PRHLT-UPV 0.70 0.85
WLV-SHEF BL 0.72 0.86

DCU-SYMC unconstrained 0.75 0.97
DFKI grcfs-mars 0.82 0.98
DFKI cfs-plsreg 0.82 0.99

UPC 1 0.84 1.01
DCU-SYMC constrained 0.86 1.12

UPC 2 0.87 1.04
TCD M5P-all 2.09 2.32
Oracle Effort 0.00 0.00

Oracle HTER (linear mapping into [1.5-5.0]) 0.56 0.73
Oracle (H)BLEU (linear mapping into [1.5-5.0]) 0.61 0.84

Table 13: Official results for the scoring subtask of the WMT12 Quality Evaluation shared-task. The winning submis-
sion is indicated by a • (the difference with respect to the other submissions is statistically significant at p = 0.05).
The systems in the gray area are not different from the baseline system at a statistically significant level (p = 0.05).
Entries with * represent submissions for which a bug-fix was applied after the submission deadline.
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levels in terms of absolute scoring. The range of
performance for the submissions in the scoring task
varies from an MAE of 0.61 up to an MAE of 0.87
(the outlier MAE of 2.09 is reportedly due to bugs).

We also calculate scoring Oracles using the meth-
ods used for the ranking Oracles. The difference is
that the HTER and (H)BLEU oracles need a way
of mapping their scores (which are usually in the
[0, 100] range) into the [1, 5] range. For the compar-
ison here, we did the mapping by excluding the 5%
top and bottom outlier scores, and then linearly map-
ping the remaining range into the [1.5, 5] range. The
“Oracle Effort” scores are not very indicative in this
case. However, the “Oracle HTER” MAE score of
0.56 is a somewhat realistic lowerbound for the cur-
rent set (although the score could be decreased by a
smarter mapping from the HTER range to the Effort
range). We argue that since the HTER metric is con-
sidered a good approximation for the effort required
in post-editing, effort-like scores derived from the
HTER score provide a good way to compute oracle
scores in a deterministic manner. Note that again
the oracle based on (H)BLEU gives a worse MAE
score at 0.61, which support the interpretation that
the (H)BLEU metric provides a lower correlation
to post-editing effort compared to (H)TER. Over-
all, we consider the MAE values for these HTER
and (H)BLEU-based oracles to indicate high error
margins. Most notably the performance of the best
system gets the same MAE score as the (H)BLEU
oracle, at 0.61 MAE. We take this to mean that the
scoring task is more difficult compared to the rank-
ing task, since even oracle-based solutions get high
error scores.

6.5 Discussion

When looking back at the goals that we identified for
this shared-task, most of them have been success-
fully accomplished. In addition, we have achieved
additional ones that were not explicitly stated from
the beginning. In this section, we discuss the accom-
plishments of this shared-task in more detail, start-
ing from the defined goals and beyond.

Identify new and effective quality indicators
The vast majority of the participating systems use
external resources in addition to those provided for
the task, such as parsers, part-of-speech taggers,

named entity recognizers, etc. This has resulted in
a wide variety of features being used. Many of the
novel features have tried to exploit linguistically-
oriented features. While some systems did not
achieve improvements over the baseline while ex-
ploiting such features, others have (the “UU” sub-
missions, for instance, exploiting both constituency
and dependency trees).

Another significant set of features that has been
previously overlooked is the feature set of the MT
decoder. Considering statistical engines, these fea-
tures are immediately available for quality predic-
tion from the internal trace of the MT decoder (in
a glass-box prediction scenario), and its contribu-
tion is significant. These features, which reflect the
“confidence” of the SMT system on the translations
it produces, have been shown to be complemen-
tary to other, system-independent (black-box) fea-
tures. For example, the “SDLLW” submissions in-
corporate these features, and their feature selection
strategy consistently favored this feature set. The
power of this set of features alone is enough to yield
(when used with an M5P model) outputs that would
have been placed 4th in the ranking task and 5th
in the scoring task, a remarkable achievement. An-
other interesting feature used by the “SDLLW” sub-
missions rely on pseudo-references, i.e., translations
produced by other MT systems for the same input
sentence.

Identify alternative machine learning techniques
Although SVM regression was used to compute the
baseline performance, the baseline “system” pro-
vided for the task consisted solely of a software to
extract features, as opposed to a model built us-
ing the regression algorithm. The rationale behind
this decision was to encourage participants to exper-
iment with alternative methods for combining differ-
ent quality indicators. This was achieved to a large
extent.

The best-performing machine learning techniques
were found to be the M5P Regression Trees and the
SVM Regression (SVR) models. The merit of the
M5P Regression Trees is that it provides compact
models that are less prone to overfitting. In contrast,
the SVR models can easily overfit given the small
amount of training data available and the large num-
bers of features commonly used. Indeed, many of
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the submissions that fell below the baseline perfor-
mance can blame overfitting for (part of) their sub-
optimal performance. However, SVR models can
achieve high performance through the use of tun-
ing and feature selection techniques to avoid overfit-
ting. Structured learning techniques were success-
fully used by the “UU” submissions – the second
best performing team – to represent parse trees. This
seems an interesting direction to encode other sorts
of linguistic information about source and trans-
lation texts. Other interesting learning techniques
have been tried, such as Neural Networks, Par-
tial Least Squares Regression, or multivariate adap-
tive regression splines, but their performance does
not suggest they are strong candidates for learning
highly-performing quality-estimation models.

Test the suitability of evaluation metrics for qual-
ity estimation DeltaAvg, our proposed metric for
measuring ranking performance, proved suitable for
scoring the ranking subtask. Its high correlation with
the Spearman ranking metric, coupled with its ex-
trinsic interpretability, makes it a preferred choice
for future measurements. It is also versatile, in the
sense that the its valuation function V can change to
reflect different extrinsic measures of quality.

Establish the state of the art performance The
results on both the ranking and the scoring subtasks
established new state of the art levels on the test set
used in this shared task. In addition to these lev-
els, the oracle performance numbers also help under-
stand the current performance level, and how much
of a gap in performance there still exists. Addi-
tional data points regarding quality estimation per-
formance are needed to establish how stable this
measure of the performance gap is.

Contrast the performance of regression and
ranking techniques Most of the submissions in
the ranking task used the results provided by a re-
gression solution (submitted for the scoring task) to
infer the rankings. Also, optimizing for ranking per-
formance via a regression solution seems to result in
regression models that perform very well, as in the
case of the top-ranked submission.

6.6 Quality Estimation Conclusions

There appear to be significant differences between
considering the quality estimation task as a ranking
problem versus a scoring problem. The ranking-
based approach appears to be somewhat simpler
and more easily amenable to automatic solutions,
and at the same time provides immediate benefits
when integrated into larger applications (see, for in-
stance, the post-editing application described in Spe-
cia (2011)). The scoring-based approach is more dif-
ficult, as the high error rate even of oracle-based so-
lutions indicates. It is also well-known from human
evaluations of MT outputs that human judges also
have a difficult time agreeing on absolute-number
judgements to translations.

Our experience in creating the current datasets
confirms that, even with highly-trained profession-
als, it is difficult to arrive at consistent judge-
ments. We plan to have future investigations on
how to achieve more consistent ways of generating
absolute-number scores that reflect the quality of au-
tomated translations.

7 Summary

As in previous incarnations of this workshop we car-
ried out an extensive manual and automatic evalu-
ation of machine translation performance, and we
used the human judgements that we collected to val-
idate automatic metrics of translation quality. This
year was also the debut of a new quality estimation
task, which tries to predict the effort involved in hav-
ing post editors correct MT output. The quality es-
timation task differs from the metrics task in that it
does not involve reference translations.

As in previous years, all data sets generated by
this workshop, including the human judgments, sys-
tem translations and automatic scores, are publicly
available for other researchers to analyze.12
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CU-BOJAR – .29? .43 .53? .47? .31?
JHU .59? – .59? .67? .65? .44?

ONLINE-A .44 .28? – .52? .46? .32?
ONLINE-B .36? .23? .34? – .38? .25?

UEDIN .36? .23? .36? .48? – .27?
UK .56? .33? .56? .63? .60? –

> others 0.53 0.32 0.53 0.65 0.60 0.37

Table 14: Head to head comparison for Czech-English systems

A Pairwise System Comparisons by Human Judges

Tables 14–21 show pairwise comparisons between systems for each language pair. The numbers in each of
the tables’ cells indicate the percentage of times that the system in that column was judged to be better than
the system in that row. Bolding indicates the winner of the two systems. The difference between 100 and
the sum of the complementary cells is the percent of time that the two systems were judged to be equal.

Because there were so many systems and data conditions the significance of each pairwise comparison
needs to be quantified. We applied the Sign Test to measure which comparisons indicate genuine differences
(rather than differences that are attributable to chance). In the following tables ? indicates statistical signif-
icance at p ≤ 0.10, † indicates statistical significance at p ≤ 0.05, and ‡ indicates statistical significance at
p ≤ 0.01, according to the Sign Test.

Each table contains a final row showing how often a system was ranked to be > than the others. As
suggested by Bojar et al. (2011) present, this is calculated ignoring ties as:

score(s) =
win(s)

win(s) + loss(s)
(18)

B Automatic Scores

Tables 29–36 give the automatic scores for each of the systems.
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COMMERCIAL2 – .48? .56? .43 .49† .50? .32? .49† .54? .36 .38‡ .50† .42
CU-BOJAR .33? – .49† .29† .26 .39 .26? .40 .51? .37‡ .27? .43 .33?

CU-DEPFIX .28? .36† – .26? .30? .32? .18? .31? .13? .33? .21? .31? .25?
CU-POOR-COMB .42 .40† .59? – .41? .51? .34? .49† .57? .45 .33† .47? .42

CU-TAMCH .38† .24 .51? .27? – .39 .22? .42 .47† .38† .28? .39 .28?
CU-TECTOMT .32? .42 .49? .33? .47 – .24? .42 .46† .36† .33? .46 .40

JHU .54? .59? .69? .50? .62? .60? – .59? .61? .52? .44 .62? .48?
ONLINE-A .36† .41 .51? .36† .43 .43 .24? – .51? .40 .26? .45 .32?
ONLINE-B .32? .34? .24? .28? .35† .35† .22? .33? – .31? .23? .33? .22?

COMMERCIAL1 .41 .48‡ .55? .41 .50† .49† .36? .46 .54? – .30? .48 .41
SFU .47‡ .56? .64? .47† .55? .52? .36 .53? .64? .56? – .58? .48†

UEDIN .36† .36 .50? .29? .38 .43 .24? .37 .48? .40 .25? – .30?
UK .43 .47? .59? .43 .52? .44 .26? .50? .59? .47 .35† .52? –

> others 0.46 0.54 0.66 0.44 0.56 0.53 0.32 0.53 0.63 0.48 0.36 0.56 0.44

Table 15: Head to head comparison for English-Czech systems
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ITS-LATL – .49‡ .54? .55? .53? .59? .58? .38 .47† .32 .45† .47? .62? .53? .48
JHU .35‡ – .47? .55? .42 .45 .55? .36 .49‡ .37 .46 .46‡ .47? .46† .29
KIT .25? .25? – .37 .29‡ .28‡ .39 .27? .35 .30† .32† .33 .36 .24† .22?

LIMSI .23? .23? .34 – .26 .21? .29‡ .25? .29† .19? .19? .32† .22† .29 .16?
LIUM .25? .36 .42‡ .34 – .27† .46‡ .21? .40 .25? .37 .34 .35 .29 .30‡

ONLINE-A .22? .33 .40‡ .45? .42† – .44† .26? .43 .33† .38 .33 .47? .35 .30‡
ONLINE-B .20? .22? .33 .43‡ .32‡ .29† – .27? .36 .26? .33 .34 .39 .29‡ .24?

RBMT-4 .37 .47 .56? .60? .60? .55? .52? – .41 .36 .39 .40 .58? .51† .42
RBMT-3 .30† .35‡ .43 .45† .40 .39 .37 .34 – .27? .29 .23 .55? .42 .34†

ONLINE-C .36 .46 .46† .55? .49? .50† .58? .38 .48? – .45‡ .43 .62? .45 .39
RBMT-1 .28† .36 .49† .58? .40 .42 .44 .35 .38 .31‡ – .41 .45 .37 .30†
PROMT .20? .34‡ .41 .50† .46 .40 .40 .34 .22 .33 .32 – .48† .41 .27?

RWTH .22? .28? .34 .37† .31 .28? .32 .27? .26? .22? .34 .31† – .29 .17?
UEDIN .28? .29† .40† .39 .34 .35 .42‡ .31† .39 .34 .36 .34 .34 – .27?

UK .37 .36 .53? .53? .44‡ .43‡ .48? .38 .52† .39 .44† .46? .52? .46? –
> others 0.36 0.44 0.59 0.66 0.55 0.51 0.6 0.39 0.52 0.39 0.48 0.51 0.62 0.53 0.4

Table 16: Head to head comparison for English-French systems

42



D
F

K
I-

B
E

R
L

IN

D
F

K
I-

H
U

N
S

IC
K

E
R

JH
U

K
IT

L
IM

S
I

O
N

L
IN

E
-A

O
N

L
IN

E
-B

R
B

M
T-

4

R
B

M
T-

3

O
N

L
IN

E
-C

R
B

M
T-

1

R
W

T
H

U
E

D
IN

-W
IL

L
IA

M
S

U
E

D
IN

U
K

DFKI-BERLIN – .62? .58? .64? .71? .68? .80? .68? .71? .58? .65? .62? .64? .61? .60?
DFKI-HUNSICKER .28? – .42 .48 .51‡ .47 .52† .49? .57? .38 .53? .39 .39 .41 .39

JHU .24? .45 – .43† .43 .47‡ .62? .56? .60? .46 .47‡ .46† .47† .39 .42
KIT .22? .41 .27† – .39 .45 .60? .54? .58? .37 .47 .33 .43 .39 .26?

LIMSI .15? .37‡ .34 .36 – .47 .49‡ .43 .43 .35 .48 .36 .37 .32 .31?
ONLINE-A .20? .37 .35‡ .41 .39 – .45† .42 .51† .38 .49 .42 .40 .37 .36‡
ONLINE-B .15? .35† .26? .27? .35‡ .30† – .45 .35‡ .29? .41 .30? .34? .30? .18?

RBMT-4 .25? .22? .31? .31? .45 .45 .42 – .41 .38 .40 .44 .35† .36† .36†
RBMT-3 .18? .27? .24? .28? .38 .36† .49‡ .41 – .33? .26? .29? .28? .31? .34†

ONLINE-C .27? .47 .35 .49 .46 .44 .63? .48 .55? – .49† .40 .43 .43 .46
RBMT-1 .19? .30? .33‡ .41 .41 .39 .45 .45 .50? .32† – .34† .40 .39 .39

RWTH .20? .43 .30† .45 .45 .44 .58? .50 .58? .43 .53† – .41 .40 .41
UEDIN-WILLIAMS .20? .46 .30† .36 .36 .45 .54? .52† .54? .41 .46 .38 – .32 .30†

UEDIN .20? .45 .40 .38 .43 .48 .56? .56† .53? .47 .48 .29 .39 – .35
UK .25? .49 .40 .45? .51? .49‡ .64? .51† .52† .44 .47 .34 .48† .40 –

> others 0.25 0.48 0.43 0.50 0.55 0.54 0.64 0.58 0.63 0.47 0.56 0.47 0.51 0.47 0.45

Table 17: Head to head comparison for English-German systems
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JHU – .52? .59? .50? .58? .48? .49‡ .56? .48? .44† .52?
ONLINE-A .27? – .45 .34? .44 .31? .31? .44 .37 .28? .37
ONLINE-B .21? .37 – .28? .35‡ .25? .28? .31? .30? .23? .31?

RBMT-4 .35? .52? .56? – .49† .39 .40 .46† .45 .38‡ .45
RBMT-3 .26? .39 .46‡ .34† – .32? .28? .24 .34† .32? .37

ONLINE-C .33? .54? .61? .40 .47? – .43 .50? .50? .42 .48
RBMT-1 .39‡ .51? .61? .39 .49? .34 – .47† .50† .39 .46
PROMT .28? .41 .51? .33† .29 .33? .34† – .42 .32? .40
UEDIN .25? .41 .48? .38 .47† .30? .35† .43 – .28? .39

UK .31† .52? .57? .48‡ .53? .42 .44 .52? .42? – .50?
UPC .24? .40 .53? .40 .43 .39 .39 .46 .36 .28? –

> others 0.36 0.56 0.65 0.46 0.58 0.43 0.45 0.55 0.52 0.41 0.52

Table 18: Head to head comparison for English-Spanish systems
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CMU – .34‡ .32 .46 .35 .41 .39 .30? .36 .29? .35† .32 .28? .45 .33‡
JHU .50‡ – .63? .55? .53? .63? .57? .43 .42 .31? .46 .52‡ .43 .53† .43
KIT .40 .21? – .36 .30 .35 .44 .33? .33† .23? .31? .25? .28? .23? .30†

LIMSI .35 .26? .37 – .31? .35 .40 .29? .32† .23? .33† .29? .28? .29 .23?
LIUM .47 .25? .43 .53? – .44 .42 .36 .43 .28? .38 .38 .32‡ .40 .42

ONLINE-A .45 .22? .41 .47 .40 – .41 .30? .25? .28? .23? .40 .27? .40 .25?
ONLINE-B .45 .32? .38 .42 .41 .39 – .34† .39 .30? .33? .30? .34† .44 .32†

RBMT-4 .56? .40 .54? .61? .48 .54? .54† – .43 .31† .48† .45 .42 .52† .46
RBMT-3 .50 .46 .53† .53† .46 .54? .47 .33 – .28? .40 .53‡ .52 .50 .48

ONLINE-C .59? .57? .72? .66? .59? .60? .61? .45† .54? – .58? .65? .53† .66? .58?
RBMT-1 .54† .43 .58? .54† .48 .62? .55? .31† .44 .20? – .47 .41 .56† .38

RWTH .39 .35‡ .50? .52? .43 .50 .55? .42 .37‡ .23? .40 – .34† .36 .29?
SFU .57? .38 .55? .54? .48‡ .55? .51† .42 .38 .35† .45 .50† – .41 .46

UEDIN .37 .32† .42? .42 .40 .43 .40 .34† .40 .24? .36† .39 .41 – .29?
UK .50‡ .40 .48† .59? .44 .58? .50† .42 .41 .35? .49 .53? .35 .51? –

> others 0.57 0.41 0.61 0.63 0.52 0.59 0.57 0.43 0.46 0.32 0.46 0.52 0.44 0.55 0.44

Table 19: Head to head comparison for French-English systems
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DFKI-BERLIN – .38 .49 .52† .57? .65? .55† .62? .50 .49 .51† .66? .53? .61? .17? .37
JHU .45 – .60? .66? .66? .69? .57? .60? .52 .62? .58? .67? .59? .62? .21? .37
KIT .36 .16? – .47 .60? .50 .41 .50 .31? .39 .32 .36 .32 .39 .15? .26?

LIMSI .30† .14? .35 – .49‡ .57? .49 .54 .34† .33† .43 .31 .44 .49† .14? .30†
ONLINE-A .32? .20? .22? .32‡ – .39 .30? .44 .20? .30? .37 .35‡ .32‡ .31† .16? .29?
ONLINE-B .25? .21? .38 .29? .38 – .27? .39 .31? .37 .30† .43 .34 .33† .12? .24?

RBMT-4 .33† .33? .49 .44 .57? .63? – .46 .26? .40 .53‡ .51† .56‡ .48 .21? .32?
RBMT-3 .26? .30? .39 .40 .45 .45 .32 – .35 .36 .34‡ .48 .33? .41 .13? .23?

ONLINE-C .36 .37 .58? .54† .70? .62? .57? .50 – .53† .48 .57? .55‡ .58? .14? .45
RBMT-1 .41 .32? .48 .55† .64? .52 .42 .47 .34† – .51 .49 .48 .45 .15? .25?

QCRI .31† .26? .43 .37 .48 .51† .36‡ .52‡ .43 .38 – .48? .48† .45‡ .14? .23?
QUAERO .18? .19? .29 .33 .51‡ .43 .33† .42 .31? .37 .23? – .34 .48† .09? .16?

RWTH .29? .25? .38 .34 .51‡ .48 .37‡ .58? .38‡ .40 .29† .39 – .44 .20? .24?
UEDIN .24? .20? .38 .30† .55† .52† .42 .44 .35? .37 .29‡ .32† .38 – .08? .22?

UG .68? .61? .72? .76? .76? .82? .72? .80? .70? .76? .73? .76? .73? .84? – .57?
UK .43 .37 .48? .48† .54? .62? .57? .64? .44 .59? .49? .58? .51? .56? .20? –

> others 0.40 0.34 0.55 0.54 0.65 0.65 0.50 0.60 0.43 0.51 0.52 0.61 0.56 0.6 0.17 0.37

Table 20: Head to head comparison for German-English systems
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GTH-UPM – .41 .50† .52† .38 .46 .32? .35? .44† .46 .17? .41
JHU .37 – .54? .56? .44 .48 .39 .39 .47† .50? .15? .47†

ONLINE-A .34† .31? – .43 .28? .38‡ .29? .29? .40 .39 .16? .41
ONLINE-B .36† .30? .44 – .34? .38 .30? .32? .37‡ .38 .18? .41

RBMT-4 .50 .45 .61? .57? – .46 .41 .40 .53† .57? .21? .56†
RBMT-3 .42 .40 .53‡ .51 .36 – .36‡ .31? .60? .54† .14? .54†

ONLINE-C .54? .48 .58? .62? .49 .50‡ – .40 .58? .59? .23? .55?
RBMT-1 .56? .50 .59? .57? .40 .53? .41 – .57? .59? .23? .58?

QCRI .28† .31† .45 .50‡ .38† .32? .29? .34? – .31 .12? .33‡
UEDIN .39 .27? .49 .49 .33? .38† .31? .31? .34 – .15? .38

UK .74? .71? .81? .76? .73? .76? .69? .66? .76? .75? – .77?
UPC .42 .32† .49 .49 .38† .36† .33? .35? .44‡ .36 .14? –

> others 0.52 0.48 0.62 0.61 0.46 0.51 0.42 0.42 0.60 0.58 0.19 0.57

Table 21: Head to head comparison for Spanish-English systems

Bojar Lopez Most Probable MC Playoffs Expected Wins
1 0.643: ONLINE-B ONLINE-B ONLINE-B 2.88: ONLINE-B 0.642 (1): ONLINE-B

2 0.606: UEDIN UEDIN UEDIN 3.07: UEDIN 0.603 (2): UEDIN

3 0.530: ONLINE-A CU-BOJAR CU-BOJAR 3.40: CU-BOJAR 0.528 (3-4): ONLINE-A

4 0.530: CU-BOJAR ONLINE-A ONLINE-A 3.40: ONLINE-A 0.528 (3-4): CU-BOJAR

5 0.375: UK UK UK 4.01: UK 0.379 (5): UK

6 0.318: JHU JHU JHU 4.24: JHU 0.320 (6): JHU

Table 22: Overall ranking with different methods (Czech–English)

Bojar Lopez Most Probable MC Playoffs Expected Wins
1 0.646: ONLINE-A ONLINE-B ONLINE-B 6.35: ONLINE-A 0.647 (1-3): ONLINE-A

2 0.645: ONLINE-B ONLINE-A ONLINE-A 6.44: ONLINE-B 0.642 (1-3): ONLINE-B

3 0.612: QUAERO UEDIN UEDIN 6.94: QUAERO 0.609 (2-5): QUAERO

4 0.599: RBMT-3 QUAERO QUAERO 7.04: RBMT-3 0.600 (2-6): RBMT-3
5 0.597: UEDIN RBMT-3 RBMT-3 7.16: UEDIN 0.593 (3-6): UEDIN

6 0.558: RWTH KIT KIT 7.76: RWTH 0.551 (5-9): RWTH

7 0.545: LIMSI RWTH RWTH 7.83: KIT 0.547 (5-10): KIT

8 0.544: KIT QCRI QCRI 7.85: LIMSI 0.545 (6-10): LIMSI

9 0.524: QCRI RBMT-4 RBMT-4 8.20: QCRI 0.521 (7-11): QCRI

10 0.505: RBMT-1 LIMSI LIMSI 8.40: RBMT-4 0.506 (8-11): RBMT-1
11 0.502: RBMT-4 RBMT-1 RBMT-1 8.42: RBMT-1 0.506 (8-11): RBMT-4
12 0.434: ONLINE-C ONLINE-C ONLINE-C 9.43: ONLINE-C 0.434 (12-13): ONLINE-C

13 0.402: DFKI-BERLIN DFKI-BERLIN DFKI-BERLIN 9.86: DFKI-BERLIN 0.405 (12-14): DFKI-BERLIN

14 0.374: UK UK UK 10.25: UK 0.377 (13-15): UK

15 0.337: JHU JHU JHU 10.81: JHU 0.338 (14-15): JHU

16 0.179: UG UG UG 13.26: UG 0.180 (16): UG

Table 23: Overall ranking with different methods (German–English)
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Bojar Lopez Most Probable MC Playoffs Expected Wins
1 0.630: LIMSI LIMSI LIMSI 6.33: LIMSI 0.626 (1-3): LIMSI

2 0.613: KIT CMU CMU 6.55: KIT 0.610 (1-4): KIT

3 0.593: ONLINE-A ONLINE-B ONLINE-B 6.80: ONLINE-A 0.592 (1-5): ONLINE-A

4 0.573: CMU KIT KIT 7.06: CMU 0.571 (2-6): CMU

5 0.569: ONLINE-B ONLINE-A ONLINE-A 7.12: ONLINE-B 0.567 (3-7): ONLINE-B

6 0.546: UEDIN LIUM LIUM 7.51: UEDIN 0.538 (5-8): UEDIN

7 0.523: LIUM RWTH RWTH 7.73: LIUM 0.522 (5-8): LIUM

8 0.515: RWTH UEDIN UEDIN 7.88: RWTH 0.510 (6-9): RWTH

9 0.459: RBMT-1 RBMT-1 RBMT-1 8.51: RBMT-1 0.463 (8-12): RBMT-1
10 0.457: RBMT-3 UK UK 8.56: RBMT-3 0.458 (9-13): RBMT-3
11 0.444: UK SFU SFU 8.75: SFU 0.444 (9-14): SFU

12 0.444: SFU RBMT-3 RBMT-3 8.78: UK 0.441 (9-14): UK

13 0.429: RBMT-4 RBMT-4 RBMT-4 8.92: RBMT-4 0.430 (10-14): RBMT-4
14 0.412: JHU JHU JHU 9.19: JHU 0.409 (12-14): JHU

15 0.321: ONLINE-C ONLINE-C ONLINE-C 10.31: ONLINE-C 0.319 (15): ONLINE-C

Table 24: Overall ranking with different methods (French–English)

Bojar Lopez Most Probable MC Playoffs Expected Wins
1 0.617: ONLINE-A ONLINE-A ONLINE-A 5.38: ONLINE-A 0.617 (1-4): ONLINE-A

2 0.612: ONLINE-B ONLINE-B ONLINE-B 5.43: ONLINE-B 0.611 (1-4): ONLINE-B

3 0.603: QCRI QCRI QCRI 5.56: QCRI 0.600 (1-4): QCRI

4 0.585: UEDIN UPC UPC 5.75: UEDIN 0.581 (2-5): UEDIN

5 0.565: UPC UEDIN UEDIN 5.89: UPC 0.567 (3-6): UPC

6 0.528: GTH-UPM RBMT-3 RBMT-3 6.29: GTH-UPM 0.526 (5-7): GTH-UPM

7 0.512: RBMT-3 JHU JHU 6.37: RBMT-3 0.518 (6-8): RBMT-3
8 0.477: JHU GTH-UPM GTH-UPM 6.73: JHU 0.480 (7-9): JHU

9 0.461: RBMT-4 RBMT-4 RBMT-4 6.92: RBMT-4 0.460 (8-10): RBMT-4
10 0.423: RBMT-1 ONLINE-C ONLINE-C 7.19: RBMT-1 0.429 (9-11): RBMT-1
11 0.420: ONLINE-C RBMT-1 RBMT-1 7.24: ONLINE-C 0.423 (9-11): ONLINE-C

12 0.189: UK UK UK 9.25: UK 0.188 (12): UK

Table 25: Overall ranking with different methods (Spanish–English)

Bojar Lopez Most Probable MC Playoffs Expected Wins
1 0.662: CU-DEPFIX CU-DEPFIX CU-DEPFIX 5.25: CU-DEPFIX 0.660 (1): CU-DEPFIX

2 0.628: ONLINE-B ONLINE-B ONLINE-B 5.78: ONLINE-B 0.616 (2): ONLINE-B

3 0.557: UEDIN UEDIN UEDIN 6.42: UEDIN 0.557 (3-6): UEDIN

4 0.555: CU-TAMCH CU-TAMCH CU-TAMCH 6.45: CU-TAMCH 0.555 (3-6): CU-TAMCH

5 0.543: CU-BOJAR CU-BOJAR CU-BOJAR 6.58: CU-BOJAR 0.541 (3-7): CU-BOJAR

6 0.531: CU-TECTOMT CU-TECTOMT CU-TECTOMT 6.69: CU-TECTOMT 0.532 (4-7): CU-TECTOMT

7 0.528: ONLINE-A ONLINE-A ONLINE-A 6.72: ONLINE-A 0.529 (4-7): ONLINE-A

8 0.478: COMMERCIAL1 COMMERCIAL2 COMMERCIAL2 7.27: COMMERCIAL1 0.477 (8-10): COMMERCIAL1
9 0.459: COMMERCIAL2 COMMERCIAL1 COMMERCIAL1 7.46: COMMERCIAL2 0.459 (8-11): COMMERCIAL2
10 0.442: CU-POOR-COMB CU-POOR-COMB CU-POOR-COMB 7.61: CU-POOR-COMB 0.443 (9-11): CU-POOR-COMB

11 0.437: UK UK UK 7.65: UK 0.440 (9-11): UK

12 0.360: SFU SFU SFU 8.40: SFU 0.362 (12): SFU

13 0.326: JHU JHU JHU 8.72: JHU 0.328 (13): JHU

Table 26: Overall ranking with different methods (English–Czech)
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Bojar Lopez Most Probable MC Playoffs Expected Wins
1 0.655: LIMSI LIMSI LIMSI 5.98: LIMSI 0.651 (1-2): LIMSI

2 0.615: RWTH RWTH RWTH 6.57: RWTH 0.609 (2-4): RWTH

3 0.595: ONLINE-B ONLINE-B ONLINE-B 6.84: ONLINE-B 0.589 (2-5): ONLINE-B

4 0.590: KIT KIT KIT 6.86: KIT 0.587 (2-5): KIT

5 0.554: LIUM LIUM LIUM 7.36: LIUM 0.550 (4-8): LIUM

6 0.534: UEDIN UEDIN UEDIN 7.67: UEDIN 0.526 (5-9): UEDIN

7 0.516: RBMT-3 RBMT-3 RBMT-3 7.85: RBMT-3 0.514 (5-10): RBMT-3
8 0.513: ONLINE-A ONLINE-A ONLINE-A 7.92: PROMT 0.507 (6-10): ONLINE-A

9 0.506: PROMT PROMT PROMT 7.92: ONLINE-A 0.507 (6-10): PROMT

10 0.483: RBMT-1 RBMT-1 RBMT-1 8.23: RBMT-1 0.483 (8-11): RBMT-1
11 0.436: JHU JHU JHU 8.85: JHU 0.436 (10-12): JHU

12 0.396: UK UK RBMT-4 9.34: RBMT-4 0.397 (11-15): RBMT-4
13 0.394: ONLINE-C RBMT-4 ITS-LATL 9.38: ONLINE-C 0.393 (12-15): ONLINE-C

14 0.394: RBMT-4 ITS-LATL ONLINE-C 9.41: UK 0.391 (12-15): UK

15 0.360: ITS-LATL ONLINE-C UK 9.81: ITS-LATL 0.360 (13-15): ITS-LATL

Table 27: Overall ranking with different methods (English–French)

Bojar Lopez Most Probable MC Playoffs Expected Wins
1 0.648: ONLINE-B ONLINE-B ONLINE-B 4.70: ONLINE-B 0.646 (1): ONLINE-B

2 0.579: RBMT-3 RBMT-3 RBMT-3 5.35: RBMT-3 0.577 (2-4): RBMT-3
3 0.561: ONLINE-A PROMT PROMT 5.49: ONLINE-A 0.561 (2-5): ONLINE-A

4 0.545: PROMT ONLINE-A ONLINE-A 5.66: PROMT 0.542 (3-6): PROMT

5 0.526: UEDIN UPC UPC 5.78: UEDIN 0.528 (4-6): UEDIN

6 0.524: UPC UEDIN UEDIN 5.81: UPC 0.525 (4-6): UPC

7 0.463: RBMT-4 RBMT-1 RBMT-1 6.33: RBMT-4 0.464 (7-9): RBMT-4
8 0.452: RBMT-1 RBMT-4 RBMT-4 6.42: RBMT-1 0.452 (7-9): RBMT-1
9 0.430: ONLINE-C UK ONLINE-C 6.57: ONLINE-C 0.434 (8-10): ONLINE-C

10 0.412: UK ONLINE-C UK 6.73: UK 0.415 (9-10): UK

11 0.357: JHU JHU JHU 7.17: JHU 0.357 (11): JHU

Table 28: Overall ranking with different methods (English–Spanish)
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Czech-English News Task
CU-BOJAR 0.17 0.2 39 0.31 44 0.66 0.50 0.21 0.65 0.2 50 639

JHU 0.16 0.18 41 0.28 41 0.63 0.47 0.19 0.65 0.10 53 692
ONLINE-A 0.18 0.21 40 0.31 43 0.68 0.51 0.21 0.62 0.22 50 648
ONLINE-B 0.18 0.23 40 0.30 42 0.67 0.53 0.23 0.59 0.20 52 660

UEDIN 0.18 0.22 39 0.32 45 0.69 0.53 0.23 0.60 0.25 49 627
UK 0.16 0.18 41 0.29 41 0.63 0.49 0.19 0.67 0.17 53 682

Table 29: Automatic evaluation metric scores for systems in the WMT12 Czech-English News Task
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German-English News Task
DFKI-BERLIN 0.17 0.21 40 0.3 43 0.46 0.18 0.61 0.25 50 653

JHU 0.17 0.2 41 0.29 42 0.42 0.21 0.61 0.20 52 672
KIT 0.18 0.23 39 0.31 45 0.46 0.23 0.58 0.28 49 630

LIMSI 0.18 0.23 39 0.31 45 0.48 0.23 0.6 0.30 49 628
ONLINE-A 0.18 0.21 40 0.32 44 0.50 0.22 0.6 0.27 50 645
ONLINE-B 0.19 0.24 39 0.31 44 0.53 0.24 0.59 0.29 50 636

RBMT-4 0.16 0.16 41 0.29 42 0.44 0.18 0.68 0.24 53 690
RBMT-3 0.16 0.17 40 0.3 42 0.47 0.19 0.66 0.29 52 677

ONLINE-C 0.15 0.14 42 0.28 40 0.43 0.17 0.70 0.26 54 711
RBMT-1 0.15 0.15 43 0.29 40 0.45 0.17 0.69 0.24 54 711

QCRI 0.18 0.23 40 0.31 44 0.46 0.23 0.59 0.26 50 639
QUAERO 0.19 0.24 38 0.32 46 0.49 0.24 0.57 0.3 48 613

RWTH 0.18 0.23 39 0.31 45 0.48 0.24 0.58 0.27 49 626
UEDIN 0.18 0.23 39 0.31 46 0.51 0.23 0.59 0.32 49 630

UG 0.11 0.11 45 0.24 35 0.38 0.14 0.77 0.10 59 768
UK 0.16 0.18 42 0.29 40 0.42 0.2 0.65 0.27 53 683

Table 30: Automatic evaluation metric scores for systems in the WMT12 German-English News Task
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French-English News Task
CMU 0.20 0.29 36 0.34 51 0.54 0.29 0.52 0.25 44 561
JHU 0.19 0.26 37 0.33 47 0.50 0.26 0.54 0.20 46 596
KIT 0.21 0.30 35 0.34 51 0.54 0.3 0.51 0.25 43 551

LIMSI 0.21 0.30 35 0.34 52 0.55 0.3 0.51 0.25 43 546
LIUM 0.20 0.29 36 0.34 50 0.54 0.29 0.52 0.24 44 558

ONLINE-A 0.2 0.27 37 0.34 48 0.52 0.27 0.53 0.24 45 584
ONLINE-B 0.20 0.30 36 0.33 48 0.55 0.29 0.51 0.22 46 582

RBMT-4 0.18 0.20 38 0.32 45 0.49 0.21 0.64 0.15 48 622
RBMT-3 0.18 0.21 39 0.31 46 0.49 0.22 0.61 0.15 48 637

ONLINE-C 0.18 0.19 38 0.31 45 0.45 0.21 0.64 0.10 48 633
RBMT-1 0.18 0.21 39 0.32 47 0.5 0.22 0.62 0.15 48 626

RWTH 0.20 0.29 36 0.34 50 0.53 0.28 0.53 0.20 44 563
SFU 0.2 0.25 37 0.33 48 0.51 0.26 0.54 0.17 46 596

UEDIN 0.20 0.30 35 0.34 51 0.54 0.3 0.51 0.25 43 549
UK 0.19 0.25 38 0.33 47 0.52 0.25 0.57 0.17 47 602

Table 31: Automatic evaluation metric scores for systems in the WMT12 French-English News Task

A
M

B
E

R

B
L

E
U

-4
-C

L
O

S
E

S
T-

C
A

S
E

D

B
L

O
C

K
E

R
R

C
A

T
S

M
E

T
E

O
R

P
O

S
F

S
A

G
A

N
-S

T
S

S
E

M
P

O
S

S
IM

P
B

L
E

U

T
E

R

T
E

R
R

O
R

C
A

T

W
O

R
D

B
L

O
C

K
E

R
R

C
A

T
S

X
E

N
E

R
R

C
A

T
S

Spanish-English News Task
GTH-UPM 0.21 0.29 35 0.35 51 0.7 0.55 0.29 0.51 0.31 43 565

JHU 0.21 0.29 35 0.35 51 0.7 0.56 0.29 0.51 0.31 43 560
ONLINE-A 0.22 0.31 34 0.36 52 0.72 0.58 0.31 0.49 0.36 42 535
ONLINE-B 0.22 0.38 33 0.36 53 0.70 0.60 0.35 0.45 0.35 41 523

RBMT-4 0.19 0.23 36 0.33 49 0.69 0.54 0.24 0.60 0.29 45 591
RBMT-3 0.19 0.23 36 0.33 49 0.69 0.54 0.23 0.60 0.29 45 590

ONLINE-C 0.19 0.22 37 0.33 47 0.68 0.5 0.23 0.61 0.24 46 598
RBMT-1 0.18 0.22 38 0.33 48 0.67 0.52 0.23 0.62 0.23 47 607

QCRI 0.22 0.33 33 0.36 54 0.71 0.6 0.32 0.49 0.32 40 523
UEDIN 0.22 0.33 33 0.36 54 0.71 0.59 0.32 0.48 0.32 40 519

UK 0.18 0.22 37 0.30 44 0.6 0.48 0.23 0.60 0.10 48 634
UPC 0.22 0.32 34 0.36 54 0.71 0.57 0.31 0.49 0.33 41 531

Table 32: Automatic evaluation metric scores for systems in the WMT12 Spanish-English News Task
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English-Czech News Task
COMMERCIAL-2 0.01 0.08 47 693 0.17 23 0.38 0.1 0.76 0.17 61

CU-BOJAR 0.17 0.13 45 644 0.21 28 0.4 0.13 0.69 0.26 57
CU-DEPFIX 0.19 0.16 44 623 0.22 28 0.45 0.15 0.66 0.30 55

CU-POOR-COMB 0.14 0.12 48 710 0.19 27 0.35 0.12 0.67 0.23 60
CU-TAMCH 0.17 0.13 45 647 0.21 28 0.38 0.13 0.69 0.29 57

CU-TECTOMT 0.16 0.12 48 690 0.19 26 0.36 0.12 0.68 0.22 60
JHU 0.16 0.1 47 691 0.2 23 0.39 0.11 0.69 0.10 60

ONLINE-A 0.17 0.13 n/a n/a 0.21 n/a 0.42 0.13 0.67 0.25 n/a
ONLINE-B 0.19 0.16 44 623 0.21 28 0.45 0.15 0.66 0.30 55

COMMERCIAL-1 0.11 0.09 48 692 0.18 22 0.38 0.10 0.74 0.21 61
SFU 0.15 0.11 47 674 0.19 23 0.39 0.11 0.71 0.21 60

UEDIN 0.18 0.15 45 639 0.21 27 0.41 0.14 0.66 0.40 56
UK 0.15 0.11 47 669 0.19 25 0.39 0.12 0.71 0.35 59

Table 33: Automatic evaluation metric scores for systems in the WMT12 English-Czech News Task
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English-German News Task
DFKI-BERLIN 0.18 0.14 46 628 0.35 41 0.13 0.69 0.10 57

DFKI-HUNSICKER 0.18 0.14 45 621 0.35 42 0.15 0.69 0.17 57
JHU 0.2 0.15 45 618 0.37 42 0.16 0.68 0.17 56
KIT 0.20 0.17 45 606 0.38 43 0.17 0.66 0.14 55

LIMSI 0.2 0.17 45 615 0.37 43 0.17 0.65 0.15 56
ONLINE-A 0.20 0.16 45 617 0.38 43 0.17 0.65 0.36 55
ONLINE-B 0.22 0.18 43 589 0.38 42 0.18 0.64 0.35 55

RBMT-4 0.18 0.14 45 623 0.35 42 0.15 0.69 0.35 57
RBMT-3 0.19 0.15 44 608 0.36 44 0.16 0.68 0.37 56

ONLINE-C 0.16 0.11 47 655 0.32 39 0.13 0.74 0.37 60
RBMT-1 0.17 0.13 47 643 0.34 42 0.15 0.70 0.36 58

RWTH 0.2 0.16 44 609 0.37 43 0.16 0.67 0.25 56
UEDIN-WILLIAMS 0.19 0.16 45 628 0.37 43 0.17 0.66 0.33 57

UEDIN 0.20 0.16 45 611 0.37 43 0.17 0.66 0.29 55
UK 0.18 0.14 46 632 0.36 40 0.15 0.71 0.27 58

Table 34: Automatic evaluation metric scores for systems in the WMT12 English-German News Task
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English-French News Task
ITS-LATL 0.24 0.21 41 548 0.45 48 0.21 0.61 0.15 50

JHU 0.26 0.25 38 511 0.49 51 0.25 0.57 0.15 47
KIT 0.28 0.28 36 480 0.52 55 0.28 0.54 0.22 44

LIMSI 0.28 0.29 36 472 0.52 55 0.28 0.54 0.22 44
LIUM 0.28 0.28 37 480 0.51 54 0.28 0.55 0.20 45

ONLINE-A 0.26 0.25 39 512 0.5 52 0.26 0.57 0.17 47
ONLINE-B 0.24 0.21 36 473 0.48 45 0.26 0.77 0.10 49

RBMT-4 0.24 0.21 40 539 0.46 48 0.22 0.60 0.10 49
RBMT-3 0.26 0.24 39 511 0.48 52 0.24 0.58 0.14 47

ONLINE-C 0.23 0.2 41 550 0.45 50 0.21 0.62 0.10 50
RBMT-1 0.25 0.22 40 531 0.47 51 0.23 0.6 0.13 49
PROMT 0.26 0.24 38 502 0.49 52 0.25 0.58 0.18 46

RWTH 0.28 0.29 36 478 0.52 54 0.28 0.54 0.22 44
UEDIN 0.28 0.28 36 479 0.52 54 0.28 0.55 0.27 45

UK 0.25 0.23 39 523 0.48 51 0.24 0.6 0.17 48

Table 35: Automatic evaluation metric scores for systems in the WMT12 English-French News Task
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English-Spanish News Task
JHU 0.29 0.29 37 494 0.54 52 0.29 0.51 0.14 45

ONLINE-A 0.31 0.31 36 475 0.56 54 0.31 0.48 0.2 43
ONLINE-B 0.33 0.36 34 431 0.57 54 0.34 0.48 0.25 42

RBMT-4 0.27 0.24 39 528 0.5 50 0.25 0.55 0.14 48
RBMT-3 0.28 0.26 39 510 0.51 51 0.26 0.54 0.13 46

ONLINE-C 0.26 0.24 40 532 0.5 49 0.25 0.55 0.10 48
RBMT-1 0.26 0.23 40 534 0.50 49 0.25 0.57 0.13 49
PROMT 0.29 0.27 38 497 0.52 52 0.28 0.53 0.18 45
UEDIN 0.31 0.32 35 466 0.56 55 0.32 0.49 0.19 42

UK 0.29 0.28 38 510 0.54 51 0.28 0.52 0.17 46
UPC 0.31 0.32 36 476 0.56 54 0.31 0.49 0.19 43

Table 36: Automatic evaluation metric scores for systems in the WMT12 English-Spanish News Task
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Abstract 

This paper describes the system used for our 
participation in the WMT12 Machine Transla-
tion evaluation shared task.  
We also present a new approach to Machine 
Translation evaluation based on the recently 
defined task Semantic Textual Similarity. This 
problem is addressed using a textual entail-
ment engine entirely based on WordNet se-
mantic features. 
We described results for the Spanish-English, 
Czech-English and German-English language 
pairs according to our submission on the Eight 
Workshop on Statistical Machine Translation. 
Our first experiments reports a competitive 
score to system level. 

1 Introduction 

The evaluation of Machine Translation (MT) has 
become as important as MT itself over the last few 
years. This is evidenced by the fact that there are 
now specific forums to present and test new met-
rics, such as the Workshop for Statistical MT 
(WMT) or the NIST MetricsMatr. Every year a 
vast number of MT metrics are created, the majori-
ty being automatic, and seeking to find an efficient, 
low labor-intensive and reliable evaluation method 
as an alternative to human-based evaluation.  

Automatic metrics employ different evaluation 
strategies: classical MT automatic metrics, such as 
BLEU (Papineni et al., 2002), NIST (Doddington. 
2002), WER (Tillmann et al., 1997), PER (Nießen 
et al., 2000) are language-independent based on n-
gram matching (considering or not the ordering of 
words in a sentence); other use some kind of lan-
guage-specific knowledge, for example METEOR 
(Banerjee et al., 2005), which uses WordNet to 

match synonyms if exact matchings do not occur, 
and METEOR-NEXT (Denkowski et al., 2010) 
that, in addition to METEOR’s features, incorpo-
rates paraphrases; and more sophisticated metrics 
use deeper linguistic information, as for example 
the DCU-LFG metric (Yifan et al., 2010).  

However, relatively few attempts have been 
made to use semantic information for MT evalua-
tion. Moreover, only one work has been published 
about using semantic equivalence (known as Tex-
tual Entailment) of texts for MT evaluation. In this 
work we propose an improved metric, based on TE 
features, that indicates to what extent a candidate 
sentence is equivalent to a reference. 

The paper is organized as follows: Section 2 de-
scribes the relevant work done on semantic orient-
ed MT evaluation, Section 3 describes the 
architecture of the system to compute our metric, 
then Section 4 relates TE and semantic textual 
similarity to MT, and Section 5 presents some 
results obtained with our TE-based metric; and 
finally Section 6 summarize some conclusions and 
future work. 

2 Related work  

Given the vast literature in the field of MT evalua-
tion, in this section we briefly mention a few at-
tempts to evaluate MT based on semantic features, 
which we deem most recent and important. 

2.1 Semantics for MT evaluation 

Giménez and Márquez (2007) present a set of met-
rics operating over shallow semantic structures, 
which they call linguistic elements, with the idea 
that a sentence can be seen as a ‘bag’ of LEs. Pos-
sible LEs are word forms, part-of-speech tags, 
dependency relationships, syntactic phrases, named 
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entities, semantic roles, etc. The metrics calculate 
the similarity of a candidate to one or more refer-
ences by calculating the overlap and matches of 
LEs, and the resulting score is the highest obtained 
from the individual comparisons to each reference. 
The shallow-semantic evaluation is performed by 
computing the matching and overlap of named 
entities and semantic roles, after automatically 
annotating the sentences.  

Following this work, Giménez and Márquez 
(2009) propose the family of metrics discourse 
representation structure (DRS) based on the Dis-
course Representation Theory of Kamp (1981), 
where a discourse is represented in structure that is 
essentially a variation of first-order predicate cal-
culus. These sets of metrics are then used to evalu-
ate poor quality MT, concluding that semantic 
oriented metrics are more stable at the system lev-
el, while at the sentence level their performance 
decreases (probably due to external factors, for 
example if a parse tree of the sentence is not avail-
able, the metric cannot be computed). 

More recently, Lo and Wu (2011) present a new 
semi-automated metric, MEANT, that assesses 
translation utility by matching semantic role fillers. 
Their hypothesis is that a good translation is one 
that lets a reader get the central information of the 
sentence. Conceptually, MEANT is defined in 
terms of f-score, calculated by averaging the trans-
lation accuracy for all frames in the MT output 
across the number of frames in the MT out-
put/reference translations. To determine the trans-
lation accuracy for each semantic role filler in the 
reference and machine translations, they ask hu-
mans to indicate if a role filler translation is cor-
rect, incorrect or partially correct, hence being a 
semi-automatic metric. According to Lo and Wu 
(2011) MEANT can be run using inexpensive un-
trained monolingual human judges and yet it corre-
lates with human judgments on adequacy as well 
as other labor-intensive metrics, such as HTER 
(Snover et al., 2006), which needs to train humans 
to find the closest right translation.  
2.2 Textual Entailment in MT 
 
Textual Entailment (TE) is defined as a generic 
framework for applied semantic inference, where 
the core task is to determine whether the meaning 
of a target textual assertion (hypothesis, H) can be 
inferred from a given text (T). For example, given 
the pair (H,T): 

H: The Tunisian embassy in Switzerland was at-
tacked 
T: Fire bombs were thrown at the Tunisian embas-
sy in Bern 
we can conclude that T entails H. 
 

The recently created challenge “Recognising 
Textual Entailment” (RTE) started in 2005 with 
goal of providing a binary answer for each pair 
(H,T), namely whether there is entailment holds or 
not (Dagan et al., 2006). The RTE challenge has 
mutated over the years, aiming at accomplishing 
more accurate and specific solutions; for example, 
2008 a three-way decision was proposed (instead 
of the original binary decision) consisting of “en-
tailment”, “contradiction” and “unknown”; in 2009 
the organizers proposed a pilot task, the Textual 
Entailment Search (Bentivogli et al., 2009), con-
sisting in finding all the sentences in a set of doc-
uments that entail a given Hypothesis and since 
2010 there is a Novelty Detection Task, which 
means that RTE systems are required to judge 
whether the information contained in each H is 
novel with respect to (i.e., not entailed by) the in-
formation contained in the corpus. 

This task is quite close to the goal of MT and 
MT evaluation given that a correct translation 
should be semantically equivalent to its reference, 
and thus both translations should entail each other. 

Despite this close relation, at present there are 
only two works using TE in MT, namely Mirkin et 
al. (2009) proposes to handle OOV(Out-of-
vocabulary words) terms by generating alternative 
source sentences for translation but instead of 
simply using paraphrases they use entailed texts; 
the other contribution is by Aziz et al. (2010), in 
which TE features are integrated into standard 
SMT workflow (i.e. they dynamically generate 
alternative entailed words to replace OOVs). 

More directly related to our work, is that of 
Padó et al., (2009) that uses TE to evaluate MT. 
The main idea is to find out if the translation para-
phrases (entails) the reference using entailment 
features. This is implementing by checking for 
entailment both from the candidate to the reference 
and from the reference to the candidate; best can-
didates are thus assumed to be those that both en-
tail and are entailed by the references and worst 
candidates are assumed to be those that neither 
entail the references nor are entailed by these ref-
erences. Padó et al. (2009a) found that entailment-
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based features extracted from partially ill-formed 
translations are sufficiently robust to be predictive 
for translation quality. 

Our approach differs from that of Padó et al. 
(2009) in that we do not have a binary entailment 
relation; instead we try to state in a scale of 0 – 5 
the degree of similarity between a candidate and a 
reference. This approach has very recently been 
proposed as a new task of the Semantic Evaluation 
Exercises 2012, called Semantic Textual Similarity 
(STS) by Aguirre et al. (2012) and is explained in 
more detail in Section 4.  

3 System architecture  

Sagan is a RTE textual entailment system which 
has taken part of several challenges, including the 
Textual Analysis Conference 2009 and TAC 2010, 
and the Semantic Textual Similarity (Castillo and 
Estrella, 2012) and Cross Lingual Textual Entail-
ment for content synchronization (Castillo and 
Cardenas, 2012) as part of the *SEM 2012 Task8 
(Negri et al., 2012). 

The system is based on a machine learning ap-
proach for STS. We adapted this system to produce 
feature vectors for all MT outputs for all language 
pairs ES-EN, DE-EN, FR-EN and CS-EN. It is 
worth noting that we work on all pairs into English 
because the system was run in a  monolingual set-
ting to take advantage of all the resources available 
for EN. 

This Semantic Textual Similarity engine utilizes 
eight WordNet-based similarity measures, as ex-
plained in (Castillo, 2011), with the purpose of 
obtaining the maximum similarity between two 
concepts. These text-to-text similarity measures are 
based on the following word-to-word similarity 
metrics: (Resnik, 1995), (Lin, 1997), (Jiang and 
Conrath, 1997), (Pirrò and Seco, 2008), (Wu & 
Palmer, 1994), Path Metric, (Leacock & Chodor-
ow, 1998), and a semantic similarity to sentence 
level named SemSim (Castillo and Cardenas, 
2010).  

Additional information about how to produce 
feature vector and metric to word and sentence 
level can be found in (Castillo, 2011). 

The output of the system as modified for this 
workshop, is a similarity score between 5 and 0, 
where 5 means a perfect semantic similarity (ap-
plied to MT it means that a candidate is indeed a 
good translation) and 0 means that there is no se-

mantic similarity between the pair, i.e. in MT 
terms, the candidate is not a translation. 

The architecture of the system is shown in Fig-
ure 1.  

Pre-Processing

Result

Similarity Score

Testset: 
Lenguage 

Pairs XX->EN

Word Level Semantic Metrics

Feature Extraction

SVM with 
Regression

Training Set:  
MSRPC_STS

RUN 1 

Normalizer Stemming Parser

Resnik SemSimW&PLin ...

Gold 
Reference-

EN

MLP

Sentence Level Semantic Metric

 
Fig.1. STS system architecture for MT evaluation 

 
The system computes the semantic similarity of 

two texts (T,H) as a function of the semantic simi-
larity of the constituent words of both phrases. A 
graph matching algorithm is used to determine the 
overall similarity between two text fragments. 

As a result, a text to text similarity measure is 
built based on word to word similarity. It is as-
sumed that combining word to word similarity 
metrics to text level would be a good indicator of 
text to text similarity. 

4 Sagan for MT evaluation 

Sagan for MT evaluation is based on a core devel-
opment to approach the Semantic Textual Similari-
ty task(STS). The pilot task STS was recently 
defined in Semeval 2012 (Aguirre et al., 2012) and 
has as main objective measuring the degree of 
semantic equivalence between two text fragments. 
STS is related to both Recognizing Textual En-
tailment (RTE) and Paraphrase Recognition, but 
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has the advantage of being a more suitable model 
for multiple NLP applications.  

As mentioned before, the goal of the RTE task 
(Bentivogli et al., 2009) is determining whether the 
meaning of a hypothesis H can be inferred from a 
text T. Thus, TE is a directional task and we say 
that T entails H, if a person reading T would infer 
that H is most likely true.  The difference with STS 
is that STS consists in determining how similar 
two text fragments are, in a range from 5 (total 
semantic equivalence) to 0 (no relation). Thus, 
STS mainly differs from TE and Paraphrasing in 
that the classification is graded instead of binary. 
In this manner, STS is filling the gap between TE 
and Paraphrase. 

In view of this, our claim is that the output of 
MT systems will be more strongly correlated with 
humans if we have a higher STS score between 
MT system output and the reference translation.  

To apply Sagan to MT evaluation, we first, pre-
process the pairs from Microsoft Research Para-
phrase Corpus (Dolan and Brockett, 2005) with 
dates and time normalization, and then optional 
modules are applied depending on the metric we 
want to calculate. Second, we compute 8 sentence 
level semantic features, and, finally, for every 
segment generated by systems participating at 
WMT 2012, we determine the semantic similarity 
score between that output and the given reference 
translation. The scores are then normalized to a 
value in the range 0 – 1. 

5 Experiments and results 

For the WMT 2012 we participated in the Czech-
English and Spanish-English evaluation task but 
we did not have enough time to extensively test 
our metric on a diverse range of settings (i.e. dif-
ferent corpora and language pairs), given that it 
was developed for the STS task, which released the 
data and results only a couple of months ago. 

However, we are now running experiments to 
get a better picture of the metric's ability to rate 
translation quality. In this section we report results 
obtained by training the system on the WMT 2011 
data and testing on the news test portion, only for 
the Spanish-English pair. Although the system 
handles both SVM with regression and MLP clas-
sifiers, well known to have good performance on 
natural language applications, we only submit the 
results obtained using SVM with regression due to 

previous experiments that consistently showed 
higher accuracy using SVM instead of MLP. 

At the system level, we calculated the Spearman 
Rank Correlation Coefficient (ρ) to compare our 
metric's behavior with respect to the human based 
metric applied in WMT 2011. The result is ρ = 
0.96 indicating a strong positive correlation. More-
over, we successfully reproduce the systems rank-
ing given by humans regarding the best and worst 
systems. 
 
 

System Id Human 
score 

Sagan 
score 

online-B 0.72 0.71 
online-A 0.72 0.71 
systran 0.66 0.7 
koc 0.67 0.69 
alacant 0.66 0.69 
rbmt-1 0.63 0.69 
rbmt-4 0.6 0.69 
rbmt-3 0.61 0.69 
uedin 0.51 0.68 
rbmt-2 0.6 0.68 
upm 0.5 0.68 
rbmt-5 0.51 0.68 
ufal-um 0.47 0.67 
cu-zeman 0.16 0.59 
hyderabad 0.17 0.58 

Table 1.  Sagan's score for ES-EN WMT 2011 news test 
set. 
 

When correlating our metric to other automatic 
metrics, we find that it better correlates with Mete-
or-Rank and Adq (Denkowski and Lavie, 2011), 
Tesla-b (Dahlmaier et al., 2011) and MPF (Popo-
vic, 2011), with a correlation coefficient of 0.96. 
On the other hand, the worst correlations are found 
against Tesla-f, F15 (Bicici and Yuret, 2011) and 
the TER baseline (Snover et al., 2006).  

We also performed experiments to segment lev-
el with the language pair ES-EN. We used the 
MSR_STS as training set and the newstest2011 
from WMT 2011 as test set. MSR_STS1 is com-
posed by 750 sentence pairs with a graded seman-
tic relationship ranging from 5 (equivalence) to 0 
(no-equivalence). 

As result, we obtained a Kendall-tau correlation 
coefficient of 0.29 to segment-level for translations 

                                                             
1 http://www.cs.york.ac.uk/semeval-2012/task6/ 
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into English. These preliminary results, although 
low, shows that STS and Textual Entailment could 
be used to address the problem of MT evaluation. 
Clearly, further improvements are needed and we 
suspect that higher score can be reached using 
bigger training data. We also remark the necessity 
of larger corpus of STS providing a graded score 
among sentences. 

At the segment level, we show in Table 2 some 
examples found by manually inspecting the results. 
 
Example 
Number 

MT out-
put 

Texts Sagan 
score 

2397 Reference Adelaida, 4 years old, 
wants a doll or a 
bicycle, while her 
sister Isabel, 3 years 
old, would like a 
Barbie doll. 

0.95 

Online-A Adelaide, of 4 years, 
want a doll or a bicy-
cle, while his sister 
Isabel, 3 years, would 
like a Barbie doll. 

2417 Reference "I strongly rely on the 
Charter." 
 

0.18 

Online-A "Me I based mainly 
on the letter." 

45 Reference But there is a snag in 
that. 
 

0.105 

Alacant However, there is a 
fly in the ointment. 

1510 Reference Unfortunately, even 
Scarlett Johansson 
might struggle to raise 
China's subterranean 
regard for these city 
squads. 

0.5206 

cu-zeman Lamentablemente, 
until scarlett johans-
son should fight to 
increase the ínfimo 
respect of china for 
with these es-
cuadrones the city. 

Table 2. Sagan's score for some illustrative ES-EN 
WMT 2011 example pairs showing the score between 
MT outputs and the reference translation. 

The example number 2397 shows a sentence 
that achieves a high score (0.95) but that has an 

agreement error (marked in bold), that prevented 
Sagan from assigning the highest score. 

Otherwise, the instance number 2417 has a score 
of 0.18 showing that Sagan correctly penalizes ill-
formed or meaningless sentences. Similarly, the 
example number 45 has a very low score which 
quantifies the dissimilarity with the reference 
translation. 

Finally, the last example provided shows that 
the translation remains words in the original Span-
ish language (marked in bold). 

This manual inspection will be complemented 
with a deeper study of the correlations at the sen-
tence level. 

6 Conclusions and future work 

In this paper we introduced a new metric for MT 
evaluation based on Semantic Textual Similarity 
computed over textual entailment features. The 
metric's goal is to provide an indicative score of 
the extent to which two texts (a candidate transla-
tion and a reference) are equivalent. This goal is 
more complex than classical binary decisions in 
the field of TE and is a new approach to bring to-
gether the knowledge from different areas that a 
similar ambitions. 

While promising results were found at the sys-
tem level, the metric still needs to be tested on a 
diversity of settings and at the segment level; this 
is work in progress and results will be reported in 
due time. 
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Abstract 

A recent paper described a new machine 

translation evaluation metric, AMBER. This 

paper describes two changes to AMBER. The 

first one is incorporation of a new ordering 

penalty; the second one is the use of the 

downhill simplex algorithm to tune the 

weights for the components of AMBER. We 

tested the impact of the two changes, using 

data from the WMT metrics task. Each of the 

changes by itself improved the performance of 

AMBER, and the two together yielded even 

greater improvement, which in some cases 

was more than additive. The new version of 

AMBER clearly outperforms BLEU in terms 

of correlation with human judgment.  

1 Introduction 

AMBER is a machine translation evaluation metric 

first described in (Chen and Kuhn, 2011). It is de-

signed to have the advantages of BLEU (Papineni 

et al., 2002), such as nearly complete language 

independence and rapid computability, while at-

taining even higher correlation with human judg-

ment. According to the paper just cited: “It can be 

thought of as a weighted combination of dozens of 

computationally cheap features based on word sur-

face forms for evaluating MT quality”. Many re-

cently defined machine translation metrics seek to 

exploit deeper sources of knowledge than are 

available to BLEU, such as external lexical and 

syntactic resources. Unlike these and like BLEU, 

AMBER relies entirely on matching surface forms 

in tokens in the hypothesis and reference, thus sac-

rificing depth of knowledge for simplicity and 

speed.  

In this paper, we describe two improvements to 

AMBER. The first is a new ordering penalty called 

“v” developed in (Chen et al., 2012). The second 

remedies a weakness in the 2011 version of 

AMBER  by carrying out automatic, rather than 

manual, tuning of this metric’s free parameters; we 

now use the simplex algorithm to do the tuning. 

2 AMBER 

AMBER is the product of a score and a penalty, as 

in Equation (1); in this, it resembles BLEU. How-

ever, both the score part and the penalty part are 

more sophisticated than in BLEU. The score part 

(Equation 2) is enriched by incorporating the 

weighted average of n-gram precisions (AvgP), the 

F-measure derived from the arithmetic averages of 

precision and recall (Fmean), and the arithmetic 

average of F-measure of precision and recall for 

each n-gram (AvgF). The penalty part is a 

weighted product of several different penalties 

(Equation 3). Our original AMBER paper (Chen 

and Kuhn, 2011) describes the ten penalties used at 

that time; two of these penalties, the normalized 

Spearman’s correlation penalty and the normalized 

Kendall’s correlation penalty, model word reorder-

ing.  
 

penaltyscoreAMBER ×=                 (1)  

AvgF

FmeanAvgPscore

×−−+

×+×=

)1( 21
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θθ
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      (2) 

∏
=

=
P

i

w

i
ipenpenalty

1

                           (3) 

where 1θ  and 2θ  are weights of each score com-

ponent; wi is the weight of each penalty peni. 

59



In addition to the more complex score and pen-

alty factors, AMBER differs from BLEU in two 

other ways: 

• Not only fixed n-grams, but three different 

kinds of flexible n-grams, are used in com-

puting scores and penalties.  

• The AMBER score can be computed with 

different types of text preprocessing, i.e. 

different combinations of several text pre-

processing techniques: lowercasing, to-

kenization, stemming, word splitting, etc. 8 

types were tried in (Chen and Kuhn, 2011). 

When using more than one type, the final 

score is computed as an average over runs, 

one run per type. In the experiments re-

ported below, we averaged over two types 

of preprocessing. 

3 Improvements to AMBER 

3.1   Ordering penalty v 

We use a simple matching algorithm (Isozaki et 

al., 2010) to do 1-1 word alignment between the 

hypothesis and the reference.  

After word alignment, represent the reference by 

a list of normalized positions of those of its words 

that were aligned with words in the hypothesis, and 

represent the hypothesis by a list of positions for 

the corresponding words in the reference. For both 

lists, unaligned words are ignored. E.g., let P1 = 

reference, P2 = hypothesis: 

P1: 
1

1p  
2

1p  
3

1p  
4

1p  … 
ip1  … 

np1  

 P2: 
1

2p  
2

2p  
3

2p  
4

2p  … 
ip2  … 

np2  
Suppose we have 

Ref: in the winter of 2010 , I visited Paris 

Hyp: I visited Paris in 2010 ’s winter 

Then we obtain 

P1: 1 2 3 4 5 6  (the 2
nd

 word “the”, 4
th
 

word “of” and 6
th
 word “,” in the reference 

are not aligned to any word in the 

hypothesis. Thus, their positions are not in 

P1, so the positions of the matching words 

“in winter 2010 I visited Paris” are nor-

malized to 1 2 3 4 5 6) 

P2: 4 5 6 1 3 2 (the word “’s” was 

unaligned).  

The ordering metric v is computed from two 

distance measures. The first is absolute 

permutation distance:
 

∑
=

−=
n

i

ii
ppPPDIST

1

21211 ||),(               (4) 

Let       
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1
+

−=
nn
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ν                     (5)                  

v1 ranges from 0 to 1; a larger value means more 

similarity between the two permutations. This 

metric is similar to Spearman’s ρ (Spearman, 

1904). However, we have found that ρ punishes 

long-distance reordering too heavily. For instance, 

1ν

 

is more tolerant than ρ of the movement of 

“recently” in this example:  

Ref: Recently , I visited Paris 

Hyp: I visited Paris recently  

P1: 1 2 3 4 

P2: 2 3 4 1 

Its 2.0-1
1)4(16

)9116(1
−==

−

+++
ρ ; however, its  

4.0-1
1)/24(4

3111 ==
+

+++
1v . 

Inspired by HMM word alignment (Vogel et al., 

1996), our second distance measure is based on 

jump width. This punishes only once a sequence of 

words that moves a long distance with the internal 

word order conserved, rather than on every word. 

In the following, only two groups of words have 

moved, so the jump width punishment is light: 

Ref: In the winter of 2010, I visited Paris 

Hyp: I visited Paris in the winter of 2010  

The second distance measure is 

∑
=
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−−−=

n

i
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1

1

22

1

11212 |)()(|),(   (6) 

where we set 00

1 =p  and 00

2 =p . Let 

1

),(
1

2

212
2

−
−=

n

PPDIST
v                     (7) 

As with v1, v2 is also from 0 to 1, and larger values 

indicate more similar permutations. The ordering 

measure vs is the harmonic mean of v1 and v2 (Chen 

et al., 2012):  

)11(2 21 /v/v/vs +=

 

.                     (8) 

 In (Chen et al., 2012) we found this to be slightly 

more effective than the geometric mean. vs in (8) is 

computed at segment level. We compute document 

level ordering vD with a weighted arithmetic mean:  
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where l is the number of segments of the 

document, and len(R) is the length of the reference 

after text preprocessing. vs is the segment-level 

ordering penalty. 

Recall that the penalty part of AMBER is the 

weighted product of several component penalties. 

In the original version of AMBER, there were 10 

component penalties. In the new version, v is in-

corporated as an additional, 11th weighted penalty 

in (3). Thus, the new version of AMBER incorpo-

rates three reordering penalties: Spearman’s 

correlation, Kendall’s correlation, and v. Note that 

v is also incorporated in a tuning metric we recent-

ly devised (Chen et al., 2012).   

3.2   Automatic tuning 

In (Chen and Kuhn, 2011), we manually set the 17 

free parameters of AMBER (see section 3.2 of that 

paper). In the experiments reported below, we 

tuned the 18 free parameters – the original 17 plus 

the ordering metric v described in the previous sec-

tion - automatically, using the downhill simplex 

method of (Nelder and Mead, 1965) as described 

in (Press et al., 2002). This is a multidimensional 

optimization technique inspired by geometrical 

considerations that has shown good performance in 

a variety of applications.  

4 Experiments 

The experiments are carried out on WMT metric 

task data: specifically, the WMT 2008, WMT 

2009, WMT 2010, WMT 2011 all-to-English, and 

English-to-all submissions. The languages “all” 

(“xx” in Table 1) include French, Spanish, German 

and Czech. Table 1 summarizes the statistics for 

these data sets. 

 
Set Year Lang. #system #sent-pair 

Test1 2008 xx-En 43 7,804 

Test2 2009 xx-En 45 15,087 

Test3 2009 en-Ex 40 14,563 

Test4 2010 xx-En 53 15,964 

Test5 2010 en-xx 32 18,508 

Test6 2011 xx-En 78 16,120 

Test7 2011 en-xx 94 23,209 

 

Table 1: Statistics of the WMT dev and test sets. 

 

We used 2008 and 2011 data as dev sets, 2009 

and 2010 data as test sets. Spearman’s rank 

correlation coefficient ρ was employed to measure 

correlation of the metric with system-level human 

judgments of translation. The human judgment 

score was based on the “Rank” only, i.e., how 

often the translations of the system were rated as 

better than those from other systems (Callison-

Burch et al., 2008). Thus, BLEU and the new ver-

sion of AMBER were evaluated on how well their 

rankings correlated with the human ones. For the 

segment level, we followed (Callison-Burch et al., 

2010) in using Kendall’s rank correlation 

coefficient τ. 

In what follows, “AMBER1” will denote a vari-

ant of AMBER as described in (Chen and Kuhn, 

2011). Specifically, it is the variant AMBER(1,4) – 

that is, the variant in which results are averaged 

over two runs with the following preprocessing: 

1. A run with tokenization and lower-casing 

2. A run in which tokenization and lower-

casing are followed by the word splitting. 

Each word with more than 4 letters is seg-

mented into two sub-words, with one being 

the first 4 letters and the other the last 2 let-

ters. If the word has 5 letters, the 4
th
 letter 

appears twice: e.g., “gangs” becomes 

“gang” + “gs”. If the word has more than 6 

letters, the middle part is thrown away.  

The second run above requires some explana-

tion. Recall that in AMBER, we wish to avoid use 

of external resources such as stemmers and mor-

phological analyzers, and we aim at maximal lan-

guage independence. Here, we are doing a kind of 

“poor man’s morphological analysis”. The first 

four letters of a word are an approximation of its 

stem, and the last two letters typically carry at least 

some information about number, gender, case, etc. 

Some information is lost, but on the other hand, 

when we use the metric for a new language (or at 

least, a new Indo-European language) we know 

that it will extract at least some of the information 

hidden inside morphologically complex words. 

The results shown in Tables 2-4 compare the 

correlation of variants of AMBER with human 

judgment; Table 5 compares the best version of 

AMBER (AMBER2) with BLEU. For instance, to 

calculate segment-level correlations using 
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Kendall’s τ, we carried out 33,071 paired compari-

sons for out-of-English and 31,051 paired compar-

isons for into-English. The resulting τ was 

calculated per system, then averaged for each con-

dition (out-of-English and into-English) to obtain 

one out-of-English value and one into-English val-

ue. 

First, we compared the performance of 

AMBER1 with a version of AMBER1 that in-

cludes the new reordering penalty v, at the system 

and segment levels. The results are shown in Table 

2. The greatest impact of v is on “out of English” at 

the segment level, but none of the results are par-

ticularly impressive.  

 
 AMBER1 +v Change 

Into-En 

System 

0.860 0.862 0.002 

(+0.2%) 

Into-En 

Segment 

0.178 0.180 0.002 

 (+1.1%) 

Out-of-En 

System 

0.637 0.637 0 

 (0%) 

Out-of-En 

Segment 

0.167 0.170 0.003 

(+1.8%) 

 
Table 2: Correlation with human judgment for 

AMBER1 vs. (AMBER1 including v). 

 

Second, we compared the performance of manu-

ally tuned AMBER1 with AMBER1 whose param-

eters were tuned by the simplex method. The 

tuning was run four times on the dev set, once for 

each possible combination of into/out-of English 

and system/segment level. Table 3 shows the re-

sults on the test set. This change had a greater im-

pact, especially on the segment level. 

 
 AMBER1 +Simplex Change 

Into-En 

 System 

0.860 0.862 0.002 

(+0.2%) 

Into-En 

Segment 

0.178 0.184 0.006  

(+3.4%) 

Out-of-En 

 System 

0.637 0.637 0 

 (0%) 

Out-of-En  

Segment 

0.167 0.182 0.015 

(+9.0%) 

 

Table 3: Correlation with human judgment for 

AMBER1 vs. simplex-tuned AMBER1. 

 

Then, we compared the performance of 

AMBER1 with AMBER1 that contains v and that 

has been tuned by the simplex method. We will 

denote the new version of AMBER containing 

both changes “AMBER2”. It will be seen from 

Table 4 that AMBER2 is a major improvement 

over AMBER1 at the segment level. In the case of 

“into English” at the segment level, the impact of 

the two changes seems to have been synergistic: 

adding together the percentage improvements due 

to v and simplex from Tables 2 and 3, one would 

have expected an improvement of 4.5% for both 

changes together, but the actual improvement was 

6.2%. Furthermore, there was no improvement at 

the system level for “out of English” when either 

change was tried separately, but there was a small 

improvement when the two changes were com-

bined.  

 
 AMBER1 AMBER2 Change 

Into-En 

System 

0.860 0.870 0.010 

(+1.2%) 

Into-En 

Segment 

0.178 0.189 0.011 

(+6.2%) 

Out-of-En 

System 

0.637 0.642 0.005 

(+0.8%) 

Out-of-En 

Segment 

0.167 0.184 0.017 

(+10.2%) 

 

Table 4: Correlation with human judgment for 

AMBER1 vs. AMBER2. 

 

Of course, the most important question is: does 

the new version of AMBER (AMBER2) perform 

better than BLEU? Table 5 answers this question 

(the version of BLEU used here was smoothed 

BLEU (mteval-v13a)). There is a clear advantage 

for AMBER2 over BLEU at both the system and 

segment levels, for both “into English” and “out of 

English”.  

 
 BLEU AMBER2 Change 

Into-En 

System 

0.773 0.870 0.097 

(+12.5%) 

Into-En 

Segment 

0.154 0.189 0.035 

(+22.7%) 

Out-of-En 

System 

0.574 0.642 0.068 

(+11.8%) 

Out-of-En 

Segment 

0.149 0.184 0.035 

(+23.5%) 

 

Table 5: Correlation with human judgment for 

 BLEU vs. AMBER2. 
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5 Conclusion 

We have made two changes to AMBER, a metric 

described in (Chen and Kuhn, 2011). In our exper-

iments, the new version of AMBER was shown to 

be an improvement on the original version in terms 

of correlation with human judgment. Furthermore, 

it outperformed BLEU by about 12% at the system 

level and about 23% at the segment level.  

A good evaluation metric is not necessarily a 

good tuning metric, and vice versa. In parallel with 

our work on AMBER for evaluation, we have also 

been exploring a machine translation tuning metric 

called PORT (Chen et al., 2012). AMBER and 

PORT differ in many details, but they share the 

same underlying philosophy: to exploit surface 

similarities between hypothesis and references 

even more thoroughly than BLEU does, rather than 

to invoke external resources with richer linguistic 

knowledge. So far, the results for PORT have been 

just as encouraging as the ones for AMBER re-

ported here.  
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Abstract

We present TerrorCat, a submission to the
WMT’12 metrics shared task. TerrorCat uses
frequencies of automatically obtained transla-
tion error categories as base for pairwise com-
parison of translation hypotheses, which is in
turn used to generate a score for every trans-
lation. The metric shows high overall corre-
lation with human judgements on the system
level and more modest results on the level of
individual sentences.

1 The Idea

Recently a couple of methods of automatic trans-
lation error analysis have emerged (Zeman et al.,
2011; Popović and Ney, 2011). Initial experiments
have shown that while agreement with human error
analysis is low, these methods show better perfor-
mance on tasks with a lower granularity, e.g. ranking
error categories by frequency (Fishel et al., 2012).
In this work we apply translation error analysis to a
task with an even lower granularity: ranking transla-
tions, one of the shared tasks of WMT’12.

The aim of translation error analysis is to identify
the errors that translation systems make and catego-
rize them into different types: e.g. lexical, reorder-
ing, punctuation errors, etc. The two tools that we
will use – Hjerson and Addicter – both rely on a ref-
erence translation. The hypothesis translation that is
being analyzed is first aligned to the reference on the
word level, and then mistranslated, misplaced, mis-
inflected, missing or superfluous words and other er-
rors are identified.

The main idea of our work is to quantify trans-
lation quality based on the frequencies of different
error categories. The basic assumption is that differ-
ent error categories have different importance from
the point of view of overall translation quality: for
instance, it would be natural to assume that punc-
tuation errors influence translation quality less than
missing words or lexical choice errors. Furthermore,
an error category can be more important for one out-
put language than the other: for example, word or-
der can influence the meaning in an English sentence
more than in a Czech or German one, whereas in-
flection errors are probably more frequent in the lat-
ter two and can thus cause more damage.

In the context of the ranking task, the absolute
value of a numeric score has no importance, apart
from being greater than, smaller than or equal to the
other systems’ scores. We therefore start by per-
forming pairwise comparison of the translations –
the basic task is to compare two translations and re-
port which one is better. To conform with the WMT
submission format we need to generate a numeric
score as the output – which is obtained by compar-
ing every possible pair of translations and then using
the (normalized) total number of wins per translation
as its final score.

The general architecture of the metric is thus this:

• automatic error analysis is applied to the sys-
tem outputs, yielding the frequencies of every
error category for each sentence

• every possible pair of all system outputs is rep-
resented as a vector of features, based on the
error category frequencies
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• a binary classifier takes these feature vectors as
input and assigns a win to one of the sentences
in every pair (apart from ties)

• the final score of a system equals to the normal-
ized total number of wins per sentence

• the system-level score is averaged out over the
individual sentence scores

An illustrative example is given in Figure 1.
We call the result TerrorCat, the translation error

categorization-based metric.

2 The Details

In this section we will describe the specifics of
the current implementation of the TerrorCat met-
ric: translation error analysis, lemmatization, binary
classifier and training data for the binary classifier.

2.1 Translation Error Analysis
Addicter (Zeman et al., 2011) and Hjerson (Popović
and Ney, 2011) use different methods for automatic
error analysis. Addicter explicitly aligns the hy-
pothesis and reference translations and induces error
categories based on the alignment coverage while
Hjerson compares words encompassed in the WER
(word error rate) and PER (position-independent
word error rate) scores to the same end.

Previous evaluation of Addicter shows that
hypothesis-reference alignment coverage (in terms
of discovered word pairs) directly influences er-
ror analysis quality; to increase alignment cover-
age we used Berkeley aligner (Liang et al., 2006)
and trained it on and applied it to the whole set of
reference-hypothesis pairs for every language pair.

Both tools use word lemmas for their analysis;
we used TreeTagger (Schmid, 1995) for analyzing
English, Spanish, German and French and Morče
(Spoustová et al., 2007) to analyze Czech. The same
tools are used for PoS-tagging in some experiments.

2.2 Binary Classification
Pairwise comparison of sentence pairs is achieved
with a binary SVM classifier, trained via sequential
minimal optimization (Platt, 1998), implemented in
Weka (Hall et al., 2009).

The input feature vectors are composed of fre-
quency differences of every error category; since the

Source: Wir sind Meister!

Translations:
Reference: We are the champions!

HYP-1: Us champions!

HYP-2: The champions we are .
HYP-3: We are the champignons!

Error Frequencies:
HYP-1: 1×inflection, 2×missing

HYP-2: 2×order, 1×punctuation

HYP-3: 1×lex.choice

Classifier Output: (or manually created
input in the training phase)
HYP-1 < HYP-2

HYP-1 < HYP-3

HYP-2 > HYP-3

Scores:
HYP-1: 0

HYP-2: 1

HYP-3: 0.5

Figure 1: Illustration of TerrorCat’s process for a single
sentence: translation errors in the hypothesis translations
are discovered by comparing them to the reference, error
frequencies are extracted, pairwise comparisons are done
by the classifier and then converted to scores. The shown
translation errors correspond to Hjerson’s output.

maximum (normalized) frequency of any error rate
is 1, the feature value range is [−1, 1]. To include
error analysis from both Addicter and Hjerson their
respective features are used side-by-side.

2.3 Data Extraction

Training data for the SVM classifier is taken from
the WMT shared task manual ranking evaluations
of previous years (2007–2011), which consist of tu-
ples of 2 to 5 ranked sentences for every language
pair. Equal ranks are allowed, and translations of
the same sentence by the same pair of systems can
be present in several tuples, possibly having conflict-
ing comparison results.

To convert the WMT manual ranking data into
the training data for the SVM classifier, we collect
all rankings for each pair of translation hypothe-
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2007-2010 2007-2011
fr-en 34 152 46 070
de-en 36 792 53 790
es-en 30 374 41 966
cs-en 19 268 26 418
en-fr 22 734 35 854
en-de 36 076 56 054
en-es 19 352 35 700
en-cs 31 728 52 954

Table 1: Dataset sizes for every language pair, based
on manual rankings from WMT shared tasks of previ-
ous years: the number of pairs with non-conflicting, non-
equivalent ranks.

ses. Pairs with equal ranks are discarded, conflicting
ranks for the same pairs are resolved with voting. If
the voting is tied, the pair is also discarded.

The kept translation pairs are mirrored (i.e. both
directions of every pair are added to the training set
as independent entries) to ensure no bias towards the
first or second translation in a pair. We will later
present analysis of how well that works.

2.4 TerrorCat+You

TerrorCat is distributed via GitHub; information on
downloading and using it can be found online.1 Ad-
ditionally we are planning to provide more recent
evaluations with new datasets, as well as pre-trained
models for various languages and language pairs.

3 The Experiments

In the experimental part of our work, we search for
the best performing model variant, the aim of which
is to evaluate different input features, score calcula-
tion strategies and other alternations. The search is
done empirically: we evaluate one alternation at a
time, and if it successful, it is added to the system
before proceeding to test further alternations.

Performance of the models is estimated on a held-
out development set, taken from the WMT’11 data;
the training data during the optimization phase is
composed of ranking data from WMT 2007–2010.
In the end we re-trained our system on the whole
data set (WMT 2007–2011) and applied it to the un-

1http://terra.cl.uzh.ch/terrorcat.html

labeled data from this year’s shared task. The result-
ing dataset sizes are given in Table 1.

All of the resulting scores obtained by different
variants of our metric are presented in Tables 2 (for
system-level correlations) and 3 (for sentence-level
correlations), compared to BLEU and other selected
entries in the WMT’11 evaluation shared task. Cor-
relations are computed in the same way as in the
WMT evaluations.

3.1 Model Optimization

The following is a brief description of successful
modifications to the baseline system.

Weighted Wins
In the baseline model, the score of the winning

system in each pairwise comparison is increased by
1. To reduce the impact of low-confidence decisions
of the classifier on the final score we tested replac-
ing the constant rewards to the winning system with
variable ones, proportional to the classifier’s confi-
dence – a measure of which was obtained by fitting
a logistic regression model to the SVM output.

As the results show, this leads to minor improve-
ments in sentence-level correlation and more notice-
able improvements in system-level correlation (es-
pecially English-French and Czech-English). A pos-
sible explanation for this difference in performance
on different levels is that low classification confi-
dence on the sentence-level does not necessarily af-
fect our ranking for that sentence, but reduces the
impact of that sentence on the system-level ranking.

PoS-Split Features
The original model only makes a difference be-

tween individual error categories as produced by
Hjerson and Addicter. It seems reasonable to assume
that errors may be more or less important, depending
on the part-of-speech of the words they occur in. We
therefore tested using the number of errors per er-
ror category per PoS-tag as input features. In other
words, unlike the baseline, which relied on counts
of missing, misplaced and other erroneous words,
this alternation makes a difference between miss-
ing nouns/verbs/etc., misplaced nouns, misinflected
nouns/adjectives, and so on.

The downside of this approach is that the number
of features is multiplied by the size of the PoS tag
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Metric fr-en de-en es-en cs-en *-en en-fr en-de en-es en-cs en-*
TerrorCat:

Baseline 0.73 0.74 0.82 0.76 0.76 0.70 0.81 0.69 0.84 0.76
Weighted wins 0.73 0.74 0.82 0.79 0.77 0.75 0.81 0.69 0.84 0.77
PoS-features 0.87 0.76 0.80 0.86 0.82 0.76 0.86 0.74 0.87 0.81
GenPoS-features 0.86 0.77 0.84 0.88 0.84 0.80 0.85 0.75 0.90 0.83
No 2007 data (GenPoS) 0.89 0.80 0.80 0.95 0.86 0.85 0.84 0.81 0.90 0.85

Other:
BLEU 0.85 0.48 0.90 0.88 0.78 0.86 0.44 0.87 0.65 0.70
mp4ibm1 0.08 0.56 0.12 0.91 0.42 0.61 0.91 0.71 0.76 0.75
MTeRater-Plus 0.93 0.90 0.91 0.95 0.92 – – – – –
AMBER ti 0.94 0.63 0.85 0.88 0.83 0.84 0.54 0.88 0.56 0.70
meteor-1.3-rank 0.93 0.71 0.88 0.91 0.86 0.85 0.30 0.74 0.65 0.63

Table 2: System-level Spearman’s rank correlation coefficients (ρ) between different variants of TerrorCat and hu-
man judgements, based on WMT’11 data. Other metric submissions are shown for comparison. Highest scores per
language pair are highlighted in bold separately for TerrorCat variants and for other metrics.

set. Additionally, too specific distinctions can cause
data sparsity, especially on the sentence level.

As shown by the results, PoS-tag splitting of the
features is successful on the system level, but quite
hurtful to the sentence-level correlations. The poor
performance on the sentence level can be attributed
to the aforementioned data sparsity: the number of
different features is higher than the number of words
(and hence, the biggest possible number of errors)
in the sentences. However, we cannot quite ex-
plain, how a sum of these less reliable sentence-level
scores leads to more reliable system-level scores.

To somewhat relieve data sparsity we defined sub-
sets of the original PoS tag sets, mostly leaving out
morphological information and keeping just the gen-
eral word types (nouns, verbs, adjectives, etc.). This
reduced the number of PoS-tags (and thus, the num-
ber of input features) from 2 to 4 times and produced
further increase in system-level and a smaller de-
crease in sentence-level scores, see GenPoS results.

To avoid splitting the metric into different ver-
sions for system-level and sentence-level, we gave
priority to system-level correlations and adopted the
generalized PoS-splitting of the features.

Out-of-Domain Data

The human ranking data from WMT of previ-
ous years do not constitute a completely homo-
geneous dataset. For starters, the test sets are

taken from different domains (News/News Com-
mentary/Europarl), whereas the 2012 test set is from
the News domain only. Added to this, there might be
a difference in the manual data, coming from differ-
ent organization of the competition – e.g. WMT’07
was the only year when manual scoring of the trans-
lations with adequacy/fluency was performed, and
ranking had just been introduced into the competi-
tion. Therefore we tested whether some subsets of
the training data can result in better overall scores.

Interestingly enough, leaving out News Commen-
tary and Europarl test sets caused decreased correla-
tions, although these account for just around 10%
of the training data. On the other hand, leaving out
the data from WMT’07 led to a significant gain in
overall performance.

3.2 Error Meta-Analysis

To better understand why sentence-level correlations
are low, we analyzed the core of TerrorCat – its pair-
wise classifier. Here, we focus on the most success-
ful variant of the metric, which uses general PoS-
tags and was trained on the WMT manual rankings
from 2008 to 2010. Table 4 presents the confusion
matrices of the classifier (one for precision and one
for recall), taking into consideration the confidence
estimate.

Evaluation is based on the data from 2011; the
prediction data was mirrored in the same way as for
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Metric fr-en de-en es-en cs-en *-en en-fr en-de en-es en-cs en-*
TerrorCat:

Baseline 0.20 0.22 0.33 0.25 0.25 0.30 0.19 0.24 0.20 0.23
Weighted wins 0.20 0.23 0.33 0.25 0.25 0.31 0.20 0.24 0.20 0.24
PoS-features 0.13 0.18 0.24 0.15 0.18 0.27 0.15 0.15 0.17 0.19
GenPoS-features 0.16 0.24 0.31 0.22 0.23 0.27 0.18 0.22 0.19 0.22
No 2007 data (GenPoS) 0.21 0.30 0.33 0.23 0.27 0.29 0.20 0.23 0.20 0.23

Other:
mp4ibm1 0.15 0.16 0.18 0.12 0.15 0.21 0.13 0.13 0.06 0.13
MTeRater-Plus 0.30 0.36 0.45 0.36 0.37 – – – – –
AMBER ti 0.24 0.26 0.33 0.27 0.28 0.32 0.22 0.31 0.21 0.27
meteor-1.3-rank 0.23 0.25 0.38 0.28 0.29 0.31 0.14 0.26 0.19 0.23

Table 3: Sentence-level Kendall’s rank correlation coefficients (τ ) between different variants of TerrorCat and hu-
man judgements, based on WMT’11 data. Other metric submissions are shown for comparison. Highest scores per
language pair are highlighted in bold separately for TerrorCat variants and for other metrics.

the training set. Our aim was to measure the bias
of the classifier towards first or second translations
in a pair (which is obviously an undesired effect).
It can be seen that the confusion matrices are com-
pletely symmetrical, indicating no position bias of
the classifier – even lower-confidence decisions are
absolutely consistent.

To make sure that this can be attributed to the mir-
roring of the training set, we re-trained the classifier
on non-mirrored training sets. As a result, 9% of the
instances were labelled inconsistently, with the av-
erage confidence of such inconsistent decisions be-
ing extremely low (2.1%, compared to the overall
average of 28.4%). The resulting correlations have
slightly dropped as well – all indicating that mirror-
ing the training sets does indeed remove the posi-
tional bias and leads to slightly better performance.

Looking at the confusion matrices overall, most
decisions fall within the main diagonals (i.e. the
cells indicating correct decisions of the classifier).
Looking strictly at the classifier’s decisions, the re-
calls and precisions of the non-tied comparison out-
puts (“<” and “>”) are 57% precision, 69% recall.
However, such strict estimates are too pessimistic in
our case, since the effect of the classifier’s decisions
is proportional to the confidence estimate. On the
sentence level it means that low-confidence decision
errors have less effect on the total score of a system.
A definite source of error is the instability of the in-
dividual translation errors on the sentence level, an

effect both Addicter and Hjerson are known to suffer
from (Fishel et al., 2012).

The precision of the classifier predictably drops
together with the confidence, and almost half of the
misclassifications come from unrecognized equiva-
lent translations – as a result the recall of such pairs
of equivalent translations is only 20%. This can be
explained by the fact that the binary classifier was
trained on instances with just these two labels and
with no ties allowed.

On the other hand the classifier’s 0-confidence de-
cisions have a high precision (84%) on detecting the
equivalent translations; after re-examining the data
it turned out that 96% of the 0-confidence decisions
were made on input feature vectors containing only
zero frequency differences. Such vectors represent
pairs of sentences with identical translation error
analyses, which are very often simply identical sen-
tences – in which case the classifier cannot (and in
fact, should not) make an informed decision of one
being better than the other.

4 Related Work

Traditional MT metrics such as BLEU (Papineni et
al., 2002) are based on a comparison of the trans-
lation hypothesis to one or more human references.
TerrorCat still uses a human reference to extract fea-
tures from the error analysis with Addicter and Hjer-
son, but at the core, TerrorCat compares hypotheses
not to a reference, but to each other.
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Manual Classifier Output and Confidence: Precision
label < < or > >

0.6–1.0 0.3–0.6 0.0–0.3 0.0 0.0–0.3 0.3–0.6 0.6–1.0
< 81% 60% 45% 8% 32% 23% 10%
= 9% 17% 23% 84% 23% 17% 9%
> 10% 23% 32% 8% 45% 60% 81%

Manual Classifier Output and Confidence: Recall
label < < or > >

0.6–1.0 0.3–0.6 0.0–0.3 0.0 0.0–0.3 0.3–0.6 0.6–1.0
< 23% 18% 28% 1% 20% 7% 3%
= 5% 9% 26% 20% 26% 9% 5%
> 3% 7% 20% 1% 28% 18% 23%

Table 4: The precision and recall confusion matrices of the classifier – judgements on whether one hypothesis is worse
than, equivalent to or better than another hypothesis are compared to the classifier’s output and confidence.

It is thus most similar to SVM-RANK and Tesla
metrics, submissions to the WMT’10 shared met-
rics task (Callison-Burch et al., 2010) which also
used SVMs for ranking translations. However, both
metrics used SVMrank (Joachims, 2006) directly for
ranking (unlike TerrorCat, which uses a binary clas-
sifier for pairwise comparisons). Their features in-
cluded some of the metric outputs (BLEU, ROUGE,
etc.) for SVM-RANK and similarity scores between
bags of n-grams for Tesla (Dahlmeier et al., 2011).

5 Conclusions

We introduced the TerrorCat metric, which performs
pairwise comparison of translation hypotheses based
on frequencies of automatically obtained error cate-
gories using a binary classifier, trained on manually
ranked data. The comparison outcome is then con-
verted to a numeric score for every sentence or doc-
ument translation by averaging out the number of
wins per translation system.

Our submitted system achieved an average
system-level correlation with human judgements in
the WMT’11 development set of 0.86 for transla-
tion into English and 0.85 for translations from En-
glish into other languages. Particularly good per-
formance was achieved on translations from English
into Czech (0.90) and back (0.95). Sentence-level
scores are more modest: average 0.27 for transla-
tion into English and 0.23 for those out of English.
The scores remain to be checked against the human

judgments from WMT’12.

The introduced TerrorCat metric has certain de-
pendencies. For one thing, in order to apply it to
new languages, a training set of manual rankings is
required – although this can be viewed as an advan-
tage, since it enables the user to tune the metric to
his/her own preference. Additionally, the metric de-
pends on lemmatization and PoS-tagging.

There is a number of directions to explore in the
future. For one, both Addicter and Hjerson report
MT errors related more to adequacy than fluency, al-
though it was shown last year (Parton et al., 2011)
that fluency is an important component in rating
translation quality. It is also important to test how
well the metric performs if lemmatization and PoS-
tagging are not available.

For this year’s competition, training data was
taken separately for every language pair; it remains
to be tested whether combining human judgements
with the same target language and different source
languages leads to better or worse performance.

To conclude, we have described TerrorCat, one
of the submissions to the metrics shared task of
WMT’12. TerrorCat is rather demanding to apply on
one hand, having more requirements than the com-
mon reference-hypothesis translation pair, but at the
same time correlates rather well with human judge-
ments on the system level.
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Mark Fishel, Ondřej Bojar, and Maja Popović. 2012.
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Abstract

We investigate the use of error classification
results for automatic evaluation of machine
translation output. Five basic error classes are
taken into account: morphological errors, syn-
tactic (reordering) errors, missing words, ex-
tra words and lexical errors. In addition, lin-
ear combinations of these categories are in-
vestigated. Correlations between the class er-
ror rates and human judgments are calculated
on the data of the third, fourth, fifth and sixth
shared tasks of the Statistical Machine Trans-
lation Workshop. Machine translation outputs
in five different European languages are used:
English, Spanish, French, German and Czech.
The results show that the following combina-
tions are the most promising: the sum of all
class error rates, the weighted sum optimised
for translation into English and the weighted
sum optimised for translation from English.

1 Introduction

Recent investigations have shown that it is possi-
ble to carry out a reliable automatic error analysis
of a given translation output in order to get more
information about actual errors and details about
particular strengthnesses and weaknesses of a sys-
teml (Popović and Ney, 2011). The obtained results
correlate very well with the human error classifica-
tion results. The question we try to answer is: how
the class error rates correlate with the human eval-
uation (ranking) results? As a first step, we inves-
tigate the correlations of five basic class error rates
with human rankings. In the next step, linear com-

binations (sums) of basic class error rates are inves-
tigated.

Spearman’s rank correlation coefficients on the
document (system) level between all the metrics and
the human ranking are computed on the English,
French, Spanish, German and Czech texts gener-
ated by various translation systems in the frame-
work of the third (Callison-Burch et al., 2008),
fourth (Callison-Burch et al., 2009), fifth (Callison-
Burch et al., 2010) and sixth (Callison-Burch et al.,
2011) shared translation tasks.

2 Class error rates

In this work, the method proposed in (Popović
and Ney, 2011) is used, i.e. classification of
the translation errors into five basic categories
based on the Word Error Rate (WER) (Levenshtein,
1966) together with the recall- and precision-based
Position-independent Error Rates called Reference
PER (RPER) and Hypothesis PER (HPER).

As a result of an error classification, two values
are usually of interest: raw error counts for each er-
ror class, and error rates for each class, i.e. raw error
counts normalised over the total number of running
words. Which of the values is preferred depends of
the exact task. For example, if only a distribution
of error types within a translation output is of in-
terest, the raw error counts are sufficient. On the
other hand, if we want to compare different transla-
tion outputs, normalised values i.e. error rates are
more suitable. Therefore they are appropriate candi-
dates to be used for the evaluation task.

In this work, we explore the error rates calculated
on the word level as well as on the block level, where
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a group of consecutive words labelled with the same
error category is called a block. The normalisation
in both cases is carried out over the total number of
running words. Therefore the block level error rate
for a particular error class is always less or equal
than the corresponding word level error rate.

2.1 Basic class error rates

The following five basic class error rates are ex-
plored:

INFER (inflectional error rate):
Number of words translated into correct base
form but into incorrect full form, normalised
over the hypothesis length.

RER (reordering error rate):
Number of incorrectly positioned words nor-
malised over the hypothesis length.

MISER (missing word error rate):
Number of words which should appear in the
translation hypothesis but do not, normalised
over the reference length.

EXTER (extra word error rate):
Number of words which appear in the transla-
tion hypothesis but should not, normalised over
the hypothesis length.

LEXER (lexical error rate):
Number of words translated into an incorrect
lexical choice in the target language (false dis-
ambiguation, unknown/untranslated word, in-
correct terminology, etc.) normalised over the
hypothesis length.

Table 1 presents an example of word and block
level class error rates. Each erroneous word is la-
belled with the corresponding error category, and the
blocks are marked within the parentheses { and }.
The error rates on the block level are marked with a
letter “b” at the beginning. It should be noted that
the used method at its current stage does not enable
assigning multiple error tags to one word.

2.2 Combined error rates (sums)

The following linear combinations (sums) of the ba-
sic class error rates are investigated:

reference:
The famous journalist Gustav Chalupa ,
born in České Budějovice ,
also confirms this .

hypothesis containing 14 running words:
The also confirms the famous
Austrian journalist Gustav Chalupa ,
from Budweis Lamborghini .

hypothesis labelled with error classes:
The {alsoorder confirmsorder}
{theextra} {famousorder} {Austrianextra}
{journalistorder Gustavorder Chalupaorder} ,
{fromlex Budweislex Lamborghinilex} .

class error rates:
word order:
RER = 6/14 = 42.8%
bRER = 3/14 = 21.4%

extra words:
EXTER = 2/14 = 14.3%
bEXTER = 2/14 = 14.3%

lexical errors:
LEXER = 3/14 = 21.4%
bLEXER = 1/14 = 7.1%

Table 1: Example of word and block level class error
rates: the word groups within the parentheses { and } are
considered as blocks; all error rates are normalised over
the hypothesis length, i.e. 14 running words.

WΣER (sum of word level error rates)1 :
Sum of all basic class error rates on the word
level;

BΣER (sum of block level error rates):
Sum of all basic class error rates on the block
level;

WBΣER (sum of word and block level error rates):
Arithmetic mean of WΣER and BΣER.

1This error rate has already been introduced in (Popović and
Ney, 2011) and called ΣER; however, for the sake of clarity, in
this work we will call it WΣER, i.e. word level ΣER.
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XENΣER (X→English sum of error rates):
Linear interpolation of word level and block
level class error rates optimised for translation
into English;

ENXΣER (English→X sum of error rates):
Linear interpolation of word level and block
level class error rates optimised for translation
from English.

For the example sentence shown in Table 1,
WΣER = 84.7%, BΣER = 46.2% and WBΣER =
65.4%. XENΣER and ENXΣER are weighted sums
which will be explained in the next section.

The prerequisite for the use of the described met-
rics is availability of an appropriate morphological
analyser for the target language which provides base
forms of the words.

3 Experiments on WMT 2008, 2009, 2010
and 2011 test data

3.1 Experimental set-up

The class error rates described in Section 2 were
produced for outputs of translations from Spanish,
French, German and Czech into English and vice
versa using Hjerson (Popović, 2011), an open-
source tool for automatic error classification. Span-
ish, French, German and English base forms were
produced using the TreeTagger2, and the Czech base
forms using Morče (Spoustová et al., 2007). In this
way, all references and hypotheses were provided
with the base forms of the words.

For each error rate, the system level Spearman
correlation coefficients ρ with human ranking were
calculated for each document. In total, 40 correla-
tion coefficients were obtained for each error rate –
twelve English outputs from the WMT 2011, 2010
and 2009 task and eight from the WMT 2008 task,
together with twenty outputs in other four target lan-
guages. For further analysis, the obtained corre-
lation results were summarised into the following
three values:

• mean
average correlation coefficient;

2http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

• rank>
percentage of documents where the particular
error rate has better correlation than the other
error rates;

• rank≥
percentage of documents where the particular
error rate has better or equal correlation than
the other error rates.

3.2 Comparison of basic class error rates

Our first experiment was to compare correlations for
the basic set of class error rates in order to investi-
gate a general behaviour of each class error rate and
to see if some of the error categories are particularly
(in)convenient for the evaluation task. Since certain
differences between English and non-English trans-
lation outputs are observed for some error classes,
the values described in the previous section were
also calculated separately.

Table 2 presents the results of this experiment.
The mean values over all documents, over the En-
glish documents and over the non-English docu-
ments are shown.

According to the overall mean values, the most
promising error categories are lexical and reorder-
ing errors. However, the mean values for English
outputs are significantly different than those for non-
English outputs: the best error classes for English
are in deed lexical and reordering errors, however
for the non-English outputs the inflectional errors
and missing words have higher correlations. On the
other hand, for the English outputs missing words
have even negative correlations, whereas correla-
tions for inflectional errors are relatively low. The
extra word class seems to be the least convenient in
general, especially for non-English outputs.

Therefore, the rank≥ values were calculated only
separately for English and non-English outputs, and
the previous observations were confirmed: for the
English outputs lexical and reordering errors are the
most relevant, whereas for the non-English outputs
all classes except extra words are almost equally im-
portant.

Apart from this, it can be noticed that the group-
ing of words into blocks significantly improves cor-
relation for reordering errors. The reason for this
is ambiguity of tagging words as reordering errors.
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error mean rank≥
rate overall x→en en→x x→en en→x
INFER 0.398 0.190 0.595 46.2 71.7
RER 0.360 0.344 0.373 53.8 51.1
MISER 0.173 -0.101 0.434 26.3 54.4
EXTER 0.032 0.212 -0.195 42.7 12.2
LEXER 0.508 0.669 0.355 86.0 58.3
bINFER 0.423 0.211 0.624 47.9 75.6
bRER 0.508 0.594 0.426 78.3 60.0
bMISER 0.169 -0.121 0.446 21.1 53.9
bEXTER -0.031 0.186 -0.238 36.8 10.0
bLEXER 0.515 0.634 0.402 79.5 62.8

Table 2: mean and rank≥ values for each basic word level
and block level error rate over all documents, over En-
glish documents and over non-English documents.

For example, if the translation reference is “a very
good translation”, and the obtained hypothesis is “a
translation very good” , one possibility is to mark
the word “translation” as reordering error, another
possibility is to mark the words “very good” as re-
ordering errors, and it is also possible to mark all the
words as reordering errors. In such cases, the group-
ing of consecutive word level errors into blocks is
beneficial.

3.3 Comparison of error rate sums

A first step towards combining the basic class error
rates was investigation of simple sums, i.e. WΣER,
BΣER as well as WBΣER as arithmetic mean of pre-
vious two. The overall average correlation coeffi-
cients of the sums were shown to be higher than
those of the basic class error rates. Further exper-
iments have been carried out taking into account the
results described in the previous section. Firstly, ex-
tra word class was removed from all sums, however
no improvement of correlation coefficients was ob-
served. Then the sums containing only the most
promising error categories separately for English
and non-English output were investigated, but this
also resulted in no improvements. Finally, we in-
troduced weights for each translation direction ac-
cording to the rank≥ value for each of the basic
class error rates (see Table 2), and this approach
was promising. In this way, the specialised sums
XENΣER and ENXΣER were introduced.

In Table 3 the results for all five error rate sums
are presented. mean, rank> and rank≥ values are
presented over all translation outputs, over English
outputs and over non-English outputs. As already
mentioned, the overall correlation coefficients of the
sums are higher than those of the basic class error
rates. This could be expected, since summing class
error rates is oriented towards the overall quality of
the translation output whereas the class error rates
are giving more information about details.

According to the overall values, the best error rate
is combination of all word and block level class er-
ror rates, i.e. WBΣER followed by the block sum
BΣER, whereas the WΣER and the specialised sums
XENΣER and ENXΣER have lower correlations.
For the translation into English, this error rate is also
very promising, followed by the specialised sum
XENΣER. On the other hand, for the translation
from English, the most promising error rates are the
block sum BΣER and the corresponding specialised
sum ENXΣER. Following these observations, we
decided to submit WBΣER scores for all transla-
tion outputs together with XENΣER and ENXΣER

scores, each one for the corresponding translation
direction. In addition, we submitted BΣER scores
since this error rate also showed rather good results,
especially for the translation out of English.

4 Conclusions

The presented results show that the error classifica-
tion results can be used for evaluation and ranking
of machine translation outputs. The most promis-
ing way to do it is to sum all word level and block
level error rates, i.e. to produce the WBΣER error
rate. This error rate has eventually been submitted
to the WMT 2012 evaluation task. In addition, the
next best metrics have been submitted, i.e. the block
level sum BΣER for all translation directions, and
the specialised sums XENΣER and ENXΣER each
for the corresponding translation outputs.

The experiments described in this work are still at
early stage: promising directions for future work are
better optimisation of weights3, further investigation
of each language pair and also of each non-English

3First steps have already been made in this direction using
an SVM classifier, and the resulting evaluation metric has also
been submitted to the WMT 2012.
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error rate mean rank≥ rank>
overall x→en en→x overall x→en en→x overall x→en en→x

WΣER 0.616 0.694 0.541 55.1 50.0 61.2 39.1 48.6 36.2
BΣER 0.629 0.666 0.594 60.3 55.2 68.8 46.1 39.5 52.5
WBΣER 0.639 0.696 0.585 68.0 67.1 63.7 48.7 52.6 45.0
XENΣER 0.587 0.692 0.487 51.9 63.2 41.2 37.8 52.6 23.7
ENXΣER 0.599 0.595 0.602 50.6 38.1 62.5 39.1 32.9 45.0

Table 3: mean, rank≥ and rank> values for error rate sums compared over all documents, over English documents
and over non-English documents.

target language separately, filtering error categories
by POS classes, etc.
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Abstract

This paper describes Stanford University’s sub-
mission to the Shared Evaluation Task of WMT
2012. Our proposed metric (SPEDE) com-
putes probabilistic edit distance as predictions
of translation quality. We learn weighted edit
distance in a probabilistic finite state machine
(pFSM) model, where state transitions corre-
spond to edit operations. While standard edit
distance models cannot capture long-distance
word swapping or cross alignments, we rectify
these shortcomings using a novel pushdown
automaton extension of the pFSM model. Our
models are trained in a regression framework,
and can easily incorporate a rich set of linguis-
tic features. Evaluated on two different pre-
diction tasks across a diverse set of datasets,
our methods achieve state-of-the-art correla-
tion with human judgments.

1 Introduction

We describe the Stanford Probabilistic Edit Distance
Evaluation (SPEDE) metric, which makes predic-
tions of translation quality by computing weighted
edit distance. We model weighted edit distance in
a probabilistic finite state machine (pFSM), where
state transitions correspond to edit operations. The
weights of the edit operations are then automatically
learned in a regression framework. One of the ma-
jor contributions of this paper is a novel extension
of the pFSM model into a probabilistic Pushdown
Automaton (pPDA), which enhances traditional edit-
distance models with the ability to model phrase shift
and word swapping. Furthermore, we give a new log-
linear parameterization to the pFSM model, which
allows it to easily incorporate rich linguistic features.

We conducted extensive experiments on a di-
verse set of standard evaluation data sets (NIST
OpenMT06, 08; WMT06, 07, 08). Our models
achieve or surpass state-of-the-art results on all test
sets.

2 Related Work

Research in automatic machine translation (MT) eval-
uation metrics has been a key driving force behind
the recent advances of statistical machine transla-
tion (SMT) systems. The early seminal work on
automatic MT metrics (e.g., BLEU and NIST) is
largely based on n-gram matches (Papineni et al.,
2002; Doddington, 2002). Despite their simplicity,
these measures have shown good correlation with hu-
man judgments, and enabled large-scale evaluations
across many different MT systems, without incurring
the huge labor cost of human evaluation (Callison-
Burch et al. (2009; 2010; 2011), inter alia).

Later metrics that move beyond n-grams achieve
higher accuracy and improved robustness from re-
sources like WordNet synonyms (Miller et al., 1990),
paraphrasing (Zhou et al., 2006; Snover et al., 2009;
Denkowski and Lavie, 2010), and syntactic parse
structures (Liu et al., 2005; Owczarzak et al., 2008;
He et al., 2010). But a common problem in these
metrics is they typically resort to ad-hoc tuning meth-
ods instead of principled approaches to incorporate
linguistic features. Recent models use linear or
SVM regression and train them against human judg-
ments to automatic learn feature weights, and have
shown state-of-the-art correlation with human judg-
ments (Albrecht and Hwa, 2007a; Albrecht and Hwa,
2007b; Sun et al., 2008; Pado et al., 2009). The
drawback, however, is they rely on time-consuming

76



Figure 1: This diagram illustrates an example translation pair in the Chinese-English portion of OpenMT08 data set
(Doc:AFP CMN 20070703.0005, system09, sent 1). The three rows below are the best state transition (edit) sequences
that transforms REF to SYS, according to the three proposed models. The corresponding alignments generated by the
models (pFSM, pPDA, pPDA+f ) are shown with different styled lines, with later models in the order generating strictly
more alignments than earlier ones. The gold human evaluation score is 6.5, and model predictions are: pPDA+f 5.5,
pPDA 4.3, pFSM 3.1, METEORR 3.2, TERR 2.8.

preprocessing modules to extract linguistic features
(e.g., a full end-to-end textual entailment system was
needed in Pado et al. (2009)), which severely lim-
its their practical use. Furthermore, these models
employ a large number of features (on the order of
hundreds), and consequently make the model predic-
tions opaque and hard to analyze.

3 pFSMs for MT Regression

We start off by framing the problem of machine trans-
lation evaluation in terms of weighted edit distance
calculated using probabilistic finite state machines
(pFSMs). A FSM defines a language by accepting a
string of input tokens in the language, and rejecting
those that are not. A probabilistic FSM defines the
probability that a string is in a language, extending on
the concept of a FSM. Commonly used models such
as HMMs, n-gram models, Markov Chains, proba-
bilistic finite state transducers and PCFGs all fall in
the broad family of pFSMs (Knight and Al-Onaizan,
1998; Eisner, 2002; Kumar and Byrne, 2003; Vidal
et al., 2005). Unlike all the other applications of
FSMs where tokens in the language are words, in
our language tokens are edit operations. A string of
tokens that our FSM accepts is an edit sequence that
transforms a reference translation (denoted as ref )
into a system translation (sys).

Our pFSM has a unique start and stop state, and
one state per edit operation (i.e., Insert, Delete, Sub-
stitution). The probability of an edit sequence e is
generated by the model is the product of the state tran-
sition probabilities in the pFSM, formally described
as:

w(e | s,r) =
1
Z

|e|

∏
i=1

exp θ · f(ei−1,ei,s,r) (1)

We featurize each of the state changes with a log-
linear parameterization; f is a set of binary feature
functions defined over pairs of neighboring states
(by the Markov assumption) and the input sentences,
and θ are the associated feature weights; r and s are
shorthand for ref and sys; Z is a partition function.
In this basic pFSM model, the feature functions are
simply identity functions that emit the current state,
and the state transition sequence of the previous state
and the current state.

The feature weights are then automatically learned
by training a global regression model where some
translational equivalence judgment score (e.g., hu-
man assessment score, or HTER (Snover et al.,
2006)) for each sys and ref translation pair is the
regression target (ŷ). Since the “gold” edit sequence
are not given at training or prediction time, we treat
the edit sequences as hidden variables and sum over
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them in our model. We introduce a new regression
variable y ∈ R which is the log-sum of the unnormal-
ized weights (Eqn. (1)) of all edit sequences, formally
expressed as:

y = log ∑
e′⊆e∗

|e′ |

∏
i=1

exp θ · f(ei−1,ei,s,r) (2)

The sum over an exponential number of edit se-
quences in e∗ is solved efficiently using a forward-
backward style dynamic program. Any edit sequence
that does not lead to a complete transformation of
the translation pair has a probability of zero in our
model. Our regression target then seeks to minimize
the least squares error with respect to ŷ, plus a L2-
norm regularizer term parameterized by λ :

θ
∗ = min

θ
{∑

si,ri

[ŷi − (
y

|si|+ |ri|
+α)]2 +λ‖θ‖2}

(3)
The |si|+ |ri| is a length normalization term for the
ith training instance, and α is a scaling constant for
adjusting to different scoring standards (e.g., 7-point
scale vs. 5-point scale), whose value is automatically
learned. At test time, y/(|s|+ |r|)+ α is computed
as the predicted score.

We replaced the standard substitution edit opera-
tion with three new operations: Sword for same word
substitution, Slemma for same lemma substitution, and
Spunc for same punctuation substitution. In other
words, all but the three matching-based substitutions
are disallowed. The start state can transition into any
of the edit states with a constant unit cost, and each
edit state can transition into any other edit state if
and only if the edit operation involved is valid at the
current edit position (e.g., the model cannot transi-
tion into Delete state if it is already at the end of ref ;
similarly it cannot transition into Slemma unless the
lemma of the two words under edit in sys and ref
match). When the end of both sentences are reached,
the model transitions into the stop state and ends the
edit sequence. The first row in Figure 1 starting with
pFSM shows a state transition sequence for an exam-
ple sys/ref translation pair. There exists a one-to-one
correspondence between substitution edits and word
alignments. Therefore this example state transition
sequence correctly generates an alignment for the
word 43 and people.

It is helpful to compare with the TER met-
ric (Snover et al., 2006), which is based on the idea
of word error rate measured in edit distance, to better
understand the intuition behind our model. There
are two major improvements in our model: 1) the
edit operations in our model are weighted, as defined
by the feature functions and weights; 2) the weights
are automatically learned, instead of being uniform
or manually set; and 3) we model state transitions,
which can be understood as a bigram extension of
the unigram edit distance model used in TER. For
example, if in our learned model the feature for two
consecutive Sword states has a positive weight, then
our model would favor consecutive same word sub-
stitutions, whereas in the TER model the order of
the substitution does not matter. The extended TER-
plus (Snover et al., 2009) metric addresses the first
problem but not the other two.

3.1 pPDA Extension
A shortcoming of edit distance models is that they
cannot handle long-distance word swapping — a
pervasive phenomenon found in most natural lan-
guages. 1 Edit operations in standard edit distance
models need to obey strict incremental order in their
edit position, in order to admit efficient dynamic pro-
gramming solutions. The same limitation is shared
by our pFSM model, where the Markov assumption
is made based on the incremental order of edit po-
sitions. Although there is no known solution to the
general problem of computing edit distance where
long-distance swapping is permitted (Dombb et al.,
2010), approximate algorithms do exist. We present
a simple but novel extension of the pFSM model
to a probabilistic pushdown automaton (pPDA), to
capture non-nested word swapping within limited
distance, which covers a majority of word swapping
in observed in real data (Wu, 2010).

A pPDA, in its simplest form, is a pFSM where
each control state is equipped with a stack (Esparza
and Kucera, 2005). The addition of stacks for each
transition state endows the machine with memory,
extending its expressiveness beyond that of context-
free formalisms. By construction, at any stage in a
normal edit sequence, the pPDA model can “jump”

1The edit distance algorithm described in Cormen et
al. (2001) can only handle adjacent word swapping (transpo-
sition), but not long-distance swapping.
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forward within a fixed distance (controlled by a max
distance parameter) to a new edit position on either
side of the sentence pair, and start a new edit subse-
quence from there. Assuming the jump was made on
the sys side, 2 the machine remembers its current edit
position in sys as Jstart , and the destination position
on sys after the jump as Jlanding.

We constrain our model so that the only edit op-
erations that are allowed immediately following a
“jump” are from the set of substitution operations
(e.g., Sword). And after at least one substitution
has been made, the device can now “jump” back
to Jstart , remembering the current edit position as
Jend . Another constraint here is that after the back-
ward “jump”, all edit operations are permitted except
for Delete, which cannot take place until at least one
substitution has been made. When the edit sequence
advances to position Jlanding, the only operation al-
lowed at that point is another “jump” forward opera-
tion to position Jend , at which point we also clear all
memory about jump positions and reset.

An intuitive explanation is that when pPDA makes
the first forward jump, a gap is left in sys that has
not been edited yet. It remembers where it left off,
and comes back to it after some substitutions have
been made to complete the edit sequence. The sec-
ond row in Figure 1 (starting with pPDA) illustrates
an edit sequence in a pPDA model that involves three
“jump” operations, which are annotated and indexed
by number 1-3 in the example. “Jump 1” creates an
un-edited gap between word 43 and western, after
two substitutions, the model makes “jump 2” to go
back and edit the gap. The only edit permitted imme-
diately after “jump 2” is deleting the comma in ref,
since inserting the word 43 in sys before any substi-
tution is disallowed. Once the gap is completed, the
model resumes at position Jend by making “jump 3”,
and completes the jump sequence.

The “jumps” allowed the model to align words
such as western India, in addition to the alignments
of 43 people found by the pFSM. In practice, we
found that our extension gives a big boost to model
performance (cf. Section 5.1), with only a modest
increase in computation time. 3

2Recall that we transform ref into sys, and thus on the sys
side, we can only insert but not delete. The argument applies
equally to the case where the jump was made on the other side.

3The length of the longest edit sequence with jumps only

3.2 Parameter Estimation
Since the least squares operator preserves convexity,
and the inner log-sum-exponential function is con-
vex, the resulting objective function is also convex.
For parameter learning, we used the limited memory
quasi-newton method (Liu and Nocedal, 1989) to find
the optimal feature weights and scaling constant for
the objective. We initialized θ =~0, α = 0, and λ = 5.
We also threw away features occurring fewer than
five times in training corpus. Gradient calculation
was similar to other pFSM models, such as HMMs,
we omitted the details here, for brevity.

4 Rich Linguistic Features

We add new substitution operations beyond those in-
troduced in Section 3, to capture synonyms and para-
phrase in the translations. Synonym relations are de-
fined according to WordNet (Miller et al., 1990), and
paraphrase matches are given by a lookup table used
in TERplus (Snover et al., 2009). To better take ad-
vantage of paraphrase information at the multi-word
phrase level, we extended our substitution operations
to match longer phrases by adding one-to-many and
many-to-many bigram block substitutions.

5 Experiments

The goal of our experiments is to test both the ac-
curacy and robustness of the proposed new models.
We then show that modeling word swapping and rich
linguistics features further improve our results.

To better situate our work among past research
and to draw meaningful comparison, we use exactly
the same standard evaluation data sets and metrics
as Pado et al. (2009), which is currently the state-
of-the-art result for regression-based MT evaluation.
We consider four widely used MT metrics (BLEU,
NIST, METEOR (Banerjee and Lavie, 2005) (v0.7),
and TER) as our baselines. Since our models are
trained to regress human evaluation scores, to make
a direct comparison in the same regression setting,
we also train a small linear regression model for each
baseline metric in the same way as descried in Pado
et al. (2009). These regression models are strictly
more powerful than the baseline metrics and show
higher robustness and better correlation with human

increased by 0.5 ∗max(|s|, |r|) in the worst case, and by and
large swapping is rare in comparison to basic edits.
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Data Set Our Metrics Baseline Metrics
train test pFSM pPDA pPDA+f BLEUR NISTR TERR METR MTR RTER MT+RTER
A+C U 54.6 55.3 57.2 49.9 49.5 50.1 49.1 50.1 54.5 55.6
A+U C 59.9 63.8 65.7 53.9 53.1 50.3 61.1 57.3 58.0 62.7
C+U A 61.2 60.4 59.8 52.5 50.4 54.5 60.1 55.2 59.9 61.1
MT08 MT06 65.2 63.4 64.5 57.6 55.1 63.8 62.1 62.6 62.2 65.2

Table 1: Overall results on OpenMT08 and OpenMT06 evaluation data sets. The R (as in BLEUR) refers to the
regression model trained for each baseline metric, same as Pado et al. (2009). The first three rows are round-robin
train/test results over three languages on OpenMT08 (A=Arabic, C=Chinese, U=Urdu). The last row are results trained
on entire OpenMT08 (A+C+U) and tested on OpenMT06. Numbers in this table are Spearman’s rank correlation ρ

between human assessment scores and model predictions. The pPDA column describes our pPDA model with jump
distance limit 5. METR is shorthand for METEORR. +f means the model includes synonyms and paraphrase features
(cf. Section 4). Best results and scores that are not statistically significantly worse are highlighted in bold in each row.

judgments. 4 We also compare our models with the
state-of-the-art linear regression models reported in
Pado et al. (2009) that combine features from mul-
tiple MT evaluation metrics (MT), as well as rich
linguistic features from a textual entailment system
(RTE).

In all of our experiments, each reference and sys-
tem translation sentence pair is tokenized using the
PTB (Marcus et al., 1993) tokenization script, and
lemmatized by the Porter Stemmer (Porter, 1980).
Statistical significance tests are performed using the
paired bootstrap resampling method (Koehn, 2004).

We divide our experiments into two sections, based
on two different prediction tasks — predicting abso-
lute scores and predicting pairwise preference.

5.1 Exp. 1: Predicting Absolute Scores

The first task is to evaluate a system translation
on a seven point Likert scale against a single ref-
erence. Higher scores indicate translations that are
closer to the meaning intended by the reference. Hu-
man ratings in the form of absolute scores are avail-
able for standard evaluation data sets such as NIST
OpenMT06,08.5 Since our model makes predictions
at the granularity of a whole sentence, we focus on
sentence-level evaluation. A metric’s goodness is
judged by how well it correlates with human judg-
ments, and Spearman’s rank correlation (ρ) is re-
ported for all experiments in this section.

We used the NIST OpenMT06 corpus for develop-
ment purposes, and reserved the NIST OpenMT08
corpus for post-development evaluation. The

4See Pado et al. (2009) for more discussion.
5Available from http://www.nist.gov.

OpenMT06 data set contains 1,992 English trans-
lations of Arabic newswire text from 8 MT systems.
For development, we used a 2-fold cross-validation
scheme with splits at the first 1,000 and last 992 sen-
tences. The OpenMT08 data set contains English
translations of newswire text from three languages
(Arabic has 2,769 pairs from 13 MT systems; Chi-
nese has 1,815 pairs from 15; and Urdu has 1,519
pairs, from 7). We followed the same experimental
setup as Pado et al. (2009), using a “round robin”
training/testing scheme, i.e., we train a model on data
from two languages, making predictions for the third.
We also show results of models trained on the entire
OpenMT08 data set and tested on OpenMT06.

Overall Comparison

Results of our proposed models compared against
the baseline models described in Pado et al. (2009)
are shown in Table 1. The pFSM and pPDA mod-
els do not use any additional information other than
words and lemmas, and thus make a fair comparison
with the baseline metrics. 6 We can see from the ta-
ble that pFSM significantly outperforms all baselines
on Urdu and Arabic, but trails behind METEORR
on Chinese by a small margin (1.2 point in Spear-
man’s ρ). On Chinese data set, the pPDA exten-
sion gives results significantly better than the best
baseline metrics for Chinese (2.7 better than METE-
ORR). It is also significantly better than pFSM (by

6METEORR actually has an unfair advantage in this compari-
son, since it uses synonym information from WordNet; TERR
on the other hand has a disadvantage because it does not use
lemmas. Lemma is added later in the TERplus extension (Snover
et al., 2009).
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3.9 points), suggesting that modeling word swapping
is particularly rewarding for Chinese language. On
the other hand, pPDA model does not perform bet-
ter than the pFSM model on Arabic in MT08 and
OpenMT06 (which is also Arabic-to-English). This
observation is consistent with findings in earlier work
that Chinese-English translations exhibit much more
medium and long distance reordering than languages
like Arabic (Birch et al., 2009).

Both the pFSM and pPDA models also signifi-
cantly outperform the MTR linear regression model
that combines the outputs of all four baselines, on all
three source languages. This demonstrates that our
regression model is more robust and accurate than a
state-of-the-art system combination linear-regression
model. The RTER and MT+RTER linear regression
models benefit from the rich linguistic features in the
textual entailment system’s output. It has access to
all the features in pPDA+f such as paraphrase and de-
pendency parse relations, and many more (e.g., Norm
Bank, part-of-speech, negation, antonyms). However,
our pPDA+f model rivals the performance of RTER
and MT+RTER on Arabic (with no statistically sig-
nificant difference from RTER), and greatly improve
over these two models on Urdu and Chinese. Most
noticeably, pPDA+f is 7.7 points better than RTER
on Chinese.

5.2 Exp. 2: Predicting Pairwise Preferences

To further test our model’s robustness, we evaluate
it on WMT data sets with a different prediction task
in which metrics make pairwise preference judg-
ments between translation systems. The WMT06-
08 data sets are much larger in comparison to the
OpenMT06 and 08 data. They contain MT outputs of
over 40 systems from five different source languages
(French, German, Spanish, Czech, and Hungarian).
The WMT06, 07 and 08 sets contains 10,159, 5,472
and 6,856 sentence pairs, respectively. We used por-
tions of WMT 06 and 07 data sets 7 that are annotated
with absolute scores on a five point scale for training,
and the WMT08 data set annotated with pairwise
preference for testing.

To generate pairwise preference predictions, we
first predict an absolute score for each system trans-
lation, then compare the scores between each system

7Available from http://www.statmt.org.

pair, and give preference to the higher score. We
adopt the sentence-level evaluation metric used in
Pado et al. (2009), which measures the consistency
(accuracy) of metric predictions with human prefer-
ences. The random baseline for this task on WMT08
data set is 39.8%.

Models WMT06 WMT07 WMT06+07
pPDA+f 51.6 52.4 52.0
BLEUR 49.7 49.5 49.6
METEORR 51.4 51.4 51.5
NISTR 50.0 50.3 50.2
TERR 50.9 51.0 51.2
MTR 50.8 51.5 51.5
RTER 51.8 50.7 51.9
MT+RTER 52.3 51.8 52.5

Table 2: Pairwise preference prediction results on WMT08
test set. Each column shows a different training data set.
Numbers in this table are model’s consistency with human
pairwise preference judgments. Best result on each test
set is highlighted in bold.

Results are shown in Table 2. Similar to the results
on OpenMT experiments, our model consistently out-
performed BLEUR, METEORR, NISTR and TERR.
Our model also gives better performance than the
MTR ensemble model on all three tests; and ties with
RTER in two out of the three tests but performs sig-
nificantly better on the other test. The MT+RTER
ensemble model is better on two tests, but worse
on the other. But overall the two systems are quite
comparable, with less than 0.6% accuracy difference.
The results also show that our method is stable across
different training sets, with test accuracy differences
less than 0.4%.

6 Conclusion

We described the SPEDE metric for sentence level
MT evaluation. It is based on probabilistic finite state
machines to compute weighted edit distance. Our
model admits a rich set of linguistic features, and
can be trained to learn feature weights automatically
by optimizing a regression objective. A novel push-
down automaton extension was also presented for
capturing long-distance word swapping. Our metrics
achieve state-of-the-art results on a wide range of
standard evaluations, and are much more lightweight
than previous regression models.

81



Acknowledgements
We gratefully acknowledge the support of Defense
Advanced Research Projects Agency (DARPA) Ma-
chine Reading Program under Air Force Research
Laboratory (AFRL) prime contract no. FA8750-
09-C-0181 and the support of the DARPA Broad
Operational Language Translation (BOLT) program
through IBM. Any opinions, findings, and conclusion
or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect
the view of the DARPA, AFRL, or the US govern-
ment.

References
J. Albrecht and R. Hwa. 2007a. A re-examination of

machine learning approaches for sentence-level MT
evaluation. In Proceedings of ACL.

J. Albrecht and R. Hwa. 2007b. Regression for sentence-
level MT evaluation with pseudo references. In Pro-
ceedings of ACL.

S. Banerjee and A. Lavie. 2005. Meteor: An automatic
metric for MT evaluation with improved correlation
with human judgments. In Proceedings of ACL Work-
shop on Intrinsic and Extrinsic Evaluation Measures.

A. Birch, P. Blunsom, and M. Osborne. 2009. A quantita-
tive analysis of reordering phenomena. In Proceedings
of WMT 09.

C. Callison-Burch, P. Koehn, C. Monz, and J. Schroeder.
2009. Findings of the 2009 Workshop on Statistical
Machine Translation. In Proceedings of the Fourth
Workshop on Statistical Machine Translation.

C. Callison-Burch, P. Koehn, C. Monz, K. Peterson,
M. Przybocki, and O. Zaidan. 2010. Findings of the
2010 joint workshop on Statistical Machine Translation
and metrics for Machine Translation. In Proceedings
of Joint WMT 10 and MetricsMatr Workshop at ACL.

C. Callison-Burch, P. Koehn, C. Monz, and O. Zaidan.
2011. Findings of the 2011 workshop on statistical ma-
chine translation. In Proceedings of the Sixth Workshop
on Statistical Machine Translation.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
2001. Introduction to Algorithms, Second Edition. MIT
Press.

M. Denkowski and A. Lavie. 2010. Extending the ME-
TEOR machine translation evaluation metric to the
phrase level. In Proceedings of HLT/NAACL.

G. Doddington. 2002. Automatic evaluation of machine
translation quality using n-gram cooccurrence statistics.
In Proceedings of HLT.

Y. Dombb, O. Lipsky, B. Porat, E. Porat, and A. Tsur.
2010. The approximate swap and mismatch edit dis-
tance. Theoretical Computer Science, 411(43).

J. Eisner. 2002. Parameter estimation for probabilistic
finite-state transducers. In Proceedings of ACL.

J. Esparza and A. Kucera. 2005. Quantitative analysis
of probabilistic pushdown automata: Expectations and
variances. In Proceedings of the 20th Annual IEEE
Symposium on Logic in Computer Science.

Y. He, J. Du, A. Way, and J. van Genabith. 2010. The
DCU dependency-based metric in WMT-MetricsMATR
2010. In Proceedings of Joint WMT 10 and Metrics-
Matr Workshop at ACL.

K. Knight and Y. Al-Onaizan. 1998. Translation with
finite-state devices. In Proceedings of AMTA.

P. Koehn. 2004. Statistical significance tests for machine
translation evaluation. In Proceedings of EMNLP.

S. Kumar and W. Byrne. 2003. A weighted finite state
transducer implementation of the alignment template
model for statistical machine translation. In Proceed-
ings of HLT/NAACL.

D. C. Liu and J. Nocedal. 1989. On the limited mem-
ory BFGS method for large scale optimization. Math.
Programming, 45:503–528.

D. Liu, , and D. Gildea. 2005. Syntactic features for eval-
uation of machine translation. In Proceedings of the
ACL Workshop on Intrinsic and Extrinsic Evaluation
Measures.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini.
1993. Building a large annotated corpus of english: the
Penn Treebank. Computational Linguistics, 19(2):313–
330.

G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. J.
Miller. 1990. WordNet: an on-line lexical database.
International Journal of Lexicography, 3(4).

F. Och. 2003. Minimum error rate training in statistical
machine translation. In Proceedings of ACL.

K. Owczarzak, J. van Genabith, and A. Way. 2008. Evalu-
ating machine translation with LFG dependencies. Ma-
chine Translation, 21(2):95–119.

S. Pado, M. Galley, D. Jurafsky, and C. D. Manning. 2009.
Robust machine translation evaluation with entailment
features. In Proceedings of ACL.

K. Papineni, S. Roukos, T. Ward, and W. Zhu. 2002.
BLEU: a method for automatic evaluation of machine
translation. In Proceedings of ACL.

M.F. Porter. 1980. An algorithm for suffix stripping.
Program, 14(3):130–137.

M. Snover, B. Dorr, R. Schwartz, L. Micciulla, and
J. Makhoul. 2006. A study of translation edit rate
with targeted human annotation. In Proceedings of
AMTA.

M. Snover, , N. Madnani, B. Dorr, and R. Schwartz. 2009.
Fluency, adequacy, or HTER? exploring different hu-
man judgments with a tunable MT metric. In Proceed-
ings of WMT09 Workshop.

82



S. Sun, Y. Chen, and J. Li. 2008. A re-examination on
features in regression based approach to automatic MT
evaluation. In Proceedings of ACL.

E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta,
and R. C. Carrasco. 2005. Probabilistic finite-state ma-
chines part I. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(7):1013–1025.

D. Wu, 2010. CRC Handbook of Natural Language Pro-
cessing, chapter How to Select an Answer String?,
pages 367–408. CRC Press.

L. Zhou, C.Y. Lin, and E. Hovy. 2006. Re-evaluating
machine translation results with paraphrase support. In
Proceedings of EMNLP.

83



Proceedings of the 7th Workshop on Statistical Machine Translation, pages 84–90,
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Abstract

We describe a submission to the WMT12
Quality Estimation task, including an exten-
sive Machine Learning experimentation. Data
were augmented with features from linguis-
tic analysis and statistical features from the
SMT search graph. Several Feature Selec-
tion algorithms were employed. The Quality
Estimation problem was addressed both as a
regression task and as a discretised classifi-
cation task, but the latter did not generalise
well on the unseen testset. The most success-
ful regression methods had an RMSE of 0.86
and were trained with a feature set given by
Correlation-based Feature Selection. Indica-
tions that RMSE is not always sufficient for
measuring performance were observed.

1 Introduction

As Machine Translation (MT) gradually gains a po-
sition into production environments, the need for es-
timating the quality of its output is increasing. Vari-
ous use cases refer to it as input assessment for Hu-
man Post-editing, as an extension for Hybrid MT or
System Combination, or even a method for improv-
ing components of existing MT systems.

With the current submission we are trying to
address the problem of assigning a quality score
to a single MT output per source sentence. Pre-
vious work includes regression methods for in-
dicating a binary value of correctness (Quirk,
2001; Blatz et al., 2004; Ueffing and Ney, 2007),
human-likeness (Gamon et al., 2005) or continu-
ous scores (Specia et al., 2009). As we also work
with continuous scores, we are making an effort
to combine previous feature acquisition sources,

such as language modelling (Raybaud et al., 2009),
language fluency checking (Parton et al., 2011),
parsing (Sánchez-Martinez, 2011; Avramidis et al.,
2011) and decoding statistics (Specia et al., 2009;
Avramidis, 2011). The current submission combines
such previous observations in a combinatory experi-
mentation on feature sets, feature selection methods
and Machine Learning (ML) algorithms.

The structure of the submission is as follows: The
approach is defined and the methods are described
in section 2, including features acquisition, feature
selection and learning. Section 3 includes informa-
tion about the experiment setup whereas the results
are discussed in Section 4.

2 Methods

2.1 Data and basic approach

This contribution has been built based on the data
released for the Quality Estimation task of the
Workshop on Machine Translation (WMT) 2012
(Callison-Burch et al., 2012). The organizers pro-
vided an English-to-Spanish development set and a
test set of 1832 and 422 sentences respectively, de-
rived from WMT09 and WMT10 datasets. For each
source sentence of the development set, participants
were offered one translation generated by a state-of-
the-art phrase-based SMT system. The quality of
each SMT translation was assessed by human evalu-
ators, who provided a quality score in the range 1-5.
Additionally, statistics and processing information
from the execution of the SMT decoding algorithm
were given.

The approach presented here is making use of the
source sentences, the SMT output and the quality
scores in order to follow a typical ML paradigm:
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sentence suggestion
. . . los lı́deres de la Unión han descrito como deducciones polı́tico . . . number agreement
La articular y ideológicamente convencido de asesino de masas . . . transform “y” to “e”
Right after hearing about it, he described it as a “challenge. . . ” disambiguate -ing

Table 1: Sample suggestions generated by rule-based language checking tools, observed in development data

each source and target sentence of the development
set are being analyzed to generate a feature vector.
One training sample is formed out of the feature vec-
tor and the quality score (i.e. as a class value) of each
sentence. A ML algorithm is consequently used to
train a model given the training samples. The per-
formance of each model is evaluated upon a part of
the development set that was kept-out from training.

2.2 Acquiring Features

The features were obtained from two sources: the
decoding process and the analysis of the text of the
source and the target sentence. The two steps are
explained below.

2.2.1 Features from text analysis
The following features were generated with the use
of tools for the statistical and/or linguistic analysis
of the text. The baseline features included:

• Tokens count: Count of tokens in the source
and the translated sentence and their ratio, un-
known words and also occurrences of the target
word within the translated sentence (averaged
for all words in the hypothesis - type/token ra-
tio)

• IBM1-model lookup: Average number of
translations per source word in the sentence,
unweighted or weighted by the inverse fre-
quency of each word in the source corpus

• Language modeling: Language model proba-
bility of the source and translated sentence

• Corpus lookup: percentage of unigrams / bi-
grams / trigrams in quartiles 1 and 4 of fre-
quency (lower and higher frequency words) in
a corpus of the source language

Additionally, the following linguistically motivated
features were also included:

• Parsing: PCFG Parse (Petrov et al., 2006) log-
likelihood, size of n-best tree list, confidence
for the best parse, average confidence of all
parse trees. Ratios of the mentioned target fea-
tures to the corresponding source features.

• Shallow grammatical match: The number
of occurences of particular node tags on both
the source and the target was counted on the
PCFG parses. Additionally, the ratio of the
occurences of each tag in the target sentence
by the corresponding occurences on the source
sentence.

• Language quality check: Source and target
sentences were subject to automatic rule-based
language quality checking, providing a wide
range of quality suggestions concerning style,
grammar and terminology, summed up in an
overall quality score. The process employed
786 rules for English and 70 rules for Spanish.
We counted the occurences of every rule match
in each sentence and the number of characters it
affected. Sample rule suggestions can be seen
in Table 1.

2.2.2 Features from the decoding process
The organisers provided a verbose output of the de-
coding process, including probabilistic scores from
all steps of the execution of the translation search.
We added the scores appearing once per sentence
(i.e. referring to the best hypothesis), whereas for
the ones being modified over the generation graph,
their average (avg), variance (var) and standard de-
viation (std) was calculated. These features are:

• the log of the phrase translation probability
(pC) and the phrase future cost estimate (c)

• the score component vector including the dis-
tortion scores (d1...7), word penalty, translation
scores (e.g. a1: inverse phrase translation prob-
ability, a2: inverse lexical weighting)
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2.3 Feature Selection

Experience has shown difficulties in including hun-
dreds of features into training a statistical model.
Several algorithms (such as Naı̈ve Bayes) require
statistically-independent features. For others, a
search space of hundreds of features may impose
increased computational complexity, which is often
unsustainable in the time and resources allocated.
In these cases we therefore applied several common
Feature Selection approaches, in order to reduce the
available features to an affordable number.

We used the Feature Selection algorithms of Re-
lieff (Kononenko, 1994), Information Gain and
Gain Ratio (Kullback and Leibler, 1951), and
Correlation-based Feature Selection (Hall, 2000).
The latter is known for producing feature sets highly
correlated with the class, yet uncorrelated with each
other; selection was done in two variations, greedy
stepwise and best first.

The data were discretised according to the algo-
rithm requirements and features were scored in a 10-
fold cross-validation.

2.4 Machine Learning

We tried to approach the issue with two distinct
modelling approaches, classification and regression.

2.4.1 Classification algorithms

In an effort to interpret Quality Estimation as a
classification problem, we expect to build models
that are able to assign a discrete value, as a mea-
sure of sentence quality. This bears some relation to
the way the quality scores were generated; humans
were asked to provide an (integer) quality score in
the range 1-5. In our case, we try to build classifiers
that do the same, but are also able to assign values
with smaller intervals. For this purpose, we set up
4 sub-experiments, where the class value in our data
was rounded up to intervals of 0.25, 0.5, 0.7 and 1.0
respectively.

In this part of the experiment we used the Naı̈ve
Bayes, k-nearest-neighbours (kNN), Support Vector
Machines (SVM) and Tree classification algorithms.
Naı̈ve Bayes’ probabilities for our continuous fea-
tures were estimated with locally weighted linear re-
gression (Cleveland, 1979).

2.4.2 Regression algorithms
Regression algorithms produce a model for di-

rectly predicting a quality score with continu-
ous values. Experimentation here included Par-
tial Least Squares Regression (Stone and Brooks,
1990), Multivariate Adaptive Regression Splines –
MARS (Friedman, 1991), Lasso (Tibshirani, 1994)
and Linear Regression.

3 Experiment and Results

3.1 Implementation

PCFG parsing features were generated on the out-
put of the Berkeley Parser (Petrov and Klein,
2007), trained over an English and a Spanish tree-
bank (Mariona Taulé and Recasens, 2008). N-
gram features have been generated with the SRILM
toolkit (Stolcke, 2002). The Acrolinx IQ1 was used
to parse the source side, whereas the Language Tool2

was applied on both sides.
The feature selection and learning algorithms

were implemented with the Orange (Demšar et al.,
2004) and Weka (Hall et al., 2009) toolkits.

3.2 Experiment structure

The methods explained in the previous section pro-
vide a wide range of experiment parameters. Con-
sequently, we tried to extensively test all the possi-
ble parameter combinations. The development data
were separated in two sets, one “training” set and
one “keep-out” set, used to test the predictions. In
order to give learners better coverage over the data,
the development set was split in two ways (70%
training - 30% test and 90% training - 10% test), so
that all experiments get performed under both set-
tings. The scores of these two were averaged3.

3.3 Results

The small size of the dataset allowed for fast train-
ing and testing of the discrete classification problem,
where we could execute 370 experiments. The re-
gression problem was considerably slower, as only
36 experiments concluded in time.

1http://www.acrolinx.com (proprietary)
2http://languagetool.org (open-source)
3Given the disparity of the test sizes, it would have in prin-

ciple been better to use a weighted average. Though, this would
not have lead to significant differences in the results.
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5-fold avg 70-30%, 90-10% folds
algorithm feat. set discr. CA AUC RMSE MAE interval
Tree #17, #20 0.25 15.40 54.10 0.84 0.67 1.5 5.0
Tree #23 0.25 14.60 53.50 0.85 0.68 2.0 5.0
Tree #12 0.25 13.90 52.00 0.86 0.69 1.8 5.0
Tree #4 0.25 14.50 53.70 0.86 0.69 2.0 5.0
SVM #16 0.25 16.00 60.40 0.86 0.69 3.2 3.2
kNN #22 0.25 12.30 55.50 1.00 0.78 2.0 5.0
Tree #21 0.50 22.70 54.60 0.87 0.69 2.0 5.0
SVM #19 0.50 22.40 60.20 0.91 0.73 2.8 5.0
kNN #12 0.50 20.00 54.70 0.98 0.78 2.2 5.0
Naive #6 0.50 21.20 59.40 0.99 0.76 1.2 5.0
Tree #9 0.70 32.70 53.30 0.89 0.71 3.5 4.9
kNN #12 0.70 28.20 56.10 0.93 0.73 2.5 4.9
SVM #18 0.70 30.90 55.60 0.97 0.77 3.5 4.2
Tree #22 1.00 40.30 55.70 0.90 0.71 2.0 5.0
kNN #22 1.00 40.90 59.10 0.96 0.76 2.5 5.0
Naive #23 1.00 41.00 65.50 1.02 0.78 1.2 5.0
SVM #6 1.00 36.60 51.10 1.02 0.84 3.0 4.0

Table 2: Indicative discretised classification results, sorted by best performance and discretisation interval. Classifica-
tion Accuracy (AC), Area Under Curve (AUC), Root Mean Square Error (RMSE) and Mean Average Error (MAE),
Largest Error Percentage (LEP) and Smallest Error Percentage (SEP)

Feature generation resulted (described in Section
2.2) into 266 features, while 90 of them derived from
language checking. Feature selection suggested sev-
eral feature sets containing between 30 and 80 fea-
tures. We ended up defining 22 feature sets, includ-
ing the full feature set, the baseline feature set and
a couple of manually selected feature sets. Unfor-
tunately, due to size restrictions, not all features can
be listed; though, indicative feature sets are listed in
Table 5.

The most important results of the classification
approach can be seen in Table 2 and the results of
the regression approach in Tables 3 (development
set) and 4 (shared task test set).

4 Discussion

4.1 Machine Learning Conclusions

Discrete classifiers (section 2.4.1) do not yield en-
couraging accuracy, as acceptable levels of accu-
racies appear only with a discretisation interval of
1.00, which though cannot be accepted due to its
high Root Mean Square Error (RMSE). On the de-
velopment keep-out set, the discretised Tree classi-

fier seemingly outperforms all other methods (in-
cluding the regression learners), since it yields a
RMSE of 0.84, given several different feature vec-
tors. Unfortunately, when applied to the final un-
known test data, these classifiers performed obvi-
ously bad, providing the same single value for all
sentences. We could attribute this to overfitting vs.
sparse data and consider how we can handle this bet-
ter in further work.

Another remarkable observation was the incapa-
bility of the RMSE to objectively show the qual-
ity of the model, in situations where the predicted
values are very close or equal to the average of
all real values. A Support Vector Machine with
RMSE = 0.86 ranked 3rd among the classifiers, al-
though it “cheated” by producing only the average
value: 3.25. This leads to the conclusion that the
selection of the best algorithm is not just dictated
by the lowest RMSE, but it should consider several
other indications such as the standard deviation.

We therefore resort to the regression learners
(section 2.4.2), whose scores are not worse, having
a RMSE of 0.855. We have to notice that the four
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avg. 70-30%, 90-10% folds
algorithm f. set RMSE MAE interval
PLS #19 0.86 0.69 2.5 4.3
Lasso #19 0.86 0.68 2.7 4.4
Linear #19 0.86 0.68 2.6 4.5
MARS #19 0.86 0.68 2.6 4.7
PLS #18 0.86 0.69 2.7 4.4
Linear #18 0.86 0.69 2.8 4.4
Lasso #18 0.86 0.69 2.8 4.4
MARS #16 0.87 0.69 2.4 4.6
MARS #18 0.86 0.69 2.4 4.5
MARS #4 0.86 0.69 3.4 4.5
PLS #16 0.87 0.70 2.1 4.8
PLS #4 0.87 0.70 2.1 5.4
Linear #4 0.88 0.70 2.4 4.8
Linear #16 0.88 0.70 1.4 4.9
Lasso #4 0.88 0.70 1.9 5.3
MARS #2 0.90 0.72 3.0 4.5
Lasso #16 0.90 0.71 2.7 4.5
Linear #2 0.90 0.72 3.0 4.0
Lasso #2 0.90 0.72 3.0 4.0
PLS #2 0.90 0.73 3.0 3.9
Tree #21 1.08 0.86 1.5 5.0
Tree #19 1.19 0.96 1.6 5.0
Tree #16 1.23 0.98 1.6 5.0
Tree #18 1.25 0.98 1.4 5.0

Table 3: Regression results. Root Mean Square Error
(RMSE) and Mean Average Error (MAE), Largest Error
Percentage (LEP) and Smallest Error Percentage (SEP).
Bold face indicates submitted sets

regression algorithms have comparable performance
given the same features.

The best-performing feature set (#19) which was
chosen as the first submission (DFKI cfs-plsreg)
trained with PLS regression, contains features in-
dicated by Correlation-based Feature Selection, run
with bestfirst on a 10-fold cross-validation. We used
the features which were selected on the 100% or
90% of the folds. An equally best-performing fea-
ture set (#18) has resulted from exactly the same fea-
ture selection execution, but contains only features
which were selected in all folds.

The second submission (DFKI grcfs-mars) was
chosen to differentiate both the feature set and the
learning method, with respect to a decent interval.
Feature set #16 is the result of the Correlation-based

learner feat. name RMSE MAE
MARS #16 grcfs–mars 0.98 0.82
PLS #19 cfs-plsreg 0.99 0.82

Table 4: Results of the submitted methods on the official
testset

Feature Selection, run in a greedy-stepwise mode.
The regression was trained with MARS.

The baseline feature set (#2) performed worse.
Noticeable was the RMSE of the feature set #4, with
features selected based on their Gain Ratio, but we
did not submit this due to its very narrow interval.

4.2 Feature conclusions

The best performing feature set gives interesting
hints on what worked as a best indication of trans-
lation quality. We would try to summarize them as
follows:

• The language checking of the source sen-
tence detected complex or embedded sentences,
which are often not handled properly by SMT
due to their complicated structure.

• The language checking of the target sentence
detected several agreement issues.

• Parsing provided of source and target count
of verbs, nouns, adjectives and secondary sen-
tences; with the assumption that translations
are relatively isomorphic, the loss of a verb or
a noun or the inability to properly handle a sec-
ondary sentence, would mean a considerably
bad translation outcome. The number of parse
trees generated for each sentence can be an in-
dication of ambiguity.

• Punctuation (dots, commas) often indicates a
complex sentence structure.

• The most useful decoding features were the in-
verse phrase translation probability (a1), the in-
verse lexical weighting (a2), the phrase proba-
bility (pC) and future cost estimate (c) as well
as statistics over their incremental values along
the search graph.
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feature
set type source target
#19 Baseline LM, %bi q4, punct LM, punct

Checker complex sent, embedded sent pp v plural, nom adj masc
Parsing trees, CC, NP, NN, JJ, comma trees, S, CC, VB, VP, NN, JJ, dot
Decoding avg(a2), a1, a2

#16 Baseline LM, seen, punct, %uni q1, %bi q1,
%bi q4, %tri q4

LM, target occ

Checker score: style, spelling, quality;
verb: agr, form, obj inf, close to subj;
avoid parenth, complex sent,
these those noun, np num agr,
noun adj conf, repeat subj, wrong seq,
wrong word, disamb that, use rel pron,
use article, avoid dangling, repeat modal,
use complement

double punct, to too confusion,
word repeat, det nom sing, pp v plural,
pp v sing, nom adj plural,
comma parenth space, nom adj fem,
nom adj masc, nom adj sing,
det nom fem, del nom sing,
del nom masc, det nom plur

Parsing trees, S, CC, JJ, comma, VB, NP, NN, VP trees, S, CC, JJ, NP, VB, NN, VP, dot, PP
Decoding avg(pC), avg(a1), std(pC), var(c), std(lm),

avg(a2), d2, std(c), a1, a2

Table 5: Indicative feature sets for the most successful quality estimation models. Features explained at section 2.2
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Abstract

In this paper we introduce a number of new
features for quality estimation in machine
translation that were developed for the WMT
2012 quality estimation shared task. We find
that very simple features such as indicators of
certain characters are able to outperform com-
plex features that aim to model the connection
between two languages.

1 Introduction and Task

This paper describes the features and setup used in
our submission to the WMT 2012 quality estimation
(QE) shared task. Given a machine translation (MT)
system and a corpus of its translations which have
been rated by humans, the task is to build a predic-
tor that can accurately estimate the quality of fur-
ther translations. The human ratings range from 1
(incomprehensible) to 5 (perfect translation) and are
given as the mean rating of three different judges.

Formally we are presented with a source sentence
fJ
1 and a translation eI1 and we need to assign a score
S(fJ

1 , e
I
1) ∈ [1, 5] or, in the ranking task, order the

source-translation pairs by expected quality.

2 Resources

The organizers have made available a baseline QE
system that consists of a number of well established
features (Blatz et al., 2004) and serves as a starting
point for development. Furthermore the MT system
that generated the translations is available along with
its training data. Compared to the large training cor-
pus of the MT engine, the QE system is based on a
much smaller training set as detailed in Table 1.

# sentences
europarl-nc 1,714,385
train 1,832
test 422

Table 1: Corpus statistics

3 Features

In the literature (Blatz et al., 2004) a large number
of features have been considered for confidence es-
timation. These can be grouped into four general
categories:

1. Source features make a statement about the
source sentence, assessing the difficulty of
translating a particular sentence with the sys-
tem at hand. Some sentences may be very easy
to translate, e.g. short and common phrases,
while long and complex sentences are still be-
yond the system’s capabilities.

2. Translation features model the connection be-
tween source and target. While this is very
closely related to the general problem of ma-
chine translation, the advantage in confidence
estimation is that we can exercise unconstruc-
tive criticism, i.e. point out errors without of-
fering a better translation. In addition, there is
no need for an efficient search algorithm, thus
allowing for more complex models.

3. Target features judge the translation of the sys-
tem without regarding in which way it was
produced. They often resemble the language
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model used in the noisy channel formulation
(Brown et al., 1993) but can also pinpoint more
specific issues. In practice, the same features as
for the source side can be used; the interpreta-
tion however is different.

4. Engine features are often referred to as glass
box features (Specia et al., 2009). They de-
scribe the process which produced the transla-
tion in question and usually rely on the inner
workings of the MT system. Examples include
model scores and word posterior probabilities
(WPP) (Ueffing et al., 2003).

In this work we focus on the first three categories
and ignore the particular system that produced the
translations. Such features are commonly referred
to as black box features. While some glass box fea-
tures, e.g. word posterior probabilities, have led to
promising results in the past, we chose to explore
new features potentially applicable to translations
from any source, e.g. translations found on the web.

3.1 Binary Indicators

MTranslatability (Bernth and Gdaniec, 2001) gives a
notion of the structural complexity of a sentence that
relates to the quality of the produced translation. In
the literature, several characteristics that may hin-
der proper translation have been identified, among
them poor grammar and misplaced punctuation. As
a very simple approximation we implement binary
indicators that detect clauses by looking for quota-
tion marks, hyphens, commas, etc. Another binary
feature marks numbers and uppercase words.

3.2 Named Entities

Another aspect that might pose a potential problem
to MT is the occurrence of words that were only ob-
served a few times or in very particular contexts, as
it is often the case for Named Entities. We used the
Stanford NER Tagger (Finkel et al., 2005) to detect
words that belong to one of four groups: Person, Lo-
cation, Organization and Misc. Each group is repre-
sented by a binary feature.

Counts are given in Table 2. The test set has sig-
nificantly less support for the Misc category, possi-
bly hinting that this data was taken from a different
source or document. To avoid the danger of biasing

train (src) test (src)

abs rel abs rel

Person 623 34% 141 33%
Location 479 26% 99 23%
Organization 505 28% 110 26%
Misc 428 23% 53 13%

Table 2: Distribution of Named Entities. The counts are
based on a binary features, i.e. multiple occurrences are
treated as a single one.

the classifier we decided not to use the Misc indica-
tor in our experiments.

3.3 Backoff Behavior
In related work (Raybaud et al., 2011) the backoff
behavior of a 3-gram LM was found to be the most
powerful feature for word level QE. We compute for
each word the longest seen n-gram (up to n = 4)
and take the average length as a feature. N-grams at
the beginning of a sentence are extended with <s>
tokens to avoid penalizing short sentences. This is
done on both the source and target side.

3.4 Discriminative Word Lexicon
Following the approach of Mauser et al. (2009) we
train log-linear binary classifiers that directly model
p(e|fJ

1 ) for each word e ∈ eI1:

p(e|fJ
1 ) =

exp
(∑

f∈fJ
1
λe,f

)
1 + exp

(∑
f∈fJ

1
λe,f

) (1)

where λe,f are the trained model weights. Please
note that this introduces a global dependence on the
source sentence so that every source word may influ-
ence the choice of all words in eI1 as opposed to the
local dependencies found in the underlying phrase-
based MT system.

Assuming independence among the words in the
translated sentence we could compute the probabil-
ity of the sentence pair as:

p(eI1|fJ
1 ) =

∏
e∈eI

1

p(e|fJ
1 ) ·

∏
e/∈eI

1

(
1− p(e|fJ

1 )
)
. (2)

In practice the second part of Equation (2) is too
noisy to be useful given the large number of words
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source resumption of the session
target reanudación del perı́odo de sesiones

Table 3: Example entry of filtered training corpus.

that do not appear in the sentence at hand. We there-
fore focus on the observed words and use the geo-
metric mean of their individual probabilities:

xDWL(fJ
1 , e

I
1) =

∏
e∈eI

1

p(e|fJ
1 )

1/I

. (3)

We also compute the probability of the lowest
scoring word as an additional feature:

xDWLmin(f
J
1 , e

I
1) = min

e∈eI
1

p(e|fJ
1 ). (4)

3.5 Neural Networks
We seek to directly predict the words in eI1 using
a neural network. In order to do so, both source
and target sentence are encoded as high dimensional
vectors in which positive entries mark the occur-
rence of words. This representation is commonly
referred to as the vector space model and has been
successfully used for information retrieval.

The dimension of the vector representation is de-
termined by the respective sizes of the source and
target vocabulary. Without further pre-processing
we would need to learn a mapping from a 90k (|Vf |)
to a 170k (|Ve|) dimensional space. Even though our
implementation is specifically tailored to exploit the
sparsity of the data, such high dimensionality makes
training prohibitively expensive.

Two approaches to reduce dimensionality are ex-
plored in this work. First, we simply remove all
words that never occur in the QE data of 2,254 sen-
tences from the corpus leaving 8,365 input and 9,000
output nodes. This reduces the estimated training
time from 11 days to less than 6 hours per iteration1.
Standard stochastic gradient decent on a three-layer
feed-forward network is used.

As shown in Table 3 the filtering can lead to arti-
facts in which case an erroneous mapping is learned.
Moreover the filtering approach does not scale well
as the QE corpus and thereby the vocabulary grows.

1using a 2.66 GHz Intel Xeon and 2 threads

Our second approach to reduce dimensionality
uses the hashing trick (Weinberger et al., 2009): a
hash function is applied to each word and the sen-
tence is represented by the hashed values which
are again transformed using vector space model as
above. The dimensionality reduction is due to the
fact that there are less possible hash values than
words in the vocabulary. To reduce the loss of infor-
mation due to collisions, several different hash func-
tions are used. The resulting vector representation
closely resembles a Bloom Filter (Bloom, 1970).

This approach scales well but introduces two new
parameters: the number of hash functions to use
and the dimensionality of the resulting space. In
our experiments we have used SHA-1 hashes with
three different salts of which we used the first 12
bits, thereby mapping the sentences into a 4096-
dimensional space.

The results presented in Section 4 based on net-
works with 500 hidden nodes which were trained for
at least 10 iterations. The networks are not trained
until convergence due to time constraints; additional
training iterations will likely result in better per-
formance. Experiments using 250 or 1000 hidden
nodes showed very similar results.

After the models are trained we compare the pre-
dicted and the observed target vectors and derive
two features: (i) the euclidean distance, denoted as
NNdist and HNNdist for the filtered and hashed ver-
sions respectively and (ii) the geometric mean of
those dimensions where we expect a positive value,
denoted as NNprop+ and HNNprob+ in Table 5.

3.6 Edit Distance

Using Levenshtein Distance we computed the dis-
tance to the closest entry in the training corpus. The
idea is that a sentence that was already seen almost
identically would be easier to translate. Likewise,
a translation that is very close to an element of the
corpus is likely to be a good translation. This was
performed for both source and target side and on
character as well as on word level giving a total of
four (EDIT) scores. The scores are normalized by
the length of the respective lines.
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source corpus “ ” "

europarl-nc 37 227 25,637
train 0 0 641
test 78 76 100

Table 4: Counts of different quotation mark characters.

4 Experiments

In this work we focus on the prediction of human
assessment of translation quality, i.e. the regression
task of the WMT12 QE shared task. Our submission
for the ranking task is derived from the order implied
by the predicted scores without further re-ranking.

In general our efforts were directed towards fea-
ture engineering and not to the machine learning as-
pects. Therefore, we apply a standard pipeline and
use neural networks for regression. All parameter
tuning is performed using 5-fold cross validation on
the baseline set of 17 features as provided by the or-
ganizers.

4.1 Preprocessing and Analysis
To avoid including our own judgment, no more than
the first ten lines of the test data were visually in-
spected in order to ensure that the training and test
data was preprocessed in the same manner. Further-
more, the distribution of individual characters was
investigated. As shown in Table 4, the test data dif-
fers from the training corpus in treatment of quo-
tation marks. Hence, we replaced all typographi-
cal quotation marks ( “, ” ) with the standard double
quote symbol (").

Prior to computation of the features described in
Subsections 3.3, 3.4 and 3.5 all numbers are re-
placed with a special $number token.

Baseline features are used without further scal-
ing; experiments where all features were scaled to
the [0, 1] range showed a drop in accuracy.

While we implemented the training ourselves for
the features presented in Subsection 3.5, the open
source neural network library FANN2 is used for
all experiments in this section. As the performance
of individual classifiers shows a high variance, pre-
sumably due to local minima, all experiments are
conducted using ensembles on 500 networks trained

2http://leenissen.dk/fann/wp/

Feature (Section) MAE RMSE |PCC|

BACKOFF (3.3) 0.0 0.0
INDICATORS (3.1) +0.5 +0.7
NER (3.2) +0.5 +0.4
DWLmin (3.4) −0.1 −0.1 0.19
DWL (3.4) 0.0 −0.1 0.36
EDIT (3.6) - tgt words 0.0 0.0 0.32
EDIT (3.6) - tgt chars −0.1 0.0 0.27
EDIT (3.6) - src words 0.0 0.0 0.36
EDIT (3.6) - src chars +0.2 +0.1 0.37
NNdist (3.5) 0.0 0.0 0.35
NNprob+ (3.5) +0.1 +0.2 0.35
HNNdist (3.5) 0.0 0.0 0.37
HNNprob+ (3.5) +0.1 +0.1 0.35

Table 5: Analysis of individual features using 5-fold
cross-validation. Positive values indicate improvement
over a baseline of MAE 57.7% and RMSE 72.7%; e.g.
including the DWL feature actually worsens RMSE from
72.7% to 72.8%.
The last column gives the Pearson correlation coefficient
between the feature and the score if the feature is a single
column. This information was not used in feature selec-
tion as it is not based on cross validation.

with random initialization. Their consensus is com-
puted as the average of the individual predictions.

4.2 Feature Evaluation
To evaluate the contribution of individual features,
each feature is tested in conjunction with all base-
line features, using the parameters that were opti-
mized on the baseline set. This slightly favors the
baseline features but we still expect that expressive
additional features lead to a noticeable performance
gain. The results are detailed in Table 5. In addi-
tion to the main evaluation metrics, mean average
error (MAE) and root mean squared error (RMSE),
we report the Pearson correlation coefficient (PCC)
as a measure of predictive strength of a single fea-
ture. Because features are not used alone this does
not directly translate into overall performance. Still,
it can be observed that our proposed features show
good correlation to the target variable. For compari-
son, among the baseline features only 2 of 17 reach
a PCC of over 0.3.

While the results generally remain inconclusive,
some very simple features that indicate difficulties
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for the translation engine show good performance.
In particular binary markers of named entities and
and the indicator features introduced in Subsection
3.1 perform well. Further experiments with the latter
show their contribution to the systems performance
can be attributed to a single feature: the indicator of
the genitive case, i.e. occurrences of ’s or s’.

Testing more combinations of simple and com-
plex features may lead to improvements at the risk
of over-fitting on the cross validation setup. As a
simple remedy several feature sets were created at
random, always combining all baseline features and
several new features presented in this paper. Averag-
ing of the individual results of all sets that performed
better than the baseline resulted in our submission.

4.3 Results and Discussion

Of all the features detailed only a few lead to a con-
siderable improvement. This is also reflected by our
results on the test data which are nearly indistin-
guishable from the performance of the baseline sys-
tem. While this is disappointing, our more complex
features introduce a number of free parameters and
further experimentation will be needed to conclu-
sively assess their usefulness. In particular, features
based on neural networks can be further optimized
and tested in other settings.

Even though the machine learning aspects of this
task are not the focus of this work we are confident
that the proposed setup is sound and can be reused
in further evaluations.

5 Conclusion

We described a number of new features that can be
used to predict human judgment of translation qual-
ity. Results suggest pointing out sentences that are
hard to translate, e.g. because they are too complex,
is a promising approach.

We presented a detailed evaluation of the utility
of individual features and a solid baseline setup for
further experimentation. The system, based on an
ensemble of neural networks, is insensitive to pa-
rameter settings and yields competitive results.

Our new features can potentially be applied for a
multitude of applications and may deliver insights
into the fundamental problems that cause translation
errors, thus aiding the progress in MT research.
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Abstract

This paper describes a study on the contribu-
tion of linguistically-informed features to the
task of quality estimation for machine trans-
lation at sentence level. A standard regression
algorithm is used to build models using a com-
bination of linguistic and non-linguistic fea-
tures extracted from the input text and its ma-
chine translation. Experiments with English-
Spanish translations show that linguistic fea-
tures, although informative on their own, are
not yet able to outperform shallower features
based on statistics from the input text, its
translation and additional corpora. However,
further analysis suggests that linguistic infor-
mation is actually useful but needs to be care-
fully combined with other features in order to
produce better results.

1 Introduction

Estimating the quality of automatic translations is
becoming a subject of increasing interest within the
Machine Translation (MT) community for a num-
ber of reasons, such as helping human translators
post-editing MT, warning users about non-reliable
translations or combining output from multiple MT
systems. Different from most classic approaches for
measuring the progress of an MT system or compar-
ing MT systems, which assess quality by contrast-
ing system output to reference translations such as
BLEU (Papineni et al., 2002), Quality Estimation
(QE) is a more challenging task, aimed at MT sys-
tems in use, and therefore without access to refer-
ence translations.

From the findings of previous work on reference-
dependent MT evaluation, it is clear that metrics
exploiting linguistic information can achieve sig-
nificantly better correlation with human judgments
on quality, particularly at the level of sentences
(Giménez and Màrquez, 2010). Intuitively, this
should also apply for quality estimation metrics:
while evaluation metrics compare linguistic repre-
sentations of the system output and reference trans-
lations (e.g. matching of n-grams of part-of-speech
tags or predicate-argument structures), quality esti-
mation metrics would perform the (more complex)
comparison og linguistic representations of the input
and translation texts. The hypothesis put forward in
this paper is therefore that using linguistic informa-
tion to somehow contrast the input and translation
texts can be beneficial for quality estimation.

We test this hypothesis as part of the WMT-12
shared task on quality estimation. The system sub-
mitted to this task (WLV-SHEF) integrates linguis-
tic information to a strong baseline system using
only shallow statistics from the input and transla-
tion texts, with no explicit information from the MT
system that produced the translations. A variant
also tests the addition of linguistic information to
a larger set of shallow features. The quality esti-
mation problem is modelled as a supervised regres-
sion task using Support Vector Machines (SVM),
which has been shown to achieve good performance
in previous work (Specia, 2011). Linguistic features
are computed using a number of auxiliary resources
such as parsers and monolingual corpora.

The remainder of this paper is organised as fol-
lows. Section 2 gives an overview of previous work
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on quality estimation, Section 3 describes the set of
linguistic features proposed in this paper, along with
general experimental settings, Section 4 presents our
evaluation and Section 5 provides conclusions and a
brief discussion of future work.

2 Related Work

Reference-free MT quality assessment was ini-
tially approached as a Confidence Estimation task,
strongly biased towards exploiting data from a Sta-
tistical MT (SMT) system and the translation pro-
cess to model the confidence of the system in the
produced translation. Blatz et al. (2004) attempted
sentence-level assessment using a set of 91 features
(from the SMT system input and translation texts)
and automatic annotations such as NIST and WER.
Experiments on classification and regression using
different machine learning techniques produced not
very encouraging results. More successful experi-
ments were later run by Quirk (2004) in a similar
setting but using a smaller dataset with human qual-
ity judgments.

Specia et al. (2009a) used Partial Least Squares
regression to jointly address feature selection and
model learning using a similar set of features and
datasets annotated with both automatic and human
scores. Black-box features (i.e. those extracted from
the input and translation texts only) were as discrim-
inative as glass-box features (i.e. those from the MT
system). Later work using black-box features only
focused on finding an appropriate threshold for dis-
criminating ‘good’ from ‘bad’ translations for post-
editing purposes (Specia et al., 2009b) and investi-
gating more objective ways of obtaining human an-
notation, such as post-editing time (Specia, 2011).

Recent approaches have started exploiting lin-
guistic information with promising results. Specia
et al. (2011), for instance, used part-of-speech (PoS)
tagging, chunking, dependency relations and named
entities for English-Arabic quality estimation. Hard-
meier (2011) explored the use of constituency
and dependency trees for English-Swedish/Spanish
quality estimation. Focusing on word-error detec-
tion through the estimation of WER, Xiong et al.
(2010) used PoS tags of neighbouring words and a
link grammar parser to detect words that are not con-
nected to the rest of the sentence. Work by Bach et

al. (2011) focused on learning patterns of linguis-
tic information (such as sequences of part-of-speech
tags) to predict sub-sentence errors. Finally, Pighin
and Màrquez (2011) modelled the expected projec-
tions of semantic roles from the input text into the
translations.

3 Method

Our work focuses on the use of a wide range of
linguistic information for representing different as-
pects of translation quality to complement shallow,
system-independent features that have been proved
to perform well in previous work.

3.1 Linguistic features

Non-linguistic features, such as sentence length or
n-gram statistics, are limited in their scope since
they can only account for very shallow aspects of
a translation. They convey no notion of meaning,
grammar or content and as a result they could be
very biased towards describing only superficial as-
pects. For this reason, we introduce linguistic fea-
tures that account for richer aspects of translations
and are in closer relation to the way humans make
their judgments. All of the proposed features, lin-
guistic or not, are MT-system independent.

The proposal of linguistic features was guided by
three main aspects of translation: fidelity, fluency
and coherence. The number of features that were
eventually extracted was inevitably limited by the
availability of suitable tools for the language pair
at hand, mainly for Spanish. As a result, many of
the features that were initially devised could not be
implemented (e.g. grammar checking). A total of
70 linguistic features were extracted, as summarised
below, where S and T indicate whether they refer to
the source/input or translation texts respectively:

• Sentence 3-gram log-probability and perplexity
using a language model (LM) of PoS tags [T]

• Number, percentage and ratio of content words
(N, V, ADJ) and function words (DET, PRON,
PREP, ADV) [S & T]

• Width and depth of constituency and depen-
dency trees for the input and translation texts
and their differences [S & T]
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• Percentage of nouns, verbs and pronouns in the
sentence and their ratios between [S & T]

• Number and difference in deictic elements in
[S & T]

• Number and difference in specific types of
named entities (person, organisation, location,
other) and the total of named entities [S & T]

• Number and difference in noun, verb and
prepositional phrases [S & T]

• Number of “dangling” (i.e. unlinked) deter-
miners [T]

• Number of explicit (pronominal, non-
pronominal) and implicit (zero pronoun)
subjects [T]

• Number of split contractions in Spanish (i.e.
al=a el, del=de el) [T]

• Number and percentage of subject-verb dis-
agreement cases [T]

• Number of unknown words estimated using a
spell checker [T]

While many of these features attempt to check
for general errors (e.g. subject verb disagreement),
others are targeted at usual MT errors (e.g. “dan-
gling” determiners, which are commonly introduced
by SMT systems and are not linked to any words) or
target language peculiarities (e.g. Spanish contrac-
tions, zero subjects). In particular, studying deeper
aspects such as different types of subjects can pro-
vide a good indication of how natural a translation
is in Spanish, which is a pro-drop language. Such a
distinction is expected to spot unnatural expressions,
such as those caused by unnecessary pronoun repe-
tition.1

For subject classification, we identified all VPs
and categorised them according to their preceding

1E.g. (1) The girl beside me was smiling rather brightly.
She thought it was an honor that the exchange student should
be seated next to her. → *La niña a mi lado estaba sonriente
bastante bien. Ella pensó que era un honor que el intercambio
de estudiantes se encuentra próximo a ella. (superfluous)
(2) She is thought to have killed herself through suffocation us-
ing a plastic bag.→ *Ella se cree que han matado a ella medi-
ante asfixia utilizando una bolsa de plástico. (confusing)

NPs. Thus, explicit subjects were classified as
pronominal (PRON+VP) or non-pronominal (NON-
PRON-NP+VP) while implicit subjects only in-
cluded elided (zero) subjects (i.e. a VP not preceded
by an NP).

Subject-verb agreement cases were estimated by
rules analysing person, number and gender matches
in explicit subject cases, considering also inter-
nal NP agreement between determiners, nouns, ad-
jectives and pronouns.2 Deictics, common coher-
ence indicators (Halliday and Hasan, 1976), were
checked against manually compiled lists.3 Unknown
words were estimated using the JMySpell4 spell
checker with the publicly available Spanish (es ES)
OpenOffice5 dictionary. In order to avoid incorrect
estimates, all named entities were filtered out before
spell-checking.

TreeTagger (Schmid, 1995) was used for PoS tag-
ging of English texts, while Freeling (Padró et al.,
2010) was used for PoS tagging in Spanish and
for constituency parsing, dependency parsing and
named entity recognition in both languages.

In order to compute n-gram statistics over PoS
tags, two language models of general and more
detailed morphosyntactic PoS were built using the
SRILM toolkit (Stolcke, 2002) on the PoS-tagged
AnCora corpus (Taulé et al., 2008).

3.2 Shallow features
In a variant of our system, the linguistic features
were complemented by a set of 77 non-linguistic
features:

• Number and proportion of unique tokens and
numbers in the sentence [S & T]

• Sentence length ratios [S & T]

• Number of non-alphabetical tokens and their
ratios [S & T]

• Sentence 3-gram perplexity [S & T]
2E.g. *Algunas de estas personas se convertirá en héroes.

(number mismatch), *Barricadas fueron creados en la calle
Cortlandt. (gender mismatch), *Buena mentirosos están cuali-
ficados en lectura. (internal NP gender and number mismatch).

3These included common deictic terms compiled from vari-
ous sources, such as hoy, allı́, tú (Spanish) or that, now or there
(English).

4http://kenai.com/projects/jmyspell
5http://www.openoffice.org/
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• Type/Token Ratio variations: corrected TTR
(Carroll, 1964), Log TTR (Herdan, 1960),
Guiraud Index (Guiraud, 1954), Uber Index
(Dugast, 1980) and Jarvis TTR (Jarvis, 2002)
[S & T]

• Average token frequency from a monolingual
corpus [S]

• Mismatches in opening and closing brackets
and quotation marks [S & T]

• Differences in brackets, quotation marks, punc-
tuation marks and numbers [S & T]

• Average number of occurrences of all words
within the sentence [T]

• Alignment score (IBM-4) and percentage of
different types of word alignments by GIZA++
(from the SMT training alignment model pro-
vided)

Our basis for comparison is the set of 17 baseline
features, which are shallow MT system-independent
features provided by the WMT-12 QE shared task
organizers.

3.3 Building QE models

We created two main feature sets from the features
listed above for the WMT-12 QE shared task:

WLV-SHEF FS: all features, that is, baseline fea-
tures, shallow features (Section 3.2) and lin-
guistic features (Section 3.1).

WLV-SHEF BL: baseline features and linguistic
features (Section 3.1).

Additionally, we experimented with other variants
of these feature sets using 3-fold cross validation on
the training set, such as only linguistic features and
only non-linguistic features, but these yielded poorer
results and are not reported in this paper.

We address the QE problem as a regression task
by building SVM models with an epsilon regressor
and a radial basis function kernel using the LibSVM
toolkit (Chang and Lin, 2011). Values for the cost,
epsilon and gamma parameters were optimized us-
ing 5-fold cross validation on the training set.

MAE ↓ RMSE ↓ Pearson ↑
Baseline 0.69 0.82 0.562
WLV-SHEF FS 0.69 0.85 0.514
WLV-SHEF BL 0.72 0.86 0.490

Table 1: Scoring performance

The training sets distributed for the shared task
comprised 1, 832 English sentences taken from news
texts and their Spanish translations produced by an
SMT system, Moses (Koehn et al., 2007), which
had been trained on a concatenation of Europarl and
news-commentaries data (from WMT-10). Transla-
tions were accompanied by a quality score derived
from an average of three human judgments of post-
editing effort using a 1-5 scale.

The models built for each of these two feature
sets were evaluated using the official test set of 422
sentences produced in the same fashion as the train-
ing set. Two sub-tasks were considered: (i) scor-
ing translations using the 1-5 quality scores, and
(ii) ranking translations from best to worse. While
quality scores were directly predicted by our mod-
els, sentence rankings were defined by ordering the
translations according to their predicted scores in de-
scending order, with no additional criteria to resolve
ties other than the natural ordering given by the sort-
ing algorithm.

4 Results and Evaluation

Table 1 shows the official results of our systems in
the scoring task in terms of Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE), the
metrics used in the shared task, as well as in terms
of Pearson correlation.

Results reveal that our models fall slightly be-
low the baseline, although this drop is not statisti-
cally significant in any of the cases (paired t-tests for
Baseline vs WLV-SHEF FS and Baseline vs WLV-
SHEF BL yield p > 0.05). This may suggest that
for this particular dataset the baseline features al-
ready cover all relevant aspects of quality on their
own, or simply that the representation of the lin-
guistic features is not appropriate for the task. The
quality of the resources used to extract the linguistic
features may also have been an issue. However, a
feature selection method may find a different com-
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Figure 1: Comparison of true versus predicted scores

bination of features that outperforms the baseline, as
is later described in this section.

A correlation analysis between our predicted
scores and the gold standard (Figure 1) shows some
dispersion, especially for the WLV-SHEF FS set,
with lower Pearson coefficients when compared to
the baseline. The fluctuation of predicted values for
a single score is also very noticeable, spanning more
than one score band in some cases. However, if we
consider the RMSE achieved by our models, we find
that, on average, predictions deviate less than 0.9 ab-
solute points.

A closer look at the score distribution (Figure 2)
reveals our models had some difficulty predicting
scores in the 1-2 range, possibly affected by the
lower proportion of these cases in the training data.
In addition, it is interesting to see that the only sen-
tence with a true score of 1 is predicted as a very
good translation (with a score greater than 3.5). The
reason for this is that the translation has isolated
grammatical segments that our features might regard
as good but it is actually not faithful to the original.6

Although the cause for this behaviour can be traced
to inaccurate tokenisation, this reveals that our fea-
tures assess fidelity only superficially and deeper
semantically-aware indicators should be explored.

Results for the ranking task also fall below the
baseline as shown in Table 2, according to the two
official metrics: DeltaAvg and Spearman rank cor-
relation coefficient.

4.1 Further analysis

At first glance, the performance of our models seems
to indicate that the integration of linguistic infor-

6I won’t give it away. → *He ganado ’ t darle.

Figure 2: Scatter plot of true versus predicted scores

DeltaAvg ↑ Spearman ↑
Baseline 0.55 0.58
WLV-SHEF FS 0.51 0.52
WLV-SHEF BL 0.50 0.49

Table 2: Ranking performance

mation is not beneficial, since both linguistically-
informed feature sets lead to poorer performance as
compared to the baseline feature set, which contains
only shallow, language-independent features. How-
ever, there could be many factors affecting perfor-
mance so further analysis was necessary to assess
their contribution.

Our first analysis focuses on the performance of
individual features. To this end, we built and tested
models using only one feature at a time and repeated
the process afterwards using the full WLV-SHEF FS
set without one feature at a time. In Table 3 we re-
port the 5-best and 5-worst performing features. Al-
though purely statistical features lead the rank, lin-
guistic features also appear among the top five (as
indicated by L©), showing that they can be as good
as other shallow features. It is interesting to note that
a few features appear as the top performing in both
columns (e.g. source bigrams in 4th frequency quar-
tile and target LM probability). These constitute the
truly top performing features.

Our second analysis studies the optimal subset of
features that would yield the best performance on the
test set, from which we could draw further conclu-
sions. Since this analysis requires training and test-
ing models using all the possible partitions of the
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Rank One feature All but one feature
1 Source bigrams in 4th freq. quartile Source average token length
2 Source LM probability Source bigrams in 4th freq. quartile
3 Target LM probability Unknown words in target L©
4 Number of source bigrams Target LM probability
5 Target PoS LM probability L© Difference in constituency tree width L©

143 Percentage of target S-V agreement L© Difference in number of periods
144 Source trigrams in 2nd freq. quartile Number of source bigrams
145 Target location entities L© Target person entities L©
146 Source trigrams in 3rd freq. quartile Target Corrected TTR
147 Source average translations by inv. freq. Source trigrams in 3rd freq. quartile

Table 3: List of best and worst performing features

full feature set,7 it is infeasible in practice so we
adopted the Sequential Forward Selection method
instead (Alpaydin, 2010). Using this method, we
start from an empty set and add one feature at a time,
keeping in the set only the features that decrease the
error until no further improvement is possible. This
strategy decreases the number of iterations substan-
tially8 but it does not guarantee finding a global op-
timum. Still, a local optimum was acceptable for
our purpose. The optimal feature set found by our
selection algorithm is shown in Table 4.

Error rates are lower when using this optimal fea-
ture set (MAE=0.62 and RMSE=0.76) but the differ-
ence is only statistically significant when compared
to the baseline with 93% confidence level (paired t-
test with p <= 0.07). However, this analysis allows
us to see how many linguistic features get selected
for the optimal feature set.

Out of the total 37 features in the optimal set,
15 are linguistic (40.5%), showing that they are in
fact informative when strategically combined with
other shallow indicators. This also reveals that fea-
ture selection is a key issue for building a quality
estimation system that combines linguistic and shal-
low information. Using a sequential forward selec-
tion method, the optimal set is composed of both lin-
guistic and shallow features, reinforcing the idea that
they account for different aspects of quality and are
not interchangeable but actually complementary.

7For 147 features: 2147

8For 147 features, worst case is 147 × (147 + 1)/2 =
10, 878.

5 Conclusions and Future Work

We have explored the use of linguistic informa-
tion for quality estimation of machine translations.
Our approach was not able to outperform a baseline
with only shallow features. However, further feature
analysis revealed that linguistic features are comple-
mentary to shallow features and must be strategi-
cally combined in order to be exploited efficiently.

The availability of linguistic tools for processing
Spanish is limited, and thus the linguistic features
used here only account for a few of the many aspects
involved in translation quality. In addition, comput-
ing linguistic information is a challenging process
for a number of reasons, mainly the fact that trans-
lations are often ungrammatical, and thus linguistic
processors may return inaccurate results, leading to
further errors.

In future work we plan to integrate more global
linguistic features such as grammar checkers, along
with deeper features such as semantic roles, hybrid
n-grams, etc. In addition, we have noticed that rep-
resenting information for input and translation texts
independently seems more appropriate than con-
trasting input and translation information within the
same feature. This representation issue is somehow
counter-intuitive and is yet to be investigated.
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Iter. Feature
1 Source bigrams in 4th frequency quartile
2 Target PoS LM probability L©
3 Source average token length
4 Guiraud Index of T
5 Unknown words in T L©
6 Difference in number of VPs between S and T L©
7 Diff. in constituency trees width of S and T L©
8 Non-alphabetical tokens in T
9 Ratio of length between S and T

10 Source trigrams in 4th frequency quartile
11 Number of content words in S L©
12 Source 3-gram perplexity
13 Ratio of PRON percentages in S and T L©
14 Number of NPs in T L©
15 Average number of source token translations with

p > 0.05 weighted by frequency
16 Source 3-gram LM probability
17 Target simple PoS LM probability L©
18 Difference in dependency trees depth of S and T L©
19 Number of NPs in S L©
20 Number of tokens in S
21 Number of content words in T L©
22 Source unigrams in 3rd frequency quartile
23 Source unigrams in 1st frequency quartile
24 Source unigrams in 2nd frequency quartile
25 Average number of source token translations with

p > 0.01 weighted by frequency
26 Ratio of non-alpha tokens in S and T
27 Difference of question marks between S and T nor-

malised by T length
28 Percentage of pron subjects in T L©
29 Percentage of verbs in T L©
30 Constituency trees width for S L©
31 Absolute diff. of question marks between S and T
32 Average num. of source token trans. with p > 0.2
33 Diff. of person entities between S and T L©
34 Diff. of periods between S and T norm. by T length
35 Diff. of semicolons between S and T normalised by

T length
36 Source 3-gram perplexity without end-of-sentence

markers
37 Absolute difference of periods between S and T

Table 4: An optimal set of features for the test set. The
number of iteration indicates the order in which features
were selected, giving a rough ranking of features by their
performance.
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Abstract

This is a description of the submissions made
by the pattern recognition and human lan-
guage technology group (PRHLT) of the Uni-
versitat Politècnica de València to the qual-
ity estimation task of the seventh workshop
on statistical machine translation (WMT12).
We focus on two different issues: how to ef-
fectively combine subsequence-level features
into sentence-level features, and how to select
the most adequate subset of features. Results
showed that an adequate selection of a subset
of highly discriminative features can improve
efficiency and performance of the quality esti-
mation system.

1 Introduction

Quality estimation (QE) (Ueffing et al., 2003; Blatz
et al., 2004; Sanchis et al., 2007; Specia and Farzin-
dar, 2010) is a topic of increasing interest in machine
translation (MT). It aims at providing a quality indi-
cator for unseen translations at various granularity
levels. Different from MT evaluation, QE do not
rely on reference translations and is generally ad-
dressed using machine learning techniques to pre-
dict quality scores.

Our main focus in this article is in the combi-
nation of subsequence features into sentence fea-
tures, and in the selection of a subset of relevant fea-
tures to improve performance and efficiency. Sec-
tion 2 describes the features and the learning algo-
rithm used in the experiments. Section 3 describe
two different approaches implemented to select the
best-performing subset of features. Section 4 dis-
plays the results of the experimentation intended to

determine the optimal setup to train our final sub-
mission. Finally, section 5 summarizes the submis-
sion and discusses the results.

2 Features and Learning Algorithm

2.1 Available Sources of Information

The WMT12 QE task is carried out on English–
Spanish news texts produced by a phrase-based MT
system. As training data we are given 1832 trans-
lations manually annotated for quality in terms of
post-editing effort (scores in the range [1, 5]), to-
gether with their source sentences, decoding in-
formation, reference translations, and post-edited
translations. Additional training data can be used,
as deemed appropriate. Any of these information
sources can be used to extract the features, however,
test data consists only on source sentence, transla-
tion, and search information. Thus, features were
extracted from the sources of information available
in test data only. Additionally, we compute some
extra features from the WMT12 translation task
(WMT12TT) training data.

2.2 Features

We extracted a total of 475 features classified into
sentence-level and subsequence-level features. We
considered subsequences of sizes one to four.

Sentence-level features

• Source and target sentence lengths, and ratio.

• Proportion of dead nodes in the search graph.

• Number of source phrases.

• Number and average size of the translation op-
tions under consideration during search.
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• Source and target sentence probability and per-
plexities computed by language models of or-
der one to five.

• Target sentence probability, probability divided
by sentence length, and perplexities computed
by language models of order one to five. Lan-
guage models were trained on the 1000-best
translations.

• 1000-best average sentence length, 1000-best
vocabulary divided by average length, and
1000-best vocabulary divided by source sen-
tence length.

• Percentage of subsequences (sizes one to four)
previously unseen in the source training data.

Subsequence-level features

• Frequency of source subsequences in the
WMT12TT data.

• IBM Model-1 confidence score for each word
in the translation (Ueffing et al., 2003).

• Subsequence confidence scores computed on
1000-best translations as described in (Ueffing
et al., 2003; Sanchis et al., 2007). We use
four subsequence correctness criteria (Levens-
thein position, target position, average position,
and any position) and three weighting schemes
(translation probability, translation rank, and
relative frequencies).

• Subsequence confidence scores computed by a
smoothed naı̈ve bayes classifier (Sanchis et al.,
2007). We computed a confidence score for
each correctness criteria (Levensthein, target,
average and any). The smoothed classifier was
tuned to improve classification error rate on a
separate development set (union of news-test
sets for years 2008 to 2011).

2.3 Combination of Subsequence-level
Features

Since WMT12 focuses on sentence-level QE,
subsequence-level features must be combined to ob-
tain sentence-level indicators. We used two different
methods to combine subsequence features:

• Average value of subsequence-level scores, as
done in (Blatz et al., 2004).

• Percentage of subsequence scores belonging to
each frequency quartile1, as done in (Specia
and Farzindar, 2010).

Thus, each subsequence-level feature was repre-
sented as five sentence-level features: one average
score plus four quartile percentages.

Both methods aim at summarizing the scores of
the subsequences in a translations. The average is
a rough indicator that measures the “middle” value
of the scores while the percentages of subsequences
belonging to each quartile are more fine-grained in-
dicators that try to capture how spread out the sub-
sequence scores are.

2.4 Learning Algorithm
We trained our quality estimation model using an
implementation of support vector machines (Vap-
nik, 1995) for regression. Specifically, we used
SVMlight (Joachims, 2002) for regression with a ra-
dial basis function kernel with the parameters C, w
and γ optimized. The optimization was performed
by cross-validation using ten random subsamples of
the training set (1648 samples for training and 184
samples for validation).

3 Feature Selection

One of the principal challenges that we had to con-
front is the small size of the training data (only
1832 samples) in comparison with the large number
of features, 475. This inadequate amount of train-
ing data did not allow for an acceptable training of
the regression model which yielded instable systems
with poor performance. We also verified that many
features were highly correlated and were even re-
dundant sometimes. Since the amount of training
data is fixed, we tried to improve the robustness of
our regression systems by selecting a subset of rele-
vant features.

We implemented two different feature selection
techniques: one based on partial component anal-
ysis (PCA), and a greedy selection according to the
individual performance of each feature.

3.1 PCA Selection (PS)
Principal component analysis (Pearson, 1901)
(PCA) is a mathematical procedure that uses an or-

1Quartile values were computed on the WMT12TT data.
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Figure 1: Delta average score (a) (higher is better) and mean average error (b) (lower is better) as a function of the
number of features. Cross-validation results for PCA selection (PS), and greedy selection (GS) methods.

thogonal transformation to convert a set of observa-
tions of possibly correlated variables into a set of
values of linearly uncorrelated variables called prin-
cipal components. This transformation is defined in
such a way that the first principal component has
the largest possible variance (that is, accounts for as
much of the variability in the data as possible), and
each succeeding component in turn has the highest
variance possible under the constraint that it be un-
correlated with the preceding components. Strictly
speaking, PCA does not perform a feature selection
because the principal components are linear combi-
nations of the individual features.

PCA generates sets of features (the principal com-
ponents) with almost no correlation. However, it ig-
nores the quality scores to be predicted. Since we
want to obtain the best-performing subset of fea-
tures, there is a mismatch between the selection cri-
terion of PCA and the criterion we are interested in.
In other words, although the features generated by
PCA contain almost no redundancy, they do not nec-
essarily have to constitute the best-performing sub-
set of features.

3.2 Greedy Performance-driven Selection (GS)
We also implemented a greedy feature selection
method which iteratively creates subsets of increas-
ing size with the best-scoring individual features.
The score of each feature is given by the perfor-
mance of a system trained solely on that feature. At
a given iteration, we select the K best scoring fea-

tures and train a regression system with them.
Since we select the features incrementally accord-

ing to their individual performance, we expect to ob-
tain the subset of features that yield the best perfor-
mance. However, we do not take into account the
correlations that may exist between the different fea-
tures, thus, the final subset is almost sure to contain
a large number of redundant features.

4 Experiments

4.1 Assessment Measures
The organizers propose two variations of the task
that will be evaluated separately:

Ranking: Participants are required to submit a
ranking of translations. This ranking will used
to split the data into n quantiles. The evalua-
tion will be performed in terms of delta average
score, the average difference over n between
the scores of the top quantiles and the overall
score of the corpus. The Spearman correlation
will be used as tie-breaking metric.

Scoring: Participants are required to assign a score
in the range [1, 5] for each translation. The
evaluation will be performed in terms of mean
average error (MAE). Root mean squared error
(RMSE) will be used as tie-breaking metric.

4.2 Pre-Submission Results
We now describe a number of experiments whose
goal is to determine the optimal training setup.
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Specifically, we wanted to determine which selec-
tion method to use (PCA or greedy) and which fea-
tures yield a better system. As a preliminary step,
we extracted all the features described in section 2.
The complete training data consisted on 1832 sam-
ples each one with 475 features.

We trained systems using feature sets of increas-
ing size as given by PCA selection (PS) or greedy
selection (GS). The parameters of each system were
tuned to optimize each of the evaluation measures
under consideration. Performance was measured as
the average of a ten-fold cross-validation experiment
on the training data.

Figure 1 shows the results obtained for the ex-
periments that optimized delta average, and MAE
(result optimizing Spearman and RMSE were quite
similar). We also display the performance of a sys-
tem trained on the baseline features. We observed
that both selection methods yielded a better perfor-
mance than the baseline system. PS allowed for a
quick improvement in performance as more features
are selected, reaching its best results when select-
ing approximately 80 features. After that, perfor-
mance rapidly deteriorate. Regarding GS, its im-
provements in performance were slower in com-
parison with PS. However, GS finally reached the
best scores of the experimentation when selecting
∼ 225 features. Specifically, the best performance
was reached using the top 222 features for delta av-
erage, and using the top 254 features for MAE.

According to these results, our submissions were
trained on the best subsets of features as given by
the GS method. 222 features were selected accord-
ing to their delta average score for the ranking task
variation, and 254 according to their MAE value for
the scoring task variation. Final submissions were
trained on the complete training set.

Most of the selected features are sentence-level
features calculated from subsequence-based scores.
For instance, among the 222 features of the rank-
ing variation of the task, 174 were computed from
subsequence scores. Among these 174 features,
129 were calculated from confidence scores com-
puted on 1000-best translations, 29 from confidence
scores computed by a smoothed naı̈ve bayes classi-
fier, 11 from the frequencies of the subsequences in
the WMT12TT data, and 5 from IBM Model-1 word
confidence scores.

Participant ID Delta average⇑ MAE⇓
SDL Language Weaver 0.63 0.61

Uppsala U. 0.58 0.64
LORIA Institute – 0.68

Trinity College Dublin 0.56 0.68
Baseline 0.55 0.69
PRHLT 0.55 0.70

U. Edinburgh 0.54 0.68
Shanghai Jiao Tong U. 0.53 0.69

U. Wolverhampton/Sheffield 0.51 0.69
DFKI 0.46 0.82

Dublin City U. 0.44 0.75
U. Politècnica Catalunya 0.22 0.84

Table 1: Best official evaluation results on each task of
the different participating teams. Results for our submis-
sions are displayed in bold. Baseline results in italics.

-10

-5

 0

 5

 10

 15

 20

 25

 30

 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15

M
e
a
n
 v

a
lu

e

Feature number

Train data Test data

Figure 2: Average value (± std. deviation) of the first
15 features used in our final submissions. Feature values
follow a similar distribution in the training and test data.

4.3 Official Evaluation Results

After establishing the optimal training setup, we
now show the official evaluation results for our sub-
missions. Table 1 shows the performance of the var-
ious participants in the ranking (delta average) and
scoring (MAE) tasks. Surprisingly our submissions
yielded a slightly worse result than the baseline fea-
tures. However, given the large improvements over
the baseline system obtained in the pre-submission
experiments, we expected to obtain similar improve-
ments over Baseline in test.

We considered two possible explanations for this
counterintuitive result. First, a possibly divergence
between the underlying distributions of the training
and test data. To investigate this possibility, we stud-
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ied the distributions of feature values in the training
and test data. Figure 2 displays mean±std. deviation
for the first 15 features used in our final submissions
(similar results are obtained for all the 222 features).
We can observe that feature values in training and
test data follow a similar distribution, although test
values tend to be slightly lower than training values.

A second plausible explanation is the small
amount of training data (only 1832 samples). Lim-
ited data favors simpler systems that can train its few
free parameters more accurately. This is the case of
the Baseline system that was trained using only 11
features, in comparison with the 222 features used
in our submissions. Since the training and test data
seem to have been generated following the same un-
derlying distribution, we hypothesize that the lim-
ited training data is the main explanation for the poor
test performance of our submissions.

5 Summary and Discussion

We have presented the submissions of the PRHLT
group to the WMT12 QE task. The estimation sys-
tems were based on support vector machines for re-
gression. Several features were used to train the
systems in order to predict human-annotated post-
editing effort scores. Our main focus in this article
have been the combination of subsequence features
into sentence features, and the selection of a subset
of relevant features to improve the submitted sys-
tems performance.

Results of the experiments showed that PCA
selection was able to obtain better performance
when selecting a small number of features while
GS yielded the best-performing systems but us-
ing much more features. Among the selected fea-
tures, the larger percentage of them were calculated
from subsequence features. These facts indicate
that the combination of subsequence features yields
sentence-level features with a strong individual per-
formance. However, the high number of features se-
lected by GS indicate that these top-scoring features
are highly correlated.

Official evaluation results differ from what we
expected; baseline system performs better than
our submissions while pre-submission experiments
yielded just opposite results. After discarding a pos-
sibly discrepancy between training and test data dis-

tributions, and given that smaller models such as the
baseline system can be trained more accurately with
limited data, we concluded that the limited training
data is the main explanation for the disparity be-
tween our training and test results.

A future line of research could be the study of
methods that allow to select sets of uncorrelated fea-
tures, that unlike PCA, also take into account the in-
dividual performance of each feature. Specifically,
we plan to study a features selection technique based
on partial least squares regression.
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Abstract

This paper describes Uppsala University’s
submissions to the Quality Estimation (QE)
shared task at WMT 2012. We present a QE
system based on Support Vector Machine re-
gression, using a number of explicitly defined
features extracted from the Machine Transla-
tion input, output and models in combination
with tree kernels over constituency and de-
pendency parse trees for the input and output
sentences. We confirm earlier results suggest-
ing that tree kernels can be a useful tool for
QE system construction especially in the early
stages of system design.

1 Introduction

The goal of the WMT 2012 Quality Estimation
(QE) shared task (Callison-Burch et al., 2012) was
to create automatic systems to judge the quality
of the translations produced by a Statistical Ma-
chine Translation (SMT) system given the input
text, the proposed translations and information about
the models used by the SMT system. The shared
task organisers provided a training set of 1832 sen-
tences drawn from earlier WMT Machine Transla-
tion test sets, translated from English to Spanish
with a phrase-based SMT system, along with the
models used and diagnostic output produced by the
SMT system as well as manual translation quality
annotations on a 1–5 scale for each sentence. Ad-
ditionally, a set of 17 baseline features was made
available to the participants. Systems were evalu-
ated on a test set of 422 sentences annotated in the
same way.

Uppsala University submitted two systems to this
shared task. Our systems were fairly successful and
achieved results that were outperformed by only one
competing group. They improve over the baseline
performance in two ways, building on and extend-
ing earlier work by Hardmeier (2011), on which
the system description in the following sections is
partly based: On the one hand, we enhance the set
of 17 baseline features provided by the organisers
with another 82 explicitly defined features. On the
other hand, we use syntactic tree kernels to extract
implicit features from constituency and dependency
parse trees over the input sentences and the Machine
Translation (MT) output. The experimental results
confirm the findings of our earlier work, showing
tree kernels to be a valuable tool for rapid prototyp-
ing of QE systems.

2 Features

Our QE systems used two types of features: On
the one hand, we used a set of explicit features that
were extracted from the data before running the Ma-
chine Learning (ML) component. On the other hand,
syntactic parse trees of the MT input and output
sentences provided implicit features that were com-
puted directly by the ML component using tree ker-
nels.

2.1 Explicit features

Both of the QE systems we submitted to the shared
task used the complete set of 17 baseline features
provided by the workshop organisers. Additionally,
the UU best system also contained all the features
presented by Hardmeier (2011) with the exception
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of a few features specific to the film subtitle genre
and inapplicable to the text type of the shared task,
as well as a small number of features not included
in that work. Many of these features were modelled
on QE features described by Specia et al. (2009). In
particular, the following features were included in
addition to the baseline feature set:

• number of words, length ratio (4 features)

• source and target type-token ratios (2 features)

• number of tokens matching particular patterns
(3 features each):

– numbers
– opening and closing parentheses
– strong punctuation signs
– weak punctuation signs
– ellipsis signs
– hyphens
– single and double quotes
– apostrophe-s tokens
– short alphabetic tokens (≤ 3 letters)
– long alphabetic tokens (≥ 4 letters)

• source and target language model (LM) and
log-LM scores (4 features)

• LM and log-LM scores normalised by sentence
length (4 features)

• number and percentage of out-of-vocabulary
words (2 features)

• percentage of source 1-, 2-, 3- and 4-grams oc-
curring in the source part of the training corpus
(4 features)

• percentage of source 1-, 2-, 3- and 4-grams in
each frequency quartile of the training corpus
(16 features)

• a binary feature indicating that the output con-
tains more than three times as many alphabetic
tokens as the input (1 feature)

• percentage of unaligned words and words with
1 : 1, 1 : n, n : 1 and m : n alignments (10 fea-
tures)

• average number of translations per word, un-
weighted and weighted by word frequency and
reciprocal word frequency (3 features)

• translation model entropy for the input words,
cumulatively per sentence and averaged per
word, computed based on the SMT lexical
weight model (2 features).

Whenever applicable, features were computed for
both the source and the target language, and addi-
tional features were added to represent the squared
difference of the source and target language feature
values. All feature values were scaled so that their
values ranged between 0 and 1 over the training set.

The total number of features of the UU best sys-
tem amounted to 99. It should be noted, however,
that there is considerable redundancy in the feature
set and that the 82 features of Hardmeier (2011)
overlap with the 17 baseline features to some extent.
We did not make any attempt to reduce feature over-
lap and relied on the learning algorithm for feature
selection.

2.2 Parse trees

Both the English input text and the Spanish Machine
Translations were annotated with syntactic parse
trees from which to derive implicit features. In En-
glish, we were able to produce both constituency and
dependency parses. In Spanish, we were limited to
dependency parses because of the better availability
of parsing models. English constituency parses were
produced with the Stanford parser (Klein and Man-
ning, 2003) using the model bundled with the parser.
For dependency parsing, we used MaltParser (Nivre
et al., 2006). POS tagging was done with HunPOS
(Halácsy et al., 2007) for English and SVMTool
(Giménez and Márquez, 2004) for Spanish, with the
models provided by the OPUS project (Tiedemann,
2009). As in previous work (Hardmeier, 2011), we
treated the parser as a black box and made no at-
tempt to handle the fact that parsing accuracy may
be decreased over malformed SMT output.

To be used with tree kernels, the output of the de-
pendency parser had to be transformed into a sin-
gle tree structure with a unique label per node and
unlabelled edges, similar to a constituency parse
tree. We followed Johansson and Moschitti (2010)
in using a tree representation which encodes part-
of-speech tags, dependency relations and words as
sequences of child nodes (see fig. 1).
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Figure 1: Representation of the dependency tree fragment
for the words Nicole ’s dad

A tree and some of its Subset Tree Fragments
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Fig. 1. A syntactic parse tree with its sub-
trees (STs).
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Fig. 2. A tree with some of its subset trees
(SSTs).
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Fig. 4. A dependency tree of a question.

constraint over the SSTs, we obtain a more general form of substructures that we
call partial trees (PTs). These can be generated by the application of partial
production rules of the grammar, consequently [VP [V]] and [VP [NP]] are
valid PTs. Figure 3 shows that the number of PTs derived from the same tree as
before is still higher (i.e. 30 PTs). These different substructure numbers provide
an intuitive quantification of the different information levels among the tree-
based representations.

3 Fast Tree Kernel Functions

The main idea of tree kernels is to compute the number of common substructures
between two trees T1 and T2 without explicitly considering the whole fragment
space. We have designed a general function to compute the ST, SST and PT
kernels. Our fast evaluation of the PT kernel is inspired by the efficient evaluation
of non-continuous subsequences (described in [13]). To increase the computation
speed of the above tree kernels, we also apply the pre-selection of node pairs
which have non-null kernel.

3.1 The Partial Tree Kernel

The evaluation of the common PTs rooted in nodes n1 and n2 requires the
selection of the shared child subsets of the two nodes, e.g. [S [DT JJ N]] and
[S [DT N N]] have [S [N]] (2 times) and [S [DT N]] in common. As the order
of the children is important, we can use subsequence kernels for their generation.
More in detail, let F = {f1, f2, .., f|F|} be a tree fragment space of type PTs and
let the indicator function Ii(n) be equal to 1 if the target fi is rooted at node n
and 0 otherwise, we define the PT kernel as:

A tree and some of its Partial Tree Fragments

Figure 2: Tree fragments extracted by the Subset Tree
Kernel and by the Partial Tree Kernel. Illustrations by
Moschitti (2006a).

3 Machine Learning component

3.1 Overview

The QE shared task asked both for an estimate of
a 1–5 quality score for each segment in the test set
and for a ranking of the sentences according to qual-
ity. We decided to treat score estimation as primary
and address the task as a regression problem. For
the ranking task, we simply submitted the ranking
induced by the regression output, breaking ties ran-
domly.

Our system was based on SVM regression as
implemented by the SVMlight software (Joachims,
1999) with tree kernel extensions (Moschitti,

2006b). Predicted scores less than 1 were set to 1
and predicted scores greater than 5 were set to 5
as this was known to be the range of valid scores.
Our learning algorithm had some free hyperparam-
eters. Three of them were optimised by joint grid
search with 5-fold cross-validation over the training
set: the SVM training error/margin trade-off (C pa-
rameter), one free parameter of the explicit feature
kernel and the ratio between explicit feature and tree
kernels (see below). All other parameters were left
at their default values. Before running it over the
test set, the system was retrained on the complete
training set using the parameters found with cross-
validation.

3.2 Kernels for explicit features

To select a good kernel for our explicit features,
we initially followed the advice given by Hsu et al.
(2010), using a Gaussian RBF kernel and optimis-
ing the SVM C parameter and the γ parameter of the
RBF with grid search. While this gave reasonable
results, it turned out that slightly better prediction
could be achieved by using a polynomial kernel, so
we chose to use this kernel for our final submission
and used grid search to tune the degree of the poly-
nomial instead. The improvement over the Gaussian
kernel was, however, marginal.

3.3 Tree kernels

To exploit parse tree information in our Machine
Learning (ML) component, we used tree kernel
functions. Tree kernels (Collins and Duffy, 2001)
are kernel functions defined over pairs of tree struc-
tures. They measure the similarity between two trees
by counting the number of common substructures.
Implicitly, they define an infinite-dimensional fea-
ture space whose dimensions correspond to all pos-
sible tree fragments. Features are thus available to
cover different kinds of abstract node configurations
that can occur in a tree. The important feature di-
mensions are effectively selected by the SVM train-
ing algorithm through the selection and weighting
of the support vectors. The intuition behind our
use of tree kernels is that they may help us iden-
tify constructions that are difficult to translate in the
source language, and doubtful syntactic structures in
the output language. Note that we do not currently
compare parse trees across languages; tree kernels
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Cross-validation Test set
Features T C d ∆ ρ MAE RMS ∆ ρ MAE RMS

UU best 99 explicit + TK 0.05 4 2 0.506 0.566 0.550 0.692 0.56 0.62 0.64 0.79
(a) 99 explicit + TK 0.03 8 3 0.502 0.564 0.552 0.700 0.56 0.61 0.63 0.78
(b) 17 explicit + TK 0.05 4 2 0.462 0.530 0.568 0.714 0.57 0.61 0.65 0.79
UU bltk 17 explicit + TK 0.03 8 3 0.466 0.534 0.566 0.712 0.58 0.61 0.64 0.79
(c) 99 explicit 0 8 2 0.492 0.560 0.554 0.700 0.56 0.59 0.65 0.80
(d) 17 explicit 0 8 2 0.422 0.466 0.598 0.748 0.52 0.55 0.70 0.83
(e) TK only – 4 – 0.364 0.392 0.632 0.782 0.51 0.51 0.70 0.85

T : Tree kernel weight C: Training error/margin trade-off d: Degree of polynomial kernel
∆: DeltaAvg score ρ: Spearman rank correlation MAE: Mean Average Error

RMS: Root Mean Square Error TK: Tree kernels

Table 1: Experimental results

are applied to trees of the same type in the same lan-
guage only.

We used two different types of tree kernels for the
different types of parse trees (see fig. 2). The Sub-
set Tree Kernel (Collins and Duffy, 2001) consid-
ers tree fragments consisting of more than one node
with the restriction that if one child of a node is in-
cluded, then all its siblings must be included as well
so that the underlying production rule is completely
represented. This kind of kernel is well suited for
constituency parse trees and was used for the source
language constituency parses. For the dependency
trees, we used the Partial Tree Kernel (Moschitti,
2006a) instead. It extends the Subset Tree Kernel by
permitting also the extraction of tree fragments com-
prising only part of the children of any given node.
Lifting this restriction makes sense for dependency
trees since a node and its children do not correspond
to a grammatical production in a dependency tree in
the same way as they do in a constituency tree (Mos-
chitti, 2006a). It was used for the dependency trees
in the source and in the target language.

The explicit feature kernel and the three tree ker-
nels were combined additively, with a single weight
parameter to balance the sum of the tree kernels
against the explicit feature kernel. This coefficient
was optimised together with the other two hyperpa-
rameters mentioned above. It turned out that best re-
sults could be obtained with a fairly low weight for
the tree kernels, but in the cross-validation experi-
ments adding tree kernels did give an improvement
over not having them at all.

4 Experimental Results

Results for some of our experiments are shown in
table 1. The two systems we submitted to the shared
task are marked with their system identifiers. A few
other systems are included for comparison and are
numbered (a) to (e) for easier reference.

Our system using only the baseline features (d)
performs a bit worse than the reference system of
the shared task organisers. We use the same learn-
ing algorithm, so this seems to indicate that the ker-
nel and the hyperparameters they selected worked
slightly better than our choices. Using only tree
kernels with no explicit features at all (e) creates a
system that works considerably worse under cross-
validation, however we note that its performance on
the test set is very close to that of system (d).

Adding the 82 additional features of Hardmeier
(2011) to the system without tree kernels slightly im-
proves the performance both under cross-validation
and on the test set (c). Adding tree kernels has a
similar effect, which is a bit less pronounced for
the cross-validation setting, but quite comparable on
the test set (UU bltk, b). Finally, combining the
full feature set with tree kernels results in an addi-
tional gain under cross-validation, but unfortunately
the improvement does not carry over to the test set
(UU best, a).

5 Conclusions

In sum, the results confirm the findings made in our
earlier work (Hardmeier, 2011). They show that tree
kernels can be a valuable tool to boost the initial
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performance of a Quality Estimation system without
spending much effort on feature engineering. Unfor-
tunately, it seems that the gains achieved by tree ker-
nels over simple parse trees and by the additional ex-
plicit features used in our systems do not necessarily
add up. Nevertheless, comparison with other partici-
pating systems shows that either of them is sufficient
for state-of-the-art performance.
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Abstract

In this paper we present the system we sub-
mitted to the WMT12 shared task on Quality
Estimation. Each translated sentence is given
a score between 1 and 5. The score is ob-
tained using several numerical or boolean fea-
tures calculated according to the source and
target sentences. We perform a linear regres-
sion of the feature space against scores in the
range [1:5]. To this end, we use a Support Vec-
tor Machine. We experiment with two kernels:
linear and radial basis function. In our submis-
sion we use the features from the shared task
baseline system and our own features. This
leads to 66 features. To deal with this large
number of features, we propose an in-house
feature selection algorithm. Our results show
that a lot of information is already present in
baseline features, and that our feature selec-
tion algorithm discards features which are lin-
early correlated.

1 Introduction

Machine translation systems are not reliable enough
to be used directly. They can only be used to grasp
the general meaning of texts or help human transla-
tors. Confidence measures detect erroneous words
or sentences. Such information could be useful for
users to decide whether or not to post-edit translated
sentences (Specia, 2011; Specia et al., 2010) or se-
lect documents mostly correctly translated (Soricut
and Echihabi, 2010). Moreover, it is possible to use
confidence measures to compare outputs from dif-
ferent systems and to recommend the best one (He
et al., 2010). One can also imagine that confidence

measures at word-level could be also useful for a
machine translation system to automatically correct
parts of output: for example, a translation system
translates the source sentence, then, this output is
translated with another translation system (Simard
et al., 2007). This last step could be driven by confi-
dence measures.

In previous works (Raybaud et al., 2011; Raybaud
et al., 2009a; Raybaud et al., 2009b) we used state-
of-the-art features to predict the quality of a transla-
tion at sentence- and word-level. Moreover, we pro-
posed our own features based on previous works on
cross-lingual triggers (Lavecchia et al., 2008; Latiri
et al., 2011). We evaluated our work in terms of Dis-
crimination Error Trade-off, Equal Error Rate and
Normalised Mutual Information.

In this article, we compare the features used in the
shared task baseline system and our own features.
This leads to 66 features which will be detailed in
sections 3 and 4. We therefore deal with many fea-
tures. We used a machine learning approach to per-
form regression of the feature space against scores
given by humans. Machine learning algorithms may
not efficiently deal with high dimensional spaces.
Moreover, some features may be less discriminant
descriptors and then in some cases could add more
noise than information. That is why, in this article
we propose an in-house feature selection algorithm
to remove useless features.

The article is structured as follows. In Section 2,
we give an overview of our quality estimation sys-
tem. Then, in Sections 3 and 4, we describe the
features we experimented with. In section 6, we de-
scribe the algorithm we propose for feature selec-
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tion. Then we give the results of several configura-
tions in Section 7.

2 Overview of our quality estimation
submission

Each translated sentence is assigned a score between
1 and 5. 5 means that the machine translation output
is perfectly clear and intelligible and 1 means that it
is incomprehensible. The score is calculated using
several numerical or boolean features extracted ac-
cording to the source and target sentences. We per-
form a regression of the feature space against[1 : 5].

3 The baseline features

The quality estimation shared task organizers pro-
vided a baseline system including several interesting
features. Among them, several are yet used in (Ray-
baud et al., 2011) but we give below a brief review
of the whole baseline features set1:

• Source and target sentences lengths: there is a
correlation between the sizes of source and tar-
get sentences.

• Average source token length: this is the average
number of letters of the words in the sentence.
We guess that this feature can be useful because
short words have more chance to be tool words.

• Language model likelihood of source and target
sentences: a source sentence with low likeli-
hood is certainly far from training corpus statis-
tics. There is a risk it is badly translated. A tar-
get sentence with low likelihood is not suitable
in terms of target language.

• Average number of occurrences of the words
within the target sentence: too many occur-
rences of the same word in the target sentence
may indicate a bad translation.

• Average number of translations per source
word in the sentence: for each word in the
source sentence, the feature indicates how
many words of the target sentence are indeed
translations of this word in the IBM1 table
(with probability higher than 0.2).

1Indeed, our system takes into input a set of features, and is
able to discard redundant features (see Section 6).

• Weighted average number of translations per
source word in the sentence: this feature is sim-
ilar to the previous one, but a frequent word is
given a low weight in the averaging.

• n-gram frequency based features: the baseline
system proposes to group the n-gram frequen-
cies into 4 quartiles. The features indicate how
many n-gram (unigram to trigram) in source
sentence are in quartiles 1 and 4. These fea-
tures indicate if the source sentence contains
n-grams relevant to the training corpus.

• Punctuation based features: there may exist a
correlation between punctuation of source and
target sentences. The count of punctuation
marks in both sentences may then be useful.

Overall, the baseline system proposes 17 features.

4 The LORIA features

In a previous work (Raybaud et al., 2011), we tested
several confidence measures. The Quality Measure
Task campaign constitutes a good opportunity for us
to compare our approach to others. We give below
a brief review of our features (we cite again features
which are yet presented in baseline features because
sometimes, we use a variant of them):

• lengths: three features are generated, lengths of
source and target sentences (already presented
in baseline features), and ratio of target over
source length

• n-gram based features (Duchateau et al., 2002):
each word in the source and target sentences
is given its 5-gram probability. Then, the
sentence-level score is the average of the scores
across all words in the sentence. There are 4
features: one for each language (source and tar-
get) and one for each direction (left-to-right and
right-to-left 5-gram).

• backoff n-gram based features: in the same
way, a score is assigned to a word according
to how many times the language model had to
back off in order to assign a probability to the
sequence (Uhrik and Ward, 1997). Here too,
word scores are averaged and we get 4 scores.
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• averaged features: a common property of alln-
gram based and backoff based features is that a
word can get a low score if it is actually correct
but its neighbours are wrong. To compensate
for this phenomenon we took into account the
average score of the neighbours of the word be-
ing considered. More precisely, for every rele-
vant featurex. defined at word level we also
computed:

xleft. (wi) = x.(wi−2) ∗ x.(wi−1) ∗ x.(wi)

xcentred. (wi) = x.(wi−1) ∗ x.(wi) ∗ x.(wi+1)

xright. (wi) = x.(wi) ∗ x.(wi+1) ∗ x.(wi+2)

A sentence level feature is then calculated ac-
cording to the average of each new ”averaged
feature”.

• intra-lingual features: the intra-lingual score
of a word in a sentence is the average of the
mutual information between that word and the
other words in that sentence. Mutual informa-
tion is defined by:

I(w1, w2) = P (w1, w2)×log

(

P (w1, w2)

P (w1)P (w2)

)

(1)
The intra-lingual score of a sentence is the av-
erage of the intra-lingual scores of the words in
this sentence. There are two features, one for
each language.

• cross-lingual features: the cross-lingual score
of a word in a target sentence is the average of
the mutual information between that word and
the words in the source sentence. The cross-
lingual score of a target sentence is the average
of its constituents.

• IBM1 features: the score of the target sentence
is the average translation probability provided
by the IBM1 model.

• basic parser: this produces two scores, a bi-
nary flag indicating whether any bracketing in-
side the target sentence is correct, and one in-
dicating if the sentence ends with an end of
sentence symbol (period, colon, semi-colon,
question/exclamation/quotation mark, comma,
apostrophe, close parenthese)

• out-of-vocabulary: this generates two scores,
the number of out-of-vocabulary words in the
sentence, and the same one but normalized by
the length of the sentence. These scores are
used for both sides.

This leads to 49 features. A few ones are equiv-
alent to or are strongly correlated to baseline ones.
As we want to be able to integrate several sets of fea-
tures without prior knowledge, our system is able to
discard redundant features (see Section 6).

5 Regression

Our system predicts a score between 1 and 5 for each
test sentence. For that, we used the training corpus
to perform the linear regression of the input features
against scores given by humans. We used SVM al-
gorithm to perform this regression (LibSVM toolkit
(Chang and Lin, 2011)). We experimented two ker-
nels: linear, and radial basis function. For the radial
basis function, we used grid search to optimise pa-
rameters.

6 Feature Selection

We experimented with many features. Some of them
may be very poor predictors. Then, these features
may disturb the convergence of the training algo-
rithm of SVM. To prevent this drawback, we applied
an in-house feature selection algorithm. A feature
selection algorithm selects the most relevant features
by maximizing a criterion. Feature selection algo-
rithms can be divided into two classes: backward
and forward (Guyon and Elisseeff, 2003). Backward
algorithms remove useless features from a set. For-
ward algorithms start with an empty feature set and
insert useful features. We implemented a greedy
backward elimination algorithm for feature selec-
tion. It discards features until a quality criterion
stops to decrease. The criterion used is the Mean Av-
erage Error (MAE) calculated on the development
corpus:

MAE(s, r) =

∑n
i=1 |si − ri|

n
(2)

wheres is the list of scores predicted by the sys-
tem,r is the list of scores given by experts,n is the
size of these lists.

The algorithm is described below:
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Algorithm 1: Feature Selection algorithm

begin
Start with a setS of features
while two features inS are linearly
correlated (more than 0.999)do

discard one of them fromS
CalculateMAE for S
repeat

DecreaseMax← 0
forall the featuref ∈ S do

S′ ← S \ f
CalculatenewMAE for S′

if MAE-newMAE>

DecreaseMax then
DecreaseMax←
MAE-newMAE
fchosen← f

if DecreaseMax> 0 then
S ← S\ fchosen
MAE← MAE-DecreaseMax

until DecreaseMax=0;

For calculating the MAE for a feature set, several
steps are necessary: performing the regression be-
tween the features and the expert scores on the train-
ing corpus, using this regression to predict the scores
on the development corpus, calculate the MAE be-
tween the predicted scores and the expert scores on
this development corpus.

7 Results

We used the data provided by the shared task
on Quality Estimation2, without additional corpus.
This data is composed of a parallel English-Spanish
training corpus. This corpus is made of the con-
catenation of europarl-v5 and news-commentary10
corpora (from WMT-2010), followed by tokeniza-
tion, cleaning (sentences with more than 80 tokens
removed) and truecasing. It has been used for base-
line models provided in the baseline package by the
shared task organizers. We used the same train-
ing corpus to train additional language models (for-
ward and backward 5-gram with kneyser-ney dis-
counting, obtained with the SRILM toolkit) and trig-
gers required for our features. For feature extrac-

2http://dl.dropbox.com/u/6447503/resources.tbz

tion, we used the files provided by the organizers:
1832 source english sentences, their translations by
the baseline translation system, and the score given
by humans to these translations. We split these files
into a training part (1000 sentences) and a develop-
ment part (832 sentences). We used the train part
to perform the regression between the features and
the scores. We used the development corpus to opti-
mise the parameters of the regression and for feature
selection. We did not use additional provided infor-
mation such as phrase alignment, word alignment,
word graph, etc.

Table 1 presents our results in terms of MAE
and Root Mean Squared Error (RMSE). MAE is de-
scribed in Formula 2, and RMSE is defined by:

RMSE(s, r) =

√

∑n
i=1(si − ri)2

n
(3)

Each line of Table 1 gives the performance for a
set of features. BASELINE+LORIA constitutes the
union of both features BASELINE (Section 3) and
LORIA (Section 4). the ’feature selection’ column
indicates if feature selection algorithm is applied.
We experimented the SVM with two kernels: lin-
ear (LIN in Table 1) and radial basis function (RBF
in Table 1). As the radial basis function uses pa-
rameters, we proposed results with default values
(DEF) and with values optimised by grid search on
the development corpus (OPT). MAE and RMSE are
given for development corpus and for the test cor-
pus. This test corpus (and its reference scores given
by humans) is the one released for the shared 2012
task3. MAE and RMSE has been computed against
the scores given by humans to the translations in this
test corpus4.

The results show that the performance on devel-
opment corpus are always confirmed by those of the
test corpus. The BASELINE features alone achieve
already good performance, better than ours. Al-
though the differences are well inside the confidence
interval, the fusion of both sets outperforms slightly
the BASELINE. The feature selection algorithm al-
lows to gain 0.01 point. The gain is the same for

3https://github.com/lspecia/QualityEstimation/blob/master/
test set.tar.gz

4available at https://github.com/lspecia/QualityEstimation/
blob/master/testset.likert
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the optimisation of the radial basis function param-
eters. Surprisingly, the linear kernel, simpler than
other kernels, yields the same performance as radial
basis function.

In addition to MAE and RMSE results, we stud-
ied the linear correlations between features: our ob-
jective is to check if BASELINE and LORIA com-
plement each other. We computed the linear cor-
relation between all features (BASELINE+LORIA).
This leads to 2145 values. Table 2 shows in line +/-
the number of features pairs which correlate with an
absolute score higher than thresholds 0.9, 0.8 or 0.7.
Among these pairs we give in line + the number of
pairs with positive correlation, and in line - the num-
ber of pairs with negative correlation. For lines +
and -, we give 4 numbers: number of pairs, num-
ber of LORIA-LORIA (e.g. the number of correla-
tions between a LORIA feature and another LORIA
feature) pairs, number of BASELINE-BASELINE
pairs, number of LORIA-BASELINE pairs. We re-
mark that only6% of the pairs correlates (column
0.7, line +/-) and that the correlations are mostly be-
tween LORIA features. This last point is not sur-
prising because there are more LORIA features than
BASELINE ones. There are very few correlations
between LORIA and BASELINE features. We stud-
ied precisely the correlated pairs. There is a strong
(more than 0.9) positive correlation between n-gram
and backoff based features and their averaged fea-
ture versions. Sometimes, there is also a strong cor-
relation between ’forward’ and ’backward’ features.
Source and target sentences lengths linearly corre-
late (0.98). This is the same case for source and tar-
get language model likelihoods. There is also a high
correlation between forward and backward 5-gram
scores (0.89). There are very few negative correla-
tions between features. As they are not numerous,
one can list these pairs with correlation between -
1 and -0.7: target sentence length and target lan-
guage model probability; source sentence length and
source language model probability; ratio of OOV
words over sentence length in source sentence and
percentage of unigrams in the source sentence seen
in the SMT training corpus; and number of OOV
words in source sentence and percentage of uni-
grams in the source sentence seen in the SMT train-
ing corpus. These correlations are not surprising.
First, language model probability is not normalized

≥ 0.9 ≥ 0.8 ≥ 0.7

+/- 64 103 127
+ 56/49/3/4 94/87/3/4 117/105/6/6
- 8/0/4/4 9/0/4/5 10/0/4/6

Table 2: Statistics on the linear correlations between LO-
RIA+BASELINE features

by the number of tokens: the more tokens, the lower
probability. Second, the more OOV in the sentence,
the fewer known unigrams.

Last, we present the set of features discarded by
our feature selection algorithm. We give only this
description for the LORIA+BASELINE set, with
linear kernel. The algorithm discards 18 LORIA
features out of 49 (37%) and 3 BASELINE out of
17 (18%). The features discarded from LORIA are
mostly averaged features based onn-gram and back-
off. This is consistent with the fact that these fea-
tures are strongly correlated withn-gram and back-
off features. We remark that very few BASELINE
features are discarded: lengths of source and target
language because these features are yet included in
LORIA features, and ”average number of transla-
tions per source word in the sentence” maybe be-
cause the LORIA feature giving the average IBM1
probabilities is more precise. Last, we remark that
the target length feature is discarded, and only ratio
between target and source length is kept.

8 Conclusion

In this paper, we present our system to evaluate the
quality of machine translated sentences. A sentence
is given a score between 1 and 5. This score is pre-
dicted using a machine learning approach. We use
the training data provided by the organizers to per-
form the regression between numerical features cal-
culated from source and target sentences and scores
given by human experts. The features are the base-
line ones provided by the organizers and our own
features. We proposed a feature selection algorithm
to discard useless features. Our results show that
baseline features contain already the main part of in-
formation for prediction. Concerning our own fea-
tures, a study of the linear correlations shows that
averaged features do not provide new information
compared ton-gram and backoff features. This last
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Dev Test
Set of features feature kernel MAE RMSE MAE RMSE

selection
BASELINE no RBF DEF 0.63 0.79 0.69 0.83
LORIA no RBF DEF 0.66 0.82 0.73 0.87
BASELINE+LORIA no RBF DEF 0.62 0.78 0.69 0.82
BASELINE+LORIA yes RBF DEF 0.61 0.77 0.69 0.83
BASELINE+LORIA no RBF OPT 0.62 0.77 0.68 0.82
BASELINE+LORIA no LIN 0.62 0.78 0.69 0.83
BASELINE+LORIA yes LIN 0.61 0.77 0.68 0.82

Table 1: Results of the various sets of features in terms of MAE and RMSE

remark is confirmed by our feature selection algo-
rithm. Our feature selection algorithm seems to dis-
card features linearly correlated with others while
keeping relevant features for prediction. Last, we
remark that the choice of kernel, optimisation of pa-
rameters and feature selection have not a strong ef-
fect on performance. The main effort may have to
be concentrated on features in the future.
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Abstract

We present the approach we took for our par-
ticipation to the WMT12 Quality Estimation
Shared Task: our main goal is to achieve rea-
sonably good results without appeal to super-
vised learning. We have used various simi-
larity measures and also an external resource
(Google N -grams). Details of results clarify
the interest of such an approach.

1 Introduction

Quality Estimation (or Confidence Estimation)
refers here to the task of evaluating the quality of
the output produced by a Machine Translation (MT)
system. More precisely it consists in evaluating the
quality of every individual sentence, in order (for in-
stance) to decide whether a given sentence can be
published as it is, should be post-edited, or is so bad
that it should be manually re-translated.

To our knowledge, most approaches so far (Spe-
cia et al., 2009; Soricut and Echihabi, 2010; He et
al., 2010; Specia et al., 2011) use several features
combined together using supervised learning in or-
der to predict quality scores. These features be-
long to two categories: black box features which
can be extracted given only the input sentence and
its translated version, and glass box features which
rely on various intermediate steps of the internal MT
engine (thus require access to this internal data).
For the features they studied, Specia et al. (2009)
have shown that black box features are informative
enough and glass box features do not significantly
contribute to the accuracy of the predicted scores.

In this study, we use only black box features, and
further, eschew supervised learning except in the
broadest sense. Our method requires some refer-
ence data, all taken to be equally good exemplars
of a positive reference category, against which the
experimental sentences are compared automatically.
This is the extent of broader-sense supervision. The
method does not require a training set of items each
annotated by human experts with quality scores (ex-
cept for the purpose of evaluation of course).

Successful unsupervised learning averts risks of
the alternative: supervised learning necessarily
makes the predicting system dependent on the an-
notated training data, i.e. less generic, and requires
a costly human evalution stage to obtain a reliable
model. Of course, our approach is likely not to per-
form as well as supervised approaches: here the goal
is to find a rather generic robust way to measure
quality, not to achieve the best accuracy. Neverthe-
less, in the context of this Quality Evaluation Shared
task (see (Callison-Burch et al., 2012) for a detailed
description) we have also used supervised learning
as a final stage, in order to submit results which can
be compared to other methods (see §4).

We investigate the use of various similarity mea-
sures for evaluating the quality of machine translated
sentences. These measures compare the sentence
to be evaluated against a reference text, providing
a similarity score result. The reference data is sup-
posed to represent standard (well-formed) language,
so that the score is expected to reflect how complex
(source side) or how fluent (target side) the given
sentence is.

After presenting the similarity measures in sec-
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tion 2, we will show in section 3 how they perform
individually on the ranking task; finally we will ex-
plain in section 4 how the results that we submitted
were obtained using supervised learning.

2 Approach

Our method consists in trying to find the best mea-
sure(s) to estimate the quality of machine translated
sentences, i.e. the ones which show the highest cor-
relation with the human annotators scores. The mea-
sures we have tested work always as follows.

Given a sentence to evaluate (source or target),
a score is computed by comparing the sentence
against a reference dataset (usually a big set of sen-
tences). This dataset is assumed to represent stan-
dard and/or well-formed language.1 This score rep-
resents either the quality (similarity measure) or the
faultiness (distance measure) of the sentence. It is
not necessarily normalized, and in general cannot be
interpreted straightforwardly (for example like the 1
to 5 scale used for this Shared Task, in which every
value 1, 2, 3, 4, 5 has a precise meaning). In the con-
text of the Shared task, this means that we focus on
the “ranking” evaluation measures provided rather
than the “scoring” measures. These scores are rather
intended to compare sentences relatively to one an-
other: for instance, they can be used to discard the
N% lowest quality sentences from post-editing.

The main interest in such an approach is in
avoiding dependence on costly-to-annotate training
data—correspondingly costly to obtain and which
risk over-tuning the predicting system to the articu-
lated features of the training items. Our method still
depends on the dataset used as reference, but this
kind of dependency is much less constraining, be-
cause the reference dataset can be any text data. To
obtain the best possible results, the reference data
has to be representative enough of what the eval-
uated sentences should be (if they were of perfect
quality), which implies that:

• a high coverage (common words or n-grams) is
preferable; this also means that the size of this
dataset is important;

1We use this definition of “reference” in this article. Please
notice that this differs from the sense “human translation of a
source sentence”, which is more common in the MT literature.

• the quality (grammaticality, language register,
etc.) must be very good: errors in the reference
data will infect the predicted scores.

It is rather easy to use different reference datasets
with our approach (as opposed to obtain new human
scores and training a new model on this data), since
nowadays numerous textual resources are available
(at least for the most common languages).

2.1 Similarity measures

All the measures we have used compare (in different
ways) the n-grams of the tested sentence against the
reference data (represented as a big bag of n-grams).
There is a variety of parameters for each measure;
here are the parameters which are common to all:

Length of n-grams: from unigrams to 6-grams;

Punctuation: with or without punctuation marks;

Case sensitivity: binary;

Sentence boundaries: binary signal of whether
special tokens should be added to mark the start
and the end of sentences.2 This permits:

• that there is the same number of n-grams
containing a token w, for every w in the
sentence;
• to match n-grams starting/ending a

sentence only against n-grams which
start/end a sentence.

Most configurations of parameters presented in this
paper are empirical (i.e. only the parameter set-
tings which performed better during our tests were
retained). Below are the main measures explored.3

2.1.1 Okapi BM25 similarity (TF-IDF)
Term Frequency-Inverse Document Frequency

(TF-IDF) is a widely used similarity measure in
Information Retrieval(IR). It has also been shown
to perform significantly better than only term fre-
quency in tasks like matching coreferent named
entities (see e.g. Cohen et al. (2003)), which is

2With trigrams, “Hello World !” (1 trigram) becomes
“# # Hello World ! # #” (5 trigrams).

3One of the measures is not addressed in this paper for IP
reasons (this measure obtained good results but was not best).
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technically not very different from comparing sen-
tences. The general idea is to compare two docu-
ments4 using their bags of n-grams representations,
but weighting the frequency of every n-gram with
the IDF weight, which represents “how meaning-
ful” the n-gram is over all documents based on its
inverse frequency (because the n-grams which are
very common are not very meaningful in general).

There are several variants of TF-IDF compari-
son measures. The most recent “Okapi BM25” ver-
sion was shown to perform better in general than the
original (more basic) definition (Jones et al., 2000).
Moreover, there are different ways to actually com-
bine the vectors together (e.g. L1 or L2 distance). In
these experiments we have only used the Cosine dis-
tance, with Okapi BM25 weights. The weights are
computed as usual (using the number of sentences
containing X for any n-gram X), but are based only
on the reference data.

2.1.2 Multi-level matching
For a given length N, “simple matching” is de-

fined as follows: for every N -gram in the sentence,
the score is incremented if this N -gram appears at
least once in the reference data. The score is then
relativized to the sentence N -gram length.

“Multi-level matching” (MLM) is similar but with
different lengths of n-grams. For (maximum) length
N , the algorithm is as follows (for every n-gram):
if the n-gram appears in the reference data the score
is incremented; otherwise, for all n-grams of length
N − 1 in this n-gram, apply recursively the same
method, but apply a penalty factor p (p < 1) to
the result.5 This is intended to overcome the bi-
nary behaviour of the “simple matching”. This way
short sentences can always be assigned a score, and
more importantly the score is smoothed according
to the similarity of shorter n-grams (which is the be-
haviour one wants to obtain intuitively).

4In this case every sentence is compared against the refer-
ence data; from an IR viewpoint, one can see the reference data
as the request and each sentence as one of the possible docu-
ments.

5This method is equivalent to computing the “simple match-
ing” for different lengths N of N -grams, and then combine the
scores sN in the following way: if sN < sN−1, then add
p × (sN−1 − sN ) to the score, and so on. However this “ex-
ternal” combination of scores can not take into account some of
the extensions (e.g. weights).

Two main variants have been tested. The first one
consists in using skip-grams.6 Different sizes and
configurations were tested (combining skip-grams
and standard sequential n-grams), but none gave
better results than using only sequential n-grams.
The second variant consists in assigning a more fine-
grained value, based on different parameters, instead
of always assigning 1 to the score when n-gram oc-
curs in the reference data. An optimal solution is not
obvious, so we tried different strategies, as follows.

Firstly, using the global frequency of the ngram
in the reference data: intuitively, this could be in-
terpreted as “the more an n-gram appears (in the
reference data), the more likely it is well-formed”.
However there are obviously n-grams which appear
a lot more than others (especially for short n-grams).
This is why we also tried using the logarithm of the
frequency, in order to smooth discrepancies.

Secondly, using the inverse frequency: this is
the opposite idea, thinking that the common n-
grams are easy to translate, whereas the rare n-
grams are harder. Consequently, the critical parts
of the sentence are the rare n-grams: assigning them
more weight focuses on these. This works in both
cases (if the n-gram is actually translated correctly
or not), because the weight assigned to the n-gram
is taken into account in the normalization factor.

Finally, using the Inverse Document Frequency
(IDF): this is a similar idea as the previous one, ex-
cept that instead of considering the global frequency
the number of sentences containing the n-gram is
taken into account. In most cases (and in all cases
for long n-grams), this is very similar to the previ-
ous option because the cases where an n-gram (at
least with n > 1) appears several times in the same
sentence are not common.

2.2 Resources used as reference data

The reference data against which the sentences
are compared is crucial to the success of our ap-
proach. As the simplest option, we have used the
Europarl data on which the MT model was trained
(source/target side for source/target sentences). Sep-
arately we tested a very different kind of data,
namely the Google Books N -grams (Michel et al.,

6The true-false-true skip-grams in “There is
no such thing”: There no, is such and no thing.
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2011): it is no obstacle that the reference sentences
themselves are unavailable, since our measures only
need the set of n-grams and possibly their frequency
(Google Books N -gram data contains both).

3 Individual measures only

In this section we study how our similarity measures
and the baseline features (when used individually)
perform on the ranking task. This evaluation can
only be done by means of DeltaAvg and Spearman
correlation, since the values assigned to sentences
are not comparable to quality scores. We have tested
numerous combinations of parameters, but show be-
low only the best ones (for every case).

3.1 General observations

Method Ref. data DeltaAvg Spearman
MLM,1-4 Google, eng 0.26 0.22

Baseline feature 1 0.29 0.29
Baseline feature 2 0.29 0.29

MLM,1-3,lf Google, spa 0.32 0.28
Okapi,3,b EP, spa 0.33 0.27

Baseline feature 8 0.33 0.32
Okapi,2,b EP, eng 0.34 0.30

Baseline feature 12 0.34 0.32
Baseline feature 5 0.39 0.39

MLM,1-5,b EP, spa 0.39 0.39
MLM,1-5,b EP, eng 0.39 0.40

Baseline feature 4 0.40 0.40

Table 1: Best results by method and by resource on train-
ing data. b = sentence boundaries ; lf = log frequency
(Google) ; EP = Europarl.

Table 1 shows the best results that every method
achieved on the whole training data with different
resources, as well as the results of the best base-
line features.7 Firstly, one can observe that the lan-
guage model probability (baseline features 4 and 5)
performs as good or slightly better than our best
measure. Then the best measure is the one which
combines different lengths of n-grams (multi-level
matching, combining unigrams to 5-grams), fol-
lowed by baseline feature 12 (percentage of bigrams

7 Baseline 1,2: length of the source/target sentence;
Baseline features 4,5: LM probability of source/target sentence;
Baseline feature 8: average number of translations per source
word with threshold 0.01, weighted by inverse frequency;
Baseline feature 12: percentage of bigrams in quartile 4 of fre-
quency of source words in a corpus of the source language.

in quartile 4 of frequency), and then Okapi BM25
applied to bigrams. It is worth noticing that compar-
ing either the source sentence or the target sentence
(against the source/target training data) gives very
similar results. However, using Google Ngrams as
reference data shows a significantly lower correla-
tion. Also using skip-grams or any of our “fined-
grained” scoring techniques (see §2.1.2) did not im-
prove the correlation, even if in most cases these
were as good as the standard version.

3.2 Detailed analysis: how measures differ
Even when methods yield strongly correlated re-
sults, differences can be significant. For example,
the correlation between the rankings obtained with
the two best methods (baseline 4 and MLM Eng.) is
0.53. The methods do not make the same errors.8 A
method may tend to make a lot of small errors, or on
the contrary, very few but big errors.
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Figure 1: Percentage of best segments within an error
range. For every measure, the X axis represents the sen-
tences sorted by the difference between the predicted rank
and the actual rank (“rank error”), in such a way that for
any (relative) number of sentences x, the y value repre-
sents the maximum (relative) rank error for all prior sen-
tences: for instance, 80% of the ranks predicted by these
three measures are at most 40% from the actual rank.

Let R and R′ be the actual and predicted ranks9

of sentence, respectively. Compute the difference
8This motivates use of supervised learning (but see §1).
9It is worth noticing that ties are taken into account here: two
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D = |R−R′|; then relativize to the total number of
sentences (the upper bound for D): D′ = D/N .
D′ is the relative rank error. On ascending sort
by D′, the predicted ranks for the first sentences
are closest to their actual rank. Taking the relative
rank error D′

j for the sentence at position Mj , one
knows that all “lower” sentences (∀Mi, Mi ≤ Mj)
are more accurately assigned (D′

i ≤ D′
j). Thus, if

the position is also relativized to the total number
sentences: M ′

k = Mk/N , M ′
k is the proportion of

sentences for which the predicted rank is at worst
D′

k% from the real rank. Figure 1 shows the percent-
age of sentences withing a rank error range for three
good methods:10 the error distributions are surpris-
ingly similar. A baseline ranking is also represented,
which shows the same if all sentences are assigned
the same rank (i.e. all sentences are considered of
equal quality)11.

We have also studied effects of some parameters:

• Taking punctuation into account helps a little;

• Ignoring case gives slightly better results;

• Sentences boundaries significantly improve the
performance;

• Most of the refinements of the local score (fre-
quency, IDF, etc.) do not perform better than
the basic binary approach.

4 Individual measures as features

In this section we explain how we obtained the sub-
mitted results using supervised learning.

4.1 Approach
We have tested a wide range of regression algo-
rithms in order to predict the scores, using the
Weka12 toolkit (Hall et al., 2009). All tests were

sentences which are assigned the same score are given the same
rank. The ranking sum is preserved by assigning the average
rank; for instance if s1 > s2 = s3 > s4 the corresponding
ranks are 1, 2.5, 2.5, 4).

10Some are not shown, because the curves were too close.
11Remark: the plateaus are due to the ties in the actual ranks:

there is one plateau for each score level. This is not visible on
the predicted rankings because it is less likely that an impor-
tant number of sentences have both the same actual rank and
the same predicted rank (whereas they all have the same “pre-
dicted” rank in the baseline ranking, by definition).

12www.cs.waikato.ac.nz/ml/weka – l.v., 04/2012.

done using the whole training data in a 10 folds
cross-validation setting. The main methods were:

• Linear regression

• Pace regression (Wang and Witten, 2002)

• SVM for regression (Shevade et al., 2000)
(SMOreg in Weka)

• Decision Trees for regression (Quinlan, 1992)
(M5P in Weka)

We have tested several combinations of features
among the features provided as baseline and our
measures. The measures were primarily selected
on their individual performance (worst measures
were discarded). However we also had to take the
time constraint into account, because some measures
require a fair amount of computing power and/or
memory and some were not finished early enough.
Finally we have also tested several attributes selec-
tion methods before applying the learning method,
but they did not achieve a better performance.

4.2 Results
Table 2 shows the best results among the config-
urations we have tested (expressed using the offi-
cial evaluation measures, see (Callison-Burch et al.,
2012) for details). These results were obtained using
the default Weka parameters.In this table, the differ-
ent features sets are abbreviated as follows:

• B: Baseline (17 features);

• M1: All measures scores (45 features);

• M2: Only scores obtained using the provided
resources (33 features);

• L: Lengths (of source and target sentence, 2
features).

For every method, the best results were obtained
using all possible features (baseline and our mea-
sures). The following results can also be observed:

• our measures increase the performance over
use of baseline features only (B+M1 vs. B);

• using an external resource (here Google n-
grams) with some of our measures increases the
performance (B+M1 vs. B+M2);
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Features Method DeltaAvg Spearman MAE RMSE
B SVM 0.398 0.445 0.616 0.761
B Pace Reg. 0.399 0.458 0.615 0.757
L + M1 SVM 0.401 0.439 0.615 0.764
L + M1 Lin. Reg 0.408 0.441 0.610 0.757
B Lin. Reg. 0.408 0.461 0.614 0.754
L + M1 M5P 0.409 0.441 0.610 0.757
B + M2 SVM 0.409 0.447 0.605 0.753
B + M2 Pace Reg. 0.417 0.466 0.603 0.744
B + M2 M5P 0.419 0.472 0.601 0.746
L + M1 Pace Reg. 0.426 0.454 0.603 0.751
B + M2 Lin. Reg. 0.428 0.481 0.598 0.740
B M5P 0.434 0.487 0.586 0.729
B + M1 SVM 0.444 0.489 0.585 0.734
B + M1 Pace Reg. 0.453 0.505 0.584 0.724
B + M1 Lin. Reg. 0.456 0.507 0.583 0.724
B + M1 M5P 0.457 0.508 0.583 0.724

Table 2: Best results on 10-folds cross-validation on the
training data (sorted by DeltaAvg score).

• the baseline features contribute positively to the
performance (B+M1 vs. L+M1);

• The M5P (Decision trees) method works best
in almost all cases (3 out of 4).

Based on these training results, the two systems
that we used to submit the test data scores were:

• TCD-M5P-resources-only, where scores were
predicted from a model trained using M5P on
the whole training data, taking only the base-
line features (B) into account;

• TCD-M5P-all, where scores were predicted
from a model trained using M5P on the whole
training data, using all features (B+M1).

The TCD-M5P-resources-only submission
ranked 5th (among 17) in the ranking task, and
5th among 19 (tied with two other systems) in
the scoring task (Callison-Burch et al., 2012).
Unfortunately the TCD-M5P-all submission con-
tained an error.13 Below are the official results
for TCD-M5P-resources-only and the corrected
results for TCD-M5P-all :

13In four cases in which Google n-grams formed the refer-
ence data, the scores were computed using the wrong language
(Spanish instead of English) as the reference. Since this error
occured only for the test data (not the training data used to com-
pute the model), it made the predictions totally meaningless.

Submission DeltaAvg Spearman MAE RMSE
resources-only 0.56 0.58 0.68 0.82
all 0.54 0.54 0.70 0.84

Contrary to previous observations using the train-
ing data, these results show a better performance
without our measures. We think that this is mainly
due to the high variability of the results depending
on the data, and that the first experiments are more
significant because cross-validation was used.

5 Conclusion

In conclusion, we have shown that the robust ap-
proach that we have presented can achieve good re-
sults: the best DeltaAvg score reaches 0.40 on the
training data, when the best supervised approach is
at 0.45. We think that this robust approach com-
plements the more fine-grained approach with su-
pervised learning: the former is useful in the cases
where the cost to use the latter is prohibitive.

Additionally, it is interesting to see that using ex-
ternal data (here the Google N -grams) improves the
performance (when using supervised learning). As
future work, we plan to investigate this question
more precisely: when does the external data help?
What are the differences between using the training
data (used to produce the MT engine) and another
dataset? How to select such an external data in order
to maximize the performance? In our unsupervised
framework, is it possible to combine the score ob-
tained with the external data with the score obtained
from the training data? Similarly, can we combine
scores obtained by comparing the source side and
the target side?
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Abstract

In this paper, we describe the UPC system that
participated in the WMT 2012 shared task on
Quality Estimation for Machine Translation.
Based on the empirical evidence that fluency-
related features have a very high correlation
with post-editing effort, we present a set of
features for the assessment of quality estima-
tion for machine translation designed around
different kinds of n-gram language models,
plus another set of features that model the
quality of dependency parses automatically
projected from source sentences to transla-
tions. We document the results obtained on
the shared task dataset, obtained by combining
the features that we designed with the baseline
features provided by the task organizers.

1 Introduction

Quality Estimation (QE) for Machine Translations
(MT) is the task concerned with the prediction of the
quality of automatic translations in the absence of
reference translations. The WMT 2012 shared task
on QE for MT (Callison-Burch et al., 2012) required
participants to score and rank a set of automatic
English to Spanish translations output by a state-
of-the-art phrase based machine translation system.
Task organizers provided a training dataset of 1, 832
source sentences, together with reference, automatic
and post-edited translations, as well as human qual-
ity assessments for the automatic translations. Post-
editing effort, i.e., the amount of editing required to
produce an accurate translation, was selected as the
quality criterion, with assessments ranging from 1

(extremely bad) to 5 (good as it is). The organizers
also provided a set of linguistic resources and pro-
cessors to extract 17 global indicators of translation
quality (baseline features) that participants could de-
cide to employ for their models. For the evaluation,
these features are used to learn a baseline predictors
for participants to compare against. Systems partic-
ipating in the evaluation are scored based on their
ability to correctly rank the 422 test translations (us-
ing DeltaAvg and Spearman correlation) and/or to
predict the human quality assessment for each trans-
lation (using Mean Average Error - MAE and Root
Mean Squared Error - RMSE).

Our initial approach to the task consisted of sev-
eral experiments in which we tried to identify com-
mon translation errors and correlate them with qual-
ity assessments. However, we soon realized that
simple regression models estimated on the baseline
features resulted in more consistent predictors of
translation quality. For this reason, we eventually
decided to focus on the design of a set of global in-
dicators of translation quality to be combined with
the strong features already computed by the baseline
system.

An analysis of the Pearson correlation of the
baseline features (Callison-Burch et al., 2012)1

with human quality assessments shows that the two
strongest individual predictors of post-editing ef-
fort are the n-gram language model perplexities es-
timated on source and target sentences. This ev-
idence suggests that a reasonable approach to im-

1Baseline features are also described in http://www.
statmt.org/wmt12/quality-estimation-task.
html.
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Feature Pearson |r| Feature Pearson |r|

BL/4 0.3618 DEP/C+/Q4/R 0.0749
BL/5 0.3544 BL/13 0.0741
BL/12 0.2823 DEP/C−/Q1/W 0.0726
BL/14 0.2675 DEP/C+/Q4/W 0.0718
BL/2 0.2667 DEP/C+/Q34/R 0.0687
BL/1 0.2620 BL/3 0.0623
BL/8 0.2575 DEP/C+/Q34/W 0.0573
BL/6 0.2143 SEQ/sys-ref/W 0.0495
DEP/C−/S 0.2072 SEQ/sys/W 0.0492
BL/10 0.2033 SEQ/ref-sys/W 0.0390
DEP/C−/Q12/S 0.1858 BL/7 0.0351
BL/17 0.1824 SEQ/sys/SStop 0.0312
BL/16 0.1725 SEQ/sys/RStop 0.0301
DEP/C−/W 0.1584 SEQ/sys-ref/SStop 0.0291
DEP/C−/R 0.1559 SEQ/sys-ref/RStop 0.0289
DEP/C−/Q12/R 0.1447 DEP/Coverage/S 0.0286
DEP/Coverage/W 0.1419 SEQ/ref-sys/S 0.0232
DEP/C−/Q1/S 0.1413 SEQ/ref-sys/R 0.0205
BL/15 0.1368 SEQ/ref-sys/RStop 0.0187
DEP/C+/Q4/S 0.1257 SEQ/sys-ref/R 0.0184
DEP/Coverage/R 0.1239 SEQ/sys/R 0.0177
SEQ/ref-sys/PStop 0.1181 SEQ/ref-sys/Chains 0.0125
SEQ/sys/PStop 0.1173 SEQ/ref-sys/SStop 0.0104
SEQ/sys-ref/PStop 0.1170 SEQ/sys/S 0.0053
DEP/C−/Q12/W 0.1159 SEQ/sys-ref/S 0.0051
DEP/C−/Q1/R 0.1113 SEQ/sys/Chains 0.0032
DEP/C+/Q34/S 0.0933 SEQ/sys-ref/Chains 0.0014
BL/9 0.0889 BL/11 0.0001

Table 1: Pearson correlation (in absolute value) of the
baseline (BL) features and the extended feature set (SEQ
and DEP) with the quality assessments.

prove the accuracy of the baseline would be to con-
centrate on the estimation of other n-gram language
models, possibly working at different levels of lin-
guistic analysis and combining information coming
from the source and the target sentence. On top of
that, we add another class of features that capture
the quality of grammatical dependencies projected
from source to target via automatic alignments, as
they could provide clues about translation quality
that may not be captured by sequential models.

The novel features that we incorporate are de-
scribed in full detail in the next section; in Sec-
tion 3 we describe the experimental setup and the
resources that we employ, while in Section 4 we
present the results of the evaluation; finally, in Sec-
tion 5 we draw our conclusions.

2 Extended features set

We extend the set of 17 baseline features with 35
new features:

SEQ: 21 features based on n-gram language mod-
els estimated on reference and automatic trans-
lations, combining lexical elements of the tar-
get sentence and linguistic annotations (POS)
automatically projected from the source;

DEP: 18 features that estimate a language model
on dependency parse trees automatically pro-
jected from source to target via unsupervised
alignments.

All the related models are estimated on a cor-
pus of 150K newswire sentences collected from the
training/development corpora of previous WMT edi-
tions (Callison-Burch et al., 2007; Callison-Burch et
al., 2011). We selected this resource because we pre-
fer to estimate the models only on in-domain data.
The models for SEQ features are computed based
on reference translations (ref ) and automatic trans-
lations generated by the same Moses (Koehn et al.,
2007) configuration used by the organizers of this
QE task. As features, we encode the perplexity of
observed sequences with respect to the two models,
or the ratio of these values. For DEP features, we es-
timate a model that explicitly captures the difference
between reference and automatic translations for the
same sentence.

2.1 Sequential features (SEQ)

The simplest sequential models that we estimate
are 3-gram language models2 on the following se-
quences:

W: (Word), the sequence of words as they appear
in the target sentence;

R: (Root), the sequence of the roots of the words in
the target;

S: (Suffix) the sequence of the suffixes of the words
in the target;

As features, for each automatic translation we en-
code:

• The perplexity of the corresponding sequence
according to automatic (sys) translations: for

2We also considered using longer histories, i.e., 5-grams, but
since we could not observe any noticeable difference we finally
selected the least over-fitting alternative.
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example, SEQ/sys/R and SEQ/sys/W are the
root-sequence and word-sequence perplexities
estimated on the corpus of automatic transla-
tions;

• The ratio between the perplexities according
the two sets of translations: for example,
SEQ/ref-sys/S is the ratio between the perplex-
ity of suffix-sequences on reference and auto-
matic translations, and SEQ/sys-ref/S is its in-
verse.3

We also estimate 3-gram language models on
three variants of a sequence in which non-stop words
(i.e., all words belonging to an open class) are re-
placed with either:

RStop: the root of the word;

SStop: the suffix of the word;

PStop: the POS of the aligned source word(s).

This last model (PStop) is the only one that requires
source/target pairs in order to be estimated. If the
target word is aligned to more than one word, we
use the ordered concatenation of the source words
POS tags; if the word cannot be aligned, we replace
it with the placeholder “*”, e.g.: “el NN de * VBZ
JJ en muchos NNS .”. Also in this case, different
features encode the perplexity with respect to au-
tomatic translations (e.g., SEQ/sys/PStop) or to the
ratio between automatic and reference translations
(e.g., SEQ/ref-sys/RStop).

Finally, a last class of sequences (Chains) col-
lapses adjacent stop words into a single token.
Content-words or isolated stop-words are not in-
cluded in the sequence, e.g: “mediante la de los
de la y de las y la a los”. Again, we consider
the same set of variants, e.g. SEQ/sys/Chains or
SEQ/sys-ref/Chains.
Since there are 7 sequence types and 3 combinations
(sys, sys-ref, ref-sys) we end up with 21 new fea-
tures.

3Features extracted solely from reference translations have
been considered, but they were dropped during development
since we could not observe a noticeable effect on prediction
quality.

2.2 Dependency features (DEP)
These features are based on the assumption that
by observing how dependency parses are projected
from source to target we can gather clues concern-
ing translation quality that cannot be captured by se-
quential models. The features encode the extent to
which the edges of the projected dependency tree are
observed in reference-quality translations.

The model for DEP features is estimated on
the same set of 150K English sentences and the
corresponding reference and automatic translations,
based on the following algorithm:

1. Initialize two maps M+ and M− to store edge
counts;

2. Then, for each source sentence s: parse s with
a dependency parser;

3. Align the words of s with the reference and the
automatic translations r and a;

4. For each dependency relation 〈d, sh, sm〉 ob-
served in the source, where d is the relation
type and sh and sm are the head and modifier
words, respectively:

(a) Identify the aligned head/modifier words
in r and a, i.e., 〈rh, rm〉 and 〈ah, am〉;

(b) If rh = ah and rm = am, then incre-
ment M+

〈d,ah,am〉 by one, otherwise incre-
ment M−

〈d,ah,am〉.

In other terms, M+ keeps track of how many times
a projected dependency is the same in the automatic
and in the reference translation, while M− accounts
for the cases in which the two projections differ.

Let T be the set of dependency relations projected
on an automatic translation. In the feature space we
represent:

Coverage: The ratio of dependency edges found in
M− or M+ over the total number of projected
edges, i.e.

Coverage(T ) =

∑
D∈T M+

D + M−
D

|T |
;

C+: The quantity C+ = 1
|T |

∑
D∈T

M+
D

M+
D−M−

D

;
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C−: The quantity C− = 1
|T |

∑
D∈T

M−
D

M+
D−M−

D

.

Intuitively, high values of C+ mean that most pro-
jected dependencies have been observed in reference
translations; conversely, high values of C− suggest
that most of the projected dependencies were only
observed in automatic translations.

Similarly to SEQ features, also in this case we ac-
tually employ three variants of these features: one in
which we use word forms (i.e., DEP/Coverage/W,
DEP/C+/W and DEP/C−/W), one in which we
look at roots (i.e., DEP/Coverage/R, DEP/C+/R
and DEP/C−/R) and one in which we only con-
sider suffixes (i.e., DEP/Coverage/S, DEP/C+/S and
DEP/C−/S).

Moreover, we also estimate C+ in the top (Q4)
and top two (Q34) fourths of edge scores, and C− in
the bottom (Q1) and bottom two (Q12) fourths. As
an example, the feature DEP/C+/Q4/R encodes the
value of C+ within the top fourth of the ranked list of
projected dependencies when only considering word
roots, while DEP/C−/W is the value of C− on the
whole edge set estimated using word forms.

3 Experiment setup

To extract the extended feature set we use an align-
ment model, a POS tagger and a dependency parser.
Concerning the former, we trained an unsupervised
model with the Berkeley aligner4, an implementa-
tion of the symmetric word-alignment model de-
scribed by Liang et al. (2006). The model is trained
on Europarl and newswire data released as part of
WMT 2011 (Callison-Burch et al., 2011) training
data. For POS tagging and semantic role annota-
tion we use SVMTool5 (Jesús Giménez and Lluı́s
Màrquez, 2004) and Swirl6 (Surdeanu and Turmo,
2005), respectively, with default configurations. To
estimate the SEQ and DEP features we use refer-
ence and automatic translations of the newswire sec-
tion of WMT 2011 training data. The automatic
translations are generated by the same configura-
tion generating the data for the quality estimation
task. The n-gram models are estimated with the

4http://code.google.com/p/berkeleyaligner
5http://www.lsi.upc.edu/˜nlp/SVMTool/
6http://www.surdeanu.name/mihai/swirl/

Feature set DeltaAvg MAE

Baseline 0.4664 0.6346
Extended 0.4694 0.6248

Table 2: Comparison of the baseline and extended feature
set on development data.

SRILM toolkit 7, with order equal to 3 and Kneser-
Ney (Kneser and Ney, 1995) smoothing.

As a learning framework we resort to Support
Vector Regression (SVR) (Smola and Schölkopf,
2004) and learn a linear separator using the SVM-
Light optimizer by Joachims (1999)8. We represent
feature values by means of their z-scores, i.e., the
number of standard deviations that separate a value
from the average of the feature distribution. We
carry out the system development via 5-fold cross
evaluation on the 1,832 development sentences for
which we have quality assessments.

4 Evaluation

In Table 1 we show the absolute value of the Pear-
son correlation of the features used in our model,
i.e., the 17 baseline features (BL/*), the 21 sequence
(SEQ/*) and the 18 dependency (DEP/*) features,
with the human quality assessments. The more cor-
related features are in the top (left) part of the ta-
ble. At a first glance, we can see that 9 of the 10
features having highest correlation are already en-
coded by the baseline. We can also observe that
DEP features show a higher correlation than SEQ
features. This evidence seems to contradict our ini-
tial expectations, but it can be easily ascribed to the
limited size of the corpus used to estimate the n-
gram models (150K sentences). This point is also
confirmed by the fact that the three variants of the
*PStop model (based on sequences of target stop-
words interleaved by POS tags projected from the
source sentence and, hence, on a very small vocab-
ulary) are the three sequential models sporting the
highest correlation. Alas, the lack of lexical anchors
makes them less useful as predictors of translation
quality than BL/4 and BL/5. Another interesting as-

7http://www-speech.sri.com/projects/
srilm

8http://svmlight.joachims.org/
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System DeltaAvg MAE

Baseline 0.55 0.69

Official Evaluation 0.22 0.84
Amended Evaluation 0.51 0.71

Table 3: Official and amended evaluation on test data of
the extended feature sets.

pect is that DEP/C− features show higher correlation
than DEP/C+. This is an expected behaviour, as be-
ing indicators of possible errors they are intended to
have discriminative power with respect to the human
assessments. Finally, we can see that more than 50%
of the included features, including five baseline fea-
tures, have negligible (less than 0.1) correlation with
the assessments. Even though these features may not
have predictive power per se, their combination may
be useful to learn more accurate models of quality.9

Table 2 shows a comparison of the baseline fea-
tures against the extended feature set as the average
DeltaAvg score and Mean Absolute Error (MAE) on
the 10 most accurate development configurations. In
both cases, the extended feature set results in slightly
more accurate models, even though the improve-
ment is hardly significant.

Table 3 shows the results of the official evaluation.
Our submission to the final evaluation (Official) was
plagued by a bug that affected the values of all the
baseline features on the test set. As a consequence,
the official performance of the model is extremely
poor. The row labeled Amended shows the results
that we obtained after correcting the problem. As we
can see, on both tasks the baseline outperforms our
model, even though the difference between the two
is only marginal. Ranking-wise, our official submis-
sion is last on the ranking task and last-but-one on
the quality prediction task. In contrast, the amended
model shows very similar accuracy to the baseline,
as the majority of the systems that took part in the
evaluation.

9Our experiments on development data were not signifi-
cantly affected by the presence or removal of low-correlation
features. Given the relatively small feature space, we adopted
a conservative strategy and included all the features in the final
models.

5 Discussion and conclusions

We have described the system with which we par-
ticipated in the WMT 2012 shared task on quality
estimation. The model incorporates all the base-
line features, plus two sets of novel features based
on: 1) n-gram language models estimated on mixed
sequences of target sentence words and linguistic
annotations projected from the source sentence by
means of automatic alignments; and 2) the likeli-
hood of the projection of dependency relations from
source to target.

On development data we found out that the ex-
tended feature set granted only a very marginal im-
provement with respect to the strong feature set of
the baseline. In the official evaluation, our submis-
sion was plagued by a bug affecting the generation
of baseline features for the test set, and as a result
we had an incredibly low performance. After fix-
ing the bug, re-evaluating on the test set confirmed
that the extended set of features, at least in the cur-
rent implementation, does not have the potential to
significantly improve over the baseline features. On
the contrary, the accuracy of the corrected model is
slightly lower than the baseline on both the ranking
and the quality estimation task.

During system development it was clear that im-
proving significantly over the results of the base-
line features would be very difficult. In our expe-
rience, this is especially due to the presence among
the baseline features of extremely strong predictors
of translation quality such as the perplexity of the
automatic translation. We could also observe that
the parametrization of the learning algorithm had
a much stronger impact on the final accuracy than
the inclusion/exclusion of specific features from the
model.

We believe that the information that we encode,
and in particular dependency parses and stop-word
sequences, has the potential to be quite relevant for
this task. On the other hand, it may be necessary to
estimate the models on much larger datasets in order
to compensate for their inherent sparsity. Further-
more, more refined methods may be required in or-
der to incorporate the relevant information in a more
determinant way.
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Abstract

We present a method we used for the quality
estimation shared task of WMT 2012 involving
IBM1 and language model scores calculated
on morphemes and POS tags. The IBM1 scores
calculated on morphemes and POS-4grams of
the source sentence and obtained translation
output are shown to be competitive with the
classic evaluation metrics for ranking of trans-
lation systems. Since these scores do not re-
quire any reference translations, they can be
used as features for the quality estimation task
presenting a connection between the source
language and the obtained target language. In
addition, target language model scores of mor-
phemes and POS tags are investigated as esti-
mates for the obtained target language quality.

1 Introduction

Automatic quality estimation is a topic of increas-
ing interest in machine translation. Different from
evaluation task, quality estimation does not rely on
any reference translations – it relies only on infor-
mation about the input source text, obtained target
language text, and translation process. Being a new
topic, it still does not have well established base-
lines, datasets or standard evaluation metrics. The
usual approach is to use a set of features which are
used to train a classifier in order to assign a predic-
tion score to each sentence.

In this work, we propose a set of features based
on the morphological and syntactic properties of in-
volved languages thus abstracting away from word
surface particularities (such as vocabulary and do-
main). This approach is shown to be very useful for

evaluation task (Popović, 2011; Popović et al., 2011;
Callison-Burch et al., 2011). The features investi-
gated in this work are based on the language model
(LM) scores and on the IBM1 lexicon scores (Brown
et al., 1993).

The inclusion of IBM1 scores in translation sys-
tems has shown experimentally to improve transla-
tion quality (Och et al., 2003). They also have been
used for confidence estimation for machine transla-
tion (Blatz et al., 2003). The IBM1 scores calcu-
lated on morphemes and POS-4grams are shown to
be competitive with the classic evaluation metrics
based on comparison with given reference transla-
tions (Popović et al., 2011; Callison-Burch et al.,
2011). To the best of our knowledge, these scores
have not yet been used for translation quality esti-
mation. The LM scores of words and POS tags are
used for quality estimation in previous work (Spe-
cia et al., 2009), and in our work we investigate the
scores calculated on morphemes and POS tags.

At this point, only preliminary experiments have
been carried out in order to determine if the pro-
posed features are promising at all. We did not use
any classifier, we used the obtained scores to rank
the sentences of a given translation output from the
best to the worst. The Spearman’s rank correlation
coefficients between our ranking and the ranking ob-
tained using human scores are then computed on the
provided manually annotated data sets.

2 Morpheme- and POS-based features

A number of features for quality estimation have
been already investigated in previous work (Specia
et al., 2009). In this paper, we investigate two sets of
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features which do not depend on any aspect of trans-
lation process but only on the morphological and
syntactic structures of the involved languages: the
IBM1 scores and the LM scores calculated on mor-
phemes and POS tags. The IBM1 scores describe
the correspondences between the structures of the
source and the target language, and the LM scores
describe the structure of the target language. In ad-
dition to the input source text and translated target
language hypothesis, a parallel bilingual corpus for
the desired language pair and a monolingual corpus
for the desired target language are required in or-
der to learn IBM1 and LM probabilities. Appropriate
POS taggers and tools for splitting words into mor-
phemes are necessary for each of the languages. The
POS tags cannot be only basic but must have all de-
tails (e.g. verb tenses, cases, number, gender, etc.).

2.1 IBM1 scores

The IBM1 model is a bag-of-word translation model
which gives the sum of all possible alignment proba-
bilities between the words in the source sentence and
the words in the target sentence. Brown et al. (1993)
defined the IBM1 probability score for a translation
pair fJ

1 and eI1 in the following way:

P (fJ
1 |eI1) =

1

(I + 1)J

J∏
j=1

I∑
i=0

p(fj |ei) (1)

where fJ
1 is the source language sentence of length

J and eI1 is the target language sentence of length I .
As it is a conditional probability distribution, we

investigated both directions as quality scores. In or-
der to avoid frequent confusions about what is the
source and what the target language, we defined our
scores in the following way:

• source-to-hypothesis (sh) IBM1 score:

IBM1sh =
1

(H + 1)S

S∏
j=1

H∑
i=0

p(sj |hi) (2)

• hypothesis-to-source (hs) IBM1 score:

IBM1hs =
1

(S + 1)H

H∏
i=1

S∑
j=0

p(hi|sj) (3)

where sj are the units of the original source lan-
guage sentence, S is the length of this sentence, hi

are the units of the target language hypothesis, and
H is the length of this hypothesis.

The units investigated in this work are morphemes
and POS-4grams, thus we have the following four
IBM1 scores:

• MIBM1sh and MIBM1hs:

IBM1 scores of word morphemes in each direc-
tion;

• P4IBM1sh and P4IBM1hs:

IBM1 scores of POS 4grams in each direction.

2.2 Language model scores

The n-gram language model score is defined as:

P (eI1) =
I∏

i=1

p(ei|ei...ei−n) (4)

where ei is the current target language word and
ei...ei−n is the history, i.e. the preceeding n words.

In this paper, the two following language model
scores are explored:

• MLM6:

morpheme-6gram language model score;

• PLM6:

POS-6gram language model score.

3 Experimental set-up

The IBM1 probabilities necessary for the IBM1
scores are learnt using the WMT 2010 News
Commentary Spanish-English, French-English and
German-English parallel texts. The language mod-
els are trained on the corresponding target parts of
this corpus using the SRI language model tool (Stol-
cke, 2002). The POS tags for all languages were pro-
duced using the TreeTagger1, and the morphemes
are obtained using the Morfessor tool (Creutz and
Lagus, 2005). The tool is corpus-based and
language-independent: it takes a text as input and
produces a segmentation of the word forms observed
in the text. The obtained results are not strictly

1http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
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linguistic, however they often resemble a linguistic
morpheme segmentation. Once a morpheme seg-
mentation has been learnt from some text, it can
be used for segmenting new texts. In our experi-
ments, the splitting are learnt from the training cor-
pus used for the IBM1 lexicon probabilities. The
obtained segmentation is then used for splitting the
corresponding source texts and hypotheses. Detailed
corpus statistics are shown in Table 1.

Using the obtained probabilities, the scores de-
scribed in Section 2 are calculated for the pro-
vided annotated data: the English-Spanish data from
WMT 2008 consisting of four translation outputs
produced by four different systems (Specia et al.,
2010), the French-English and English-Spanish data
from WMT 2010 (Specia, 2011), as well as for an
additional WMT 2011 German-English and English-
German annotated data. The human quality scores
for the first two data sets range from 1 to 4, and for
the third data set from 1 to 3. The interpretation of
human scores is:

1. requires complete retranslation (bad)

2. post-editing quicker than retranslation (edit−);
this class was omitted for the third data set

3. little post-editing needed (edit+)

4. fit for purpose (good)

As a first step, the arithmetic means and standard
deviations are calculated for each feature and each
class in order to see if the features are at all possible
candidates for quality estimation, i.e. if the values
for different classes are distinct.

After that, the main test is carried out: for each
of the features, the Spearman correlation coefficient
ρ with the human ranking are calculated for each
document. In total, 9 correlation coefficients are ob-
tained for each score – four Spanish outputs from the
WMT 2008 task, one Spanish and one English output
from the WMT 2010 as well as one English and two
German outputs from the WMT 2011 task.

The obtained correlation results were then sum-
marised into the following two values:

• mean
a correlation coefficient averaged over all trans-
lation outputs;

• rank>
percentage of translation outputs where the par-
ticular feature has better correlation than the
other investigated features.

4 Results

4.1 Arithmetic means

The preliminary experiments consisted of compar-
ing arithmetic means of scores for each feature and
each class. The idea is: if the values are distinct
enough, the feature is a potential candidate for qual-
ity estimation. In addition, standard deviations were
calculated in order to estimate the overlapping.

For most translation outputs, all of our features
have distinct arithmetic means for different classes
and decent standard deviations, indicating that they
are promising for further investigation. On all WMT

2011 outputs annotated with three classes, the dis-
tinction is rather clear, as well as for the majority of
the four class outputs.

However, on some of the four class translation
outputs, the values of the bad translation class were
unexpected in the following two ways:

• the bad class overlaps with the edit− class;

• the bad class overlaps with the edit+ class.

The first overlapping problem occured on two trans-
lation outputs of the 2011 set, and the second one on
the both outputs of the 2010 set.

Examples for the PLM6 and P4IBM1sh features
are shown in Table 2. First two rows present three
class and four class outputs with separated arith-
metic means, the first problem is shown in the third
row, and the second (and more serious) problem is
presented in the last row.

These overlaps have not been investigated further
in the framework of this work, however this should
be studied deeply (especially the second problem) in
order to better understand the underlying phenom-
ena and improve the features.

4.2 Spearman correlation coefficients

As mentioned in the previous section, Spearman
rank correlation coefficients are calculated for each
translation output and for each feature, and sum-
marised into two values described in Section 3, i.e.
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Spanish English French English German English
sentences 97122 83967 100222
running words 2661344 2338495 2395141 2042085 2475359 2398780
vocabulary:

words 69620 53527 56295 50082 107278 54270
morphemes 14178 13449 12004 12485 22211 13499

POS tags 69 44 33 44 54 44
POS-4grams 135166 121182 62177 114555 114314 123550

Table 1: Statistics of the corpora for training IBM1 lexicon models and language models.

feature output / class ok edit+ edit− bad
PLM6 de-en 13.5 / 7.3 23.7 / 13.6 33.0 / 19.7

es-en4 10.9 / 5.0 20.7 / 8.7 34.6 / 16.4 49.0 / 23.7
es-en3 18.5 / 11.0 30.2 / 15.6 38.4 / 17.4 37.9 / 18.9
fr-en 15.2 / 8.8 26.2 / 13.7 34.5 / 18.4 21.7 / 11.3

P4IBM1sh de-en 50.5 / 38.4 109.7 / 75.6 161.8 / 108.3
es-en4 37.9 / 25.0 88.7 / 48.7 165.8 / 89.0 241.5 / 127.4
es-en3 77.0 / 56.7 139.8 / 82.5 186.4 / 94.6 185.2 / 102.0
fr-en 53.5 / 44.3 110.0 / 69.3 151.8 / 90.9 90.8 / 59.0

Table 2: Arithmetic means with standard deviations of PLM6 and P4IBM1sh scores for four translation outputs: first
two rows present decently separated classes, third row illustrates the overlap problem concerning the bad and the edit−

class, the last row illustrates the overlap problem concerning the bad and the edit+ class.

mean and rank>. The results are shown in Table 3.
In can be seen that the best individual features are
POS IBM1 scores followed by POS LM score.

The next step was to investigate combinations of
the individual features. First, we calculated arith-
metic mean of POS based features only, since they
are more promising than the morpheme based ones,
however we did not yield any improvements over
the individual mean values. As a next step, we in-
troduced weights to the features according to their
mean correlations, i.e. we did not omit the mor-
pheme features but put more weight on the POS

based ones. Nevertheless, this also did not result
in an improvement. Furthermore, we tried a sim-
ple arithmetic mean of all features, and this resulted
in a better Spearman correlation coefficients.

Following all these observations, we decided to
submit the arithmetic mean of all features to the
WMT 2012 quality estimation task. Our submission
consisted only of sentence ranking without scores,
since we did not convert our scores to the inter-
val [1,5]. Therefore we did not get any MAE or

RMSE results, only DeltaAvg and Spearman corre-
lation coefficients which were both 0.46. The high-
est scores in the shared task were 0.63, the lowest
about 0.15, and for the “baseline” system which uses
a set of well established features with an SVM clas-
sifier about 0.55.

5 Conclusions and outlook

The results presented in this article show that the
IBM1 and the LM scores calculated on POS tags and
morphemes have the potential to be used for the
estimation of translation quality. These results are
very preliminary, offering many directions for future
work. The most important points are to use a classi-
fier, as well as to combine the proposed features with
already established features. Furthermore, the bad
class overlapping problem described in Section 4.1
should be further investigated and understood.
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TARAXÜ project financed by TSB Technologies-

136



mean rank>
0.449 P4IBM1sh 70.4 P4IBM1sh

0.445 P4IBM1hs 68.5 P4IBM1hs

0.444 PLM6 61.1 PLM6
0.430 MLM6 27.7 MLM6
0.426 MIBM1sh 20.3 MIBM1sh

0.420 MIBM1hs 9.2 MIBM1hs

0.450 arithmetic mean 83.3 arithmetic mean

Table 3: Features sorted by average correlation (column 1) and rank> value (column 2). The most promising score
is the arithmetic mean of all individual features. The most promising individual features are POS-4gram IBM1 scores
followed by POS-6gram language model score.
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Abstract

This paper describes the features and the ma-
chine learning methods used by Dublin City
University (DCU) and SYMANTEC for the
WMT 2012 quality estimation task. Two sets
of features are proposed: one constrained, i.e.
respecting the data limitation suggested by the
workshop organisers, and one unconstrained,
i.e. using data or tools trained on data that was
not provided by the workshop organisers. In
total, more than 300 features were extracted
and used to train classifiers in order to predict
the translation quality of unseen data. In this
paper, we focus on a subset of our feature set
that we consider to be relatively novel: fea-
tures based on a topic model built using the
Latent Dirichlet Allocation approach, and fea-
tures based on source and target language syn-
tax extracted using part-of-speech (POS) tag-
gers and parsers. We evaluate nine feature
combinations using four classification-based
and four regression-based machine learning
techniques.

1 Introduction

For the first time, the WMT organisers this year pro-
pose a Quality Estimation (QE) shared task, which
is divided into two sub-tasks: scoring and ranking
automatic translations. The aim of this workshop is
to define useful sets of features and machine learn-
ing techniques in order to predict the quality of a
machine translation (MT) output T (Spanish) given
a source segment S (English). Quality is measured
using a 5-point likert scale which is based on post-
editing effort, following the scoring scheme:

1. The MT output is incomprehensible
2. About 50-70% of the MT output needs to be

edited
3. About 25-50% of the MT output needs to be

edited
4. About 10-25% of the MT output needs to be

edited
5. The MT output is perfectly clear and intelligi-

ble

The final score is a combination of the scores as-
signed by three evaluators. The use of a 5-point scale
makes the scoring task more difficult than a binary
classification task where a translation is considered
to be either good or bad. However, if the task is
successfully carried out, the score produced is more
useful.

Dublin City University and Symantec jointly ad-
dress the scoring task. For each pair (S, T ) of source
segment S and machine translation T , we train three
classifiers and one classifier combination using the
training data provided by the organisers to predict
5-point Likert scores. In this paper, we present the
classification results on the test set along with addi-
tional results obtained using regression techniques.
We evaluate the usefulness of two new sets of fea-
tures:

1. topic-based features using Latent Dirichlet Al-
location (LDA (Blei et al., 2003)),

2. syntax-based features using POS taggers and
parsers (Wagner et al., 2009)

The remainder of this paper is organised as fol-
lows. In Section 2, we give an overview of all the
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features employed in our QE system. Then, in Sec-
tion 3, we describe the topic and syntax-based fea-
tures in more detail. Section 4 presents the vari-
ous classification and regression techniques we ex-
plored. Our results are presented and discussed in
Section 5. Finally, we summarise and outline our
plans in Section 6.

2 Features Overview

In this section, we describe the features used in our
QE system. In the first subsection, the features in-
cluded in our constrained system are presented. In
the second subsection, we detail the features in-
cluded in our unconstrained system. Both of these
systems include the 17 baseline features provided
for the shared task.

2.1 Constrained System

The constrained system is based only on the data
provided by the organisers. We extracted 70 fea-
tures in total (including the baseline features) and
we present them here according to the type of infor-
mation they capture.

Word and Phrase-Level Features
• Ratio of source and target segment length:

the number of source words divided by the
number of target words
• Ratio of source and target number of punc-

tuation marks: the number of source punctua-
tion marks divided by the number of target ones
• Number of phrases comprising the MT out-

put: given a phrase-table, we assume that a
sentence composed of several phrases indicates
uncertainty on the part of the MT system.
• Average length of source and target phrases:

concatenating short phrases may result in lower
fluency compared to the use of longer ones.
• Ratio of source and target averaged phrase

length
• Number of source prepositions and conjunc-

tions word: our assumption here is that seg-
ments containing a relatively high number of
prepositions and conjunctions may be more
complex and difficult to translate.
• Number of source out-of-vocabulary words

Language Model Features
All the language models (LMs) used in our work

are n-gram LMs with Kneser-Ney smoothing built
with the SRI Toolkit (Stolcke, 2002).

• Backward 2-gram and 3-gram source and
target log probabilities: as proposed by
Duchateau et al. (2002)
• Log probability of target segments on

5-gram MT-output-based LM: using
MOSES (Koehn et al., 2007) trained on the
provided parallel corpus, we translated the En-
glish side of this corpus into Spanish, assuming
that the MT output contains mistakes. This
MT output is used to build a LM that models
the behavior of the MT system. We assume
that for a given MT output, a high n-gram
probability (or a low perplexity) of the LM
indicates that the MT output contains mistakes.

MT-system Features
• 15 scores provided by Moses: phrase-table,

language model, reordering model and word
penalty (weighted and unweighted)
• Number of n-bests for each source segment
• MT output back-translation: from Spanish to

English using MOSES trained on the provided
parallel corpus, scored with TER (Snover et
al., 2006), BLEU (Papineni et al., 2002) and
the Levenshtein distance (Levenshtein, 1966),
based on the source segments as a translation
reference

Topic Model Features
• Probability distribution over topics: Source

and target segment probability distribution over
topics for a 10-dimension topic model
• Cosine distance between source and target

topic vectors

More details about these two features are provided
in Section 3.1.

2.2 Unconstrained System

In addition to the features used for the constrained
system, a further 238 unconstrained features were
included in our unconstrained system.
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MT System Features

As for our constrained system, we use MT output
back-translation from Spanish to English, but this
time using Bing Translator1 in addition to Moses.
Each back-translated segment is scored with TER,
BLEU and the Levenshtein distance, based on the
source segments as a translation reference.

Source Syntax Features

Wagner et al. (2007; 2009) propose a series of
features to measure sentence grammaticality. These
features rely on a part-of-speech tagger, a probabilis-
tic parser and a precision grammar/parser. We have
at our disposal these tools for English and so we ap-
ply them to the source data. The features themselves
are described in more detail in Section 3.2.

Target Syntax Features

We use a part-of-speech tagger trained on Spanish
to extract from the target data the subset of grammat-
icality features proposed by Wagner et al. (2007;
2009) that are based on POS n-grams. In addition
we extract features which reflect the prevalence of
particular POS tags in each target segment. These
are explained in more detail in Section 3.2 below.

Grammar Checker Features

LANGUAGETOOL (based on (Naber, 2003)) is an
open-source grammar and style proofreading tool
that finds errors based on pre-defined, language-
specific rules. The latest version of the tool can
be run in server mode, so individual sentences can
be checked and assigned a total number of errors
(which may or may not be true positives).2 This
number is used as a feature for each source segment
and its corresponding MT output.

3 Topic and Syntax-based Features

In this section, we focus on the set of features
that aim to capture adequacy using topic modelling
and grammaticality using POS tagging and syntactic
parsing.

1http://www.microsofttranslator.com/
2The list of English and Spanish rules is available at:

http://languagetool.org/languages.

3.1 Topic-based Features

We extract source and target features based on a
topic model built using LDA. The main idea in topic
modelling is to produce a set of thematic word clus-
ters from a collection of documents. Using the par-
allel corpus provided for the task, a bilingual corpus
is built where each line is composed of a source seg-
ment and its translation separated by a space. Each
pair of segments is considered as a bilingual docu-
ment. This corpus is used to train a bilingual topic
model after stopwords removal. The resulting model
is one set of bilingual topics z containing words w
with a probability p(wn|zn, β) (with n equal to the
vocabulary size in the whole parallel corpus). This
model can be used to infer the probability distri-
bution of unseen source and target segments over
bilingual topics. During the test step, each source
segment and its translation are considered individu-
ally, as two monolingual documents. This method
allows us to compare the source and target topic dis-
tributions. We assume that a source segment and its
translation share topic similarities.

We propose two ways of using topic-based fea-
tures for quality estimation: keeping source and tar-
get topic vectors as two sets of k features, or com-
puting a vector distance between these two vectors
and using one feature only. To measure the prox-
imity of two vectors, we decided to used the Co-
sine distance, as it leads to the best results in terms
of classification accuracy. However, we plan to
study different metrics in further experiments, like
the Manhattan or the Euclidean distances. Some
parameters related to LDA have to be studied more
carefully too, such as the number of topics (dimen-
sions in the topic space), the number of words per
topic, the Dirichlet hyperparameter α, etc. In our
experiments, we built a topic model composed of 10
dimensions using Gibbs sampling with 1000 itera-
tions. We assume that a higher dimensionality can
lead to a better repartitioning of the vocabulary over
the topics.

Multilingual LDA has been used before in nat-
ural language processing, e.g. polylingual topic
models (Mimno et al., 2009) or multilingual topic
models for unaligned text (Boyd-Graber and Blei,
2009). In the field of machine translation, Tam et
al. (2007) propose to adapt a translation and a lan-
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guage model to a specific topic using Latent Se-
mantic Analysis (LSA, or Latent Semantic Index-
ing, LSI (Deerwester et al., 1990)). More recently,
some studies were conducted on the use of LDA to
adapt SMT systems to specific domains (Gong et al.,
2010; Gong et al., 2011) or to extract bilingual lexi-
con from comparable corpora (Rubino and Linarès,
2011). Extracting features from a topic model is, to
the best of our knowledge, the first attempt in ma-
chine translation quality estimation.

3.2 Syntax-based Features

Syntactic features have previously been used in MT
for confidence estimation and for building automatic
evaluation measures. Corston-Oliver et al. (2001)
build a classifier using 46 parse tree features to pre-
dict whether a sentence is a human translation or MT
output. Quirk (2004) uses a single parse tree feature
in the quality estimation task with a 4-point scale,
namely whether a spanning parse can be found, in
addition to LM perplexity and sentence length. Liu
and Gildea (2005) measure the syntactic similarity
between MT output and reference translation. Al-
brecht and Hwa (2007) measure the syntactic simi-
larity between MT output and reference translation
and between MT output and a large monolingual
corpus. Gimenez and Marquez (2007) explore lexi-
cal, syntactic and shallow semantic features and fo-
cus on measuring the similarity of MT output to ref-
erence translation. Owczarzak et al. (2007) use la-
belled dependencies together with WordNet to avoid
penalising valid syntactic and lexical variations in
MT evaluation. In what follows, we describe how
we make use of syntactic information in the QE task,
i.e. evaluating MT output without a reference trans-
lation.

Wagner et al. (2007; 2009) use three sources
of linguistic information in order to extract features
which they use to judge the grammaticality of En-
glish sentences:

1. For each POS n-gram (with n ranging from 2 to
7), a feature is extracted which represents the
frequency of the least frequent n-gram in the
sentence according to some reference corpus.
TreeTagger (Schmidt, 1994) is used to produce
POS tags.

2. Features provided by a hand-crafted, broad-

coverage precision grammar of English (Butt
et al., 2002) and a Lexical Functional Grammar
parser (Maxwell and Kaplan, 1996). These in-
clude whether or not a sentence could be parsed
without resorting to robustness measures, the
number of analyses found and the parsing time.

3. Features extracted from the output of three
probabilistic parsers of English (Charniak and
Johnson, 2005), one trained on Wall Street
Journal trees (Marcus et al., 1993), one trained
on a distorted version of the treebank obtained
by automatically creating grammatical error
and adjusting the parse trees, and the third
trained on the union of the original and dis-
torted versions.

These features were originally designed to distin-
guish grammatical sentences from ungrammatical
ones and were tested on sentences from learner cor-
pora by Wagner et al. (2009) and Wagner (2012).
In this work we extract all three sets of features
from the source side of our data and the POS-based
subset from the target side.3 We use the publicly
available pre-trained TreeTagger models for English
and Spanish4. The reference corpus used to obtain
POS n-gram frequences is the MT translation model
training data.5

In addition to the POS-based features described in
Wagner et al. (2007; 2009), we also extract the fol-
lowing features from the Spanish POS-tagged data:
for each POS tag P and target segment T , we ex-
tract a feature which is the proportion of words in
T that are tagged as P . Two additional features are
extracted to represent the proportion of words in T
that are assigned more than one tag by the tagger,

3Unfortunately, due to time constraints, we were unable to
source a suitable probabilistic phrase-structure parser and a pre-
cision grammar for Spanish and were thus unable to extract
parser-based features for Spanish. We expect that these features
would be more useful on the target side than the source side.

4http://www.ims.uni-stuttgart.de/
projekte/corplex/TreeTagger/

5To aid machine learning methods that linearly combine fea-
ture values, we add binarised features derived from the raw XLE
and POS n-gram features described above, for example we add
a feature indicating whether the frequency of the least frequent
POS 5-gram is below 10. We base the choice of binary fea-
tures on (a) decision rules observed in decision trees trained for
a binary scoring task and (b) decision rules of simple classifiers
(decision trees with just one decision node and 2 leaf nodes)
that form a convex hull of optimal classifiers in ROC space.
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and the proportion of words in T that are unknown
to the tagger.

4 Machine Learning

In this section, we describe the machine learning
methods that we experimented with. Our final sys-
tems submitted for the shared task are based on clas-
sification methods. However, we also performed
some experiments with regression methods.

We evaluate the systems on the test set using the
official evaluation script and the reference scores.
We report the evaluation results as Mean Aver-
age Error (MAE) and Root Mean Squared Error
(RMSE).

4.1 Classification
In order to apply classification algorithms to the
set of features associated with each source and tar-
get segment, we rounded the training data scores
to the closest integer. We tested several classifiers
and empirically chose three algorithms: Support
Vector Machine using sequential minimal optimiza-
tion and RBF kernel (parameters optimized by grid-
search) (Platt, 1999), Naive Bayes (John and Lang-
ley, 1995) and Random Forest (Breiman, 2001) (the
latter two techniques were applied with default pa-
rameters). We use the Weka toolkit (Hall et al.,
2009) to train the classifiers and predict the scores
on the test set. Each method is evaluated individu-
ally and then combined by averaging the predicted
scores.

4.2 Regression
We applied three different regression techniques:
SVM epsilon-SVR with RBF kernel, Linear Regres-
sion and M5P (Quinlan, 1992; Wang and Witten,
1997). The two latter algorithms were used with
default parameters, whereas SVM parameters (γ, c
and ε) were optimized by grid-search. We also per-
formed a combination of the three algorithms by av-
eraging the predicted scores. We apply a linear func-
tion on the predicted scores S in order to keep them
in the correct range (from 1 to 5) as detailed in (1),
where S′ is the rescaled sentence score, Smin is the
lowest predicted score and Smax is the highest pre-
dicted score.

S′ = 1 + 4× S − Smin

Smax − Smin
(1)

5 Evaluation

Table 1 shows the results obtained by our classifi-
cation approach on various feature subsets. Note
that the two submitted systems used the combined
classifier approach with the constrained and uncon-
strained feature sets. Table 2 shows the results for
the same feature combinations, this time using re-
gression rather than classification.

The results of quality estimation using classifica-
tion methods show that the baseline and the syntax-
based features with the classifier combination leads
to the best results with an MAE of 0.71 and an
RMSE of 0.87. However, these scores are substan-
tially lower than the ones obtained using regression,
where the unconstrained set of features with SVM
leads to an MAE of 0.62 and an RMSE of 0.78.

It seems that the classification methods are not
suitable for this task according to the different sets
of features studied. Furthermore, the topic-distance
feature is not correlated with the quality scores, ac-
cording to the regression results. On the other hand,
the syntax-based features appear to be the most in-
formative and lead to an MAE of 0.70.

6 Conclusion

We presented in this paper our submission for the
WMT12 Quality Estimation shared task. We also
presented further experiments using different ma-
chine learning techniques and we evaluated the im-
pact of two sets of features - one set which is based
on linguistic features extracted using POS tagging
and parsing, and a second set which is based on topic
modelling. The best results are obtained by our un-
constrained system containing all features and us-
ing an ε-SVR regression method with a Radial Basis
Function kernel. This setup leads to a Mean Aver-
age Error of 0.62 and a Root Mean Squared Error
of 0.78. Unfortunately, we did not submit our best
configuration for the shared task.

We plan to continue working on the task of ma-
chine translation quality estimation. Our immediate
next steps are to continue to investigate the contribu-
tion of individual features, to explore feature selec-
tion in a more detailed fashion and to apply our best
system to other types of data including sentences
taken from an online discussion forum.
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SMO NAIVE BAYES RANDOM FOREST Combination
Features MAE RMSE MAE RMSE MAE RMSE MAE RMSE

baseline 0.74 0.89 0.85 1.10 0.84 1.06 0.71 0.88
topic distribution 0.84 1.02 1.09 1.38 0.91 1.15 0.78 0.98
topic distance 0.88 1.11 0.93 1.17 1.04 1.23 0.84 1.04
syntax 0.78 0.97 1.01 1.27 0.83 1.05 0.72 0.90
baseline + topic 0.82 1.01 1.00 1.31 0.84 1.05 0.75 0.95
baseline + syntax 0.76 0.94 1.01 1.25 0.79 0.98 0.71 0.87
baseline + topic + syntax 0.82 1.04 1.03 1.29 0.79 0.98 0.74 0.93
all constrained 0.99 1.26 1.12 1.46 0.71 0.88 0.86 ◦ 1.12 ◦
all unconstrained 0.97 1.25 0.80 1.02 0.79 0.99 0.75 • 0.97 •

Table 1: MAE and RMSE results for different sets of features using three classification methods. The results with ◦
and • correspond to the DCU-SYMC constrained and the DCU-SYMC unconstrained systems respectively, submitted
for the shared task.

SVM LINEAR REG. M5P Combination
Features MAE RMSE MAE RMSE MAE RMSE MAE RMSE

baseline 0.78 0.93 0.80 0.99 0.73 0.91 0.72 0.88
topic distribution 0.78 0.95 0.79 0.96 0.80 0.96 0.79 0.95
topic distance 1.38 1.67 1.31 1.62 1.85 2.09 1.00 1.24
syntax 0.70 0.88 0.97 1.22 1.41 1.65 0.76 0.92
baseline + topic 0.78 0.96 1.06 1.31 1.16 1.42 0.88 1.10
baseline + syntax 0.67 0.82 0.90 1.12 2.17 2.38 0.98 1.22
baseline + topic + syntax 0.68 0.84 0.93 1.16 2.12 2.33 0.97 1.21
all constrained 0.83 1.02 0.94 1.18 0.78 0.99 0.71 0.88
all unconstrained 0.62 0.78 1.33 1.60 0.71 0.89 0.73 0.91

Table 2: MAE and RMSE results for different sets of features using three regression methods.
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Abstract

We present in this paper the system sub-
missions of the SDL Language Weaver
team in the WMT 2012 Quality Estimation
shared-task. Our MT quality-prediction sys-
tems use machine learning techniques (M5P
regression-tree and SVM-regression models)
and a feature-selection algorithm that has been
designed to directly optimize towards the of-
ficial metrics used in this shared-task. The
resulting submissions placed 1st (the M5P
model) and 2nd (the SVM model), respec-
tively, on both the Ranking task and the Scor-
ing task, out of 11 participating teams.

1 Introduction

The WMT 2012 Quality Estimation shared-task fo-
cused on automatic methods for estimating machine
translation output quality at run-time (sentence-level
estimation). Different from MT evaluation met-
rics, quality prediction (QP) systems do not rely
on reference translations and are generally built us-
ing machine learning techniques to estimate quality
scores (Specia et al., 2009; Soricut and Echihabi,
2010; Bach et al., 2011; Specia, 2011).

Some interesting uses of sentence-level MT qual-
ity prediction are the following: decide whether a
given translation is good enough for publishing as-
is (Soricut and Echihabi, 2010), or inform monolin-
gual (target-language) readers whether or not they
can rely on a translation; filter out sentences that
are not good enough for post-editing by professional
translators (Specia, 2011); select the best translation

among options from multiple MT systems (Soricut
and Narsale, 2012), etc.

This shared-task focused on estimating the qual-
ity of English to Spanish automatic translations. The
training set distributed for the shared task comprised
of 1, 832 English sentences taken from the news do-
main and their Spanish translations. The translations
were produced by the Moses SMT system (Koehn et
al., 2007) trained on Europarl data. Translations also
had a quality score derived from an average of three
human judgements of Post-Editing effort using a 1-
5 scale (1 for worse-quality/most-effort, and 5 for
best-quality/least-effort). Submissions were evalu-
ated using a blind official test set of 422 sentences
produced in the same fashion as the training set.
Two sub-tasks were considered: (i) scoring transla-
tions using the 1-5 quality scores (Scoring), and (ii)
ranking translations from best to worse (Ranking).
The official metrics used for the Ranking task were
DeltaAvg (measuring how valuable a proposed rank-
ing is from the perspective of extrinsic values asso-
ciated with the test entries, in this case post-editing
effort on a 1-5 scale; for instance, a DeltaAvg of 0.5
means that the top-ranked quantiles have +0.5 bet-
ter quality on average compared to the entire set), as
well as the Spearman ranking correlation. For the
Scoring task the metrics were Mean-Absolute-Error
(MAE) and Root Mean Squared Error (RMSE). The
interested reader is referred to (Callison-Burch et al.,
2012) for detailed descriptions of both the data and
the evaluation metrics used in the shared-task.

The SDL Language Weaver team participated
with two submissions based on M5P and SVM re-
gression models in both the Ranking and the Scoring
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tasks. The models were trained and used to predict
Post-Editing–effort scores. These scores were used
as-such for the Scoring task, and also used to gener-
ate sentence rankings for the Ranking task by simply
(reverse) sorting the predicted scores. The submis-
sions of the SDL Language Weaver team placed 1st
(the M5P model) and 2nd (the SVM model) on both
the Ranking task (out of 17 entries) and the Scoring
task (out of 19 entries).

2 The Feature Set

Both SDLLW system submissions were created
starting from 3 distinct sets of features: the baseline
feature set (here called BFs), the internal features
available in the decoder logs of Moses (here called
MFs), and an additional set of features that we de-
veloped internally (called LFs). We are presenting
each of these sets in what follows.

2.1 The Baseline Features
The WMT Quality Estimation shared-task defined
a set of 17 features to be used as “baseline” fea-
tures. In addition to that, all participants had access
to software that extracted the corresponding feature
values from the inputs and necessary resources (such
as the SMT-system’s training data, henceforth called
SMTsrc and SMTtrg). For completeness, we are
providing here a brief description of these 17 base-
line features (BFs):

BF1 number of tokens in the source sentence

BF2 number of tokens in the target sentence

BF3 average source token length

BF4 LM probability of source sentence

BF5 LM probability of the target sentence

BF6 average number of occurrences of the target
word within the target translation

BF7 average number of translations per source word
in the sentence (as given by IBM 1 table thresh-
olded so that Prob(t|s) > 0.2)

BF8 average number of translations per source word
in the sentence (as given by IBM 1 table thresh-
olded so that Prob(t|s) > 0.01) weighted

by the inverse frequency of each word in the
source corpus

BF9 percentage of unigrams in quartile 1 of fre-
quency (lower frequency words) in SMTsrc

BF10 percentage of unigrams in quartile 4 of fre-
quency (higher frequency words) in SMTsrc

BF11 percentage of bigrams in quartile 1 of fre-
quency of source words in SMTsrc

BF12 percentage of bigrams in quartile 4 of fre-
quency of source words in SMTsrc

BF13 percentage of trigrams in quartile 1 of fre-
quency of source words in SMTsrc

BF14 percentage of trigrams in quartile 4 of fre-
quency of source words in SMTsrc

BF15 percentage of unigrams in the source sentence
seen in SMTsrc

BF16 number of punctuation marks in source sen-
tence

BF17 number of punctuation marks in target sentence

These features, together with the other ones we
present here, are entered into a feature-selection
component that decides which feature set to use for
optimum performance (Section 3.2).

In Table 1, we are presenting the performance
on the official test set of M5P and SVM-regression
(SVR) models using only the BF features. The
M5P model is trained using the Weka package 1

and the default settings for M5P decision-trees
(weka.classifiers.trees.M5P). The SVR model is
trained using the LIBSVM toolkit 2. The follow-
ing options are used: “-s 3” (ε-SVR) and “-t 2” (ra-
dial basis function). The following parameters were
optimized via 5-fold cross-validation on the train-
ing data: “-c cost”, the parameter C of ε-SVR; “-g
gamma”, the γ parameter of the kernel function; “-p
epsilon”, the ε for the loss-function of ε-SVR.

1http://www.cs.waikato.ac.nz/ml/weka/
2http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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Systems Ranking Scoring
DeltaAvg Spearman MAE RMSE Predict. Interval

17 BFs with M5P 0.53 0.56 0.69 0.83 [2.3-4.9]
17 BFs with SVR 0.55 0.58 0.69 0.82 [2.0-5.0]

best-system 0.63 0.64 0.61 0.75 [1.7-5.0]

Table 1: Performance of the Baseline Features using M5P and SVR models on the test set.

The results in Table 1 are compared against the
“best-system” submission, in order to offer a com-
parison point. The “17 BFs with SVM” system ac-
tually participated as an entry in the shared-task, rep-
resenting the current state-of-the-art in MT quality-
prediction. This system has been ranked 6th (out of
17 entries) in the Ranking task, and 8th (out of 19
entries) in the Scoring task.

2.2 The Decoder Features

The current Quality Estimation task has been de-
fined as a glass-box task. That is, the prediction
component has access to everything related to the
internal workings of the MT system for which the
quality prediction is made. As such, we have cho-
sen to use the internal scores of the Moses 3 decoder
(available to all the participants in the shared-task)
as a distinct set of features. These features are the
following:

MF1 Distortion cost

MF2 Word penalty cost

MF3 Language-model cost

MF4 Cost of the phrase-probability of source given
target Φ(s|t)

MF5 Cost of the word-probability of source given
target Φlex(s|t)

MF6 Cost of the phrase-probability of target given
source Φ(t|s)

MF7 Cost of the word-probability of target given
source Φlex(t|s)

MF8 Phrase penalty cost
3http://www.statmt.org/moses/

These features are then entered into a feature-
selection component that decides which feature set
to use for achieving optimal performance.

The results in Table 2 present the performance
on the test set of the Moses features (with an M5P
model), presented against the “best-system” sub-
mission. These numbers indicate that the Moses-
internal features, by themselves, are fueling a QP
system that surpasses the performance of the strong
“baseline” system. We note here that the “8 MFs
with M5P” system would have been ranked 4th (out
of 17 entries) in the Ranking task, and 5th (out of 19
entries) in the Scoring task.

2.3 Language Weaver Features

In addition to the features presented until this point,
we have created and tested additional features that
helped our systems achieve improved performance.
In addition to the SMT training corpus, these fea-
tures also use the SMT tuning dev set (henceforth
called Devsrc and Devtrg). These features are the
following:

LF1 number of out-of-vocabulary tokens in the
source sentence

LF2 LM perplexity for the source sentence

LF3 LM perplexity for the target sentence

LF4 geometric mean (λ-smoothed) of 1-to-4–gram
precision scores (i.e., BLEU score without
brevity-penalty) of source sentence against the
sentences of SMTsrc used as “references”

LF5 geometric mean (λ-smoothed) of 1-to-4–gram
precision scores of target translation against the
sentences of SMTtrg used as “references”
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Systems Ranking Scoring
DeltaAvg Spearman-Corr MAE RMSE Predict. Interval

8 MFs with M5P 0.58 0.58 0.65 0.81 [1.8-5.0]

best-system 0.63 0.64 0.61 0.75 [1.7-5.0]

Table 2: Performance of the Moses-based Features with an M5P model on the test set.

LF6 geometric mean (λ-smoothed) of 1-to-4–gram
precision scores of source sentence against the
top BLEU-scoring quartile of Devsrc

LF7 geometric mean (λ-smoothed) of 1-to-4–gram
precision scores of target translation against the
top BLEU-scoring quartile of Devtrg

LF8 geometric mean (λ-smoothed) of 1-to-4–gram
precision scores of source sentence against the
bottom BLEU-scoring quartile of Devsrc

LF9 geometric mean (λ-smoothed) of 1-to-4–gram
precision scores of target translation against the
bottom BLEU-scoring quartile Devtrg

LF10 geometric mean (λ-smoothed) of 1-to-4–gram
precision scores of target translation against a
pseudo-reference produced by a second MT
Eng-Spa system

LF11 count of one-to-one (O2O) word alignments
between source and target translation

LF12 ratio of O2O alignments over source sentence

LF13 ratio of O2O alignments over target translation

LF14 count of O2O alignments with Part-of-Speech–
agreement

LF15 ratio of O2O alignments with Part-of-Speech–
agreement over O2O alignments

LF16 ratio of O2O alignments with Part-of-Speech–
agreement over source

LF17 ratio of O2O alignments with Part-of-Speech–
agreement over target

Most of these features have been shown to help
Quality Prediction performance, see (Soricut and
Echihabi, 2010) and (Bach et al., 2011). Some of

them are inspired from word-based confidence esti-
mation, in which the alignment consensus between
the source words and target-translation words are
informative indicators for gauging the quality of a
translation hypothesis. The one-to-one (O2O) word
alignments are obtained from the decoding logs of
Moses. We use the TreeTagger to obtain Spanish
POS tags4 and a maximum-entropy POS tagger for
English. Since Spanish and English POS tag sets
are different, we normalize their fine-grained POS
tag sets into a coarser tag set by mapping the orig-
inal POS tags into more general linguistic concepts
such as noun, verb, adjective, adverb, preposition,
determiner, number, and punctuation.

3 The Models

3.1 The M5P Prediction Model

Regression-trees built using the M5P algo-
rithm (Wang and Witten, 1997) have been previ-
ously shown to give good QP performance (Soricut
and Echihabi, 2010). For these models, the num-
ber of linear equations used can provide a good
indication whether the model overfits the training
data. In Table 3, we compare the performance of
several M5P models: one trained on all 42 features
presented in Section 2, and two others trained on
only 15 and 14 features, respectively (selected using
the method described in Section 3.2). We also
present the number of linear equations (L.Eq.) used
by each model. Aside from the number of features
they employ, these models were trained under
identical conditions: default parameters of the Weka
implementation, and 1527 training instances (305
instances were held-out for the feature-selection
step, from the total 1832 labeled instances available
for the shared-task).

As the numbers in Table 3 clearly show, the set of
4http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
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Systems #L.Eq. Dev Set Test Set
DeltaAvg MAE DeltaAvg MAE

42 FFs with M5P 10 0.60 0.58 0.56 0.64
(best-system) 15 FFs with M5P 2 0.63 0.52 0.63 0.61

14 FFs with M5P 6 0.62 0.50 0.61 0.62

Table 3: M5P-model performance for different feature-function sets (15-FFs ∈ 42-FFs; 14-FFs ∈ 42-FFs).

feature-functions that an M5P model is trained with
matters considerably. On both our development set
and the official test set, the 15-FF M5P model out-
performs the 42-FF model (even if 15-FF ∈ 42-FF).
The 42-FF model would have been ranked 5th (out
of 17 entries) in the Ranking task, and also 5th (out
of 19 entries) in the Scoring task. In comparison, the
15-FF model (feature set optimized for best perfor-
mance under the DeltaAvg metric) was our official
M5P submission (SDLLW M5PBestDeltaAvg), and
ranked 1st in the Ranking task and also 1st in the
Scoring task. The 14-FF model (also a subset of the
42-FF set, optimized for best performance under the
MAE metric) was not part of our submission, but
would have been ranked 2nd on both the Ranking
and Scoring tasks.

The number of linear equations used (see #L.Eq.
in Table 3) is indicative for our results. When using
42 FFs, the M5P model seems to overfit the train-
ing data (10 linear equations). In contrast, the model
trained on a subset of 15 features has only 2 linear
equations. This latter model is less prone to overfit-
ting, and performs well given unseen test data. The
same number for the 14-FF model indicates slight
overfit on the training and dev data: with 6 equa-
tions, this model has the best MAE numbers on the
Dev set, but slightly worse MAE numbers on the
Test score compared to the 15-FF model.

3.2 Feature Selection

As we already pointed out, some of the features of
the entire 42-FF set are highly overlapping and cap-
ture roughly the same amount of information. To
achieve maximum performance given this feature-
set, we applied a computationally-intensive feature-
selection method. We have used the two official
metrics, DeltaAvg and MAE, and a development set
of 305 instances to perform an extensive feature-

selection procedure that directly optimizes the two
official metrics using M5P regression-trees.

The overall space that needs to be explored for 42
features is huge, on the order of 242 possible com-
binations. We performed the search in this space in
several steps. In a first step, we eliminated the obvi-
ously overlapping features (e.g., BF5 and MF3 are
both LM costs of the target translation), and also
excluded the POS-based features (LF14-LF17, see
Section 2.3). This step reduced the overall num-
ber of features to 24, and therefore left us with an
order of 224 possible combinations. Next, we ex-
haustively searched all these combinations by build-
ing and evaluating M5P models. This operation
is computationally-intensive and takes approxima-
tively 60 hours on a cluster of 800 machines. At
the conclusion of this step, we ranked the results
and considered the top 64 combinations. The perfor-
mance of these top combinations was very similar,
and a set of 15 features was selected as the superset
of active feature-functions present in most of the top
64 combinations.

DeltaAvg optim. BF1 BF3 BF4 BF6 BF12
BF13 BF14 MF3 MF4 MF6
LF1 LF10 LF14 LF15 LF16

MAE optim. BF1 BF3 BF4 BF6 BF12
BF14 BF16 MF3 MF4 MF6
LF1 LF10 LF14 LF17

Table 4: Feature selection results.

The second round of feature selection consid-
ers these 15 feature-functions plus the 4 POS-based
feature-functions, for a total of 19 features and there-
fore a space of 219 possible combinations (215 of
these already covered by the first search pass). A
second search procedure was executed exhaustively
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Dev Set Test Set
SVR Model (C;γ;ε) #S.V. DeltaAvg MAE DeltaAvg MAE

1.0 ; 0.00781; 0.50 695 0.62 0.52 0.60 0.66
1.74; 0.00258; 0.3299 952 0.63 0.51 0.61 0.64
8.0 ; 0.00195; 0.0078 1509 0.64 0.50 0.60 0.68
16.0; 0.00138; 0.0884 1359 0.63 0.51 0.59 0.70

Table 5: SVR-model performance for dev and test sets.

over the set of all the new possible combinations.
In the end, we selected the winning feature-function
combination as our final feature-function sets: 15
features for DeltaAvg optimization and 14 features
for MAE optimization. They are given in Table 4,
using the feature id-s given in Section 2. The perfor-
mance of these two feature-function sets using M5P
models can be found in Table 3.

3.3 The SVM Prediction Model

The second submission of our team consists of rank-
ings and scores produced by a system using an ε-
SVM regression model (ε-SVR) and a subset of 19
features. This model is trained on 1,527 training
examples by the LIBSVM package using radial ba-
sis function (RBF) kernel. We have found that the
feature-set obtained by the feature-selection opti-
mization for M5P models described in Section 3.2
does not achieve the same performance for SVR
models on our development set. Therefore, we
have performed our SVR experiments using a hand-
selected set of features: 9 features from the BF fam-
ily (BF1 BF3 BF4 BF6 BF10 BF11 BF12 BF14
BF16); all 8 features from the MF family; and 2 fea-
tures from the LF family (LF1 LF10).

We optimize the three hyper parameters C, γ, and
ε of the SVR method using a grid-search method and
measure their performance on our development set
of 305 instances. The C parameter is a penalty fac-
tor: if C is too high, we have a high penalty for non-
separable points and may store many support vec-
tors and therefore overfit the training data; if C is
too low, we may end up with a model that is poorly
fit. The ε parameter determines the level of accuracy
of the approximated function; however, getting too
close to zero may again overfit the training data. The
γ parameter relates to the RBF kernel: large γ val-

ues give the model steeper and more flexible kernel
functions, while small gamma values give the model
smoother functions. In general, C, ε, and γ are all
sensitive parameters and instantiate ε-SVR models
that may behave very differently.

In order to cope with the overfitting issue given
a small amount of training data and grid search op-
timization, we train our models with 10-fold cross
validation and restart the tuning process several
times using different starting points and step sizes.
We select the best model parameters based on a cou-
ple of indicators: the performance on the develop-
ment set and the number of support vectors of the
model. In Table5 we present the performance of dif-
ferent model parameters on both the development
set and the official test set. Our second submis-
sion (SDLLW SVM), which placed 2nd in both the
Ranking and the Scoring tasks, is the entry in bold
font. It was chosen based on good performance on
the Dev set and also a setting of the (C, γ, ε) pa-
rameters that provides a number of support vectors
that is neither too high nor too low. As a contrastive
point, the model on the row below it uses 1,509 sup-
port vectors extracted from 1,527 training vectors,
which represents a clear case of overfitting. Indeed,
the performance of this model is marginally better
on the Dev set, but ends up underperforming on the
Test data.

4 Conclusions

The WMT 2012 Quality Estimation shared-task pro-
vided the opportunity for the comparing different
QP systems using shared datasets and standardized
evaluation metrics. Our participation in this shared-
task revealed two important aspects of Quality Pre-
diction for MT that we regard as important for the
future. First, our experiments indicated that the

150



Moses-internal features, by themselves, can fuel a
QP-system that surpasses the performance of the
strong “baseline” system used in this shared task to
represent state-of-the-art performance in MT qual-
ity prediction. This is a surprising finding, consid-
ering that these decoder-internal features have been
primarily designed to gauge differences in transla-
tion quality when starting from the same source sen-
tence. In contrast, for quality-prediction tasks like
ranking one needs to gauge differences in quality of
translations of different source sentences.

The second aspect relates to the importance of
feature selection. Given the availability and good
scalability of Machine Learning toolkits today, it
is tempting to throw as much features as possible
at this problem and let the built-in mechanisms of
these learning algorithms deal with issues relating
to feature overlapping, training-data overfitting, etc.
However, these learning algorithms have their own
limitations in these regards, and, in conjunction with
the limited availability of the labeled data, can easily
produce models that are underperforming on blind
tests. There is a need for careful engineering of
the models and evaluation of the resulting perfor-
mance in order to achieve optimal performance us-
ing the current state-of-the-art supervised learning
techniques.
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Abstract

We in this paper describe the regression sys-
tem for our participation in the quality estima-
tion task of WMT12. This paper focuses on
exploiting special phrases, or word sequences,
to estimate translation quality. Several feature
templates on this topic are put forward sub-
sequently. We train a SVM regression model
for predicting the scores and numerical results
show the effectiveness of our phrase indicators
and method in both ranking and scoring tasks.

1 Introduction

The performance of machine translation (MT) sys-
tems has been considerable promoted in the past two
decades. However, since the quality of the sentence
given by MT decoder is not guaranteed, an impor-
tant issue is to automatically predict or identify its
characteristics. Recent studies on quality estimation
or confidence estimation have focused on measuring
the translating quality at run-time, instead of involv-
ing reference corpus. Researches on this topic con-
tribute to offering advices or warnings for users even
without knowledge about either side of languages
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and illuminating some other potential MT applica-
tions.

This paper describes the regression system for our
participation in the WMT12 quality estimation task.
In this shared task, we analyzed the pattern of trans-
lating errors and studied on capturing such patterns
among the corpus. The basic objective in this pa-
per is to recognize those phrases, or special word se-
quence combinations which can indicate the quality
of a translation instance. By introducing no exter-
nal NLP toolkits, we exploited several feasible tech-
niques to extract such patterns directly on the cor-
pus. One contribution of this paper is those feature
templates on the basis of this topic. Numerical re-
sults show their positive effects on both ranking and
scoring subtasks.

The rest of this paper is organized as follows: In
Section 2, we show the related work. In Section
3, we specify the details of our system architecture.
The experimental results are reported in Section 4.
Finally, the conclusion is given in Section 5.

2 Related Work

Compared with traditional MT metrics such as
BLEU (Papineni et al., 2002), the fundamental goal
of quality estimation (QE) is predicting the quality
of output sentences without involving reference sen-
tences.

Early works (Quirk, 2004; Gamon et al., 2005)
have demonstrated the consistency of the automatic
score and human evaluation. Several further works
aimed at predicting automatic scores in order to bet-
ter select MT n-best candidates (Specia and Farzin-
dar, 2010), measure post-editing effort (Specia et
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al., 2011) or combine SMT and TM systems (He et
al., 2010). Instead of estimating on word or sen-
tence levels, Soricut and Echihabi (2010) proposed
a document-level ranking system which grants the
user to set quality threshold. Besides, recent stud-
ies on the QE topic introduced syntactic and linguis-
tic information for better estimating the quality such
as dependency preservation checking (Bach et al.,
2011).

3 System Description

We specify the details of our system in this section.
Following previous approaches for quality estima-
tion, it is first trained on the corpus with labeled
quality scores and then it is able to predict the score
for unlabeled instances.

A major challenge for this estimating task is to ex-
ploit effective indicators, or features, to identify the
quality of the translating results. In this paper, all the
features are extracted from the official corpora, in-
volving no external tools such as pre-trained parsers
or POS taggers. Most of the feature templates focus
on special phrases or word sequences. Some of the
phrases could introduce translation errors and other-
s might declare the merit of the MT output. Their
weights are automatically given by the regressor.

3.1 Regression Model

For obtaining MT quality predictor, we utilize
SVM light (Joachims, 1999)1 to train this regression
model. The radial basis function kernel is chosen as
the kernel of this model. The label for each instance
is the score annotated manually and the input vector
consists of a large amount of indicators described in
Section 3.2.

3.2 Features

For training the regression model, we utilize the
17 baseline features: number of source/target to-
kens, average source token length, source/target
LM probability, target-side average of target word
occurrences, original/inverse frequency average of
translations per source word, source/target percent-
age of uni-/bi-/tri-grams in quartile 1 or 4, source
percentage of unigrams in the training corpus and

1http://svmlight.joachims.org/

source/target number of punctuation. Besides, sev-
eral features and templates are proposed as follows:

• Inverted Automatic Scores: For each Span-
ish system output sentence, we translate it to
English and get its scores of BLEU and ME-
TEOR (Denkowski and Lavie, 2011). These s-
cores are treated as features named inverted au-
tomatic scores. In order to obtain these numer-
als, we train a Spanish-to-English phrase-based
Moses2 (Koehn et al., 2007) decoder with de-
fault parameters on the official parallel corpus.
The original training corpus is split into a de-
veloping set containing the last 3000 sentence
pairs at the end of the corpus and a training set
with the remained pairs. The word alignment
information is generated by GIZA++ (Och and
Ney, 2003) and the feature weights are tuned on
the developing set by Z-MERT (Zaidan, 2009).

• Minimal/Maximal link likelihood of gener-
al language model: In the word graph of
each decoding instance, denote the minimal
and maximal general language model likeli-
hood of links as lmin and lmax. We treat
exp(lmin) and exp(lmax) as features respec-
tively.

• Trace Density: Define the trace density ρT as
the quotient of decoding trace length and sen-
tence length:

ρT = TraceLength / SentenceLength. (1)

• Average of Phrase Length: This feature is
also obtained from the decoding trace informa-
tion.

• Number of Name Entity: This feature can-
not be obtained exactly due to the resource con-
strains. We in this task count the number of the
word whose first letter is capitalized, and that
is not the first word in the sentence.

We also extract several special phrases or se-
quences. The total of each phrase/sequence type
and each pattern are respectively defined as features.
When an instance matches a pattern, the entry rep-
resenting this pattern in its vector is set to |1/Z|. In

2http://www.statmt.org/moses/
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this paper the regressor term Z is the size of the tem-
plate which the pattern belongs to. The detail de-
scription of such templates is presented as follows:

• Reference 2∼5-grams: All the 2∼5-grams of
the reference sentences provided in the official
data are generated as features.

• Bi-gram Source Splitting: This template
comes from the GIZA alignment document.
We scan the parallel corpus: for each bi-gram
in the source sentence, if its words’ counter-
parts in the target side are separated, we add it
to the bi-gram source splitting feature template.

The part-of-speech tags of the words seem to be
effective to this task. Since it is not provided, we uti-
lize a trick design for obtaining similar information:

• Target Functional Word Patterns: On the
target corpus, we scan those words whose
length is smaller than or equal to three. Such
a word w is denoted as functional word. Any
bi-gram in the corpus starting or ending with w
is added to a dictionary D. For each system-
output translation instance, we compare the
analogous bi-grams in it with this dictionary,
all bi-grams not in D are extracted as features.

Denote the collection of 2∼5-grams of the
system-output sentences scored lower than 1.5 as B;
that with scores higher than 4.5 as G. Here the “s-
core” is the manual score provided in the official re-
source.

• Target Bad 2∼5-grams: B−G

• Target Good 2∼5-grams: G− B

• Source Bad/Good 2∼5-grams: Analogous
phrases on the source side are also extracted
by the same methods as Target Bad/Good n-
grams.

For each output-postedit sentence pair, we con-
struct a bipartite graph by aligning the same words
between these two sentences. By giving a maximal
matching, the output sentence can be split to several
segments by the unmatched words.

• Output-Postedit Different 2∼5-grams: For
each unaligned segments, we attach the previ-
ous word to the left side and the next word to
the right. 2∼5-grams in this refined segment
are extracted as features.

• Output-Postedit Different Anchor: Denote
the refined unaligned segment as

sr = (prevWord, s1, s2, . . . , sn, nextWord).

A special sequence with two word segments

prevWord s1 . . . sn nextWord

is given as a feature.

In the source-side scenario with the inverted trans-
lations, similar feature templates are extracted as
well:

• Source-Invert Different 2∼5-grams/Anchor
A significant issue to be considered in this shared

task is that the training data set is not a huge one,
containing about two thousand instances. Although
carefully designed, the feature templates however
cannot involve enough cases. In order to overcome
this drawback, we adopt the following strategy:

For any template T, we compare its patterns with
the items in the phrase table. If the phrase item p is
similar enough with the pattern g, p is added to the
template T. Two similarity metrics are utilized: De-
note the longest common sequence as LCSQ(p, g)
and the longest common segment as LCSG(p, g) 3,

LCSQ(p, g)2

|p||g|
> 0.6, (2)

LCSG(p, g) ≥ 3. (3)

Besides, when training the regression model or
testing, the entry representing the similar items in
the feature vector are also set to 1/|template size|.

4 Experiments

4.1 Data
In order to conduct this experiment, we randomly
divide the official training data into two parts: one

3To simplify, the sequence allows separation while the seg-
ment should be contiguous. For example, LCSQ(p, g) and
LCSG(p, g) for “I am happy” and “I am very happy” are “I,
am, happy” and “I, am”, respectively.
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Data Set
Score Distribution

[1-2) [2-3) [3-4) [4-5)
Original 3.2% 24.1% 38.7% 34.0%
Train 3.2% 24.2% 38.3% 34.4%
Dev 3.3% 24.0% 40.3% 32.4%

Table 1: The comparison of the score distributions among
three data sets: Original, Training (Train) and Develop-
ment (Dev).

Ranking Scoring
DA SC MAE RMSE

Baseline 0.47 0.49 0.61 0.79
This paper 0.49 0.52 0.60 0.77

Table 2: The experiment results on the ranking and scor-
ing tasks. In this table, DA, SC, MAE and RMSE are
DeltaAvg, Spearman Correlation, Mean-Average-Error
and Root-Mean-Squared-Error respectively.

training set with about 3/4 items and one develop-
ment set with the other 1/4 items. The comparison
of the score distribution among these data sets is list-
ed in Table 1.

4.2 Results

The baseline of this experiment is the regression
model trained on the 17 baseline features. The pa-
rameters of the classifier are firstly tuned on the
baseline features. Then the settings for both the
baseline and our model remain unchanged. The
numerical results for the ranking and scoring tasks
are listed in Table 2. The ranking task is evalu-
ated on the DeltaAvg metric (primary) and Spear-
man correlation (secondary) and the scoring task is
evaluated on Mean-Average-Error and Root-Mean-
Squared-Error. For the ranking task, our system out-
performs 0.02 on DeltaAvg and 0.03 on Spearman
correlation; for the scoring task, 0.01 lower on MAE
and 0.02 lower on RMSE.

The official evaluation results are listed in Table 3.
The official LibSVM4 model is a bit better than our
submission. Our system was further improved af-
ter the official submission. Different combinations
of the rates defined in Equation 2∼3 and regressor
parameter settings are tested. As a result, the “Re-
fined” model in Table 3 is the results of the refined

4http://www.csie.ntu.edu.tw/ cjlin/libsvm/

Ranking Scoring
DA SC MAE RMSE

SJTU 0.53 0.53 0.69 0.83
Official SVM 0.55 0.58 0.69 0.82
Refined 0.55 0.57 0.68 0.81
Best Workshop 0.63 0.64 0.61 0.75

Table 3: The official evaluation results.

version. Compared with the official model, it gives
similar ranking results and performs better on the s-
coring task.

5 Conclusion

We presented the SJTU regression system for the
quality estimation task in WMT 2012. It utilized
a support vector machine approach with several fea-
tures or feature templates extracted from the decod-
ing and corpus documents. Numerical results show
the effectiveness of those features as indicators for
training the regression model. This work could be
extended by involving syntax information for ex-
tracting more effective indicators based on phrases
in the future.
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Abstract

This paper describes our work with the data
distributed for the WMT’12 Confidence Es-
timation shared task. Our contribution is
twofold: i) we first present an analysis of
the data which highlights the difficulty of
the task and motivates our approach; ii) we
show that using non-linear models, namely ran-
dom forests, with a simple and limited feature
set, succeeds in modeling the complex deci-
sions required to assess translation quality and
achieves results that are on a par with the sec-
ond best results of the shared task.

1 Introduction

Confidence estimation is the task of predicting the
quality of a system prediction without knowledge
of the expected output. It is an important step
in many Natural Language Processing applications
(Gandrabur et al., 2006). In Machine Translation
(MT), this task has recently gained interest (Blatz
et al., 2004; Specia et al., 2010b; Soricut and Echi-
habi, 2010; Bach et al., 2011). Indeed, professional
translators are more and more requested to post-edit
the outputs of a MT system rather than to produce
a translation from scratch. Knowing in advance the
segments they should focus on would be very help-
ful (Specia et al., 2010a). Confidence estimation is
also of great interest for developers of MT system, as
it provides them with a way to analyze the systems
output and to better understand the main causes of
errors.

Even if several studies have tackled the problem
of confidence estimation in machine translation, un-
til now, very few datasets were publicly available and
comparing the proposed methods was difficult, if not
impossible. To address this issue, WMT’12 orga-
nizers proposed a shared task aiming at predict the

∗This work was conducted during an internship at LIMSI–
CNRS

quality of a translation and provided the associated
datasets, baselines and metrics.

This paper describes our work with the data of the
WMT’12 Confidence Estimation shared task. Our
contribution is twofold: i) we first present an analysis
of the provided data that will stress the difficulty of
the task and motivate the choice of our approach; ii)
we show how using non-linear models, namely ran-
dom forests, with a simple and limited features set
succeed in modeling the complex decisions require
to assess translation quality and achieve the second
best results of the shared task.

The rest of this paper is organized as follows: Sec-
tion 2 summarizes our analysis of the data; in Sec-
tion 3, we describe our learning method; our main
results are finally reported in Section 4.

2 Data Analysis

In this section, we quickly analyze the data dis-
tributed in the context of the WMT’12 Confidence
Estimation Shared Task in order to evaluate the diffi-
culty of the task and to find out what predictors shall
be used. We will first describe the datasets, then the
features usually considered in confidence estimation
tasks and finally summarize our analyses.

2.1 Datasets

The datasets used in our experiments were released
for the WMT’12 Quality Estimation Task. All the
data provided in this shared task are based on the
test set of WMT’09 and WMT’10 translation tasks.

The training set is made of 1, 832 English sen-
tences and their Spanish translations as computed by
a standard Moses system. Each sentence pair is ac-
companied by an estimate of its translation quality.
This score is the average of ordinal grades assigned
by three human evaluators. The human grades are in
the range 1 to 5, the latter standing for a very good
translation that hardly requires post-editing, while
the former stands for a bad translation that does
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not deserve to be edited, meaning that the machine
output useless and that translation should better be
produced from scratch. The test contains 422 sen-
tence pairs, the quality of which has to be predicted.

The training set also contains additional material,
namely two references (the reference originally given
by WMT and a human post-edited one), which will
allow us to better interpret our results. No references
were provided for the test set.

2.2 Features

Several works have studied the problem of confidence
estimation (Blatz et al., 2004; Specia et al., 2010b) or
related problems such as predicting readability (Ka-
nungo and Orr, 2009) or developing automated essay
scoring systems (Burstein et al., 1998). They all use
the same basic features:

IBM 1 score measures the quality of the “associa-
tion” of the source and the target sentence using
bag-of-word translation models;

Language model score accounts for the “flu-
ency”, “grammaticality” and “plausibility” of a
target sentence;

Simple surface features like the sentence length,
the number of out-of-vocabulary words or words
that are not aligned. These features are used to
account for the difficulty of the translation task.

More elaborated features, derived, for instance,
from parse trees or dependencies analysis have also
been used in past studies. However they are far more
expensive to compute and rely on the existence of ex-
ternal resources, which may be problematic for some
languages. That is why we only considered a re-
stricted number of basic features in this work1. An-
other reason for considering such a small set of fea-
tures is the relatively small size of the training set: in
our preliminary experiments, considering more fea-
tures, especially lexicalized features that would be of
great interest for failure analysis, always resulted in
overfitting.

2.3 Data Analysis

The distribution of the human scores on the training
set is displayed in Figure 1. Surprisingly enough,
the baseline translation system used to generate the
data seems to be pretty good: 73% of the sentences
have a score higher than 3 on a 1 to 5 scale. It
also appears that most scores are very close: more
than half of them are located around the mean. As
a consequence, it seems that distinguishing between
them will require to model subtle nuances.

1The complete list of features is given in Appendix A.

Figure 1: Distribution of the human scores on the train
set. (HS∗ stands for Human Scores)

Figure 2 plots the distribution of quality scores
as a function of the Spanish-to-English IBM 1 score
and of the probability of the target sentence. These
two scores were computed with the same models that
were used to train the MT systems that have gener-
ated the training data. It appears that even if the
examples are clustered by their quality, these clusters
overlap and the frontiers between them are fuzzy and
complex. Similar observations were made for others
features.

Figure 2: Quality scores as a function of the Spanish-to-
English IBM 1 score and of the probability of the target
sentence (HS∗ stands for Human Scores)

These observations prove that a predictor of the
translation quality has to capture complex interac-
tion patterns in the training data. Standard results
from machine learning show that such structures can
be described either by a linear model using a large
number of features or by a non-linear model using a
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(potentially) smaller set of features. As only a small
number of training examples is available, we decided
to focus on non-linear models in this work.

3 Inferring quality scores

Predicting the quality scores can naturally be cast
as a standard regression task, as the reference scores
used in the evaluation are numerical (real) values.
Regression is the approach adopted in most works
on confidence estimation for MT (Albrecht and Hwa,
2007; Specia et al., 2010b). A simpler way to tackle
the problem would be to recast it as binary classi-
fication task aiming at distinguishing “good” trans-
lations from “bad” ones (Blatz et al., 2004; Quirk,
2004). It is also possible, as shown by (Soricut and
Echihabi, 2010), to use ranking approaches. How-
ever, because the shared task is evaluated by com-
paring the actual value of the predictions with the
human scores, using these last two frameworks is not
possible.

In our experiments, following the observations re-
ported in the previous section, we use two well-
known non-linear regression methods: polynomial
regression and random forests. We also consider lin-
ear regression as a baseline. We will now quickly
describe these three methods.

Linear regression (Hastie et al., 2003) is a simple
model in which the prediction is defined by a linear
combination of the feature vector x: ŷ = β0 + x>β,
where β0 and β are the parameters to estimate.
These parameters are usually learned by minimiz-
ing the sum of squared deviations on the training
set, which is an easy optimization problem with a
close-form solution.

Polynomial regression (Hastie et al., 2003) is a
straightforward generalization of linear regression in
which the relationship between the features and the
label is modeled as a n-th order polynomial. By care-
fully extending the feature vector, the model can be
reduced to a linear regression model and trained in
the same way.

Random forest regressor (Breiman, 2001) is an en-
semble method that learns many regression trees and
predicts an aggregation of their result. In contrast
with standard decision tree, in which each node is
split using the best split among all features, in a ran-
dom forest the split is chosen randomly. In spite of
this simple and counter-intuitive learning strategy,
random forests have proven to be very good “out-
of-the-box” learners and have achieved state-of-the-
art performance in many tasks, demonstrating both
their robustness to overfitting and their ability to
take into account complex interactions between fea-
tures.

In our experiments, we use the implementation
provided by scikit-learn (Pedregosa et al., 2011).
Hyper-parameters of the random forest (the num-
ber of trees and the stopping criterion) were chosen
by 10-fold cross-validation.

4 Experimental Setting

4.1 Features

In all our experiments, we considered a simple de-
scription of the translation hypotheses relying on
31 features. The complete list of features is given
in Appendix A. All these features have already been
used in works related to ours and are simple fea-
tures that can be easily computed using only a lim-
ited number of external resources.

A key finding in our preliminary experiments is
the need to re-scale the features by dividing their
value by the length of the corresponding sentence
(e.g. the language model score of a source sentence
will be divided by its length of the source sentence,
and the one of a target sentence will be done by its
length of the target sentence). This rescaling makes
features that depend on the sentence length (like the
LM score) comparable and results in a large improve-
ment of the performance of the associated feature.

4.2 Metrics

The two metrics used to evaluate prediction perfor-
mance are the standard metrics for regression: Mean
Absolute Error (MAE) and Root Mean Squared Er-
ror (RMSE) defined by:

MAE =
1

n

n∑
i=1

|ŷi − yi|

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)
2

where n is the number of examples, yi and ŷi the true
label and predicted label of the ith example. MAE
can be understood as the averaged error made in
predicting the quality of a translation. As it is easy
to interpret, we will use it to analyze our results.
RMSE scores are reported to facilitate comparison
with other submissions to the shared task.

All the reported scores have been computed using
the tools provided by the Quality Estimation task
organizers2.

2https://github.com/lspecia/QualityEstimation
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4.3 Results

Table 1 details the results achieved by the different
methods introduced in the previous section. All of
them achieve similar performances: their MAE is be-
tween 0.64 and 0.66, which is a pretty good result as
the best reported MAE in the shared task is 0.61.
Our best model is the second-best when submissions
are ranked according to their MAE.

Even if their results are very close (significance of
the score differences will be investigated in the fol-
lowing subsection), all non-linear models outperform
a simple linear regression, which corroborates the ob-
servations made in Section 2.

For the polynomial regression, we tried different
polynomial orders in order to achieve an optimal
setting. Even if this method achieves the best re-
sults when the model is selected on the test set, it is
not usable in practice: when we tried to select the
polynomial degree by cross-validation, the regressors
systematically overfitted due to the reduction of the
number of examples. That is why random forests,
which do not suffer from overfitting and can learn
good predictor even when features outnumber exam-
ples, is our method of choice.

4.4 Interpretation

To get a better understanding of the task difficulty
and to make interpretation of the error rate easier,
we train another regressor using an “oracle” feature:
the hTER score. It is clear that this feature can only
be computed on the training set and that considering
it does not make much sense in a “real-life” scenario.
However, this feature is supposed to be highly rele-
vant to the quality prediction task and should there-
fore result in a “large” reduction of the error rates.
Quantifying what “large” means in this context will
allow us to analyze the results presented in Table 1.

Training a random forest with this additional fea-
ture on 1, 400 examples of the train set chosen ran-
domly reduces the MAE evaluated on the 432 re-
maining examples by 0.10 and the RMSE by 0.12.
This small reduction stresses how difficult the task
is. Comparatively, the 0.02 reduction achieved by
replacing a linear model with a non-linear model
should therefore be considered noteworthy. Further
investigations are required to find out whether the
difficulty of the task results from the way human
scores are collected (low inter-annotators agreement,
bias in the gathering of the collection, ...) or from
the impossibility to solve the task using only surface
features.

Another important question in the analysis of our
results concerns the usability of our approach: an
error of 0.6 seems large on a 1 to 5 scale and may

question the interest of our approach. To allow a fine-
grained analysis, we report the correlation between
the predicted score and the human score (Figure 3)
and the distribution of the absolute error (Figure 4).
These figures show that the actual error is often quite
small: for more than 45% of the examples, the error
is smaller than 0.5 and for 23% it is smaller than 0.2.
Figure 3 also shows that the correlation between our
predictions and the true labels is “substantial” ac-
cording to the established guidelines of (Landis and
Koch, 1977) (the Pearson correlation coefficient is
greater than 0.6). The difference between the mean
of the two distributions is however quite large. Cen-
tering the predictions on the mean of the true label
may improves the MAE. This observation also sug-
gests that we should try to design evaluation metrics
that do not rely on the actual predicted values.

Figure 3: Correlation between our predictions and the
true label (HS∗ stands for Human Scores)

5 Conclusion

In this work, we have presented, a simple, yet effi-
cient, method to predict the quality of a translation.
Using simple features and a non-linear model, our
approach has achieved results close to the best sub-
mission to the Confidence Estimation shared task,
which supports the results of our analysis of the data.
In our future work, we aim at considering more fea-
tures, avoiding overfitting thanks to features selec-
tion methods.

Even if a fine-grained analysis of our results shows
the interest and usefulness of our approach, more re-
mains to be done to develop reliable confidence esti-
mation methods. Our results also highlight the need
to continue gathering high-quality resources to train
and investigate confidence estimation systems: even
when considering only very few features, our systems
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Train Test
Methods parameters MAE RMSE MAE RMSE

linear regression — 0.58 0.71 0.66 0.82

polynomial regression
n=2 0.55 0.68 0.64 0.79
n=3 0.54 0.67 0.64 0.79
n=4 0.54 0.67 0.65 0.85

random forest cross-validated 0.39 0.46 0.64 0.80

Table 1: Prediction performance achieved by different regressors

Figure 4: Distribution of the absolute error (|yi − ŷi|) of
our predictions

were prone to overfitting. Developing more elabo-
rated systems will therefore only be possible if more
training resource is available.
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A Features List

Here is the whole list of the 31 features we used in
our experiments († has been used in the baseline of
the shared task organizer):

• † Number of tokens in the source sentence

• † Number of tokens in the target sentence

• † Average token length in source sentence

• English-Spanish IBM 1 scores

• Spanish-English IBM 1 scores

• English-Spanish IBM 1 scores divided by the
length of source sentence

• English-Spanish IBM 1 scores divided by the
length of target sentence

• Spanish-English IBM 1 scores divided by the
length of source sentence

• Spanish-English IBM 1 scores divided by the
length of target sentence

• Number of out-of-vocabulary in source sentence

• Number of out-of-vocabulary in target sentence

• Out-of-vocabulary rates in source sentence

• Out-of-vocabulary rates in target sentence

• log10(LM probability of source sentence)

• log10(LM probability of target sentence)

• log10(LM probability of source sentence) divided
by the length of source sentence

• log10(LM probability of target sentence) divided
by the length of target sentence

• Ratio of functions words in source sentence

• Ratio of functions words in target sentence

• † Number of occurrences of the target word
within the target hypothesis (averaged for all
words in the hypothesis - type/token ratio)

• † Average number of translations per source
word in the sentence (as given by IBM 1 table
thresholded so that prob(t|s) > 0.2)

• † Average number of translations per source
word in the sentence (as given by IBM 1 table
thresholded so that prob(t|s) > 0.01) weighted
by the inverse frequency of each word in the
source corpus

• † Percentage of unigrams in quartile 1 of fre-
quency (lower frequency words) in a corpus of
the source language (SMT training corpus)

• † Percentage of unigrams in quartile 4 of fre-
quency (higher frequency words) in a corpus of
the source sentence

• † Percentage of bigrams in quartile 1 of fre-
quency of source words in a corpus of the source
language

• † Percentage of bigrams in quartile 4 of fre-
quency of source words in a corpus of the source
language

• † Percentage of trigrams in quartile 1 of fre-
quency of source words in a corpus of the source
language

• † Percentage of trigrams in quartile 4 of fre-
quency of source words in a corpus of the source
language

• † Percentage of unigrams in the source sentence
seen in a corpus (SMT training corpus)

• † Number of punctuation marks in the source
sentence

• † Number of punctuation marks in the target
sentence
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Abstract

This paper presents techniques for reference-
free, automatic prediction of Machine Trans-
lation output quality at both sentence- and
document-level. In addition to helping with
document-level quality estimation, sentence-
level predictions are used for system selection,
improving the quality of the output transla-
tions. We present three system selection tech-
niques and perform evaluations that quantify
the gains across multiple domains and lan-
guage pairs.

1 Introduction

Aside from improving the performance of core-
translation models, there additionally exist two
orthogonal approaches via which fully-automatic
translations can achieve increased acceptance and
better integration in real-world use cases. These two
approaches are: improved translation accuracy via
system combination (Rosti et al., 2008; Karakos et
al., 2008; Hildebrand and Vogel, 2008), and auto-
matic quality-estimation techniques used as an ad-
ditional layer on top of MT systems, which present
the user only with translations that are predicted as
being accurate (Soricut and Echihabi, 2010; Specia,
2011).

In this paper, we describe new contributions to
both these approaches. First, we present a novel
and superior technique for performing quality esti-
mation at document level. We achieve this by chang-

∗Research was completed before the author started in his
current role at Google Inc. The opinions stated are his own and
not of Google Inc.

ing the granularity of the prediction mechanism
from document-level (Soricut and Echihabi, 2010)
to sentence-level, and predicting BLEU scores via
directly modeling the sufficient statistics for BLEU
computation. A document-level score is then recre-
ated based on the predicted sentence-level sufficient
statistics. A second contribution is related to system
combination (or, to be more precise, system selec-
tion). This is an intended side-effect of the granular-
ity change: since the sentence-level statistics allow
us to make quality predictions at sentence level, we
can use these predictions to perform system com-
bination by selecting among various sentence-level
translations produced by different MT systems. That
is, instead of presenting the user with a document
with sentences translated entirely by a single system,
we can present documents for which, say, 60% of
the sentences were translated by system A, and 40%
were translated by system B. We contribute a novel
set of features and several techniques for choos-
ing between competing machine translation outputs.
The evaluation results show better output quality,
across multiple domains and language pairs.

2 Related Work

Several approaches to reference-free automatic MT
quality assessment have been proposed, using classi-
fication (Kulesza and Shieber, 2004), regression (Al-
brecht and Hwa, 2007), and ranking (Ye et al., 2007;
Duh, 2008). The focus of these approaches is on sys-
tem performance evaluation, as they use a constant
test set and measure various MT systems against it.

In contrast, we are interested in evaluating the
quality of the translations themselves, while treat-
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ing the MT components as constants. In this re-
spect, the goal is more related to the area of con-
fidence estimation for MT (Blatz et al., 2004). Con-
fidence estimation is usually concerned with iden-
tifying words/phrases for which one can be confi-
dent in the quality of the translation. A sentence-
level approach to quality estimation is taken on the
classification-based work of Gamon et al. (2005) and
regression-based work of Specia et al. (2009).

Our approach to quality estimation focuses on
both sentence-level and document-level estimation.
We improve on the quality estimation technique that
is proposed for document-level estimation in (Sori-
cut and Echihabi, 2010). Furthermore, we exploit
the availability of multiple translation hypotheses to
perform system combination. Our system combina-
tion methods are based on generic Machine Learn-
ing techniques, applied on 1-best output strings. In
contrast, most of the approaches to MT system com-
bination combine N-best lists from multiple MT sys-
tems via confusion network decoding (Karakos et
al., 2008; Rosti et al., 2008). The closest system
combination approach to our work is (Hildebrand
and Vogel, 2008), where an ensemble of hypothe-
ses is generated by combining N-best lists from all
the participating systems, and a log-linear model is
trained to select the best translation from all the pos-
sible candidates.

In our work, we show that it is possible to gain
significant translation quality by taking advantage
of only two participating systems. This makes the
system-combination proposition much more palat-
able in real production deployment scenarios for
Machine Translation, as opposed to pure research
scenarios as the ones used in the previous NIST and
DARPA/GALE MT efforts (Olive et al., 2011). As
our evaluations show, the two participating systems
can be at very similar performance levels, and yet a
system-selection procedure using Machine Learning
techniques can achieve significant translation im-
provements in quality. In addition, in a scenario
where quality estimation needs to happen as a re-
quirement for MT integration in large applications,
having two translation systems producing transla-
tions for the same inputs is part of the deployment
set-up (Soricut and Echihabi, 2010). The improve-
ment in overall translation quality comes in these
cases at near-zero cost.

3 Sentence-level Quality Predictions

The requirement for document-level quality esti-
mation comes from the need to present a fully-
automated translation solution, in which translated
documents are either good enough to be directly
published (or otherwise must undergo, say, a human-
driven post-processing pipeline). In the proposal of
Soricut and Echihabi (2010), regression models pre-
dict BLEU-like scores for each document, based on
document-level features.

However, even if the predicted value is at
document-level, the actual feature computation and
model prediction does not necessarily need to hap-
pen at document-level. It is one of the goals of this
work to determine if the models of prediction work
better at a coarser granularity (such as document
level) or finer granularity (such as sentence-level).

We describe here a mechanism for predicting
BLEU scores at sentence level, and then combin-
ing these scores into document-level scores. To
make explicit our prediction mechanism, we present
here in detail the formula for computing BLEU
scores (Papineni et al., 2002). First, n-gram preci-
sion scores Pn are computed as follows:

Pn =

∑
C∈Candidates

∑
n-gram∈C Countclip(n-gram)∑

C∈Candidates

∑
n-gram∈C Count(n-gram)

(1)
where Countclip(n-gram) is the maximum number
of n-grams co-occurring in a candidate translation
and a reference translation, and Count(n-gram) is
the number of n-grams in the candidate translation.
To prevent very short translations that try to max-
imize their precision scores, BLEU adds a brevity
penalty, BP, to the formula:

BP =

{
1 if |c| > |r|
e(1−|r|/|c|) if |c| ≤ |r| (2)

where |c| is the length of the candidate translation
and |r| is the length of the reference translation. The
BLEU formula is then written as follows:

BLEU = BP · exp(
N∑

n=1

wn log pn) (3)

where the weighting factors wn are set to 1/N , for
all 1 ≤ n ≤ 4.
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3.1 The learning method

The results we report in this section are ob-
tained using the freely-available Weka engine. 1

For both sentence-level and document-level qual-
ity prediction, we report all the results using
Weka implementation of M5P regression trees
(weka.classifiers.trees.M5P).

We use the components of the BLEU score (Equa-
tions 1 and 2) to train fine-granularity M5P models
using our set of features (Section 3.2), for a total of
five individual regression-tree models (four for the
sentence-level precision scores Pn, 1 ≤ n ≤ 4 fac-
tors, and one for the BP factor). The numbers pro-
duced individually by our models are then combined
using the BLEU equation 3 into a sentence-level
BLEU score. The sentence-level predicted BLEU
scores play an important role in our system combi-
nation mechanism (see Section 4).

At the same time, we sum up the sufficient
statistics for the sentence-level precision scores Pn

(Equation 1) over all the sentences in a document,
thus obtaining document-level precision scores. A
document-level BP score (Equation 2) is similarly
obtained by summing over all sentences. Finally,
we plug the predicted document-level Pn and BP
scores in the BLEU formula (Equation 3) and arrive
at a document-level predicted BLEU score.

3.2 The features

Most of the features we use in this work are not
internal features of the MT system, but rather de-
rived starting from input/output strings. Therefore,
they can be applied for a large variety of MT ap-
proaches, from statistical-based to rule-based ap-
proaches. The features we use can be divided
into text-based, language-model–based, pseudo-
reference–based, example-based, and training-data–
based feature types (these latter features assume that
the engine is statistical and one has access to the
training data). These feature types can be computed
both on the source-side (MT input) and on the target-
side (MT output).

Text-based features
These features compute the length of the input in
terms of (tokenized) number of words. The source-

1Weka software at http://www.cs.waikato.ac.nz/ml/weka/.

side text feature is computed on the input string,
while the target-side text feature is computed to the
output translation string. These two features are use-
ful in modeling the relationship between the number
of words in the input and output and the expected
BLEU score for these sizes.

Language-model–based features
These features are among the ones that were first
proposed as possible differentiators between good
and bad translations (Gamon et al., 2005). They are
a measure of how likely a collection of strings is un-
der a language model trained on monolingual data
(either on the source or target side).

The language-model–based feature values we use
here are computed as perplexity numbers using a 5-
gram language model trained on the MT training
set. This can be achieved, for instance, by using
the publicly-available SRILM toolkit 2. These two
features are useful in modeling the relationship be-
tween the likelihood of a string (or set of strings)
under an n-gram language model and the expected
BLEU score for that input/output pair.

Pseudo-reference–based features
Previous work has shown that, in the ab-
sence of human-produced references, automatically-
produced ones are still helpful in differentiating be-
tween good and bad translations (Albrecht and Hwa,
2008). When computed on the target side, this
type of features requires one (or possibly more)
secondary MT system(s), used to generate transla-
tions starting from the same input. These pseudo-
references are useful in gauging translation conver-
gence, using BLEU scores as feature values. In in-
tuitive terms, their usefulness can be summarized as
follows: “if system X produced a translation A and
system Y produced a translation B starting from the
same input, and A and B are similar, then A is prob-
ably a good translation”.

An important property here is that systems X and
Y need to be as different as possible from each other.
This property ensures that a convergence on sim-
ilar translations is not just an artifact of the sys-
tems sharing the same translation model/resources,
but a true indication that the translations converge.
The secondary systems we use in this work are

2Available at www-speech.sri.com/projects/srilm.
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still phrase-based, but equipped with linguistically-
oriented modules similar with the ones proposed
in (Collins et al., 2005; Xu et al., 2009). Our exper-
iments indicate that this single feature is one of the
most powerful ones in terms of its predictive power.

Example-based features
For example-based features, we use a develop-
ment set of parallel sentences, for which we pro-
duce translations and compute sentence-level BLEU
scores. We set aside the top BLEU scoring sen-
tences and bottom BLEU scoring sentences. These
sets are used as positive examples (with better-than-
average BLEU) and negative examples (with worse-
than-average BLEU), respectively. We define a
positive-example–based feature function as a geo-
metric mean of 1-to-4–gram precision scores (i.e.,
the BLEU equation 3 with the BP term set to 1) be-
tween a string (on either source or target side) and
the positive examples used as references. That is,
we compute precision scores against all the positive
examples at the same time, similar with how mul-
tiple references are used to increase the precision
of the BLEU metric. (The negative-example–based
features are defined in an analogous way.) The set of
positive and negative examples is a fixed set that is
used in the same manner both at training-time (to
compute the example-based feature values for the
training examples) and at test-time (to compute the
example-based feature values for the test examples).

The intuition behind these features can be sum-
marized as follows: “if system X translated A
well/poorly, and A and B are similar, then system X
probably translates B well/poorly”. The total num-
ber of features on this type is 4 (2 for positive ex-
amples against source/target strings, 2 for negative
examples against source/target strings).

Training-data–based features
If the system for which we make the predictions is
trained on a parallel corpus, the data in this corpus
can be exploited towards assessing translation qual-
ity (Specia et al., 2009; Soricut and Echihabi, 2010;
Specia, 2011). In our context, the documents that
make up this corpus can be used in a fashion simi-
lar with the positive examples. One type of training-
data–based features operates by computing the num-
ber of out-of-vocabulary (OOV) tokens with respect

to the training data (on source side).
A more powerful type of training-data–based fea-

tures operates by computing a geometric mean of 1-
to-4–gram precision score between a string (source
or target side) and the training-data strings used as
references. Intuitively, these features assess the cov-
erage of the candidate strings with respect to the
training data: “if the n-grams of input string A are
well covered by the source-side of the training data,
then the translation of A is probably good” (on the
source side); “if the n-grams in the output translation
B are well covered by the target-side of the parallel
training data, then B is probably a good translation”
(on the target side). The total number of features on
this type is 3 (1 for the OOV counts, and 2 for the
source/target-side n-gram coverage).

Given the described 12 feature functions, the
training for our five M5P prediction models is done
using the feature-function values at sentence-level,
and associating these values with reference labels
that are automatically-produced from parallel-text
using the sufficient-statistics of the BLEU score
(Equations 1 and 2).

3.3 Metrics for Quality Prediction
Performance

The metrics we use here are designed to answer the
following question: how well can we automatically
separate better translations from worse translations
(in the absence of human-produced references)?

A first metric we use is Ranking Accuracy (rAcc),
see (Gunawardana and Shani, 2009; Soricut and
Echihabi, 2010). In the general case, it measures
how well N elements are assigned into n quantiles
as a result of a ranking procedure. The formula is:

rAcc[n] = Avgn
i=1

TPi
N
n

=
1

N
×

n∑
i=1

TPi

where TPi (True-Positivei) is the number of
correctly-assigned documents in quantile i. Intu-
itively, this formula is an average of the ratio of ele-
ments correctly assigned in each quantile. For sim-
plicity, we present here results using only 2 quan-
tiles (n = 2), which effectively makes the rAcc[2]
metric equivalent with binary classification accuracy
when the two sets are required to have equal size.
That is, we measure the accuracy of placing the 50%
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Training BLEU Ranking rAcc[2] DeltaAvg[2]
Size Sys1 Sys2 Test Size Doc Sent Doc Sent

WMT09 Hungarian-English 26 Mw 26.9 26.9 510 Kw 88% 89% +8.3 +8.4
Travel English-French 30 Mw 32.3 34.6 282 Kw 77% 80% +9.1 +10.1

Travel English-German 44 Mw 40.6 43.4 186 Kw 74% 79% +9.8 +11.7
HiTech English-French 0.4 Mw 44.1 44.7 69 Kw 75% 77% +4.4 +6.0
HiTech English-Korean 16 Mw 37.4 36.1 80 Kw 78% 79% +9.3 +10.0

Table 1: MT system performance and ranking performance using BLEU prediction at Doc- and Sent-level.

best-translated documents (as measured by BLEU
against human reference) in the top 50% of ranked
documents. Note that a random assignment gives a
performance lower bound of 50% accuracy.

A second metric we use here is the DeltaAvg met-
ric (Callison-Burch et al., 2012). The goal of the
DeltaAvg metric is to measure how valuable a pro-
posed ranking (hypothesis) is from the perspective
of an extrinsic metric associated with the test en-
tries (in our case, the BLEU scores). The follow-
ing notations are used: for a given entry sentence s,
V (s) represents the function that associates an ex-
trinsic value to that entry; we extend this notation
to a set S, with V (S) representing the average of
all V (s), s ∈ S. Intuitively, V (S) is a quantitative
measure of the “quality” of the set S, as induced by
the extrinsic values associated with the entries in S.
For a set of ranked entries S and a parameter n, we
denote by S1 the first quantile of set S (the highest-
ranked entries), S2 the second quantile, and so on,
for n quantiles of equal sizes.3 We also use the no-
tation Si,j =

⋃j
k=i Sk. Using these notations, the

metric is defined as:

DeltaAvgV [n] =

∑n−1
k=1 V (S1,k)

n− 1
− V (S) (4)

When the valuation function V is clear from the con-
text, we write DeltaAvg[n] for DeltaAvgV [n]. The
parameter n represents the number of quantiles we
want to split the set S into. For simplicity, we con-
sider there only the case for n = 2, which gives
DeltaAvg[2] = V (S1) − V (S). This measures the
difference between the quality of the top quantile
(top half) S1 and the overall quality (represented by

3If the size |S| is not divisible by n, then the last quantile
Sn is assumed to contain the rest of the entries.

V (S)). For the results presented here, the valuation
function V is taken to be the BLEU function (Equa-
tion 3).

3.4 Experimental Results

We measure the impact in ranking accuracy using a
variety of European and Asian language pairs, using
parallel data from various domains. One domain we
use is the publicly available WMT09 data (Koehn
and Haddow, 2009), a combination of European par-
liament and news data. Another domain, called
Travel, consists of user-generated reviews and de-
scriptions; and a third domain, called HiTech, con-
sists of parallel data from customer support for the
high-tech industry. Using these parallel data sets,
we train statistical phrase-based MT system similar
to (Och and Ney, 2004) as primary systems (Sys1).
As secondary systems (Sys2) we use phrase-based
systems equipped with linguistically-oriented mod-
ules similar with the ones proposed in (Collins et
al., 2005; Xu et al., 2009). Table 1 lists the size of
the parallel training data on which the MT systems
were trained in the first column, and BLEU scores
for the primary and secondary systems on held-out
1000-sentence test sets in the next two columns.

The training material for the regression-tree mod-
els consists of 1000-document held-out sets. (For
parallel data for which we do not have document
boundaries, we simply simulate document bound-
aries after every 10 consecutive sentences.) Simi-
larly, the Ranking test sets we use consist of 1000-
document held-out sets (see column 4 in Table 1 for
size). In the last four columns of Table 1, we show
the results for ranking the translations produced by
the primary MT system (Sys1). We measure the
ranking performance for the two granularity cases.
The one labeled as “Doc” is an implementation of
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the work described in (Soricut and Echihabi, 2010),
where the BLEU prediction is done using document-
level feature values and models. The one labeled
as “Sent” is the novel one proposed in this paper,
where the BLEU prediction is done using sentence-
level feature values and models, which are then ag-
gregated into document-level BLEU scores.

Both rAcc[2] and DeltaAvg[2] numbers support
the choice of making document-level BLEU pre-
diction at a finer, sentence-based granularity level.
For Travel English-French, for instance, the accu-
racy of the ranking improves from 77% to 80%. To
put some intuition behind these numbers, it means
that 4 out of every 5 sentences that the ranker places
in the top 50% do belong there. At the same time,
the DeltaAvg[2] numbers for Travel English-French
indicate that the translation quality of the top 50%
of the 1000 Ranking Test documents exceeds by
10.1 BLEU points the overall quality of the trans-
lations (up from 9.1 BLEU points for the document-
level prediction). This large gap in the BLEU score
of the top 50% ranked sentences and the overall-
corpus BLEU indicates that these top-ranked trans-
lations are indeed of much better quality (closer to
the human-produced references). The same large
numbers are measured on the WMT09 data for
Hungarian-English. This is a set for which it is hard
to obtain significant improvements via core-model
translation improvements. Our quality-estimation
method allows one to automatically identify the top
50% of the sentences with 89% accuracy. This set of
top 50% sentences also has an overall BLEU score
of 35.3, which is better by +8.4 BLEU-points com-
pared to the overall BLEU score of 26.9 (we only
show the base overall BLEU score and the BLEU-
point gain in Table 2 to avoid displaying redundant
information).

4 System Combination at Sentence Level

Since we produce two translations for every input
sentence for the purpose of quality estimation, we
exploit the availability of these competing hypothe-
ses in order to choose the best one. In this section
we describe three system combination schemes that
choose between the output of the primary and sec-
ondary MT systems.

4.1 System Combination using Regression
This combination scheme makes use of the
regression-based sentence-level BLEU prediction
mechanism described in Section 3. It requires that
we also train and use an additional BLEU predic-
tion mechanism for which the secondary MT sys-
tem is now considered primary, and vice-versa. As a
consequence, we can predict a sentence-level BLEU
score for each of the two competing hypotheses. We
then simply choose the hypothesis with the highest
predicted BLEU score.

4.2 System Combination using Ranking
This approach is based on ranking the candidate
translations and then selecting the highest-ranked
translation as the final output. To this end we use
SVM-rank (Joachims, 1999), a ranking algorithm
built on SVM. We use SVM-rank with a linear ker-
nel and the same feature set as the regression-based
method (we make the observation here that only the
target-based features have discriminative power in
this context).

4.3 System Combination using Classification
In this approach, we model the problem of select-
ing the best output from the two candidate transla-
tions into a binary classification problem. We use the
same feature set as before for each candidate transla-
tion (again, only the target-based features have dis-
criminative power in this context).

The final feature vectors are obtained by subtract-
ing the values of the primary-system feature vec-
tor from the values of the secondary-system feature
vector. The binary classifier is trained to predict
”0” if the primary-system is better, and ”1” if the
secondary-system is better.

4.4 Experimental Results
In Table 2, we summarize the results for the three
system combination techniques discussed before
across our domains (WMT09, Travel, and Hi-Tech).
To get an upper bound on the performance of these
system combination techniques, we also compute
an oracle function which selects the translation
with highest BLEU score computed against human-
produced references.

The results in Table 2 indicate that the BLEU
improvements obtained by our system combina-
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BLEU Oracle Regression Rank Classify
Sys1 Sys2

WMT09 Hungarian-English 26.9 26.9 30.7(+3.8) 29.0(+2.1) 29.0(+2.1) 28.9(+2.0)
Travel English-French 32.3 34.6 38.7(+3.9) 36.2(+1.6) 36.0(+1.4) 35.7(+1.1)

Travel English-German 40.6 43.4 47.2(+3.8) 44.5(+1.1) 44.0(+0.6) 44.9(+1.5)
HiTech English-French 44.1 44.7 49.8(+5.1) 46.1(+1.4) 46.3(+1.7) 45.3(+0.6)
HiTech English-Korean 37.4 36.1 42.2(+4.8) 39.4(+2.0) 39.1(+1.7) 38.8(+1.4)

Table 2: BLEU scores for the proposed system combination techniques across domains and language pairs.

Travel Eng-Fra Hi-Tech Eng-Fra
Sys1 Sys2 KL Sys1 Sy2 KL

BLEU score 32.3 34.6 - 44.1 44.7 -
Oracle distr. 34.9% 65.1% 0.00 34.5% 65.5% 0.00
Regression distr. 31.2% 68.9% 0.68 32.3% 67.7% 0.11
Rank distr. 43.4% 56.6% 1.92 47.0% 53.0% 3.31
Classify distr. 47.4% 52.7% 3.78 63.9% 36.1% 17.88

Table 3: Distribution of sentences selected from the participating system for Eng-Fra, across domains (Travel and
Hi-Tech).

tion techniques are significant. For instance,
both the Regression-based system combination and
the Ranking-based system combination achieve a
BLEU score of 29.0 on the WMT09 Hungarian-
English test set, an increase of +2.1 BLEU points.
In the case of Travel English-French, an increase of
+1.6 BLEU points is obtained by the Regression-
based system combination, in spite of the fact that
one of the systems is measured to be 2.3 BLEU
points lower in translation accuracy. Increases in the
range of +1.5-2.0 BLEU points are obtained across
all the experimental conditions that we tried: three
different domains, various language pairs (both in
and out of English), and various training data sizes
(from 0.4Mw to 40Mw).

Since our system-combination methods chose one
system translation over another system translation,
we can also measure the distribution of choices
made between the two participating systems. These
bimodal distributions can help us gauge the perfor-
mance of various methods, when compared against
the BLEU Oracle distribution.

In Table 3, we report the percentages of sentences
selected from each system in the oracle combina-
tion and each of the described system combination
methods. We also report the Kullback-Liebler di-

vergence (KL) between the BLEU Oracle distribu-
tion and the distribution induced by each of the sys-
tem combination methods. The results indicate that,
for both English-French cases that we considered
(in the Travel and HiTech domains), the choice dis-
tribution of the Regression-based system combina-
tion method is much closer to the oracle distribution
(KL of 0.68 and 0.11, respectively), compared to the
other two methods. Note that this does not neces-
sarily correlate with the evaluation based on over-
all BLEU score of the system-combination meth-
ods (Table 2). For instance, for HiTech English-
French the best BLEU improvement is obtained by
the Rank-based method with +1.7 BLEU points, but
the KL divergence score of 3.31 is higher than the
one for the Regression-based method (KL score of
0.11). Nevertheless, the choice distributions are an
important factor in judging the performance of a
given system selection method.

5 Conclusions

Document-level quality estimation is an important
component for building fully-automated translation
solutions where the translated documents are di-
rectly published, without the need for human inter-
vention. Such approaches are the only possible solu-
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tion to mitigate the imperfection of current MT tech-
nology and the need to translate large volumes of
data on a continuous basis.

We show in this paper that sentence-level predic-
tions, when aggregated to document-level predic-
tions, outperform previously-proposed document-
level quality estimation algorithms. In addition to
that, these finer-granularity, sentence-level predic-
tions can be used as part of a system selection
scheme. The three alternative system selection tech-
niques we describe here are intuitive, computation-
ally cheap, and bring significant BLEU gains across
multiple domains and language pairs. The finding
that the regression-based system selection technique
performs as well (or sometimes better) compared to
the discriminative methods fits well with the overall
theme of using two systems for both improved qual-
ity estimation and improved MT performance.
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Abstract

We address two challenges for automatic ma-
chine translation evaluation: a) avoiding the
use of reference translations, and b) focusing
on adequacy estimation. From an economic
perspective, getting rid of costly hand-crafted
reference translations (a) permits to alleviate
the main bottleneck in MT evaluation. From
a system evaluation perspective, pushing se-
mantics into MT (b) is a necessity in order
to complement the shallow methods currently
used overcoming their limitations. Casting
the problem as a cross-lingual textual entail-
ment application, we experiment with differ-
ent benchmarks and evaluation settings. Our
method shows high correlation with human
judgements and good results on all datasets
without relying on reference translations.

1 Introduction

While syntactically informed modelling for statis-
tical MT is an active field of research that has re-
cently gained major attention from the MT commu-
nity, work on integrating semantic models of ade-
quacy into MT is still at preliminary stages. This sit-
uation holds not only for system development (most
current methods disregard semantic information, in
favour of statistical models of words distribution),
but also for system evaluation. To realize its full po-
tential, however, MT is now in the need of semantic-
aware techniques, capable of complementing fre-
quency counts with meaning representations.

In order to integrate semantics more deeply into
MT technology, in this paper we focus on the eval-
uation dimension. Restricting our investigation to

some of the more pressing issues emerging from this
area of research, we provide two main contributions.
1. An automatic evaluation method that avoids
the use of reference translations. Most current
metrics are based on comparisons between auto-
matic translations and human references, and reward
lexical similarity at the n-gram level (e.g. BLEU
(Papineni et al., 2002), NIST (Doddington, 2002),
METEOR (Banerjee and Lavie, 2005), TER (Snover
et al., 2006)). Due to the variability of natural lan-
guages in terms of possible ways to express the same
meaning, reliable lexical similarity metrics depend
on the availability of multiple hand-crafted (costly)
realizations of the same source sentence in the tar-
get language. Our approach aims to avoid this bot-
tleneck by adapting cross-lingual semantic inference
capabilities and judging a translation only given the
source sentence.
2. A method for evaluating translation adequacy.
Most current solutions do not consistently reward
translation adequacy (semantic equivalence between
source sentence and target translation). The scarce
integration of semantic information in MT, specif-
ically at the multilingual level, led to MT systems
that are “illiterate” in terms of semantics and mean-
ing. Moreover, current metrics are often difficult to
interpret. In contrast, our method targets the ade-
quacy dimension, producing easily interpretable re-
sults (e.g. judgements in a 4-point scale).

Our approach builds on recent advances in
cross-lingual textual entailment (CLTE) recognition,
which provides a natural framework to address MT
adequacy evaluation. In particular, we approach
the problem as an application of CLTE where bi-
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directional entailment between source and target is
considered as evidence of translation adequacy. Be-
sides avoiding the use of references, the proposed
solution differs from most previous methods which
typically rely on surface-level features, often ex-
tracted from the source or the target sentence taken
in isolation. Although some of these features might
correlate well with adequacy, they capture seman-
tic equivalence only indirectly, and at the level of
a probabilistic prediction. Focusing on a combina-
tion of surface, syntactic and semantic features, ex-
tracted from both source and target (e.g. “source-
target length ratio”, “dependency relations in com-
mon”), our approach leads to informed adequacy
judgements derived from the actual observation of
a translation given the source sentence.

2 Background

Some recent works proposed metrics able to approx-
imately assess meaning equivalence between can-
didate and reference translations. Among these,
(Giménez and Màrquez, 2007) proposed a hetero-
geneous set comprising overlapping and matching
metrics, compiled from a rich set of variants at five
different linguistic levels: lexical, shallow-syntactic,
syntactic, shallow-semantic and semantic. More
similar to our approach, (Padó et al., 2009) proposed
semantic adequacy metrics that exploit feature rep-
resentations motivated by Textual Entailment (TE).
Both metrics, however, highly depend on the avail-
ability of multiple reference translations.

Early attempts to avoid reference translations ad-
dressed quality estimation (QE) by means of large
numbers of source, target, and system-dependent
features to discriminate between “good” and “bad”
translations (Blatz et al., 2004; Quirk, 2004). More
recently (Specia et al., 2010b; Specia and Farzindar,
2010; Specia, 2011) conducted a series of experi-
ments using features designed to estimate translation
post-editing effort (in terms of volume and time) as
an indicator of MT output quality. Good results in
QE have been achieved by adding linguistic infor-
mation such as shallow parsing, POS tags (Xiong
et al., 2010), or dependency relations (Bach et al.,
2011; Avramidis et al., 2011) as features. However,
in general these approaches do not distinguish be-
tween fluency (i.e. syntactic correctness of the out-

put translation) and adequacy, and mostly rely on
fluency-oriented features (e.g. “number of punctu-
ation marks”). As a result, a simple surface form
variation is given the same importance of a content
word variation that changes the meaning of the sen-
tence. To the best of our knowledge, only (Specia et
al., 2011) proposed an approach to frame MT evalu-
ation as an adequacy estimation problem. However,
their method still includes many features which are
not focused on adequacy, and often look either at the
source or at the target in isolation (see for instance
“source complexity” and “target fluency” features).
Moreover, the actual contribution of the adequacy
features used is not always evident and, for some
testing conditions, marginal.

Our approach to adequacy evaluation builds on
and extends the above mentioned works. Similarly
to (Padó et al., 2009) we rely on the notion of textual
entailment, but we cast it as a cross-lingual problem
in order to bypass the need of reference translations.
Similarly to (Blatz et al., 2004; Quirk, 2004), we try
to discriminate between “good” and “bad” transla-
tions, but we focus on adequacy. To this aim, like
(Xiong et al., 2010; Bach et al., 2011; Avramidis et
al., 2011; Specia et al., 2010b; Specia et al., 2011)
we rely on a large number of features, but focusing
on source-target dependent ones, aiming at informed
adequacy evaluation of a translation given the source
instead of a more generic quality assessment based
on surface features.

3 CLTE for adequacy evaluation

We address adequacy evaluation by adapting cross-
lingual textual entailment recognition as a way to
measure to what extent a source sentence and its au-
tomatic translation are semantically similar. CLTE
has been proposed by (Mehdad et al., 2010) as an ex-
tension of textual entailment (Dagan and Glickman,
2004) that consists in deciding, given a text T and a
hypothesis H in different languages, if the meaning
of H can be inferred from the meaning of T.

The main motivation in approaching adequacy
evaluation using CLTE is that an adequate trans-
lation and the source text should convey the same
meaning. In terms of entailment, this means that an
adequate MT output and the source sentence should
entail each other (bi-directional entailment). Los-
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ing or altering part of the meaning conveyed by the
source sentence (i.e. having more, or different infor-
mation in one of the two sides) will change the en-
tailment direction and, consequently, the adequacy
judgement. Framed in this way, CLTE-based ade-
quacy evaluation methods can be designed to dis-
tinguish meaning-preserving variations from true di-
vergence, regardless of reference translations.

Similarly to many monolingual TE approaches,
CLTE solutions proposed so far adopt supervised
learning methods, with features that measure to what
extent the hypotheses can be mapped into the texts.
The underlying assumption is that the probability of
entailment is proportional to the number of words in
H that can be mapped to words in T (Mehdad et al.,
2011). Such mapping can be carried out at differ-
ent word representation levels (e.g. tokens, lemmas,
stems), possibly with the support of lexical knowl-
edge in order to cross the language barrier between
T and H (e.g. dictionaries, phrase tables).

Under the same assumption, since in the adequacy
evaluation framework the entailment relation should
hold in both directions, the mapping is performed
both from the source to the target and vice-versa,
building on features extracted from both sentences.
Moreover, to improve over previous CLTE methods
and boost MT adequacy evaluation performance, we
explore the joint contribution of a number of lexi-
cal, syntactic and semantic features (Mehdad et al.,
2012).

Concerning the features used, it’s worth observ-
ing that the cost of implementing our approach (in
terms of required resources and linguistic proces-
sors), and the need of reference translations are in-
trinsically different bottlenecks for MT. While the
limited availability of processing tools for some lan-
guage pairs is a “temporary” bottleneck, the acqui-
sition of multiple references is a “permanent” one.
The former cost is reducing over time due to the
progress in NLP research; the latter represents a
fixed cost that has to be eliminated. Similar consid-
erations hold regarding the need of annotated data to
develop our supervised learning approach. Concern-
ing this, the cost of labelling source-target pairs with
adequacy judgments is significantly lower compared
to the creation of multiple references.

3.1 Features

In order to learn models for classification and regres-
sion we used the Support Vector Machine (SVM)
algorithms implemented in the LIBSVM package
(Chang and Lin, 2011) with a linear kernel and de-
fault parameters setting. Aiming at objective ade-
quacy evaluation, our method limits the recourse to
MT system-dependent features to reduce the bias
of evaluating MT technology with its own core
methods. The experiments described in the follow-
ing sections are carried out on publicly available
English-Spanish datasets, exploring the potential of
a combination of surface, syntactic and semantic
features. Language-dependent ones are extracted
by exploiting processing tools for the two lan-
guages (part-of-speech taggers, dependency parsers
and named entity recognizers), most of which are
available for many languages.

Our feature set can be described as follows:

Surface Form (F) features consider the num-
ber of words, punctuation marks and non-word
markers (e.g. quotations and brackets) in source
and target, as well as their ratios (source/target and
target/source), and the number of out of vocabulary
terms encountered.

Shallow Syntactic (SSyn) features consider
the number and ratios of common part-of-speech
(POS) tags in source and target. Since the list of
valid POS tags varies for different languages, we
mapped English and Spanish tags into a common
list using the FreeLing tagger (Carreras et al., 2004).

Syntactic (Syn) features consider the number
and ratios of dependency roles common to source
and target. To create a unique list of roles, we used
the DepPattern (Otero and Lopez, 2011) package,
which provides English and Spanish dependency
parsers.

Phrase Table (PT) matching features are cal-
culated as in (Mehdad et al., 2011), with a phrasal
matching algorithm that takes advantage of a lexical
phrase table extracted from a bilingual parallel
corpus. The algorithm determines the number of
phrases in the source (1 to 5-grams, at the level of
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tokens, lemmas and stems) that can be mapped into
target word sequences, and vice-versa. To build our
English-Spanish phrase table, we used the Europarl,
News Commentary and United Nations Spanish-
English parallel corpora. After tokenization, the
Giza++ (Och and Ney, 2000) and the Moses toolkit
(Koehn et al., 2007) were respectively used to
align the corpora and extract the phrase table.
Although the phrase table was generated using MT
technology, its use to compute our features is still
compatible with a system-independent approach
since the extraction is carried out without tuning the
process towards any particular task. Moreover, our
phrase matching algorithm integrates matches from
overlapping n-grams of different size and nature
(tokens, lemmas and stems) which current MT
decoding algorithms cannot explore for complexity
reasons.

Dependency Relation (DR) matching fea-
tures target the increase of CLTE precision by
adding syntactic constraints to the matching pro-
cess. These features capture similarities between
dependency relations, combining syntactic and
lexical levels. We define a dependency relation
as a triple that connects pairs of words through a
grammatical relation. In a valid match, while the
relation has to be the same, the connected words
can be either the same, or semantically equivalent
terms in the two languages. For example, “nsubj
(loves, John)” can match “nsubj (ama, John)”
and “nsubj (quiere, John)” but not “dobj (quiere,
John)”. Term matching is carried out by means
of a bilingual dictionary extracted from parallel
corpora during PT creation. Given the dependency
tree representations of source and target produced
with DepPattern, for each grammatical relation r we
calculate two DR matching scores as the number
of matching occurrences of r in both source and
target, respectively normalized by: i) the number of
occurrences of r in the source, and ii) the number of
occurrences of r in the target.

Semantic Phrase Table (SPT) matching features
represent a novel way to leverage the integration of
semantics and MT-derived techniques. Semantically
enhanced phrase tables are used as a recall-oriented
complement to the lexical PT matching features.

SPTs are extracted from the same parallel corpora
used to build lexical PTs, augmented with shallow
semantic labels. To this aim, we first annotate the
corpora with the FreeLing named-entity tagger,
replacing named entities with general semantic
labels chosen from a coarse-grained taxonomy
(person, location, organization, date and numeric
expression). Then, we combine the sequences of
unique labels into one single token of the same
label. Finally, we extract the semantic phrase
table from the augmented corpora in the same way
mentioned above. The resulting SPTs are used to
map phrases between NE-annotated source-target
pairs, similar to PT matching. SPTs offer three
main advantages: i) semantic tags allow to match
tokens that do not occur in the original parallel
corpora used to extract the phrase table, ii) SPT
entries are often short generalizations of longer
original phrases, so the matching process can
benefit from the increased probability of mapping
higher order n-grams (i.e. those providing more
contextual information), and iii) their smaller size
has positive impact on system’s efficiency, due to
the considerable search space reduction.

4 Experiments and results

4.1 Datasets
Datasets with manual evaluation of MT output have
been made available through a number of shared
evaluation tasks. However, most of these datasets
are not specifically annotated for adequacy measure-
ment purposes, and the available adequacy judge-
ments are limited to few hundred sentences for some
language pairs. Moreover, most datasets are created
by comparing reference translations with MT sys-
tems’ output, disregarding the input sentences. Such
judgements are hence biased towards the reference.
Furthermore, the inter-annotator agreement is often
low (Callison-Burch et al., 2007). In light of these
limitations, most of the available datasets are per se
not fully suitable for adequacy evaluation methods
based on supervised learning, nor to provide sta-
ble and meaningful results. To partially cope with
these problems, our experiments have been carried
out over two different datasets:

• 16K: 16.000 English-Spanish pairs, with
Spanish translations produced by multiple MT
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systems, annotated by professional translators
with quality scores in a 4-point scale (Specia et
al., 2010a).

• WMT07: 703 English-Spanish pairs derived
from MT systems’ output, with explicit ade-
quacy judgements on a 5-point scale.

The two datasets present complementary advan-
tages and disadvantages. On the one hand, al-
though it is not annotated to explicitly capture
meaning-related aspects of MT output, the quality
oriented dataset has the main advantage of being
large enough for supervised approaches. Moreover,
it should allow to check the effectiveness of our fea-
ture set in estimating adequacy as a latent aspect of
the more general notion of MT output quality. On
the other hand, the smaller dataset is less suitable
for supervised learning, but represents an appropri-
ate benchmark for MT adequacy evaluation.

4.2 Adequacy and quality prediction

To experiment with our CLTE-based evaluation
method minimizing overfitting, we randomized each
dataset 5 times (D1 to D5), and split them into 80%
for training and 20% for testing. Using different
feature sets, we then trained and tested various re-
gression models over each of the five splits, and
computed correlation coefficients between the CLTE
model predictions and the human gold standard an-
notations ([1-4] for quality, and [1-5] for adequacy).

16K quality-based dataset
In Table 1 we compare the Pearson’s correlation

coefficient of our SVM regression models against
the results reported in (Specia et al., 2010b), calcu-
lated with the same three common MT evaluation
metrics with a single reference: BLEU, TER and
Meteor. For the sake of comparison, we also re-
port the average quality correlation (QE) obtained
by (Specia et al., 2010b) over the same dataset.1

The results show that the integration of syntac-
tic and semantic information allows our adequacy-
oriented model to achieve a correlation with hu-
man quality judgements that is always significantly

1We only show the average results reported in (Specia et al.,
2010b), since the distributions of the 16K dataset is different
from our randomized distribution.

higher2 than the correlation obtained by the MT
evaluation metrics used for comparison. As ex-
pected a considerable improvement over surface fea-
tures is achieved by the integration of syntactic in-
formation. A further increase, however, is brought
by the complementary contribution of SPT (recall-
oriented, due to the higher coverage of semantics-
aware phrase tables with respect to lexical PTs), and
DR matching features (precision-oriented, due to
the syntactic constraints posed to matching text por-
tions). Although they are meant to capture meaning-
related aspects of MT output, our features allow
to outperform the results obtained by the generic
quality-oriented features used by (Specia et al.,
2010b), which do not discriminate between ade-
quacy and fluency.3 When dependency relations and
phrase tables (both lexical and semantics-aware) are
used in combination, our scores also outperform the
average QE score. Finally, looking at the different
random splits of the same dataset (D1 to D5), our
correlation scores remain substantially stable, prov-
ing the robustness of our approach not only for ade-
quacy, but also for quality estimation.

WMT07 adequacy-based dataset

In Table 2 we compare our regression model,
obtained in the same way previously described,
against three commonly used MT evaluation metrics
(Callison-Burch et al., 2007). In this case, the re-
ported results do not show the same consistency over
the 5 randomized datasets (D1 to D5). However, it is
worth pointing out that: i) the small dataset is partic-
ularly challenging to train models with higher corre-
lation with humans, ii) our aim is checking how far
we get using only adequacy-oriented features rather
than outperforming BLEU/TER/Meteor at any cost,
and iii) our results are not far from those achieved
by metrics that rely on reference translations. Com-
pared with Meteor, the correlation is even higher
proving the effectiveness of the proposed method.

2p < 0.05, calculated using the approximate randomization
test implemented in (Padó, 2006).

3As reported in (Specia et al., 2010b), more than 50% (39
out of 74) of the features used is translation-independent (only
source-derived features).
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Features D1 D2 D3 D4 D5 AVG
F 0.2506 0.2578 0.2436 0.2527 0.2443 0.25
SSyn+Syn 0.4387 0.4114 0.3994 0.4114 0.3793 0.41
F+SSyn+Syn 0.4215 0.4398 0.4059 0.4464 0.4255 0.428
F+SSyn+Syn+DR 0.4668 0.4602 0.4386 0.4437 0.4454 0.451
F+SSyn+Syn+DR+PT 0.4724 0.4715 0.4852 0.5028 0.4653 0.48
F+SSyn+Syn+DR+PT+SPT 0.4967 0.4802 0.4688 0.4894 0.4887 0.485
BLEU 0.2268
TER 0.1938
METEOR 0.2713
QE (Specia et al., 2010b) 0.4792

Table 1: Pearson’s correlation between SVM regression and human quality annotation over 16K dataset.

Features D1 D2 D3 D4 D5 AVG
F 0.10 0.03 0.04 0.10 0.14 0.083
SSyn+Syn 0.299 0.351 0.1834 0.2962 0.2417 0.274
F+SSyn+Syn 0.2648 0.2870 0.4061 0.3601 0.1327 0.29
F+SSyn+Syn+DR 0.3196 0.4568 0.2860 0.5057 0.4066 0.395
F+SSyn+Syn+DR+PT 0.3254 0.4710 0.3921 0.4599 0.3501 0.40
F+SSyn+Syn+DR+PT+SPT 0.3487 0.4032 0.4803 0.4380 0.3929 0.413
BLEU 0.466
TER 0.437
METEOR 0.357

Table 2: Pearson’s correlation between SVM regression and human adequacy annotation over WMT07.

4.3 Multi-class classification

To further explore the potential of our CLTE-based
MT evaluation method, we trained an SVM multi-
class classifier to predict the exact adequacy and
quality scores assigned by human judges. The eval-
uation was carried out measuring the accuracy of our
models with 10-fold cross validation to minimize
overfitting. As a baseline, we calculated the per-
formance of the Majority Class (MjC) classifier pro-
posed in (Specia et al., 2011), which labels all exam-
ples with the most frequent class among all classes.
The performance improvement over the result ob-
tained by the MjC baseline (∆) has been calculated
to assess the contribution of different feature sets.

16K quality-based dataset
The accuracy results reported in Table 3a show

that also in this testing condition, syntactic and se-
mantic features improve over surface form ones. Be-

sides that, we observe a steady improvement over
the MjC baseline (from 5% to 12%). This demon-
strates the effectiveness of our adequacy-based fea-
tures to predict exact quality scores in a 4-point
scale, although this is a more challenging and dif-
ficult task than regression and binary classification.
Such improvement is even more interesting consid-
ering that (Specia et al., 2010b) reported discour-
aging results with multi-class classification to pre-
dict quality scores. Moreover, while they claimed
that removing target-independent features (i.e. those
only looking at the source text) significantly de-
grades their QE performance, we achieved good re-
sults without using any of these features.

WMT07 adequacy-based dataset

As we can observe in Table 3b, all variations
of adequacy estimation models significantly outper-
form the MjC baseline, with improvements rang-
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Features 10-fold acc. ∆
F 42.16% 5.16
Syn+SSyn 46.61% 9.61
F+Syn+SSyn 47.10% 10.10
F+Syn+SSyn+DR 47.26% 10.26
F+Syn+SSyn+DR+PT 48.15% 11.15
F+Syn+SSyn+DR+PT+SPT 48.74% 11.74
MjC 37% -

(a) 16K dataset.

Features 10-fold acc. ∆
F 50.07% 14.07
Syn+SSyn 54.19% 18.19
F+Syn+SSyn 54.34% 18.34
F+Syn+SSyn+DR 56.47% 20.47
F+Syn+SSyn+DR+PT 56.61% 20.61
F+Syn+SSyn+DR+PT+SPT 56.75% 20.75
MjC 36% -

(b) WMT07 dataset

Table 3: Multi-class classification accuracy of the quality/adequacy scores.

Features 10-fold acc. ∆
F 65.85% 11.85
Syn+SSyn 69.59% 15.59
F+Syn+SSyn 70.89% 16.89
F+Syn+SSyn+DR 71.39% 17.39
F+Syn+SSyn+DR+PT 71.92% 17.92
F+Syn+SSyn+DR+PT+SPT 72.21% 18.21
MjC 54% -

(a) 16k dataset.

Features 10-fold acc. ∆
F 83.24% 12.84
Syn+SSyn 83.67% 13.27
F+Syn+SSyn 84.31% 13.91
F+Syn+SSyn+DR 84.86% 14.46
F+Syn+SSyn+DR+PT 84.96% 14.56
F+Syn+SSyn+DR+PT+SPT 85.20% 14.80
MjC 70.4% -

(b) WMT07 dataset.

Table 4: Accuracy of the binary classification into “good” or “adequate”, and “bad” or “inadequate”.

ing from 14% to 20%. Interestingly, although the
dataset is small and the number of classes is higher
(5-point scale), the improvement and overall results
are better than those obtained on the 16K dataset.
Such result confirms our hypothesis that adequacy-
based features extracted from both source and target
perform better on a dataset explicitly annotated with
adequacy judgements. In addition, the improvement
over the MjC baseline (∆) of our best model is much
higher (20%) than the one reported in (Specia et al.,
2011) on adequacy estimation (6%). We are aware
that their results are calculated over a dataset for a
different language pair (i.e. English-Arabic) which
brings up more challenges. However, our smaller
dataset (700 vs 2580 pairs) and the higher number
of classes (5 vs 4) compensate to some extent the
difficulty of dealing with English-Arabic pairs.

4.4 Recognizing “good” vs “bad” translations

Last but not least, we considered the traditional sce-
nario for quality and confidence estimation, which

is a binary classification of translations into “good”
and “bad” or, from the meaning point of view, “ade-
quate” and “inadequate”. Adequacy-oriented binary
classification has many potential applications in the
translation industry, ranging from the design of con-
fidence estimation methods that reward meaning-
preserving translations, to the optimization of the
translation workflow. For instance, an “adequate”
translation can be just post-edited in terms of fluency
by a target language native speaker, without having
any knowledge of the source language. On the other
hand, an “inadequate” translation should be sent to a
human translator or to another MT system, in order
to reach acceptable adequacy. Effective automatic
binary classification has an evident positive impact
on such workflow.

16K quality-based dataset
We grouped the quality scores in the 4-point scale

into two classes, where scores {1,2} are considered
as “bad” or “inadequate”, while {3,4} are taken as
“good” or “adequate”. We carried out learning and
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classification using different sets of features with 10-
fold cross validation. We also compared our accu-
racy with the MjC baseline, and calculated the im-
provement of each model (∆) against it.

The results reported in Table 4a demonstrate that
the accuracy of our models is always significantly
superior to the MjC baseline. Moreover, also in this
case there is a steady improvement using syntactic
and semantic features over the results obtained by
surface form features. Additionally, it is worth men-
tioning that the best model improvement over the
baseline (∆) is much higher (about 18%) than the
improvement reported in (Specia et al., 2010b) over
the same dataset (about 8%), considering the aver-
age score obtained with their data distribution. This
confirms the effectiveness of our CLTE approach
also in classifying “good” and “bad” translations.

WMT07 adequacy-based dataset
We mapped the 5-point scale adequacy scores into

two classes, with {1,2,3} judgements assigned to the
“inadequate” class, and {4,5} judgements assigned
to the “adequate” class. The main motivation for this
distribution was to separate the examples in a way
that adequate translations are substantially accept-
able, while inadequate translations present evident
meaning discrepancies with the source.

The results reported in Table 4b show that the
accuracy of the binary classifiers to distinguish be-
tween “adequate” and “inadequate” classes was sig-
nificantly superior (up to about 15%) to the MjC
baseline. We also notice that surface form fea-
tures have a significant contribution to deal with the
adequacy-oriented dataset, while the gain obtained
using syntactic and semantic features (2%) is lower
than the improvement observed in the 16K dataset.
This might be due to the more unbalanced distribu-
tion of the classes which: i) leads to a high baseline,
and ii) together with the small size of the WMT07
dataset, makes supervised learning more challeng-
ing. Finally, the improvement of all models (∆) over
the MjC baseline is much higher than the gain re-
ported in (Specia et al., 2011) over their adequacy-
oriented dataset (around 2%).

5 Conclusions

In the effort of integrating semantics into MT tech-
nology, we focused on automatic MT evaluation, in-

vestigating the potential of applying cross-lingual
textual entailment techniques for adequacy assess-
ment. The underlying assumption is that MT output
adequacy can be determined by verifying that an en-
tailment relation holds from the source to the target,
and vice-versa. Within such framework, this paper
makes two main contributions.

First, in contrast with most current metrics based
on the comparison between automatic translations
and multiple references, we avoid the bottleneck
represented by the manual creation of such refer-
ences.

Second, beyond current approaches biased to-
wards fluency or general quality judgements, we
tried to isolate the adequacy dimension of the prob-
lem, exploring the potential of adequacy-oriented
features extracted from the observation of source
and target.

To achieve our objectives, we successfully ex-
tended previous CLTE methods with a variety of lin-
guistically motivated features. Altogether, such fea-
tures led to reliable judgements that show high cor-
relation with human evaluation. Coherent results on
different datasets and classification schemes demon-
strate the effectiveness of the approach and its poten-
tial for different applications.

Future works will address both the improvement
of our adequacy evaluation method and its integra-
tion in SMT for optimization purposes. On one
hand, we plan to explore new features capturing
other semantic dimensions. A possible direction is
to consider topic modelling techniques to measure
the relatedness of source and target. Another inter-
esting direction is to investigate the use of Wikipedia
entity linking tools to support the mapping between
source and target terms. On the other hand, we plan
to explore the integration of our model as an error
criterion in SMT system training.
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S. Padó, M. Galley, D. Jurafsky, and C. D. Manning.
2009. Textual Entailment Features for Machine Trans-
lation Evaluation. In Proceedings of the Fourth Work-
shop on Statistical Machine Translation (StatMT ’09).
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Abstract
Post-editing performed by translators is an
increasingly common use of machine trans-
lated texts. While high quality MT may in-
crease productivity, post-editing poor transla-
tions can be a frustrating task which requires
more effort than translating from scratch. For
this reason, estimating whether machine trans-
lations are of sufficient quality to be used
for post-editing and finding means to reduce
post-editing effort are an important field of
study. Post-editing effort consists of different
aspects, of which temporal effort, or the time
spent on post-editing, is the most visible and
involves not only the technical effort needed
to perform the editing, but also the cognitive
effort required to detect and plan necessary
corrections. Cognitive effort is difficult to ex-
amine directly, but ways to reduce the cogni-
tive effort in particular may prove valuable in
reducing the frustration associated with post-
editing work. In this paper, we describe an
experiment aimed at studying the relationship
between technical post-editing effort and cog-
nitive post-editing effort by comparing cases
where the edit distance and a manual score re-
flecting perceived effort differ. We present re-
sults of an error analysis performed on such
sentences and discuss the clues they may pro-
vide about edits requiring great cognitive ef-
fort compared to the technical effort, on one
hand, or little cognitive effort, on the other.

1 Introduction

An increasingly common use for machine transla-
tion is producing texts to be post-edited by transla-
tors. While sufficiently high-quality MT has been

shown to produce benefits for productivity, a well-
known problem is that post-editing poor machine
translation can require more effort than translating
from scratch. Measuring and estimating post-editing
effort is therefore a growing concern addressed by
Confidence Estimation (CE) (Specia, 2011).

Time spent on post-editing can be seen as the
most visible and economically most important as-
pect of post-editing effort (Krings, 2001); however,
post-editing effort can be defined and approached in
different ways. Krings (2001) divides post-editing
effort into three types: 1. temporal, 2. cognitive
and 3. technical. Temporal effort refers to post-
editing time. Cognitive effort involves identifying
the errors in the MT and the necessary steps to cor-
rect the output. Technical effort then consists of the
keystrokes and cut-and-paste operations needed to
produce the post-edited version after the errors have
been detected and corrections planned. These dif-
ferent aspects of effort are not necessarily equal in
various situations. In some cases, the errors may be
easy to detect but involve several technical opera-
tions to be corrected. In other cases, parsing the sen-
tence and detecting the errors may require consid-
erable cognitive effort, although the actual technical
operations required are quick and easy. According
to Krings (2001), temporal effort is a combination
of both cognitive and technical effort, with cogni-
tive effort being the decisive factor. Assessing and
reducing the cognitive effort involved in MT post-
editing would therefore be important but the task
is far from simple. Past experiments have involved
cognitive approaches such as think-aloud protocols
(Krings, 2001; O’Brien, 2005; Carl et al., 2011) and
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post-editing effort scores assigned by human evalua-
tors (Specia et al., 2009; Specia, 2011; Specia et al.,
2011).

While edit operations reflect the amount of tech-
nical effort needed, subjective assessments of per-
ceived post-editing effort needed can serve as a mea-
sure of cognitive post-editing effort: in order to give
such an estimate, the evaluator needs to cognitively
process the segment in order to detect the errors
and plan the necessary corrections. Using these two
measures, a comparison of technical effort and per-
ceived amount of post-editing effort can serve as a
way to evaluate cognitive post-editing effort. We
propose that studying cases where the perceived ef-
fort necessary is greater or smaller than the num-
ber of actual edit operations performed may provide
clues to situations where the cognitive and technical
effort differ. Cases where the human editor overes-
timates the need for editing (as compared to num-
ber of edit operations performed) could indicate that
these segments contain errors requiring considerable
cognitive effort. On the other hand, cases where
the manual score underestimates the amount of edit-
ing needed could indicate errors that require rela-
tively little cognitive effort compared to the number
of technical operations.

To examine the question of differences in techni-
cal and cognitive post-editing effort, we present an
analysis of MT segments that have different levels
of post-editing indicated by the manual effort score
and actual number of post-edit operations indicated
by the edit distance. By analyzing cases where these
two measures of post-editing effort differ, it may be
possible to isolate cases that require more cognitive
effort than technical effort and vice versa. Section 3
describes the material and method used in the exper-
iment, and the results of the analysis are presented
in Section 4.

2 Related work

As the temporal aspect of post-editing effort is im-
portant for the practice of machine translation post-
editing, post-editing time has been a commonly
used measure of post-editing effort (Krings, 2001;
O’Brien, 2005; Specia et al., 2009; Tatsumi, 2009;
Tatsumi and Roturier, 2010; Specia, 2011; Carl et
al., 2011). The technical aspect of post-editing effort

has been approached by following keystrokes and
cut-and-paste operations (Krings, 2001; O’Brien,
2005; Carl et al., 2011) or using automatic met-
rics for edit distance between the raw MT and post-
edited version (Tatsumi, 2009; Temnikova, 2010;
Tatsumi and Roturier, 2010; Specia and Farzindar,
2010; Specia, 2011; Blain et al., 2011). Several edit
operations may also be incorporated in one ”post-
edit action (PEA)”, introduced by Blain et al. (2011).
For example, changing the number of a noun propa-
gates changes to other words, such as the determin-
ers and adjectives modifying it. Tatsumi and Ro-
turier (2010) also explore the relationship between
temporal and technical aspects of post-editing effort.

Cognitive aspects of post-editing effort have been
approached with the help of keystroke logging
(Krings, 2001; O’Brien, 2005; Carl et al., 2011)
and gaze data (Carl et al., 2011), attempting to mea-
sure cognitive effort in terms of pauses and fixations.
O’Brien (2005) also experiments with the use of
choice network analysis (CNA) and think-aloud pro-
tocols (TAP). Human scores for post-editing effort
have involved assessing the amount of post-editing
needed (Specia et al., 2009; Specia, 2011) or ade-
quacy of the MT (Specia et al., 2011).

Temnikova (2010) proposes the analysis of the
types of changes and comparison to post-editing
time as a way to explore cognitive effort. For this
purpose, Temnikova (2010) builds upon the MT er-
ror classification by Vilar et al. (2006) and their own
post-editing experiments using controlled language
to draft a classification for the cognitive effort re-
quired for correcting different types of MT errors.
This classification defines ten types of errors and
ranks them from 1 to 10 with 1 indicating the eas-
iest and 10 the hardest error type to correct. The
easiest errors are considered to be connected to the
morphological level, or correct words with incorrect
form, followed by the lexical level, involving incor-
rect style synonyms, incorrect words, extra words,
missing words and erroneously translated idiomatic
expressions. The hardest errors in the classification
relate to syntactic level and include wrong punctua-
tion, missing punctuation, then word order at word
level and finally word order at phrase level. The
ranking is based on studies in written language com-
prehension and error detection. Results reported in
Temnikova (2010) suggest that pre-edited machine
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translations that had previously been found to re-
quire less post-editing effort measured by post-edit
time and edit distance contain less errors that are
cognitively more difficult compared to MT that had
not been pre-edited.

In this study, we aim to investigate the relation-
ship between the cognitive effort and the technical
effort involved in post-editing. Edit distance be-
tween MT segments and their post-edited versions
is used as a measure of technical effort and human
effort scores as a measure of cognitive effort.

3 Material and method

The data used in this study consists of English to
Spanish MT segments from the evaluation task train-
ing set provided for the quality estimation task at
the NAACL 2012 Seventh Workshop on Statisti-
cal Machine Translation WMT12. 1 The train-
ing set consists English to Spanish machine trans-
lations of news texts, produced by a phrase-based
SMT system. The data available for each segment
includes the English source segment, Spanish ref-
erence translation produced by a human translator,
machine translation into Spanish, post-edited ver-
sion of the machine translation and a manual score
indicating how much editing would be required to
transform the MT segment into a useful translation.
The manual score included is the average of scor-
ing conducted by three professional translators us-
ing a 5-point scale where (1) indicates the segment
is incomprehensible and needs to be translated from
scratch, (2) significant editing is required (50-70%
of the output), (3) about 25-50% of the output needs
to be edited, (4) about 10-25% needs to be edited,
and (5) little to no editing is required.

Additional information includes the SMT align-
ment tables. The alignments were not part of the
original set, and in some cases differed slightly from
the segments that had been used for the manual scor-
ing. As we intended to make use of the alignments
from source to MT, we included only segments that
were identical in the original evaluated set.

To measure the amount of editing performed on
the segments, the translation edit rate (TER) (Snover
et al., 2006) was calculated using the post-edited

1http://www.statmt.org/wmt12/
quality-estimation-task.html

versions as reference. TER measures the minimum
number of edits that are needed to transform the ma-
chine translation into the post-edited segment used
as reference. Edits can be insertion, deletion, substi-
tution or reordering and the score is calculated as the
number of edits divided by the number of tokens in
the reference. The higher the TER score, the more
edits have been performed.

As our aim was to focus on cases where the per-
ceived effort score and the amount of editing dif-
fered, we looked for two types of sentences at the
opposite ends of the manual effort scoring scale: (1)
Cases where the manual score indicated more edit-
ing was needed than had actually been performed.
(2) Cases where the manual score indicated less edit-
ing was needed than had actually been performed.

For Case (1), we selected segments with a manual
score of 2.5 or lower, meaning that at least 50% of
the segment needed editing according to the evalu-
ators. We looked for the ones with the lowest TER
scores, trying to find at least 30 sentences. The set
selected for analysis consists of 37 sentences with a
manual effort score of 2.5 or lower and TER score
0.33 or lower. For comparison, we also selected the
same number of sentences with similar TER scores
but with manual scores of 4 or above. These sets are
referred to as the low TER set.

For Case (2), we selected segments with a manual
score of 4 or above, meaning that no more than 25%
of the segment needed editing according to the eval-
uator. Again, we looked for about 30 sentences with
the highest TER scores. The set selected consists
of 35 sentences with a manual effort score of 4 or
higher, and TER score 0.45 or higher. For compar-
ison, we also selected sentences with similar TER
scores but low manual scores. These sets are re-
ferred to as the high TER set.

The selected MT segments and post-edited ver-
sions were then tagged with the FreeLing Spanish
tagger (Padró et al., 2010). The tagged versions
contain the surface form of the word, lemma and a
tag with part-of-speech (POS) and grammatical in-
formation. Other tools such as dependency parsing
were considered, but within the scope of this study,
we decided to experiment what changes can be ob-
served using only the basic lemma, POS and form
information.

The tagged versions were aligned manually, first
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matching identical tokens (words and punctuation)
in the sentence, then matching words with the same
lemma but different surface form. The alignment
table was consulted to match substitutions that in-
volved a different word and even different POS.
Each matched pair of words in the MT and post-
edited versions was then labeled to indicate whether
the match was identical or involved editing the word
form, substituting with a different word of the same
POS or a word of different POS. Words appearing
in the post-edited version but not in the MT were la-
beled as insertions and words appearing in the MT
but not in the post-edited version as deletions. In
cases where several MT words were replaced with
one in the post-edited version or one MT word was
replaced with many in the post-edited, a match was
made between words of the same POS and form, if
such was found, or the first word in the sequence if
none matched. The remaining words were labeled
as inserted/deleted.

The positions of the matched words were also
compared. For matching the word order, changes
caused only by insertion or deletion of other words
were ignored, and words that had remained in the
same order after post-editing were labeled as same.
In cases where the word order did not match, the
word was labeled with the distance it had been
moved and whether it had been moved alone or as
a part of a larger group.

The totals of changes within a sentence were then
calculated and the patterns of changes made by ed-
itors were examined. In addition to the total num-
ber of edit operations, we considered the possibil-
ity that editing certain parts-of-speech might require
more effort than others. In particular, editing con-
tent words such as verbs or nouns might require
more effort than editing function words such as de-
terminers, because they are more central to convey-
ing the content of the sentence. Further, as Blain et
al. (2011) argue, changes to these words may prop-
agate changes to other words in the sentence. Punc-
tuation was also treated separately to follow Tem-
nikova’s (2010) classification of punctuation errors
as a class of their own.

The patterns found in the sample sentences were
compared to the comparison sets of sentences with
similar TER scores. Additionally, Spearman rank
correlations between the manual effort score and the

various edit categories were calculated for all tokens
and specific POS classes. The next section presents
the results of these comparisons.

4 Results

This section presents the results from the analysis
of post-editing changes. The total number of seg-
ments and tokens and the percentages of edited and
reordered tokens in each set are shown in Table 1.
Comparisons of the edit patterns between segments
with similar TER scores but different manual scores
are shown in Figures 1 to 4. Figure 1 presents the
distributions of edit categories in the low TER sets
and Figure 3 in the high TER sets. Figure 2 presents
the percentages of changed tokens and reordered to-
kens by POS class in the low TER set and Figure
4 in the high TER sets. In Figures 2 and 4, nouns,
verbs, adjectives and determiners are shown sepa-
rately, while other parts-of-speech are combined into
“Other”. Punctuation is also presented separately.

Tables 2 and 3 present Spearman rank correla-
tions between the manual score and different edit
categories. Overall correlations regardless of POS
are given for all edit categories. For specific POS
classes, only the edit categories with strongest cor-
relations are listed in each case.

4.1 Case 1: Low TER set

These sentences represent a case where the human
evaluators indicated that significant post-editing
would be needed but the low TER score indicated
that relatively little editing had been performed. The
most noticeable difference between segments with
high and low manual scores is the number of tokens:
low-scored segments have about twice as many to-
kens on average than the high-scored ones (see Ta-
ble 1) and the number of tokens in the post-edited
segment has a strong negative correlation (Table 2).
Besides segment length, other strong correlations in-
volve different types of reordering. Reorderings in-
volving a distance of one step show weaker corre-
lation than changes involving a longer distance. No
correlation was found for any of the word change
categories in this case.

Broken down by the POS class, results are simi-
lar to the overall result in that reordering categories
have the strongest (negative) correlations with the

184



TER Manual Number of Number of Edited Reordered
score score segments tokens tokens tokens
Low Low 37 1480 23% 24%
Low High 37 695 21% 15%
High Low 35 943 45% 45%
High High 35 556 42% 33%

Table 1: Total number of sentences and tokens per set, percentage of tokens edited and percentage of tokens reordered.

Figure 1: Distribution of edit categories - Low TER.

Figure 2: Edited and reordered tokens by POS - Low TER

effort score. Strongest correlations also mostly in-
volve nouns, adjectives or verbs. As shown in Fig-
ure 2, the differences in percentage of edited tokens
are largest for verbs and adjectives. In high-scored
sentences, 72% of verbs were unchanged by the ed-
itor compared to 55% in the low-scored ones. In
both cases, most edits to verbs involved changing
the form of the verb, (23% in low-scored vs 11% in
high-scored). Adjectives have a similar pattern with

18% of edited adjective forms in low-scored vs 7%
in high-scored sentences.

Sentences with high manual scores actually have
more cases of edited determiners and nouns, al-
though for nouns the difference is only 1%. Most
edits to determiners involved deletion (15% of deter-
miners) or changed form (11%) in the case of high-
scored sentences. In low-scored sentences, insertion
was most common (10% of determiners). Within
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Overall correlations
number of tokens -0.51 ***
word match 0.11
form changed -0.10
word changed -0.15
pos changed -0.15
deleted 0.08
inserted -0.15
order same 0.51 ***
group moved -0.48 ***
1 word moved -0.47 ***
dist. 1 -0.37 **
dist ≥ 2 -0.53 ***

Strongest correlations by POS
Noun, order same 0.49 ***
Adj, order same 0.47 ***
Noun, group moved -0.46 ***
Adj, dist. ≥ 2 -0.46 ***
Noun, dist. ≥ 2 -0.45 ***
Other, group moved -0.44 ***
Verb, 1 word moved -0.44 ***
Verb, dist. ≥ 2 -0.43 ***
Other, order same 0.41 ***
Det, group moved -0.40 ***
Verb, word match 0.39 ***
Adj, 1 word moved -0.38 ***
*** p < 0.001, ** p < 0.01, * p < 0.05

Table 2: Spearman rank correlations between effort score
and edit categories - Low TER.

the class ”Other” combining numbers, adverbs, con-
junctions, pronouns and prepositions, adverbs were
an similar case in that there were more unchanged
adverbs in the low-rated sentences (86%) than in the
high-rated (72%). However, the total number of ad-
verbs in either set was very small.

4.2 Case 2: High TER set

These sentences represent a case where the human
evaluators indicated only a little editing was needed
but the high TER score indicated much more editing
had been performed. Again one noticeable differ-
ence between the sentences with low and high man-
ual scores is the number of tokens (see Table 1), al-
though the negative correlation shown in Table 3 was
not as strong as for the low TER set.

For these sentences, word changes have stronger
correlations with the manual effort score (Table 3).
While the shares of fully matched words are fairly
equal between the sentences, differences appear in
some of the edit categories. Sentences with high
manual scores have more cases where the word form
has been edited (Figure 3), and changed form has
the strongest (positive) correlation after number of
tokens. High-scored segments also appear to have
more deletions, but essentially no correlation was
found between the manual score and deletions on
the segment level. As shown in Figure 3, low-scored
segments have more cases of substitution with dif-
ferent word. Reordering is again more common in
low-scored segments, but correlations for reordering
are weaker than in the low TER set. Cases where
one word has been moved alone rather than as a part
of a group has the strongest correlation among the
reordering categories.

Overall correlations
number of tokens -0.43 ***
word match 0.14
form changed 0.36 **
word changed -0.25 *
pos changed -0.28 *
deleted 0.14
inserted -0.22
order same 0.21
group moved -0.12
1 word moved -0.34 **
dist. 1 -0.22
dist. ≥ 2 -0.25 *

Strongest correlations by POS
Other, inserted -0.38 **
Noun, 1 word moved -0.36 **
Noun, pos changed -0.35 **
Noun, word changed -0.30 *
Adj, order same 0.28 *
Det, inserted -0.27 *
Adj, dist. ≥ 2 -0.25 *
Noun, word match 0.24 *
*** p < 0.001, ** p < 0.01, * p < 0.05

Table 3: Spearman rank correlations between effort score
and edit categories - High TER.

For specific POS classes, the strongest correlation
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Figure 3: Distribution of edit types - High TER.

Figure 4: Edited and reordered tokens by POS - High TER

in Table 3 involves insertion of words in the com-
bined class ”Other” (numbers, adverbs, conjunc-
tions, pronouns and prepositions). Within this class,
pronouns actually required most edits: in low-scored
segments, 50% of pronouns were inserted by the ed-
itor (32% in high-scored segments). The largest dif-
ference in the percentage of edited tokens is seen
with nouns (41% edited in low-scored segments vs
32% in high-scored, and edits related to nouns are
also among the strongest correlations for this set. In
the case of adjectives, the segments with low man-
ual score actually have more cases where no edit-
ing of the word has been required (61% vs 53%),
but high-scored sentences contain a larger share of
cases (32% vs 16%) where only the form of the ad-
jective has been edited. However, these correlations
remained weak. Reordering involving nouns and ad-

jectives, on the other hand, again appears among the
strongest correlations.

5 Discussion

Perhaps the most obvious difference between seg-
ments with high and low manual scores is segment
length: long segments tend to get low scores even
when the amount of editing turns out to be less than
estimated. The effect of sentence length has also
been observed in other studies, e.g. (Tatsumi, 2009).
One simple explanation would be that a high total
number of words leads to a high total number of
changes to be made and therefore involves consid-
erable technical post-editing effort. However, as the
case of segments with low manual scores but low
TER show, sometimes these long sentences do not,
in fact, require a large number of edit operations.
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This suggests also increased cognitive effort, as the
sheer length may make it difficult for the evalua-
tor/editor to perceive what needs to be changed and
plan the edits.

We also noticed during the analysis that some of
the very long segments actually consisted of two
sentences. Furthermore, in some these cases, one
of the sentences contained few changes while most
of the changes were confined to the other. Sim-
ilarly, long segments consisting of only one sen-
tence sometimes contained long unchanged pas-
sages while some other part of the sentence was
edited significantly. In these cases, such unchanged
passages could be useful to the post-editor in real life
situations, but the error-dense passage affects per-
ception of the segment as a whole. Perhaps this sug-
gests that assessing MT for post-editing and post-
editing itself could benefit from presenting longer
segments in shorter units, allowing the evaluator or
editor to choose and discard different units within a
longer segment.

Tatsumi (2009) also found that very short sen-
tences increased post-editing time. In this study, all
extremely short sentences found had received high
scores from the human evaluators. Some are found
in the low TER/high manual score set used for com-
parison purposes, but there are also some in the
set of sentences with high TER/high manual score,
meaning that there were relatively many edits com-
pared to the length of the segment but the evaluators
had indicated that little editing was needed. At least
for the segments analyzed here, it appears that the
evaluators did not consider short sentences to require
much effort regardless of the actual number of edits
performed. In Tatsumi’s (2009) results, also other
aspects, such as source sentence structure and de-
pendency errors in the MT were discovered to have
an effect on post-editing time. In this study, sentence
structure and dependency errors were not explicitly
examined, but these aspects would be of interest in
future work.

Edits related to reordering also appear to be con-
nected to low manual scores, as low-scored sen-
tences involved more reordering than high-scored
ones in both cases. This reflects Temnikova’s (2010)
error ranking where errors involving word order,
particularly at phrase level, are considered the most
difficult to correct. Besides the number of reorder-

ings necessary, the results of this study may suggest
some differences in whether reordering involves iso-
lated words or groups of words and distances of one
step (word level order) or longer distances.

Examining the results by parts-of-speech may
suggest that overall, edits related to nouns, verbs
or adjectives take more effort than other POS, be-
cause in both sets, strongest correlations mainly in-
volved nouns, verbs and adjectives. In both sets,
sentences with low manual scores contained more
cases of edited verbs, and verb matches had one of
the strongest correlations in the low TER set. On
the other hand, edits related to nouns appeared to
have particularly strong correlations in the high TER
set. In this set, however, the strongest negative cor-
relation was found for insertion of the other POS
(mainly pronouns), so at least some of the other POS
may also be difficult to edit.

Some cases where relatively little cognitive effort
is required may be suggested by the situations where
the high-scored sentences in fact contain more ed-
its than the low-scored ones. In the high TER
set, sentences with high manual scores contained
more cases where only the form of a word has been
edited, whereas sentences with low manual scores
contained more cases of substitution with a differ-
ent word or even different POS. This reflects the
ranking of such errors in (Temnikova, 2010), where
word form errors are considered cognitively easiest.
This particularly appears to be the case for adjectives
in this set. Although segments with a high manual
score actually have a smaller number of fully cor-
rect adjectives than low-scored ones, they contain a
larger share of instances where only the form of the
adjective has been edited. Another example of edits
involving less cognitive effort might be determiners
in the low TER set, where again sentences with high
manual scores contain more edited determiners than
those with low scores. In this case, deletion of de-
terminers was common in addition to changing the
form.

Overall, deletion and insertion or extra words and
missing words appeared to have little effect. While
sentences with high manual scores have a slightly
higher percentage of deleted words in both sets, the
correlation was weak. Most of the deletions of con-
tent words seemed to involve auxiliary verbs, but in
some instances it is difficult to say whether the ed-
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itor has, in fact, considered something “extra” in-
formation and why, whether there has been a de-
liberate choice to implicitate certain information or
whether the deletion has been at least partly uninten-
tional. During the alignment process of the MT and
post-edited version, it appeared that some source el-
ements, in some cases entire clauses and in others
certain words, were completely missing in the post-
edited version. On the other hand, some of the in-
sertions were also difficult to map onto anything in
the source segment and the editor appeared to have
brought in something extra. One clear example in-
volved adding a conversion from miles per hour to
km per hour that did not appear in the MT or source
text. Such deletions and insertions concerned only a
few isolated cases which were not examined in detail
within the scope of this work. Some error classifica-
tions, such as Blain et al. (2011), do also take errors
made by post-editors into account, and one interest-
ing aspect of post-editing would be to study the cor-
rectness of post-edits. If it would turn out that post-
editors are more prone to make errors or to fail to
correct errors, (particularly errors related to content
as opposed to typographical errors etc.) in certain
situations, this might suggest situations that involve
particular cognitive effort or mislead the editor.

6 Conclusion and Future Work

We have presented an experiment aimed at explor-
ing the difference between cognitive and technical
aspects of MT post-editing effort by comparing hu-
man scores of perceived effort necessary to actual
edits made by post-editors. We examined cases
where considerably more or considerably less post-
editing was done than predicted by the evaluators’
estimate of post-editing needed. The results show
that one of the factors most affecting the perception
of post-editing necessary involves segment length:
long segments are perceived to involve much effort
and therefore receive low scores even when the ac-
tual number of edits turns out to be small. This sug-
gests that sentence length affects the cognitive effort
required in identifying errors and planning the cor-
rections, and presenting MT for this type of evalu-
ation and post-editing may benefit from displaying
segments to the evaluator or editor in smaller units.

The results also suggest other features affecting

cognitive effort. Sentences with low manual scores
were found to involve more reordering, indicating
increased cognitive effort, while sentences with high
manual scores were found to involve more cases of
correct words with incorrect form, suggesting that
these errors are cognitively easier. Examining edit
type distributions in different POS classes suggests
that edits related to certain parts-of-speech, namely
nouns, verbs and adjectives, may also be associated
with perception of more effort. On the other hand,
sentences with high scores in some cases contained
even more editing of some other POS and types,
such as editing forms of adjectives or deleting deter-
miners, which may indicate that these errors affect
perception of effort to a lesser extent. As the num-
ber of sentences used was relatively low, however,
such effects would require more study.

In future work, we aim to more explicitly exam-
ine combinations of edit operations, (e.g. changing
the form and reordering, moving a group and substi-
tuting one word within the group) and features such
as dependency errors (Tatsumi, 2009). Further ex-
periments with data on other language pairs would
also be needed. Another interesting aspect for future
work would be trying to distinguish between edits
made for reasons of incorrect language and edits for
reasons of incorrect content. Further, examining the
success of post-editing and exploring whether post-
editors themselves are prone to make errors or fail to
correct errors in certain situations could be an inter-
esting avenue for discovering situations that involve
significant cognitive effort.
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Abstract

Confusion network decoding has proven to
be one of the most successful approaches
to machine translation system combination.
The hypothesis alignment algorithm is a cru-
cial part of building the confusion networks
and many alternatives have been proposed in
the literature. This paper describes a sys-
tematic comparison of five well known hy-
pothesis alignment algorithms for MT sys-
tem combination via confusion network de-
coding. Controlled experiments using identi-
cal pre-processing, decoding, and weight tun-
ing methods on standard system combina-
tion evaluation sets are presented. Transla-
tion quality is assessed using case insensitive
BLEU scores and bootstrapping is used to es-
tablish statistical significance of the score dif-
ferences. All aligners yield significant BLEU
score gains over the best individual system in-
cluded in the combination. Incremental indi-
rect hidden Markov model and a novel incre-
mental inversion transduction grammar with
flexible matching consistently yield the best
translation quality, though keeping all things
equal, the differences between aligners are rel-
atively small.

∗The work reported in this paper was carried out while the
authors were at Raytheon BBN Technologies and

†RWTH Aachen University.

1 Introduction

Current machine translation (MT) systems are based
on different paradigms, such as rule-based, phrase-
based, hierarchical, and syntax-based. Due to the
complexity of the problem, systems make various
assumptions at different levels of processing and
modeling. Many of these assumptions may be
suboptimal and complementary. The complemen-
tary information in the outputs from multiple MT
systems may be exploited by system combination.
Availability of multiple system outputs within the
DARPA GALE program as well as NIST Open MT
and Workshop on Statistical Machine Translation
evaluations has led to extensive research in combin-
ing the strengths of diverse MT systems, resulting in
significant gains in translation quality.

System combination methods proposed in the lit-
erature can be roughly divided into three categories:
(i) hypothesis selection (Rosti et al., 2007b; Hilde-
brand and Vogel, 2008), (ii) re-decoding (Frederking
and Nirenburg, 1994; Jayaraman and Lavie, 2005;
Rosti et al., 2007b; He and Toutanova, 2009; De-
vlin et al., 2011), and (iii) confusion network de-
coding. Confusion network decoding has proven to
be the most popular as it does not require deep N -
best lists1 and operates on the surface strings. It has

1N -best lists of around N = 10 have been used in confu-
sion network decoding yielding small gains over using 1-best
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also been shown to be very successful in combining
speech recognition outputs (Fiscus, 1997; Mangu et
al., 2000). The first application of confusion net-
work decoding in MT system combination appeared
in (Bangalore et al., 2001) where a multiple string
alignment (MSA), made popular in biological se-
quence analysis, was applied to the MT system out-
puts. Matusov et al. (2006) proposed an alignment
based on GIZA++ Toolkit which introduced word
reordering not present in MSA, and Sim et al. (2007)
used the alignments produced by the translation edit
rate (TER) (Snover et al., 2006) scoring. Extensions
of the last two are included in this study together
with alignments based on hidden Markov model
(HMM) (Vogel et al., 1996) and inversion transduc-
tion grammars (ITG) (Wu, 1997).

System combinations produced via confusion net-
work decoding using different hypothesis alignment
algorithms have been entered into open evalua-
tions, most recently in 2011 Workshop on Statistical
Machine Translation (Callison-Burch et al., 2011).
However, there has not been a comparison of the
most popular hypothesis alignment algorithms us-
ing the same sets of MT system outputs and other-
wise identical combination pipelines. This paper at-
tempts to systematically compare the quality of five
hypothesis alignment algorithms. Alignments were
produced for the same system outputs from three
common test sets used in the 2009 NIST Open MT
Evaluation and the 2011 Workshop on Statistical
Machine Translation. Identical pre-processing, de-
coding, and weight tuning algorithms were used to
quantitatively evaluate the alignment quality. Case
insensitive BLEU score (Papineni et al., 2002) was
used as the translation quality metric.

2 Confusion Network Decoding

A confusion network is a linear graph where all
paths visit all nodes. Two consecutive nodes may be
connected by one or more arcs. Given the arcs repre-
sent words in hypotheses, multiple arcs connecting
two consecutive nodes can be viewed as alternative
words in that position of a set of hypotheses encoded
by the network. A special NULL token represents
a skipped word and will not appear in the system
combination output. For example, three hypotheses

outputs (Rosti et al., 2011).

“twelve big cars”, “twelve cars”, and “dozen cars”
may be aligned as follows:

twelve big blue cars
twelve NULL NULL cars
dozen NULL blue cars

This alignment may be represented compactly as the
confusion network in Figure 1 which encodes a total
of eight unique hypotheses.

40 1twelve(2)
dozen(1)

2big(1)
NULL(2)

3blue(2)
NULL(1)

cars(3)

Figure 1: Confusion network from three strings “twelve
big blue cars”, “twelve cars”, and “dozen blue cars” us-
ing the first as the skeleton. The numbers in parentheses
represent counts of words aligned to the corresponding
arc.

Building confusion networks from multiple ma-
chine translation system outputs has two main prob-
lems. First, one output has to be chosen as the skele-
ton hypothesis which defines the final word order of
the system combination output. Second, MT system
outputs may have very different word orders which
complicates the alignment process. For skeleton se-
lection, Sim et al. (2007) proposed choosing the out-
put closest to all other hypotheses when using each
as the reference string in TER. Alternatively, Ma-
tusov et al. (2006) proposed leaving the decision to
decoding time by connecting networks built using
each output as a skeleton into a large lattice. The
subnetworks in the latter approach may be weighted
by prior probabilities estimated from the alignment
statistics (Rosti et al., 2007a). Since different align-
ment algorithm produce different statistics and the
gain from the weights is relatively small (Rosti et al.,
2011), weights for the subnetworks were not used
in this work. The hypothesis alignment algorithms
used in this work are briefly described in the follow-
ing section.

The confusion networks in this work were repre-
sented in a text lattice format shown in Figure 2.
Each line corresponds to an arc, where J is the arc
index, S is the start node index, E is the end node in-
dex, SC is the score vector, and W is the word label.
The score vector has as many elements as there are
input systems. The elements correspond to each sys-
tem and indicate whether a word from a particular
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J=0 S=0 E=1 SC=(1,1,0) W=twelve
J=1 S=0 E=1 SC=(0,0,1) W=dozen
J=2 S=1 E=2 SC=(1,0,0) W=big
J=3 S=1 E=2 SC=(0,1,1) W=NULL
J=4 S=2 E=3 SC=(1,0,1) W=blue
J=5 S=2 E=3 SC=(0,1,0) W=NULL
J=6 S=3 E=4 SC=(1,1,1) W=cars

Figure 2: A lattice in text format representing the con-
fusion network in Figure 1. J is the arc index, S and E
are the start and end node indexes, SC is a vector of arc
scores, and W is the word label.

system was aligned to a given link2. These may be
viewed as system specific word confidences, which
are binary when aligning 1-best system outputs. If
no word from a hypothesis is aligned to a given link,
a NULL word token is generated provided one does
not already exist, and the corresponding element in
the NULL word token is set to one. The system
specific word scores are kept separate in order to
exploit system weights in decoding. Given system
weights wn, which sum to one, and system specific
word scores snj for each arc j (the SC elements), the
weighted word scores are defined as:

sj =
Ns∑
n=1

wnsnj (1)

where Ns is the number of input systems. The hy-
pothesis score is defined as the sum of the log-word-
scores along the path, which is linearly interpolated
with a logarithm of the language model (LM) score
and a non-NULL word count:

S(E|F ) =
∑

j∈J (E)

log sj + γSLM (E) + δNw(E)

(2)
where J (E) is the sequence of arcs generating the
hypothesis E for the source sentence F , SLM (E)
is the LM score, and Nw(E) is the number of
non-NULL words. The set of weights θ =
{w1, . . . , wNs , γ, δ} can be tuned so as to optimize
an evaluation metric on a development set.

Decoding with an n-gram language model re-
quires expanding the lattice to distinguish paths with

2A link is used as a synonym to the set of arcs between two
consecutive nodes. The name refers to the confusion network
structure’s resemblance to a sausage.

unique n-gram contexts before LM scores can be as-
signed the arcs. Using long n-gram context may re-
quire pruning to reduce memory usage. Given uni-
form initial system weights, pruning may remove
desirable paths. In this work, the lattices were ex-
panded to bi-gram context and no pruning was per-
formed. A set of bi-gram decoding weights were
tuned directly on the expanded lattices using a dis-
tributed optimizer (Rosti et al., 2010). Since the
score in Equation 2 is not a simple log-linear inter-
polation, the standard minimum error rate training
(Och, 2003) with exact line search cannot be used.
Instead, downhill simplex (Press et al., 2007) was
used in the optimizer client. After bi-gram decod-
ing weight optimization, another set of 5-gram re-
scoring weights were tuned on 300-best lists gener-
ated from the bi-gram expanded lattices.

3 Hypothesis Alignment Algorithms

Two different methods have been proposed for
building confusion networks: pairwise and incre-
mental alignment. In pairwise alignment, each
hypothesis corresponding to a source sentence is
aligned independently with the skeleton hypothe-
sis. This set of alignments is consolidated using the
skeleton words as anchors to form the confusion net-
work (Matusov et al., 2006; Sim et al., 2007). The
same word in two hypotheses may be aligned with a
different word in the skeleton resulting in repetition
in the network. A two-pass alignment algorithm to
improve pairwise TER alignments was introduced in
(Ayan et al., 2008). In incremental alignment (Rosti
et al., 2008), the confusion network is initialized by
forming a simple graph with one word per link from
the skeleton hypothesis. Each remaining hypothesis
is aligned with the partial confusion network, which
allows words from all previous hypotheses be con-
sidered as matches. The order in which the hypothe-
ses are aligned may influence the alignment qual-
ity. Rosti et al. (2009) proposed a sentence specific
alignment order by choosing the unaligned hypoth-
esis closest to the partial confusion network accord-
ing to TER. The following five alignment algorithms
were used in this study.
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3.1 Pairwise GIZA++ Enhanced Hypothesis
Alignment

Matusov et al. (2006) proposed using the GIZA++
Toolkit (Och and Ney, 2003) to align a set of tar-
get language translations. A parallel corpus where
each system output acting as a skeleton appears as
a translation of all system outputs corresponding to
the same source sentence. The IBM Model 1 (Brown
et al., 1993) and hidden Markov model (HMM) (Vo-
gel et al., 1996) are used to estimate the alignment.
Alignments from both “translation” directions are
used to obtain symmetrized alignments by interpo-
lating the HMM occupation statistics (Matusov et
al., 2004). The algorithm may benefit from the fact
that it considers the entire test set when estimating
the alignment model parameters; i.e., word align-
ment links from all output sentences influence the
estimation, whereas other alignment algorithms only
consider words within a pair of sentences (pairwise
alignment) or all outputs corresponding to a single
source sentence (incremental alignment). However,
it does not naturally extend to incremental align-
ment. The monotone one-to-one alignments are then
transformed into a confusion network. This aligner
is referred to as GIZA later in this paper.

3.2 Incremental Indirect Hidden Markov
Model Alignment

He et al. (2008) proposed using an indirect hidden
Markov model (IHMM) for pairwise alignment of
system outputs. The parameters of the IHMM are
estimated indirectly from a variety of sources in-
cluding semantic word similarity, surface word sim-
ilarity, and a distance-based distortion penalty. The
alignment between two target language outputs are
treated as the hidden states. A standard Viterbi al-
gorithm is used to infer the alignment. The pair-
wise IHMM was extended to operate incrementally
in (Li et al., 2009). Sentence specific alignment or-
der is not used by this aligner, which is referred to
as iIHMM later in this paper.

3.3 Incremental Inversion Transduction
Grammar Alignment with Flexible
Matching

Karakos et al. (2008) proposed using inversion trans-
duction grammars (ITG) (Wu, 1997) for pairwise

alignment of system outputs. ITGs form an edit
distance, invWER (Leusch et al., 2003), that per-
mits properly nested block movements of substrings.
For well-formed sentences, this may be more nat-
ural than allowing arbitrary shifts. The ITG algo-
rithm is very expensive due to its O(n6) complexity.
The search algorithm for the best ITG alignment, a
best-first chart parsing (Charniak et al., 1998), was
augmented with an A∗ search heuristic of quadratic
complexity (Klein and Manning, 2003), resulting in
significant reduction in computational complexity.
The finite state-machine heuristic computes a lower
bound to the alignment cost of two strings by allow-
ing arbitrary word re-orderings. The ITG hypothesis
alignment algorithm was extended to operate incre-
mentally in (Karakos et al., 2010) and a novel ver-
sion where the cost function is computed based on
the stem/synonym similarity of (Snover et al., 2009)
was used in this work. Also, a sentence specific
alignment order was used. This aligner is referred
to as iITGp later in this paper.

3.4 Incremental Translation Edit Rate
Alignment with Flexible Matching

Sim et al. (2007) proposed using translation edit rate
scorer3 to obtain pairwise alignment of system out-
puts. The TER scorer tries to find shifts of blocks
of words that minimize the edit distance between
the shifted reference and a hypothesis. Due to the
computational complexity, a set of heuristics is used
to reduce the run time (Snover et al., 2006). The
pairwise TER hypothesis alignment algorithm was
extended to operate incrementally in (Rosti et al.,
2008) and also extended to consider synonym and
stem matches in (Rosti et al., 2009). The shift
heuristics were relaxed for flexible matching to al-
low shifts of blocks of words as long as the edit dis-
tance is decreased even if there is no exact match in
the new position. A sentence specific alignment or-
der was used by this aligner, which is referred to as
iTER later in this paper.

3.5 Incremental Translation Edit Rate Plus
Alignment

Snover et al. (2009) extended TER scoring to con-
sider synonyms and paraphrase matches, called

3http://www.cs.umd.edu/˜snover/tercom/
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TER-plus (TERp). The shift heuristics in TERp
were also relaxed relative to TER. Shifts are allowed
if the words being shifted are: (i) exactly the same,
(ii) synonyms, stems or paraphrases of the corre-
sponding reference words, or (iii) any such combina-
tion. Xu et al. (2011) proposed using an incremental
version of TERp for building consensus networks. A
sentence specific alignment order was used by this
aligner, which is referred to as iTERp later in this
paper.

4 Experimental Evaluation

Combination experiments were performed on (i)
Arabic-English, from the informal system combi-
nation track of the 2009 NIST Open MT Evalua-
tion4; (ii) German-English from the system com-
bination evaluation of the 2011 Workshop on Sta-
tistical Machine Translation (Callison-Burch et al.,
2011) (WMT11) and (iii) Spanish-English, again
from WMT11. Eight top-performing systems (as
evaluated using case-insensitive BLEU) were used
in each language pair. Case insensitive BLEU scores
for the individual system outputs on the tuning and
test sets are shown in Table 1. About 300 and
800 sentences with four reference translations were
available for Arabic-English tune and test sets, re-
spectively, and about 500 and 2500 sentences with a
single reference translation were available for both
German-English and Spanish-English tune and test
sets. The system outputs were lower-cased and to-
kenized before building confusion networks using
the five hypothesis alignment algorithms described
above. Unpruned English bi-gram and 5-gram lan-
guage models were trained with about 6 billion
words available for these evaluations. Multiple com-
ponent language models were trained after dividing
the monolingual corpora by source. Separate sets
of interpolation weights were tuned for the NIST
and WMT experiments to minimize perplexity on
the English reference translations of the previous
evaluations, NIST MT08 and WMT10. The sys-
tem combination weights, both bi-gram lattice de-
coding and 5-gram 300-best list re-scoring weights,
were tuned separately for lattices build with each hy-
pothesis alignment algorithm. The final re-scoring

4http://www.itl.nist.gov/iad/mig/tests/
mt/2009/ResultsRelease/indexISC.html

outputs were detokenized before computing case in-
sensitive BLEU scores. Statistical significance was
computed for each pairwise comparison using boot-
strapping (Koehn, 2004).

Decode Oracle
Aligner tune test tune test
GIZA 60.06 57.95 75.06 74.47
iTER 59.74 58.63† 73.84 73.20
iTERp 60.18 59.05† 76.43 75.58
iIHMM 60.51 59.27†‡ 76.50 76.17
iITGp 60.65 59.37†‡ 76.53 76.05

Table 2: Case insensitive BLEU scores for NIST MT09
Arabic-English system combination outputs. Note, four
reference translations were available. Decode corre-
sponds to results after weight tuning and Oracle corre-
sponds to graph TER oracle. Dagger (†) denotes statisti-
cally significant difference compared to GIZA and double
dagger (‡) compared to iTERp and the aligners above it.

The BLEU scores for Arabic-English system
combination outputs are shown in Table 2. The first
column (Decode) shows the scores on tune and test
sets for the decoding outputs. The second column
(Oracle) shows the scores for oracle hypotheses ob-
tained by aligning the reference translations with the
confusion networks and choosing the path with low-
est graph TER (Rosti et al., 2008). The rows rep-
resenting different aligners are sorted according to
the test set decoding scores. The order of the BLEU
scores for the oracle translations do not always fol-
low the order for the decoding outputs. This may be
due to differences in the compactness of the confu-
sion networks. A more compact network has fewer
paths and is therefore less likely to contain signif-
icant parts of the reference translation, whereas a
reference translation may be generated from a less
compact network. On Arabic-English, all incremen-
tal alignment algorithms are significantly better than
the pairwise GIZA, incremental IHMM and ITG
with flexible matching are significantly better than
all other algorithms, but not significantly different
from each other. The incremental TER and TERp
were statistically indistinguishable. Without flexi-
ble matching, iITG yields a BLEU score of 58.85 on
test. The absolute BLEU gain over the best individ-
ual system was between 6.2 and 7.6 points on the
test set.
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Arabic German Spanish
System tune test tune test tune test
A 48.84 48.54 21.96 21.41 27.71 27.13
B 49.15 48.97 22.61 21.80 28.42 27.90
C 49.30 49.50 22.77 21.99 28.57 28.23
D 49.38 49.59 22.90 22.41 29.00 28.41
E 49.42 49.75 22.90 22.65 29.15 28.50
F 50.28 50.69 22.98 22.65 29.53 28.61
G 51.49 50.81 23.41 23.06 29.89 29.82
H 51.72 51.74 24.28 24.16 30.55 30.14

Table 1: Case insensitive BLEU scores for the individual system outputs on the tune and test sets for all three source
languages.

Decode Oracle
Aligner tune test tune test
GIZA 25.93 26.02 37.32 38.22
iTERp 26.46 26.10 38.16 38.76
iTER 26.27 26.39† 37.00 37.66
iIHMM 26.34 26.40† 37.87 38.48
iITGp 26.47 26.50† 37.99 38.60

Table 3: Case insensitive BLEU scores for WMT11
German-English system combination outputs. Note, only
a single reference translation per segment was available.
Decode corresponds to results after weight tuning and
Oracle corresponds to graph TER oracle. Dagger (†)
denotes statistically significant difference compared to
iTERp and GIZA.

The BLEU scores for German-English system
combination outputs are shown in Table 3. Again,
the graph TER oracle scores do not follow the same
order as the decoding scores. The scores for GIZA
and iTERp are statistically indistinguishable, and
iTER, iIHMM, and iITGp are significantly better
than the first two. However, they are not statistically
different from each other. Without flexible match-
ing, iITG yields a BLEU score of 26.47 on test. The
absolute BLEU gain over the best individual system
was between 1.9 and 2.3 points on the test set.

The BLEU scores for Spanish-English system
combination outputs are shown in Table 4. All align-
ers but iIHMM are statistically indistinguishable and
iIHMM is significantly better than all other align-
ers. Without flexible matching, iITG yields a BLEU
score of 33.62 on test. The absolute BLEU gain over
the best individual system was between 3.5 and 3.9

Decode Oracle
Aligner tune test tune test
iTERp 34.20 33.61 50.45 51.28
GIZA 34.02 33.62 50.23 51.20
iTER 34.44 33.79 50.39 50.39
iITGp 34.41 33.85 50.55 51.33
iIHMM 34.61 34.05† 50.48 51.27

Table 4: Case insensitive BLEU scores for WMT11
Spanish-English system combination outputs. Note, only
a single reference translation per segment was available.
Decode corresponds to results after weight tuning and
Oracle corresponds to graph TER oracle. Dagger (†)
denotes statistically significant difference compared to
aligners above iIHMM.

points on the test set.

5 Error Analysis

Error analysis was performed to better understand
the gains from system combination. Specifically, (i)
how the different types of translation errors are af-
fected by system combination was investigated; and
(ii) an attempt to quantify the correlation between
the word agreement that results from the different
aligners and the translation error, as measured by
TER (Snover et al., 2006), was made.

5.1 Influence on Error Types

For each one of the individual systems, and for each
one of the three language pairs, the per-sentence er-
rors that resulted from that system, as well as from
each one of the the different aligners studied in this
paper, were computed. The errors were broken
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down into insertions/deletions/substitutions/shifts
based on the TER scorer.

The error counts at the document level were ag-
gregated. For each document in each collection, the
number of errors of each type that resulted from each
individual system as well as each system combina-
tion were measured, and their difference was com-
puted. If the differences are mostly positive, then
it can be said (with some confidence) that system
combination has a significant impact in reducing the
error of that type. A paired Wilcoxon test was per-
formed and the p-value that quantifies the probabil-
ity that the measured error reduction was achieved
under the null hypothesis that the system combina-
tion performs as well as the best system was com-
puted.

Table 5 shows all conditions under consideration.
All cases where the p-value is below 10−2 are con-
sidered statistically significant. Two observations
are in order: (i) all alignment schemes significantly
reduce the number of substitution/shift errors; (ii)
in the case of insertions/deletions, there is no clear
trend; there are cases where the system combination
increases the number of insertions/deletions, com-
pared to the individual systems.

5.2 Relationship between Word Agreement
and Translation Error

This set of experiments aimed to quantify the rela-
tionship between the translation error rate and the
amount of agreement that resulted from each align-
ment scheme. The amount of system agreement at
a level x is measured by the number of cases (con-
fusion network arcs) where x system outputs con-
tribute the same word in a confusion network bin.
For example, the agreement at level 2 is equal to 2
in Figure 1 because there are exactly 2 arcs (with
words “twelve” and “blue”) that resulted from the
agreement of 2 systems. Similarly, the agreement at
level 3 is 1, because there is only 1 arc (with word
“cars”) that resulted from the agreement of 3 sys-
tems. It is hypothesized that a sufficiently high level
of agreement should be indicative of the correctness
of a word (and thus indicative of lower TER). The
agreement statistics were grouped into two values:
the “weak” agreement statistic, where at most half
of the combined systems contribute a word, and the
“strong” agreement statistic, where more than half

non-NULL words NULL words
weak strong weak strong

Arabic 0.087 -0.068 0.192 0.094
German 0.117 -0.067 0.206 0.147
Spanish 0.085 -0.134 0.323 0.102

Table 6: Regression coefficients of the “strong” and
”weak” agreement features, as computed with a gener-
alized linear model, using TER as the target variable.

of the combined systems contribute a word. To sig-
nify the fact that real words and “NULL” tokens
have different roles and should be treated separately,
two sets of agreement statistics were computed.

A regression with a generalized linear model
(glm) that computed the coefficients of the agree-
ment quantities (as explained above) for each align-
ment scheme, using TER as the target variable, was
performed. Table 6 shows the regression coeffi-
cients; they are all significant at p-value < 0.001.
As is clear from this table, the negative coefficient of
the “strong” agreement quantity for the non-NULL
words points to the fact that good aligners tend to
result in reductions in translation error. Further-
more, increasing agreements on NULL tokens does
not seem to reduce TER.

6 Conclusions

This paper presented a systematic comparison of
five different hypothesis alignment algorithms for
MT system combination via confusion network de-
coding. Pre-processing, decoding, and weight tun-
ing were controlled and only the alignment algo-
rithm was varied. Translation quality was compared
qualitatively using case insensitive BLEU scores.
The results showed that confusion network decod-
ing yields a significant gain over the best individ-
ual system irrespective of the alignment algorithm.
Differences between the combination output using
different alignment algorithms were relatively small,
but incremental alignment consistently yielded bet-
ter translation quality compared to pairwise align-
ment based on these experiments and previously
published literature. Incremental IHMM and a novel
incremental ITG with flexible matching consistently
yield highest quality combination outputs. Further-
more, an error analysis shows that most of the per-
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Language Aligner ins del sub shft
GIZA 2.2e-16 0.9999 2.2e-16 2.2e-16
iHMM 2.2e-16 0.433 2.2e-16 2.2e-16

Arabic iITGp 0.8279 2.2e-16 2.2e-16 2.2e-16
iTER 4.994e-07 3.424e-11 2.2e-16 2.2e-16
iTERp 2.2e-16 1 2.2e-16 2.2e-16
GIZA 7.017e-12 2.588e-06 2.2e-16 2.2e-16
iHMM 6.858e-07 0.4208 2.2e-16 2.2e-16

German iITGp 0.8551 0.2848 2.2e-16 2.2e-16
iTER 0.2491 1.233e-07 2.2e-16 2.2e-16
iTERp 0.9997 0.007489 2.2e-16 2.2e-16
GIZA 2.2e-16 0.8804 2.2e-16 2.2e-16
iHMM 2.2e-16 1 2.2e-16 2.2e-16

Spanish iITGp 2.2e-16 0.9999 2.2e-16 2.2e-16
iTER 2.2e-16 1 2.2e-16 2.2e-16
iTERp 3.335e-16 1 2.2e-16 2.2e-16

Table 5: p-values which show which error types are statistically significantly improved for each language and aligner.

formance gains from system combination can be at-
tributed to reductions in substitution errors and word
re-ordering errors. Finally, better alignments of sys-
tem outputs, which tend to cause higher agreement
rates on words, correlate with reductions in transla-
tion error.
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Abstract

The addition of a deterministic permutation
parser can provide valuable hierarchical in-
formation to a phrase-based statistical ma-
chine translation (PBSMT) system. Permuta-
tion parsers have been used to implement hier-
archical re-ordering models (Galley and Man-
ning, 2008) and to enforce inversion trans-
duction grammar (ITG) constraints (Feng et
al., 2010). We present a number of theoret-
ical results regarding the use of permutation
parsers in PBSMT. In particular, we show that
an existing ITG constraint (Zens et al., 2004)
does not prevent all non-ITG permutations,
and we demonstrate that the hierarchical re-
ordering model can produce analyses during
decoding that are inconsistent with analyses
made during training. Experimentally, we ver-
ify the utility of hierarchical re-ordering, and
compare several theoretically-motivated vari-
ants in terms of both translation quality and
the syntactic complexity of their output.

1 Introduction

Despite the emergence of a number of syntax-based
techniques, phrase-based statistical machine transla-
tion remains a competitive and very efficient trans-
lation paradigm (Galley and Manning, 2010). How-
ever, it lacks the syntactically-informed movement
models and constraints that are provided implicitly
by working with synchronous grammars. There-
fore, re-ordering must be modeled and constrained
explicitly. Movement can be modeled with a dis-
tortion penalty or lexicalized re-ordering probabili-
ties (Koehn et al., 2003; Koehn et al., 2007), while

decoding can be constrained by distortion limits or
by mimicking the restrictions of inversion transduc-
tion grammars (Wu, 1997; Zens et al., 2004).

Recently, we have begun to see deterministic per-
mutation parsers incorporated into phrase-based de-
coders. These efficient parsers analyze the sequence
of phrases used to produce the target, and assem-
ble them into a hierarchical translation history that
can be used to inform re-ordering decisions. Thus
far, they have been used to enable a hierarchical
re-ordering model, or HRM (Galley and Manning,
2008), as well as an ITG constraint (Feng et al.,
2010). We discuss each of these techniques in turn,
and then explore the implications of ITG violations
on hierarchical re-ordering.

We present one experimental and four theoreti-
cal contributions. Examining the HRM alone, we
present an improved algorithm for extracting HRM
statistics, reducing the complexity of Galley and
Manning’s solution from O(n4) to O(n2). Examin-
ing ITG constraints alone, we demonstrate that the
three-stack constraint of Feng et al. can be reduced
to one augmented stack, and we show that another
phrase-based ITG constraint (Zens et al., 2004) ac-
tually allows some ITG violations to pass. Finally,
we show that in the presence of ITG violations, the
original HRM can fail to produce orientations that
are consistent with the orientations collected during
training. We propose three HRM variants to address
this situation, including an approximate HRM that
requires no permutation parser, and compare them
experimentally. The variants perform similarly to
the original in terms of BLEU score, but differently
in terms of how they permute the source sentence.
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We begin by establishing some notation. We view
the phrase-based translation process as producing a
sequence of source/target blocks in their target or-
der. For the purposes of this paper, we disregard
the lexical content of these blocks, treating blocks
spanning the same source segment as equivalent.
The block [si, ti] indicates that the source segment
wsi+1, . . . , wti was translated as a unit to produce
the ith target phrase. We index between words;
therefore, a block’s length in tokens is t − s, and
for a sentence of length n, 0 ≤ s ≤ t ≤ n. Empty
blocks have s = t, and are used only in special cases.
Two blocks [si−1, ti−1] and [si, ti] are adjacent iff
ti−1 = si or ti = si−1. Note that we concern our-
selves only with adjacency in the source. Adjacency
in the target is assumed, as the blocks are in target
order. Figure 1 shows an example block sequence,
where adjacency corresponds to cases where block
corners touch. In the shift-reduce permutation parser
we describe below, the parsing state is encoded as a
stack of these same blocks.

2 Hierarchical Re-ordering

Hierarchical re-ordering models (HRMs) for phrase-
based SMT are an extension of lexicalized re-
ordering models (LRMs), so we begin by briefly
reviewing the LRM (Tillmann, 2004; Koehn et al.,
2007). The goal of an LRM is to characterize how
a phrase-pair tends to be placed with respect to the
block that immediately precedes it. Both the LRM
and the HRM track orientations traveling through
the target from left-to-right as well as right-to-left.
For the sake of brevity and clarity, we discuss only
the left-to-right direction except when stated oth-
erwise. Re-ordering is typically categorized into
three orientations, which are determined by exam-
ining two sequential blocks [si−1, ti−1] and [si, ti]:

• Monotone Adjacent (M): ti−1 = si

• Swap Adjacent (S): ti = si−1

• Disjoint (D): otherwise

Figure 1 shows a simple example, where the first
two blocks are placed in monotone orientation, fol-
lowed by a disjoint “red”, a swapped “dog” and a
disjoint period. The probability of an orientation
Oi ∈ {M,S, D} is determined by a conditional
distribution: Pr(Oi|source phrasei, target phrasei).

Em
ily
	  	  a
im

e	  
	  so

n	  
	  g
ro
s	  	  
ch
ie
n	  
	  ro

ug
e	  
	  	  	  
.	  

[0,	  2]	  
Emily	  	  loves	  	  

[2,	  4]	  
her	  	  big	  	  

[5,6]	  
red	  	  

[4,5]	  
dog	  

[6,7]	  
.	  

Figure 1: A French-to-English translation with 5 blocks.

To build this model, orientation counts can be ex-
tracted from aligned parallel text using a simple
heuristic (Koehn et al., 2007).

The HRM (Galley and Manning, 2008) maintains
similar re-ordering statistics, but determines orienta-
tion differently. It is designed to address the LRM’s
dependence on the previous block [si−1, ti−1]. Con-
sider the period [6,7] in Figure 1. If a different seg-
mentation of the source had preceded it, such as one
that translates “chien rouge” as a single [4,6] block,
the period would have been in monotone orienta-
tion. Galley and Manning (2008) introduce a de-
terministic shift-reduce parser into decoding, so that
the decoder always has access to the largest possible
previous block, given the current translation history.
The parser has two operations: shift places a newly
translated block on the top of the stack. If the top
two blocks are adjacent, then a reduce is immedi-
ately performed, replacing them with a single block
spanning both. Table 1 shows the parser states cor-
responding to our running example. Whether “chien
rouge” is translated using [5,6],[4,5] or [4,6] alone,
the shift-reduce parser provides a consolidated pre-
vious block of [0,6] at the top of the stack (shown
with dotted lines). Therefore, [6,7] is placed in
monotone orientation in both cases.

The parser can be easily integrated into a phrase-
based decoder’s translation state, so each partial hy-
pothesis carries its own shift-reduce stack. Time and
memory costs for copying and storing stacks can
be kept small by sharing tails across decoder states.
The stack subsumes the coverage vector in that it
contains strictly more information: every covered
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Op Stack
S [0,2]
S [0,2],[2,4]
R [0,4]
S [0,4],[5,6]
S [0,4],[5,6],[4,5]
R [0,4],[4,6]
R [0,6]
S [0,6],[6,7]
R [0,7]

Table 1: Shift-reduce states corresponding to Figure 1.

word will be present in one of the stack’s blocks.
However, it can be useful to maintain both.

The top item of a parser’s stack can be approxi-
mated using only the coverage vector. The approx-
imate top is the largest block of covered words that
contains the last translated block. This approxima-
tion will always be as large or larger than the true top
of the stack, and it will often match the true top ex-
actly. For example, in Figure 1, after we have trans-
lated [2,4], we can see that the coverage vector con-
tains all of [0,4], making the approximate top [0,4],
which is also the true top. In fact, this approxima-
tion is correct at every time step shown in Figure 1.
Keep this approximation in mind, as we return to it
in Sections 3.2 and 4.3.

We do not use a shift-reduce parser that consumes
source words from right-to-left;1 therefore, we ap-
ply the above approximation to handle the right-to-
left HRM. Before doing so, we re-interpret the de-
coder state to simulate a right-to-left decoder. The
last block becomes [si, ti] and the next block be-
comes [si−1, ti−1], and the coverage vector is in-
verted so that covered words become uncovered and
vice versa. Taken all together, the approximate test
for right-to-left adjacency checks that any gap be-
tween [si−1, ti−1] and [si, ti] is uncovered in the
original coverage vector.2 Figure 2 illustrates how a
monotone right-to-left orientation can be (correctly)
determined for [2, 4] after placing [5, 6] in Figure 1.

Statistics for the HRM can be extracted from
word-aligned training data. Galley and Manning
(2008) propose an algorithm that begins by run-

1This would require a second, right-to-left decoding pass.
2Galley and Manning (2008) present an under-specified ap-

proximation that is consistent with what we present here.

Prev	  

2	   4	   5	   7	  6	  0	  

Next	  
Coverage	  /	  Approx	  Top	  

Next	  

2	   4	   5	   7	  6	  0	  

Prev	  
Cov	  /	  Approx	  Top	  

Le8-‐to-‐Right	  (Disjoint	  [5,6])	  

Implied	  Right-‐to-‐Le8	  (Monotone	  [2,4])	  

Figure 2: Illustration of the coverage-vector stack ap-
proximation, as applied to right-to-left HRM orientation.

Phrase	  

So
ur
ce
	  

Target	  

èM	  

èS	   çM	  

çS	  

Figure 3: Relevant corners in HRM extraction. → indi-
cates left-to-right orientation, and← right-to-left.

ning standard phrase extraction (Och and Ney, 2004)
without a phrase-length limit, noting the corners of
each phrase found. Next, the left-to-right and right-
to-left orientation for each phrase of interest (those
within the phrase-length limit) can be determined by
checking to see if any corners noted in the previous
step are adjacent, as shown in Figure 3.

2.1 Efficient Extraction of HRM statistics

The time complexity of phrase extraction is bounded
by the number of phrases to be extracted, which is
determined by the sparsity of the input word align-
ment. Without a limit on phrase length, a sentence
pair with n words in each language can have as many
as O(n4) phrase-pairs.3 Because it relies on unre-
stricted phrase extraction, the corner collection step
for determining HRM orientation is also O(n4).

By leveraging the fact that the first step col-
lects corners, not phrase-pairs, we can show that
HRM extraction can actually be done in O(n2) time,
through a process we call corner propagation. In-
stead of running unrestricted phrase-extraction, cor-
ner propagation begins by extracting all minimal

3Consider a word-alignment with only one link in the center
of the grid.
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èM	  

èS	   çM	  

çS	  

èS	  çM	  

èM	  çS	  

Figure 4: Corner Propagation: Each of the four passes
propagates two types of corners along a single dimension.

phrase-pairs; that is, those that do not include un-
aligned words at their boundaries. The complex-
ity of this step is O(n2), as the number of mini-
mal phrases is bounded by the minimum of the num-
ber of monolingual phrases in either language. We
note corners for each minimal pair, as in the orig-
inal HRM extractor. We then carry out four non-
nested propagation steps to handle unaligned words,
traversing the source (target) in forward and reverse
order, with each unaligned row (column) copying
corners from the previous row (column). Each pass
takes O(n2) time, for a total complexity of O(n2).
This process is analogous to the growing step in
phrase extraction, but computational complexity is
minimized because each corner is considered inde-
pendently. Pseudo-code is provided in Algorithm 1,
and the propagation step is diagrammed in Fig-
ure 4. In our implementation, corner propagation is
roughly two-times faster than running unrestricted
phrase-extraction to collect corners.

Note that the trickiest corners to catch are those
that are diagonally separated from their minimal
block (they result from unaligned growth in both
the source and target). These cases are handled cor-
rectly because each corner type is touched by two
propagators, one for the source and one for the tar-
get (see Figure 4). For example, the top-right-corner
array Aq is populated by both propagate-right and
propagate-up. Thus, one propagator can copy a cor-
ner along one dimension, while the next propagator
copies the copies along the other dimension, moving
the original corner diagonally.

Algorithm 1 Corner Propagation
Initialize target-source indexed binary arrays
Aq[m][n], Ay[m][n], Ap[m][n] and Ax[m][n] to
record corners found in minimal phrase-pairs.
{Propagate Right}
for i from 2 to m s.t. target [i] is unaligned do

for j from 1 to n do
Aq[i][j] = True if Aq[i− 1][j] is True
Ay[i][j] = True if Ay[i− 1][j] is True

{Propagate Up}
for j from 2 to n s.t. source[j] is unaligned do

for i from 1 to m do
Ap[i][j] = True if Ap[i][j − 1] is True
Aq[i][j] = True if Aq[i][j − 1] is True

{Propagate Left and Down are similar}
return Aq, Ay, Ap and Ax

3 ITG-Constrained Decoding

Phrase-based decoding places no implicit limits on
re-ordering; all n! permutations are theoretically
possible. This is undesirable, as it leads to in-
tractability (Knight, 1999). Therefore, re-ordering is
limited explicitly, typically using a distortion limit.
One particularly well-studied re-ordering constraint
is the ITG constraint, which limits source permu-
tations to those achievable by a binary bracketing
synchronous context-free grammar (Wu, 1997). ITG
constraints are known to stop permutations that gen-
eralize 3142 and 2413,4 and can drastically limit the
re-ordering space for long strings (Zens and Ney,
2003). There are two methods to incorporate ITG
constraints into a phrase-based decoder, one using
the coverage vector (Zens et al., 2004), and the
other using a shift-reduce parser (Feng et al., 2010).
We begin with the latter, returning to the coverage-
vector constraint later in this section.

Feng et al. (2010) describe an ITG constraint that
is implemented using the same permutation parser
used in the HRM. To understand their method, it is
important to note that the set of ITG-compliant per-
mutations is exactly the same as those that can be
reduced to a single-item stack using the shift-reduce
permutation parser (Zhang and Gildea, 2007). In
fact, this manner of parsing was introduced to SMT

42413 is shorthand notation that denotes the block sequence
[1,2],[3,4],[0,1],[2,3] as diagrammed in Figure 5a.
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0[1,2]4	  

[2,3]	  

[0,1]	  

2[3,4]4	  

0[1,2]5	  

2[2,3]4	  

[0,1]	  

[3,4]	  

So
ur
ce
	  

2[4,5]5	  

Target	  
(a)	   (b)	  

Figure 5: Two non-ITG permutations. Violations of po-
tential adjacency are indicated with dotted spans. Bounds
for the one-stack constraint are shown as subscripts.

in order to binarize synchronous grammar produc-
tions (Zhang et al., 2006). Therefore, enforcing
an ITG constraint in the presence of a shift-reduce
parser amounts to ensuring that every shifted item
can eventually be reduced. To discuss this con-
straint, we introduce a notion of potential adjacency,
where two blocks are potentially adjacent if any
words separating them have not yet been covered.
Formally, blocks [s, t] and [s′, t′] are potentially ad-
jacent iff one of the following conditions holds:

· they are adjacent (t′ = s or t = s′)
· t′ < s and [t′, s] is uncovered
· t < s′ and [t, s′] is uncovered

Recall that a reduction occurs when the top two
items of the stack are adjacent. To ensure that re-
ductions remain possible, we only shift items onto
the stack that are potentially adjacent to the cur-
rent top. Figure 5 diagrams two non-ITG permu-
tations and highlights where potential adjacency is
violated. Note that no reductions occur in either
of these examples; therefore, each block [si, ti] is
also the top of the stack at time i. Potential ad-
jacency can be confirmed with some overhead us-
ing the stack and coverage vector together, but Feng
et al. (2010) present an elegant three-stack solution
that provides potentially adjacent regions in constant
time, without a coverage vector. We improve upon
their method later this section. From this point on,
we abbreviate potential adjacency as PA.

We briefly sketch a proof that maintaining po-
tential adjacency maintains reducibility, by showing
that non-PA shifts produce irreducible stacks, and

that PA shifts are reducible. It is easy to see that ev-
ery non-PA shift leads to an irreducible stack. Let
[s′, t′] be an item to be shifted onto the stack, and
[s, t] be the current top. Assume that t′ < s and the
two items are not PA (the case where t < s′ is simi-
lar). Because they are not PA, there is some index k
in [t′, s] that has been previously covered. Since it is
covered, k exists somewhere in the stack, buried be-
neath [s, t]. Because k cannot be re-used, no series
of additional shift and reduce operations can extend
[s′, t′] so that it becomes adjacent to [s, t]. Therefore,
[s, t] will never participate in a reduction, and pars-
ing will close with at least two items on the stack.
Similarly, one can easily show that every PA shift is
reducible, because the uncovered space [t′, s] can be
filled by extending the new top toward the previous
top using strictly adjacent shifts.

3.1 A One-stack ITG Constraint

As mentioned earlier, Feng et al. (2010) provide a
method to track potential adjacency that does not re-
quire a coverage vector. Instead, they maintain three
stacks, the original stack and two others to track po-
tentially adjacent regions to the left and right respec-
tively. These regions become available to the de-
coder only when the top of the original stack is ad-
jacent to one of the adjacency stacks.

We show that the same goal can be achieved with
even less book-keeping by augmenting the items on
the original stack to track the regions of potential
adjacency around them. The intuition behind this
technique is that on a shift, the new top inherits all
of the constraints on the old top, and the old top be-
comes a constraint itself. Each stack item now has
four fields, the original block [s, t], plus a left and
right adjacency bound, denoted together as `[s, t]r,
where ` and r are indices for the maximal span con-
taining [s, t] that is uncovered except for [s, t]. If the
top of the stack is `[s, t]r, then shifted items must fall
inside one of the two PA regions, [`, s] or [t, r]. The
region shifted into determines new item’s bounds.

The stack is initialized with a special 0[0, 0]n item,
and we then shift unannotated blocks onto the stack.
As we shift [s′, t′] onto the stack, rules derive bounds
`′ and r′ for the new top based on the old top `[s, t]r:

• Shift-left (t′ ≤ s): `′ = `, r′ = s

• Shift-right (t ≤ s′): `′ = t, r′ = r
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[2,4]	  

[5,7]	  

0	   9	  

Shi.	  [5,7]	  

4	   9	  
[2,4]	   9	  0	  

[2,7]	  

[4,7]	  

0	   9	  

Reduce	  

4	   9	  
[2,4]	   9	  0	  

(a)	   (b)	  

Figure 6: Two examples of boundaries for the one-stack solution for potential adjacency. Stacks are built from bottom
to top, blocks indicate [s,t] blocks, while tails are left and right adjacency boundaries.

Meanwhile, when reducing a stack with `′ [s′, t′]r′

at the top and `[s, t]r below it, the new top simply
copies ` and r. The merged item is larger than [s, t],
but it is PA to the same regions. Figure 6 diagrams
a shift-right and a reduce, while Figure 5 annotates
bounds for blocks during its ITG violations.

3.2 The Coverage-Vector ITG Constraint is
Incomplete

The stack-based solution for ITG constraints is el-
egant, but there is also a proposed constraint that
uses only the coverage vector (Zens et al., 2004).
This constraint can be stated with one simple rule:
if the previously translated block is [si−1, ti−1] and
the next block to be translated is [si, ti], one must
be able to travel along the coverage vector from
[si−1, ti−1] to [si, ti] without transitioning from an
uncovered word to a covered word. Feng et al.
(2010) compare the two ITG constraints, and show
that they perform similarly, but not identically. They
attribute the discrepancy to differences in when the
constraints are applied, which is strange, as the two
constraints need not be timed differently.

Let us examine the coverage-vector constraint
more carefully, assuming that ti < si−1 (the case
where ti−1 < si is similar). The constraint consists
of two phases: first, starting from si−1, we travel to
the left toward ti, consuming covered words until we
reach the first uncovered word. We then enter into
the second phase, and the path must remain uncov-
ered until we reach ti. The first step over covered
positions corresponds to finding the left boundary
of the largest covered block containing [si−1, ti−1],
which is an approximation to the top of the stack
(Section 2). The second step over uncovered posi-
tions corresponds to determining whether [si, ti] is
PA to the approximate top. That is, the coverage-
vector ITG constraint checks for potential adjacency

using the same top-of-stack approximation as the
right-to-left HRM.

This implicit approximation implies that there
may well be cases where the coverage-vector con-
straint makes the wrong decision. Indeed this is
the case, which we prove by example. Consider
the irreducible sequence 25314, illustrated in Fig-
ure 5b. This non-ITG permutation is allowed by
the coverage-vector approximation, but not by the
stack-based constraint. Both constraints allow the
placement of the first three blocks [1, 2], [4, 5] and
[2, 3]. After adding [0, 1], the stack-based solution
detects a PA-violation. Meanwhile, the vector-based
solution checks the path from 2 to 1 for a transition
from uncovered to covered. This short path touches
only covered words. Similarly, as we add [3, 4], the
path from 1 to 3 is also completely covered. The
entire permutation is accepted without complaint.
The proof provided by Zens et al. (2004) misses
this case, as it accounts for phrasal generalizations
of the 2413 ITG-forbidden substructure, but it does
not account for generalizations where the substruc-
ture is interrupted by a discontiguous item, such as
in 25{3}14, where 2413 is revealed not by merging
items but by deleting 3.

4 Inconsistencies in HRM parsing

We have shown that the HRM and the ITG con-
straints for phrase-based decoding use the same de-
terministic shift-reduce parser. The entirety of the
ITG discussion was devoted to preventing the parser
from reaching an irreducible state. However, up
until now, work on the HRM has not addressed
the question of irreducibility (Galley and Manning,
2008; Nguyen et al., 2009).

Irreducible derivations do occur during HRM de-
coding, and when they do, they can create inconsis-
tencies with respect to HRM extraction from word-
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[4,6]	  
How	  can	  

[0,1]	  
you	  

[6,7]	  
achieve	  

[1,2]	  
the	  

[3,4]	  
economic	  and	  

[2,3]	  
tourism	  

[7,9]	  
benefits	  ?	  

Figure 7: An example irreducible derivation, drawn from
our Chinese-to-English decoder’s k-best output.

Last translated block 2-red *-red approx
How can [4, 6] [4,6] [4,6] [4,6]
you [0, 1] [0,1] [0,1] [0,1]
achieve [6, 7] [6,7] [6,7] [4,7]
the [1, 2] [1,2] [1,2] [0,2]
economic and [3, 4] [3,4] [3,4] [3,7]
tourism [2, 3] [1,4] [0,7] [0,7]
benefits? [7, 9] [7,9] [0,9] [0,9]

Table 2: Top of stack at each time step in Figure 7, under
2-reduction (as in the original HRM), *-reduction, and
the coverage-vector approximation.

aligned training data. In Figure 7, we show an ir-
reducible block sequence, extracted from a Chinese-
English decoder. The parser can perform a few small
reductions, creating a [1,4] block indicated with a
dashed box, but translation closes with 5 items on
the stack. One can see that [7,9] is assigned a dis-
joint orientation by the HRM. However, if the same
translation and alignment were seen during train-
ing, the unrestricted phrase extractor would find a
phrase at [0,7], indicated with a dotted box, and [7,9]
would be assigned monotone orientation. This in-
consistency penalizes this derivation, as “benefits ?”
is forced into an unlikely disjoint orientation. One
potential implication is that the decoder will tend
to avoid irreducible states, as those states will tend
to force unlikely orientations, resulting in a hidden,
soft ITG-constraint. Indeed, our decoder does not
select this hypothesis, but instead a (worse) transla-
tion that is fully reducible. The impact of these in-
consistencies on translation quality can only be de-

termined empirically. However, to do so, we require
alternatives that address these inconsistencies. We
describe three such variants below.

4.1 ITG-constrained decoding
Perhaps the most obvious way to address irreducible
states is to activate ITG constraints whenever decod-
ing with an HRM. Irreducible derivations will disap-
pear from the decoder, along with the corresponding
inconsistencies in orientation. Since both techniques
require the same parser, there is very little overhead.
However, we will have also limited our decoder’s re-
ordering capabilities.

4.2 Unrestricted shift-reduce parsing
The deterministic shift-reduce parser used through-
out this paper is actually a special case of a general
class of permutation parsers, much in the same way
that a binary ITG is a special case of synchronous
context-free grammar. Zhang and Gildea (2007) de-
scribe a family of k-reducing permutation parsers,
which can reduce the top k items of the stack in-
stead of the top 2. For k ≥ 2 we can generalize the
adjacency requirement for reduction to a permuta-
tion requirement. Let {[si, ti]|i=1. . . k} be the top k
items of a stack; they are a permutation iff:

max
i

(ti)−min
i

(si) =
∑

i

[ti − si]

That is, every number between the max and min is
present somewhere in the set. Since two adjacent
items always fulfill this property, we know the orig-
inal parser is 2-reducing. k-reducing parsers reduce
by moving progressively deeper in the stack, looking
for the smallest 2 ≤ i ≤ k that satisfies the permu-
tation property (see Algorithm 2). As in the original
parser, a k-reduction is performed every time the top
of the stack changes; that is, after each shift and each
successful reduction.

If we set k = ∞, the parser will find the small-
est possible reduction without restriction; we refer
to this as a *-reducing parser. This parser will never
reach an irreducible state. In the worst case, it re-
duces the entire permutation as a single n-reduction
after the last shift. This means it will exactly mimic
unrestricted phrase-extraction when predicting ori-
entations, eliminating inconsistencies without re-
stricting our re-ordering space. The disadvantage is
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Algorithm 2 k-reduce a stack
input stack {[si, ti]|i = 1 . . . l}; i = 1 is the top
input max reduction size k, k ≥ 2
set s′ = s1; t′ = t1; size = t1 − s1

for i from 2 to min(k, l) do
set s′ = min(s′, si); t′ = max(t′, ti)
set size = size + (ti − si)
if t′ − s′ == size then

pop {[sj , tj ]|j = 1 . . . i} from the stack
push [s′, t′] onto the stack;
return true // successful reduction

return false // failed to reduce

that reduction is no longer a constant-time operation,
but is instead O(n) in the worst case (consider Algo-
rithm 2 with k =∞ and l = n items on the stack).5

As a result, we will carefully track the impact of this
parser on decoding speed.

4.3 Coverage vector approximation

One final option is to adopt the top-of-stack approxi-
mation for left-to-right orientations, in addition to its
current use for right-to-left orientations, eliminating
the need for any permutation parser. The next block
[si, ti] is adjacent to the approximate top of the stack
only if any space between [si, ti] and the previous
block [si−1, ti−1] is covered. But before committing
fully to this approximation, we should better under-
stand it. Thus far, we have implied that this approx-
imation can fail to predict correct orientations, but
we have not specified when these failures occur. We
now show that incorrect orientations can only occur
while producing a non-ITG permutation.

Let [si−1, ti−1] be the last translated block, and
[si, ti] be the next block. Recall that the approxima-
tion determines the top of the stack using the largest
block of covered words that contains [si−1, ti−1].
The approximate top always contains the true top,
because they both contain [si−1, ti−1] and the ap-
proximate top is the largest block that does so.
Therefore, the approximation errs on the side of ad-
jacency, meaning it can only make mistakes when

5Zhang and Gildea (2007) provide an efficient algorithm for
*-reduction that uses additional book-keeping so that the num-
ber of permutation checks as one traverses the entire sequence
is linear in aggregate; however, we implement the simpler, less
efficient version here to simplify decoder integration.

Prev	   Next	  

si-‐1	   ti-‐1	   si	   ti	  t’	  

True	  top	  
Approximate	  top	  

Breaks	  
PA	  

Figure 8: Indices for when the coverage approximation
predicts a false M.

assigning an M or S orientation; if it assigns a D, it
is always correct. Let us consider the false M case
(the false S case is similar). If we assign a false M,
then ti−1 < si and si is adjacent to the approximate
top; therefore, all positions between ti−1 and si are
covered. However, since the M is false, the true top
of the stack must end at some t′ : ti−1 ≤ t′ < si.
Since we know that every position between t′ and si

is covered, [si, ti] cannot be PA to the true top of the
stack, and we must be in the midst of making a non-
ITG permutation. See Figure 8 for an illustration of
the various indices involved. As it turns out, both the
approximation and the 2-reducing parser assign in-
correct orientations only in the presence of ITG vio-
lations. However, the approximation may be prefer-
able, as it requires only a coverage vector.

4.4 Qualitative comparison

Each solution manages its stack differently, and we
illustrate the differences in terms of the top of the
stack at time i in Table 2. The *-reducing parser is
the gold standard, so we highlight deviations from
its decisions in bold. As one can see, the original 2-
reducing parser does fine before and during an ITG
violation, but can create false disjoint orientations
after the violation is complete, as the top of its stack
becomes too small due to missing reductions. Con-
versely, the coverage-vector approximation makes
errors inside the violation: the approximate top be-
comes too large, potentially creating false monotone
or swap orientations. Once the violation is complete,
it recovers nicely.

5 Experiments

We compare the LRM, the HRM and the three HRM
variants suggested in Section 4 on a Chinese-to-
English translation task. We measure the impact on
translation quality in terms of BLEU score (Papineni
et al., 2002), as well as the impact on permutation
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BLEU NIST 08 Complexity Counts Speed
Method nist04 nist06 nist08 > 2 4 5 6 7 ≥ 8 sec/sent
LRM 38.00 33.79 27.12 241 146 40 32 12 11 3.187
HRM 2-red 38.53 34.20 27.57 176 113 31 20 8 4 3.353
HRM apprx 38.58 34.09 27.60 280 198 41 26 13 2 3.231
HRM *-red 38.39 34.22 27.41 328 189 71 34 20 14 3.585
HRM itg 38.70 34.26 27.33 0 0 0 0 0 0 3.274

Table 3: Chinese-to-English translation results, comparing the LRM and 4 HRM variants: the original 2-reducing
parser, the coverage vector approximation, the *-reducing parser, and an ITG-constrained decoder.

complexity, as measured by the largest k required to
k-reduce the translations.

5.1 Data

The system was trained on data from the NIST 2009
Chinese MT evaluation, consisting of more than
10M sentence pairs. The training corpora were split
into two phrase tables, one for Hong Kong and UN
data, and one for all other data. The dev set was
taken from the NIST 05 evaluation set, augmented
with some material reserved from other NIST cor-
pora; it consists of 1.5K sentence pairs. The NIST
04, 06, and 08 evaluation sets were used for testing.

5.2 System

We use a phrase-based translation system similar to
Moses (Koehn et al., 2007). In addition to our 8
translation model features (4 for each phrase table),
we have a distortion penalty incorporating the min-
imum possible completion cost described by Moore
and Quirk (2007), a length penalty, a 5-gram lan-
guage model trained on the NIST09 Gigaword cor-
pus, and a 4-gram language model trained on the tar-
get half of the parallel corpus. The LRM and HRM
are represented with six features, with separate
weights for M, S and D in both directions (Koehn et
al., 2007). We employ a gap constraint as our only
distortion limit (Chang and Collins, 2011). This re-
stricts the maximum distance between the start of a
phrase and the earliest uncovered word, and is set to
7 words. Parameters are tuned using a batch-lattice
version of hope-fear MIRA (Chiang et al., 2008;
Cherry and Foster, 2012). We re-tune parameters
for each variant.

5.3 Results

Our results are summarized in Table 3. Speed and
complexity are measured on the NIST08 test set,
which has 1357 sentences. We measure permutation
complexity by parsing the one-best derivations from
each system with an external *-reducing parser, and
noting the largest k-reduction for each derivation.
Therefore, the >2 column counts the number of non-
ITG derivations produced by each system.

Regarding quality, we have verified the effective-
ness of the HRM: each HRM variant outperforms
the LRM, with the 2-reducing HRM doing so by 0.4
BLEU points on average. Unlike Feng et al. (2010),
we see no consistent benefit from adding hard ITG
constraints, perhaps because we are building on an
HRM-enabled system. In fact, all HRM variants
perform more or less the same, with no clear win-
ner emerging. Interestingly, the approximate HRM
is included in this pack, which implies that groups
wishing to augment their phrase-based decoder with
an HRM need not incorporate a shift-reduce parser.

Regarding complexity, the 2-reducing HRM pro-
duces about half as many non-ITG derivations as the
*-reducing system, confirming our hypothesis that
a 2-reducing HRM acts as a sort of soft ITG con-
straint. Both the approximate and *-reducing de-
coders produce more violating derivations than the
LRM. This is likely due to their encouragement of
more movement overall. The largest reduction we
observed was k = 11.

Our speed tests show that all of the systems trans-
late at roughly the same speed, with the LRM being
fastest and the *-reducing HRM being slowest. The
*-reducing system is less than 7% slower than the 2-
reducing system, alleviating our concerns regarding
the cost of *-reduction.
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6 Discussion

We have presented a number of theoretical contribu-
tions on the topic of phrase-based decoding with an
on-board permutation parser. In particular, we have
shown that the coverage-vector ITG constraint is ac-
tually incomplete, and that the original HRM can
produce inconsistent orientations in the presence of
ITG violations. We have presented three HRM vari-
ants that address these inconsistencies, and we have
compared them in terms of both translation quality
and permutation complexity. Though our results in-
dicate that a permutation parser is actually unneces-
sary to reap the benefits of hierarchical re-ordering,
we are excited about the prospects of further ex-
ploring the information provided by these on-board
parsers. In particular, we are interested in using fea-
tures borrowed from transition-based parsing while
decoding.
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Abstract

Statistical phrase-based machine translation
requires no linguistic information beyond
word-aligned parallel corpora (Zens et al.,
2002; Koehn et al., 2003). Unfortunately,
this linguistic agnosticism often produces un-
grammatical translations. Syntax, or sentence
structure, could provide guidance to phrase-
based systems, but the “non-constituent” word
strings that phrase-based decoders manipu-
late complicate the use of most recursive syn-
tactic tools. We address these issues by
using Combinatory Categorial Grammar, or
CCG, (Steedman, 2000), which has a much
more flexible notion of constituency, thereby
providing more labels for putative non-
constituent multiword translation phrases. Us-
ing CCG parse charts, we train a syntactic
analogue of a lexicalized reordering model by
labelling phrase table entries with multiword
labels and demonstrate significant improve-
ments in translating between Urdu and En-
glish, two language pairs with divergent sen-
tence structure.

1 Introduction

Statistical phrase-based machine translation (PMT)
is attractive, as it requires no linguistic informa-
tion beyond word-aligned parallel corpora (Zens et
al., 2002; Koehn et al., 2003). Unfortunately, this
linguistic agnosticism leaves phrase-based systems
with no precise characterization of the word order
relationships between languages, often leading to
ungrammatical translations. Syntax could provide
guidance to phrase-based systems, by steering them

towards reorderings that reflect the structural rela-
tionships between languages, but using syntax to
guide a phrase-based system is problematic. Phrase-
based systems build the result incrementally from
the beginning of the target string to the end, and
the intermediate strings need not constitute complete
traditional syntactic constituents. It is difficult to
reconcile traditional recursive syntactic processing
with this regime, because not all intermediate strings
considered by the decoder would even have a syntac-
tic category to assess. As a result, most phrase-based
decoders control reordering using simple distance-
based distortion models, which penalize all reorder-
ing equally, and lexicalized reordering models (Till-
mann, 2004; Axelrod et al., 2005), which probabilis-
tically score various reordering configurations con-
ditioned on specific lexical translations. While un-
doubtedly better than nothing, these models perform
poorly when languages diverge considerably in sen-
tence structure. Distance-based distortion models
are too coarse-grained to distinguish correct from
incorrect reordering, while lexical reordering mod-
els suffer from data sparsity and fail to capture more
general patterns. We argue that finding a way to
label translation phrases with syntactic labels will
abstract over the observed reordering configurations
thereby address both all three deficiencies of granu-
larity, data sparsity and lack of generality.

The present work presents a novel syntactic ana-
logue of the lexicalized reordering model that uses
multiword syntactic labels to capture the general re-
ordering patterns between two languages with very
different word order. We accomplish this by using
Combinatory Categorial Grammar, or CCG (Steed-
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man, 2000), a word-centered syntax that allows a
great deal of flexibility in how sentence analyses
are formed. Syntactic derivations in CCG are mas-
sively spuriously ambiguous, i.e., there are many
ways to derive the same semantic analysis of a sen-
tence, similar to how a mathematical equation can
be reduced by canceling out variables in different
orders. Despite its name, spurious ambiguity is a
benefit to us, as it provides many different labelled
bracketings for the same dependency graph of the
same sentence, thereby increasing the chance that
any substring of that sentence will have a syntactic
label. Our approach exploits this property of CCG
to derive multiword CCG syntactic labels for target
translation strings in a phrase table, thus providing a
firmer basis on which to collect syntactic reordering
statistics. In particular:

• We show how CCG can derive constituent la-
bels for target-side phrase-table entries that
are often lamented as “non-constituents” or as
“crossing a phrase boundary”.

• Our CCG categories are not limited to single-
word supertags. Rather, as these labels are
drawn from CCG parse charts, they can span
multiple words. Further, the labels are tailored
specifically to each translation constituent’s
boundaries (Section 2.1). As a consequence,
≈70% of phrase table entries receive a single
syntactic label (Section 5), largely removing
the terminological inconsistency of calling lex-
ical translation constituents “phrases”. Now,
more of them actually are syntactic phrases.

• We use these labels to train a target-language
bidirectional reordering model over CCG syn-
tactic sequences (Section 3), which, when
added to the baseline system, is found to be su-
perior to systems that use both lexicalized re-
ordering models and supertag reordering mod-
els (Section 5).

With only minor modifications, we incorporate these
enhancements into a state-of-the-art PMT decoder
(Koehn et al., 2007), achieving significant improve-
ments over two competitive baselines in an Urdu-
English translation task (Sections 5). This language

pair was chosen to highlight the promise of this ap-
proach for languages with considerable, but syntac-
tically governed, word-order differences to one an-
other. Finally, in a small discussion we provide qual-
itative evidence that the improvements in automatic
metric scores correspond to real gains in target lan-
guage fluency.

2 Syntax, Constituency and Phrase-based
MT

Consider the following German-English PMT
phrase pair that we have extracted from a parallel
European parliamentary transcript:1

Ich hoffe, daß ⇔ I hope that

Neither word string is a well-formed constituent in
traditional theories of syntax. But tradition is at odds
with the intuition that that such “non-constituent”
sequences are still well-formed substrings, governed
by rules of how they can be combined with other
word strings — e.g., declarative sentence translation
rules like es möglich sein wird ⇔ it will be possible
can grammatically extend each, but a noun phrase
rule cannot.

As Figure 1 illustrates, putative non-constituent
word sequences abound in phrase-based MT. Here a
translation “phrase” is simply any contiguous word
string that is consistent with a word alignment (a
relation between source and target words), usually
produced by a language-independent alignment pro-
cedure (Zens et al., 2002). The figure also high-
lights the need for linguistic syntax in controlling
how translations are assembled; the successful trans-
lation is merely one among many possible reorder-
ings, many of which (despite their ungrammatical-
ity) might score well on a word n-gram model. But
rather than changing the word alignments or PMT
“phrase” boundaries to fit a syntactic theory, we
choose to use a flexible syntax which can produce a
wider range of bracketings to accommodate the re-
sults of alignment-derived translations. To this end,
we use Combinatory Categorial Grammar, or CCG,
(Steedman, 2000). To understand how CCG allows
this, we illustrate its use with some simple examples.

1Throughout this paper, the term “PMT phrase” refers to an
unbroken sequence of words used by a PMT system, whereas
“phrase” (without context) refers to a syntactic constituent.
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Wiederaufnahme der Situngsperiode

Resumption of the session

Ich hoffe , daß es möglich sein wird

I hope that it will be possible

Ich hoffe, daß das den Weg für eine baldige Wiederaufnahme der Debatte ebnen wird

I hope that this will pave the way for an early resumption of the debate

Figure 1: Two phrase-based MT word groups are extracted from aligned words (the dashed outlines) and then used to form a new
translation (bottom). [Adapted from parallel sentences in the Europarl German-English corpus, v6.]

2.1 CCG, Spurious Ambiguity and PMT:
Turning “Phrases” into Phrases

CCG is a derivational syntax, where words are as-
signed a lexical category2 and sentence structures
are then recursively built using a small set of de-
ductive rule schemata known as combinators (Steed-
man, 2000). Lexical syntactic categories can be
richly structured in CCG, indicating how words can
combine. A syntactic category of the form X/Y,
e.g., states that a category of type X can be formed if
combined with a Y to its right — i.e., a function from
rightward Ys to X. This can be accomplished with
the forward function application combinator (>),3

which is written in derivational form as follows:4

X/Y Y
>

X

This derivation of the symbol X is known as the
normal-form derivation (Steedman, 2000), since it
uses function application whenever possible. But
CCG has the ability to construct the same result
by using a different, non-normal-form sequence of
combinatory inferences. For example, by using the
backward type-raising combinator (T<) and then
backward function application (<), we can arrive at
the same result:

2When represented by a strings, lexical categories are called
supertags.

3CCG actually respects the rule-to-rule hypothesis (Bach,
l976), where, for every syntactic term built, there is a corre-
sponding semantic term, but, for simplicity of exposition, we
focus only on syntax here.

4The reader will notice that CCG derivations are in fact
trees, but that they “grow” in the direction opposite to how parse
trees are often depicted in NLP.

X/Y Y
T<

X\(X/Y)
<

X

This derivation shows how the argument Y to the
functional type X/Y5 can “raise” its type to be-
come a function that consumes that functional type,
X\(X/Y), only to produce same result as before,
namely X. This property of CCG is often referred
to as “spurious ambiguity”, because there are many
ways of reaching the same result as the canonical,
normal-form derivation.

Despite the name, this property is useful for our
purposes. Considering the target translation in Fig-
ure 1, we then observe in Figure 2 how CCG can
derive not only a bracketing similar to a more tra-
ditional Penn Treebank-style parse, but also a non-
normal-form variant that gives us a single category
for the English translation string I hope that —
namely the category S[dcl]/S[dcl] (a declarative sen-
tence lacking a declarative sentence complement to
its right).

We use this fact about CCG to label a wider
range of PMT phrases with genuine syntactic con-
stituent labels. First we parse the English sen-
tences in our training data with the C&C parser, a
state-of-the-art, treebank-trained CCG parser (Clark
and Curran, 2007), producing normal-form CCG
derivations. We then enumerate all non-normal-
form derivations that result in the same top-level
symbol, packing all derivations (normal-form and
non-normal-form) into a parse chart (see Figure 4).

5Also referred to as a functor.
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S

NP

I

VP

VBP

hope

SBAR

WNP

WDT

that

S

it will...

I hope that it will ...

NP (S[dcl]\NP)/S[em] S[em]/S[dcl] S[dcl]
>

S[em]
>

S[dcl]\NP
<

S[dcl]

I hope that it will ...

NP (S[dcl]\NP)/S[em] S[em]/S[dcl] S[dcl]
T>

S[dcl]/(S[dcl]\NP)
B>

S[dcl]/S[em]
B>

S[dcl]/S[dcl]
>

S[dcl]

Figure 2: Left: a traditional syntactic derivation; top right: a normal-form CCG derivation with the same subject+predicate
bracketing; bottom right: one of many non-normal-form variants. Combinator symbol key: >=forward function application,
<=backward function application, T>=forward type-raising, B>=forward composition. Note: the CCG dependencies that are
discharged in different orders are indicated by color-coding (if available in your medium) and underlining the appropriate categories
(type-raising discharges no dependencies). Both CCG derivations lead to the same symbol (S[dcl]), and dependencies.

UR.-EN.
SINGLE-LABEL COVERAGE 69%

AVE. EN. PHRASE LEN. 2.8 wds
AVE. CCG LABEL SPAN 2.3 wds
AVE. CCG LABS/ENTRY 1.4

Table 1: Training data statistics (top to bottom): (1) % of sin-
gle CCG labels spanning entire English translation phrases, (2)
average length of English translation phrase, (3) average CCG
label span and (4) average CCG labels per English translation
phrase. (Maximum translation phrase length is 7 words.)

For the English string of each phrase table entry, we
inspect the chart for the English-side sentence that
it came from and extract a list of labels as in Fig-
ure 3. For each span, this procedure either (lines
5–9) finds the topmost single label, only using type-
raised categories when no others exist,6 or (lines 10–
19) recursively and greedily finds the longest span-
ning labels from left to right, if no single label ex-
ists. The degenerate case is the single-word level
(supertags). In this way we find single labels for
69% of the English-side phrase training instances.
Table 1 gives more details.

6Type-raisings are almost always possible, and will always
be closer to the top-level symbol. Many type-raisings, however,
are superfluous – i.e., produce no novel bracketings. Therefore
we only use type-raised symbols to derive a label for a span of
words when necessary.

GETLABELS(C,s)
1 B C: a packed chart of derivations of E
2 B s = (el, er): a span in target sentence E
3 B RETURN: a list of labels covering all words
4 B from E in span s
5 if EXISTSSINGLESPANNINGLABEL(C,S)
6 then B Get the topmost label
7 B non-type-raised, if possible
8 lb ← GETTOPMOSTLABEL(C,s)
9 return [ lb ]

10 else B Get the longest label starting at el
11 for i← (er − 1) to (el + 1)
12 do lbs ← GETLABELS(C,(el, i))
13 if LENGTH(lbs)=1
14 then el′ ← i+ 1
15 lb ← HEAD(lbs)
16 BREAK

17 else CONTINUE

18 return
19 CONS(lb,GETLABELS(C,(el′ , er)))

Figure 3: Algorithm for labeling English sides of phrase
table instances.
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0 I 1 hope 2 that 3 it 4 will 5 rain 6

0 Ich 1 hoffe 2 , 3 daß 4 es 5 regnen 6 wird 7

NP

S/(S\NP)

S[dcl]/S[em]

S[dcl]/S[dcl]

(S[dcl]\NP)/S[em]

S[em]/S[dcl]

NP

S/(S\NP)

S[em]/(S[dcl]\NP)

S[dcl]/(S[b]\NP)

S[dcl]

S[em]

S[dcl]\NP

S[em]/(S[b]\NP)

(S[dcl]\NP)/(S[b]\NP) S[b]\NP

(S[dcl]\NP)/(S[b]\NP)

S[dcl]\NP
S[dcl]

Figure 4: A packed CCG parse chart with multiple semantically equivalent derivations and two word-aligned strings. (Not all
derivations are depicted.)

3 Reordering Models: from Words to
Supertags to Parses

In phrase-based MT systems, the standard reorder-
ing model that controls the order in which the
source string is translated is the lexicalized reorder-
ing model (Tillmann, 2004; Axelrod et al., 2005). In
its simplest form, a lexicalized reordering model es-
timates, for each translation phrase pair (fi...j , ek...l)
(where the indices sit “in-between” words, as in Fig-
ure 4), the probability of p(O | fi...j , ek...l), where
O ∈ {MONO, SWAP,DISCONTINUOUS} (abbrevi-
ated M, S and D) is the orientation of the phrase pair
(fi...j , ek...l) w.r.t. the previously translated source
phrase fu...v. If v = i, then O = M; if u = j, then
O = S; otherwise O = D. This model, known as
a unidirectional MSD lexicalized reordering model,
can also be enriched with statistics over orientations
to the next source phrase translated (i.e., it can be
a bidirectional model), as well as with more fine-
grained distinctions in the third class D (i.e., whether
it is DLEFT or DRIGHT). All models in the present
work are bidirectional MSD models.

During decoding, orientations are predicted based
on previously translated (or following) phrases in
the decoder’s search state, but, when extracting ori-
entation statistics, there are many different possi-
ble phrasal segmentations of both strings. A sim-

ple solution, known as word-based extraction, is to
look for neighboring alignment points that support
the various orientations. In Figure 4, e.g., a word-
based extraction regime would count the phrase
hoffe ⇔ hope as being in orientation D w.r.t. to

what follows, because its rightmost index, 2, is dis-
contiguous with the next aligned source point, (3,4).
Another approach, known as phrase-based extrac-
tion aims to remedy this situation by conditioning
the extraction of orientations on translation phrases
consistent with the alignment. In Figure 4 there is a
translation phrase that follows the phrase in question
— viz., , daß ⇔ that — and an orientation of M
is therefore tallied.

Regardless of the method of extraction, lexi-
calized reordering model statistics rely on exact
word-string pairs, (f, e), which can lead problems
with data sparsity. Moreover, even given ample
data, cross-phrasal reordering generalizations will
be missed. E.g., the fact that regnen ⇔ rain has
orientation S w.r.t. the previous phrase pair does not
support the fact that other infinitival German verbs
should also behave similarly in relative clausal envi-
ronments.

To remedy this we might substitute abstract sym-
bols for each word in e, and train a syntactic bidirec-
tional MSD reordering model. For this we use CCG
supertags (cf. the single-word labels in the parse
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chart in Figure 4), which are richly structured parts
of speech that describe their potential to combine
with other words (cf. Section 2.1). Given the same
phrase from Figure 4, we can estimate the proba-
bility of orientation S, given regnen ⇔ S[b]\NP .
A further level of abstraction is to use CCG parse
charts packed with all derivations. The phrase
daß es ⇔ that it can therefore be abstracted to
daß es ⇔ S[em]/(S[dcl]\NP) (a “that” clause

lacking a verb phrase to the right).
Except in cases of high ambiguity, the source

phrase effectively encodes the target phrase, mean-
ing that these extensions will suffer from data spar-
sity similarly to the baseline lexicalized model. We
therefore omit the source phrase in our syntactic
reordering models, estimating probability distribu-
tions p(O|LAB(e)) where LAB(e) is the syntactic la-
bel sequence derived from the chart (or supertagged
string, as the case may be) using the algorithm in
Figure 3.7 Orientations are determined using the
phrase-based extraction regime described in (Till-
mann, 2004), but statistics are tallied only for the
syntactic label sequence of the target string. More
precisely, for phrase pair (fi...j , ek...l), if a phrase
(fa...i, eb...k) exists in the alignment grid, an orien-
tation of M is assigned to LAB(ek...l) . Otherwise,
if a phrase (fj...p, el...m) exists in the alignment grid,
an orientation of S is assigned. In all other cases, an
orientation of D is assigned.

Using these statistics, we deploy target-side re-
ordering models, as described below.

4 Related Work

As noted, lexicalized reordering models can be
trained and configured in many different ways. In
addition to the standard word-based extraction (Ax-
elrod et al., 2005) and phrase-based extraction (Till-
mann, 2004) cases, more recent work has explored
using dynamic programming to extract and later
score orientations based on hierarchical configura-
tions of phrases consistent with an alignment (Gal-
ley and Manning, 2008). This means that the re-
ordering model can be conditioned on an unbounded
amount of context and can capture the fact that

7Note that a tagged string can be viewed as a very impover-
ished parse chart, and so the algorithm defined in Figure 3 can
be applied to the supertagging case as well.

many translations are monotonic w.r.t. the previ-
ously translated block, but are mistakenly identified
as having orientation S or D.

Su and colleagues (2010) observe that the space
of phrase pairs consistent with an alignment can
be viewed in its entirety, as a graph of phrases,
thereby collecting reordering statistics w.r.t. the en-
tire space of surrounding phrases. Ling and col-
leagues (2011) extend this approach by weighting
orientation counts with multiple scored alignments.
All of these more sophisticated reordering extrac-
tion approaches are compatible with the current ap-
proach, and could be straightforwardly applied to
our labelled target-side word strings.

Syntax-driven reordering approaches in phrase-
based MT abound, but, perhaps due to the incom-
patibility of phrase table entries and traditional syn-
tactic constituency, most research has avoided using
recursive target-side syntax during decoding. Till-
mann (2008) presents an algorithm that reorders us-
ing part-of-speech based permutation patterns dur-
ing the decoding process. Others have side-stepped
the issue by restructuring the source language be-
fore decoding to resemble the target language using
syntactic rules, either automatically extracted (Xia
and McCord, 2004), or hand-crafted (Collins et al.,
2005; Wang et al., 2007; Xu and Seneff, 2008).

The flexibility of CCG syntax is also gaining
recognition as a useful tool for constraining statis-
tical MT decoders. Hassan (2009) describes an in-
cremental CCG parsing language model, although
his model does not beat a supertag factored PMT
approach. Almaghout and colleagues (2010) also
use a CCG chart to improve translation, augment-
ing SCFG rules by consulting the multiple deriva-
tions in the parse chart of Clark and Curran’s (2007)
CCG parser. We note two key differences to our
use of spurious ambiguity. First, they use a chart
packed with multiple dependency analyses, unlike
our spuriously ambiguous reworkings of the parser’s
single-best analysis. Second, the C&C parser re-
strains type-raising to a small number of possi-
bilities, thereby blocking many non-normal-form
derivations that we do not.

Two SCFG approaches that employ catego-
rial syntax that resembles CCG are the syntax-
augmented MT (SAMT) system described in (Venu-
gopal et al., 2007), and the target dependency lan-
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guage model of of (Shen et al., 2008). (Venu-
gopal et al., 2007) uses a Penn Treebank-trained
CFG parser to label target strings and then re-
works the CFG parse trees, if needed,x to ac-
count for non-traditional constituents. This on-
demand reworking process, however, is bounded by
tree depth, and sometimes produces conjoined cat-
egories, rather than consistently produce the func-
tional “slash” categories that a full CCG would —
e.g., a subject + transitive verb string might some-

times be labelled NP + V and other times S/NP .
The approach in (Shen et al., 2010) uses a simple
categorial grammar with only a single atomic sym-
bol — i.e., every functional category has the form
C\X or C/X, where X is either C or another slash
category C\X or C/X. In contrast to these two ap-
proaches, the CCG parser we use is trained on a
CCG treebank that is the result of a carefully engi-
neered Penn Treebank-to-CCG conversion (Hocken-
maier and Steedman, 2007) and we impose no limits
on deriving categorial functional categories (X/Y).
We view our reworking of CCG charts as a poten-
tially useful extension to such approaches.

5 Experimental Results

We empirically validate our technique by translat-
ing from Urdu into English. Urdu has a canoni-
cal word order of SOV — subject, object(s), verb
— whereas English has SVO, leading to indefinitely
long distances between corresponding verbs and ob-
jects. This language pair is therefore a strong test
case for a reordering model.

For decoding we use Moses (Koehn et al., 2007),
a state-of-the-art PMT decoder, with IRST LM (Fed-
erico and Cettolo, 2007) for language model infer-
ence. For Urdu-English parallel data, we use the
OpenMT 2008 training set which consists of 88
thousand sentence-level translations and a transla-
tion dictionary of ≈114 thousand word and phrase
translations. We use half of the OpenMT 2008 Urdu-
English evaluation data for development and per-
form development testing on the other half. Both
halves are ≈900 sentences long and were balanced
to contain approximately the same number of to-
kens. Our blind test set is the entire OpenMT 2009
Urdu-English evaluation set. All evaluation sets had
4 reference translations for each tuning or testing in-

stance. All system component weights were tuned
using minimum error-rate training (Och, 2003), with
three tuning runs for each condition. The data was
normalized, tokenized and the English sentences
were lowercased,8

As a baseline, we train a standard phrase-based
system with a bidirectional MSD lexicalized re-
ordering model using word-based extraction. Our
CCG-augmented reordering system has all of the
model components of the baseline, as well as a bidi-
rectional orientation reordering model over target-
side multiword syntactic labels. To directly test the
effect of using CCG parse charts — as opposed to
simply using a CCG supertagger — we also added a
CCG supertag bidirectional MSD reordering model
to the baseline set-up. All systems were tuned and
tested with distortion limit of 15 words, and test
runs were performed with and without 200-best min-
imum Bayes’ risk (MBR) hypothesis selection (Ku-
mar and Byrne, 2004).

To acquire CCG labels for our English parallel
data, we use the C&C CCG toolkit of Clark and
Curran (2007). We build CCG parse charts by re-
working the normal-form derivations from the C&C
parser in all spuriously ambiguous ways, as de-
scribed in Section 2.1. For supertags, we tag with
the C&C supertagger. Rather than training sepa-
rate phrase tables for our CCG systems, however,
we instead decorate the baseline phrase tables with
CCG multiword labels or supertags. To smooth over
parsing and tagging errors, we only use those la-
bels whose relative frequency (rf) is sufficiently high
w.r.t. the most frequent label for that phrase pair
LAB*[f⇔e]. More precisely, for each phrase pair, we
use the set of labels:9

{LAB[f⇔e]|rf(LAB[f⇔e]) ≥ β · rf(LAB*[f⇔e])}

This is reminiscent of the β-best tagging approach
of (Clark and Curran, 2004), but performed in a
batch process when creating the syntactic phrase ta-
bles (both supertag and CCG chart-derived). We set

8N.B. We use Penn Treebank III-compatible tokenization for
English and a specially designed tokenization script for Urdu,
cf. (Baker et al., 2010), Appendix C

9Recalling that ≈31% of the time, a phrase pair might have
a list of labels, rather than a single label, the word ‘label’ here
refers to a single token that can be the concatenation of multiple
symbols.
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DEVTEST (NIST-08) (MBR/NON-MBR) NIST-09 TEST (MBR/NON-MBR)
BLEU-4 METEOR TER LENGTH BLEU-4 METEOR TER LENGTH

LR 25.3/24.7 28.3/28.2 64.2/64.4 98.2/97.6 29.1/28.8 30.0/28.8 60.0/60.1 98.2/97.8
NO-LR 22.5/22.1 27.5/27.3 66.3/66.3 97.6/97.1 26.2/25.8 29.2/29.1 61.9/62.0 97.1/96.6
ST+LR 24.5/24.2 28.4/28.3 64.6/64.5 97.9/97.3 28.5/28.2 30.0/30.0 60.3/60.2 97.9/97.3

CCG+LR 25.6/25.2 28.7/28.5 64.3/64.5 98.7/98.1 29.1/29.2 30.1/30.2 59.5/59.8 97.4/97.9

Table 2: Case-insensitive BLEU-4, METEOR, TER and hypothesis/reference length ratio (LENGTH) for a lexicalized reordering
baseline (LR), a system with only a distance-based distortion model (NO-LR), a system with an additional CCG supertag reordering
model (ST+LR) and our system with an additional CCG chart-derived reordering model (CCG+LR). Systems were run with (left
of slash) and without (right of slash) 200-best-list MBR hypothesis selection. All boldfaced results were found to be significantly
better than the baseline at ≥ the 95% confidence level using method described in (Clark et al., 2011) with 3 separate MERT tuning
runs for each system. Non-boldfaced numbers are statistically indistinguishable from (or worse than) the baseline.

β = 0.5 in all of our CCG experiments.
To minimize disruption to the Moses decoder

(which only supports single-word labels in phrase-
based mode), we project multiword labels across the
words they label as single-word factors with book-
keeping characters, similar to the “microtag” anno-
tations of asynchronous factored translation mod-
els (Cettolo et al., 2008). We modified to the de-
coder to reassemble the multiple single-word fac-
tors into a single label before querying the reorder-
ing model. As an example, we might have the phrase
pair le vélo rouge ⇔ the|NP( red|NP+ bike|NP) .
Before querying the reordering model, the fac-
tor sequence NP( NP+ NP) is collapsed into the
single, multiword label ‘NP’ by the rule schema
X( . . . X+ . . . X) → X.

We train a language model using all of the WMT
2011 NEWSCRAWL, NEWSCOMENTARY and EU-
ROPARL monolingual data,10 tokenized and lower-
cased as above, but de-duplicated to address the re-
dundancy of the Web-crawled portion of that data
set. We also train a separate language model on the
English portion of the Urdu-English parallel corpus
(minus the dictionary entries), and interpolate the
two models by optimizing perplexity on our tuning
set.

Table 2 lists our results, where we see significant
improvement over both of our baselines, lexicalized
reordering (LR) and supertag reordering plus lexi-
calized reordering (ST+LR). To test the effects of
the lexicalized reordering model itself, we also eval-
uate a system with no lexicalized reordering model

10http://www.statmt.org/wmt11/
translation-task.html

(only a distance-based distortion model). This last
system (a system which almost always prefers not
to reorder) is considerably worse than all other sys-
tems, demonstrating the need for non-monotonic
reordering configurations when accounting for the
Urdu-English data.

6 Analysis and Discussion

Our CCG system (CCG+LR) outperforms both
baseline systems (LR and ST+LR) in a majority of
metrics in both MBR and non-MBR conditions. We
see that, even though MBR decoding closes the per-
formance gap somewhat, our system continues to
match or outperform (if sometimes insignificantly)
in all areas. Note that the CCG+LR non-MBR
configuration outperforms both LR and ST+LR in
MBR and non-MBR decoding conditions in its ME-
TEOR score on the NIST-09 test set. We note also
that, in the NIST-09 test case, the CCG+LR sys-
tem’s poorer performance is perhaps due to a mis-
match in hypothesis length, which could be harming
its scores, particularly the BLEU brevity penalty.

6.1 Poor Performance of CCG Supertag Model
We have no firm explanation for the poor per-
formance of the CCG supertag model (ST-
LR), but it is important to note that the su-
pertag reordering model does not unify statis-
tics across phrases of different lengths, as the
CCG chart-derived model does. E.g., the
phrase pair den Weg für eine ⇔ the way for an
will query the CCG chart-derived reordering
model with the same symbol as the phrase pair
den Weg für eine baldige ⇔ the way for an early
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twenty-seven year old abdullah britain blasts in hatcheries planning accused of is .

CCG+LR: twenty-seven year old abdullah is accused of planning hatcheries blasts in britain .

LR: twenty-seven years on charges of planning bombings hatcheries , abdullah in britain .
Reference 1: 27 years old abdullah is accused of planning explosions in britain .
Reference 2: twenty-seven years old abdullah is blamed for planning attacks in britain .
Reference 3: abdullah , 27 , has been blamed for planning the blasts in britain .
Reference 4: abdullah , 27 , has been blamed for planning the blasts in britain .

now musharraf resignation give should .

CCG+LR: now musharraf should give resignation .

LR: now musharraf resignation should be given .
Reference 1: now musharraf should resign .
Reference 2: now , musharraf should resign .
Reference 3: now , musharraf should resign .
Reference 4: musharraf should resign .

Figure 5: Sample devtest (NIST-08) translations of the median-performing tuned CCG syntactic reordering model
(CCG+LR) compared to the median-performing baseline lexicalized reordering model (LR).

— viz., NP/N. The CCG supertag model, how-
ever, will have two distinct label sequences for these
phrases — viz., NP/N N (NP\NP)/NP NP/N and
NP/N N (NP\NP)/NP NP/N N/N, resp. — both
of which could be reduced to the single label, NP/N,
using CCG’s syntactic combinators. The supertag
system does not have the means of relating the
reordering patterns of strings of symbols such as
this.11 Such data fragmentation may be leading to
decreased performance, which would indicate the
use of recursive CCG syntax.

6.2 Qualitative Improvements
In addition to improved metric scores, we noted real
qualitative improvements in some examples, as Fig-
ure 5 shows. These examples demonstrate the abil-
ity of the reordering model to navigate the massive,
structure-governed reorderings needed to approxi-
mate the correct answer with the phrase inventory
it is given.

11Its reordering table has more than twice as many entries as
that of the chart-derived model.

6.3 Comparison to the State of the Art
To our knowledge, the state of the art in Urdu-
English translation using the OpenMT data is
listed in the NIST OpenMT 2009 evaluation re-
sults (http://www.itl.nist.gov/iad/
mig/tests/mt/2009/ResultsRelease/
currentUrdu.html). This evaluation accepted
only single system outputs, and used cased refer-
ences. Therefore we had to choose a single system
output and recase its text.

For system selection, we picked the tuned sys-
tem that performed best on the development test
set. For recasing, we trained a lowercased-to-cased
monolingual phrase-based “translation model” with
no reordering and a cased language model, similar to
what is described in (Baker et al., 2010). The train-
ing text is simply the non-dictionary portion of the
Urdu-English parallel corpus, with its lowercased
version as the source and the original cased text as
the target, both halves tokenized as above. We tuned
on a similar version of the English half of our tuning
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references. The lowercased output of our system is
fed to this model and the first token of each casing
“translation” is capitalized (if not already).

The official metric of the NIST 2009 evaluation
is BLEU (as implemented in the NIST-distributed
mteval-v13a.pl script).12 The best-performing
system in the constrained data evaluation scored
0.312 w.r.t. the cased references, with the second
and third place systems scoring 0.2395 and 0.2322,
respectively.13 Our best performing MERT-tuned
system (as determined on the devtest data) scores
0.2734 on the test set, putting it between the top two
systems. For comparison, our devtest-best baseline
LR system scores 0.2683 on the test set.

While is generally not useful to test experimental
manipulations based on a single tuning run (Clark et
al., 2011) and with different monolingual language
modelling data, we note these figures simply to situ-
ate our results within the state of the art.

7 Conclusion

We have argued for the use of CCG in phrase-
based translation, due to its flexibility in providing
a wealth of different bracketings that better accom-
modate lexical translation strings. We have also pre-
sented a novel method for using CCG constituent la-
bels in a syntactic reordering model where the syn-
tactic labels span multiple words, do not cross trans-
lation constituent boundaries and are tailored specif-
ically to each translation constituent. The result is a
significant improvement in Urdu-English (SOV →
SVO) translation scores over two baselines: a tra-
ditional phrase-based baseline with a lexicalized re-
ordering model and a phrase-based baseline with an
additional supertag reordering model. Moreover, we
have provided qualitative examples that confirm the
improvements in automatic metrics.

In future work we would like explore whether
further improvements can be gained by using more
sophisticated reordering models, such as reordering
graphs (Su et al., 2010) and hierarchical reordering
models (Galley and Manning, 2008) both for our
word-based and syntactic reordering models. Fur-
ther, as in prior work (Zollmann et al., 2006; Shen

12ftp://jaguar.ncsl.nist.gov/mt/
resources/mteval-v13a-20091001.tar.gz.

13We exclude combination entries that are combinations of
multiple systems with different algorithmic approaches.

et al., 2010; Almaghout et al., 2010), our categorial
labels could also be used to derive CCG-augmented
SCFG rules, both lexicalized and unlexicalized, cf.
(Zhao and Al-onaizan, 2008) — the latter being the
SCFG analogue of our current model.
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Abstract

Adding syntactic labels to synchronous
context-free translation rules can improve
performance, but labeling with phrase struc-
ture constituents, as in GHKM (Galley et al.,
2004), excludes potentially useful translation
rules. SAMT (Zollmann and Venugopal,
2006) introduces heuristics to create new
non-constituent labels, but these heuristics
introduce many complex labels and tend to
add rarely-applicable rules to the translation
grammar. We introduce a labeling scheme
based on categorial grammar, which allows
syntactic labeling of many rules with a mini-
mal, well-motivated label set. We show that
our labeling scheme performs comparably to
SAMT on an Urdu–English translation task,
yet the label set is an order of magnitude
smaller, and translation is twice as fast.

1 Introduction

The Hiero model of Chiang (2007) popularized
the usage of synchronous context-free grammars
(SCFGs) for machine translation. SCFGs model
translation as a process of isomorphic syntactic
derivation in the source and target language. But the
Hiero model is formally, not linguistically syntactic.
Its derivation trees use only a single non-terminal la-
bel X , carrying no linguistic information. Consider
Rule 1.

X → 〈 maison ; house 〉 (1)

We can add syntactic information to the SCFG
rules by parsing the parallel training data and pro-
jecting parse tree labels onto the spans they yield and

their translations. For example, if house was parsed
as a noun, we could rewrite Rule 1 as

N → 〈 maison ; house 〉

But we quickly run into trouble: how should we
label a rule that translates pour l’établissement de
into for the establishment of? There is no phrase
structure constituent that corresponds to this English
fragment. This raises a model design question: what
label do we assign to spans that are natural trans-
lations of each other, but have no natural labeling
under a syntactic parse? One possibility would be
to discard such translations from our model as im-
plausible. However, such non-compositional trans-
lations are important in translation (Fox, 2002), and
they have been repeatedly shown to improve trans-
lation performance (Koehn et al., 2003; DeNeefe et
al., 2007).

Syntax-Augmented Machine Translation (SAMT;
Zollmann and Venugopal, 2006) solves this prob-
lem with heuristics that create new labels from the
phrase structure parse: it labels for the establish-
ment of as IN+NP+IN to show that it is the con-
catenation of a noun phrase with a preposition on
either side. While descriptive, this label is unsatis-
fying as a concise description of linguistic function,
fitting uneasily alongside more natural labels in the
phrase structure formalism. SAMT introduces many
thousands of such labels, most of which are seen
very few times. While these heuristics are effective
(Zollmann et al., 2008), they inflate grammar size,
hamper effective parameter estimation due to feature
sparsity, and slow translation speed.

Our objective is to find a syntactic formalism that
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enables us to label most translation rules without re-
lying on heuristics. Ideally, the label should be small
in order to improve feature estimation and reduce
translation time. Furthering an insight that informs
SAMT, we show that combinatory categorial gram-
mar (CCG) satisfies these requirements.

Under CCG, for the establishment of is labeled
with ((S\NP)\(S\NP))/NP. This seems complex, but
it describes exactly how the fragment should com-
bine with other English words to create a complete
sentence in a linguistically meaningful way. We
show that CCG is a viable formalism to add syntax
to SCFG-based translation.

• We introduce two models for labeling SCFG
rules. One uses labels from a 1-best CCG parse
tree of training data; the second uses the top la-
bels in each cell of a CCG parse chart.

• We show that using 1-best parses performs as
well as a syntactic model using phrase structure
derivations.

• We show that using chart cell labels per-
forms almost as well than SAMT, but the non-
terminal label set is an order of magnitude
smaller and translation is twice as fast.

2 Categorial grammar

Categorial grammar (CG) (Adjukiewicz, 1935; Bar-
Hillel et al., 1964) is a grammar formalism in
which words are assigned grammatical types, or cat-
egories. Once categories are assigned to each word
of a sentence, a small set of universal combinatory
rules uses them to derive a sentence-spanning syn-
tactic structure.

Categories may be either atomic, like N, VP, S,
and other familiar types, or they may be complex
function types. A function type looks like A/B and
takes an argument of type B and returns a type A.
The categories A and B may themselves be either
primitives or functions. A lexical item is assigned a
function category when it takes an argument — for
example, a verb may be function that needs to be
combined with its subject and object, or an a adjec-
tive may be a function that takes the noun it modifies
as an argument.

Lexical item Category
and conj

cities NP
in (NP\NP)/NP

own (S\NP)/NP
properties NP

they NP
various NP/NP
villages NP

Table 1: An example lexicon, mapping words to cat-
egories.

We can combine two categories with function ap-
plication. Formally, we write

X/Y Y ⇒ X (2)

to show that a function type may be combined with
its argument type to produce the result type. Back-
ward function application also exists, where the ar-
gument occurs to the left of the function.

Combinatory categorial grammar (CCG) is an ex-
tension of CG that includes more combinators (op-
erations that can combine categories). Steedman
and Baldridge (2011) give an excellent overview of
CCG.

As an example, suppose we want to analyze the
sentence “They own properties in various cities and
villages” using the lexicon shown in Table 1. We as-
sign categories according to the lexicon, then com-
bine the categories using function application and
other combinators to get an analysis of S for the
complete sentence. Figure 1 shows the derivation.

As a practical matter, very efficient CCG parsers
are available (Clark and Curran, 2007). As shown
by Fowler and Penn (2010), in many cases CCG is
context-free, making it an ideal fit for our problem.

2.1 Labels for phrases
Consider the German–English phrase pair der große
Mann – the tall man. It is easily labeled as an NP
and included in the translation table. By contrast,
der große– the tall, doesn’t typically correspond to
a complete subtree in a phrase structure parse. Yet
translating the tall is likely to be more useful than
translating the tall man, since it is more general—it
can be combined with any other noun translation.
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They own properties in various cities and villages

NP (S\NP )/NP NP (NP\NP )/NP NP/NP NP conj NP
> <Φ>

NP NP\NP
<

NP
>

NP\NP
<

NP
>

S\NP
<

S

Figure 1: An example CCG derivation for the sentence “They own properties in various cities and villages”
using the lexicon from Table 1. Φ indicates a conjunction operation; > and < are forward and backward
function application, respectively.

Using CG-style labels with function types, we can
assign the type (for example) NP/N to the tall to
show that it can be combined with a noun on its right
to create a complete noun phrase.1 In general, CG
can produce linguistically meaningful labels of most
spans in a sentence simply as a matter of course.

2.2 Minimal, well-motivated label set

By allowing slashed categories with CG, we in-
crease the number of labels allowed. Despite the in-
crease in the number of labels, CG is advantageous
for two reasons:

1. Our labels are derived from CCG derivations,
so phrases with slashed labels represent well-
motivated, linguistically-informed derivations,
and the categories can be naturally combined.

2. The set of labels is small, relative to SAMT —
it’s restricted to the labels seen in CCG parses
of the training data.

In short, using CG labels allows us to keep more
linguistically-informed syntactic rules without mak-
ing the set of syntactic labels too big.

3 Translation models

3.1 Extraction from parallel text

To extract SCFG rules, we start with a heuristic to
extract phrases from a word-aligned sentence pair

1We could assign NP/N to the determiner the and N/N to the
adjective tall, then combine those two categories using function
composition to get a category NP/N for the two words together.

For

most

people

,
Po
ur la

m
aj
or
ité

de
s

ge
ns ,

Figure 2: A word-aligned sentence pair fragment,
with a box indicating a consistent phrase pair.

(Tillmann, 2003). Figure 2 shows a such a pair, with
a consistent phrase pair inside the box. A phrase
pair (f, e) is said to be consistent with the alignment
if none of the words of f are aligned outside the
phrase e, and vice versa – that is, there are no align-
ment points directly above, below, or to the sides of
the box defined by f and e.

Given a consistent phrase pair, we can immedi-
ately extract the rule

X → 〈f, e〉 (3)

as we would in a phrase-based MT system. How-
ever, whenever we find a consistent phrase pair that
is a sub-phrase of another, we may extract a hierar-
chical rule by treating the inner phrase as a gap in
the larger phrase. For example, we may extract the
rule

X → 〈 Pour X ; For X 〉 (4)

from Figure 3.
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For

most

people

,
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ur la

m
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de
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Figure 3: A consistent phrase pair with a sub-phrase
that is also consistent. We may extract a hierarchical
SCFG rule from this training example.

The focus of this paper is how to assign labels
to the left-hand non-terminal X and to the non-
terminal gaps on the right-hand side. We discuss five
models below, of which two are novel CG-based la-
beling schemes.

3.2 Baseline: Hiero

Hiero (Chiang, 2007) uses the simplest labeling pos-
sible: there is only one non-terminal symbol, X , for
all rules. Its advantage over phrase-based translation
in its ability to model phrases with gaps in them,
enabling phrases to reorder subphrases. However,
since there’s only one label, there’s no way to in-
clude syntactic information in its translation rules.

3.3 Phrase structure parse tree labeling

One first step for adding syntactic information is to
get syntactic labels from a phrase structure parse
tree. For each word-aligned sentence pair in our
training data, we also include a parse tree of the tar-
get side.

Then we can assign syntactic labels like this: for
each consistent phrase pair (representing either the
left-hand non-terminal or a gap in the right hand
side) we see if the target-language phrase is the exact
span of some subtree of the parse tree.

If a subtree exactly spans the phrase pair, we can
use the root label of that subtree to label the non-
terminal symbol. If there is no such subtree, we
throw away any rules derived from the phrase pair.

As an example, suppose the English side of the
phrase pair in Figure 3 is analyzed as

PP

IN

For

NP

JJ

most

NN

people

Then we can assign syntactic labels to Rule 4 to pro-
duce

PP → 〈 Pour NP ; For NP 〉 (5)

The rules extracted by this scheme are very sim-
ilar to those produced by GHKM (Galley et al.,
2004), in particular resulting in the “composed
rules” of Galley et al. (2006), though we use sim-
pler heuristics for handling of unaligned words and
scoring in order to bring the model in line with both
Hiero and SAMT baselines. Under this scheme we
throw away a lot of useful translation rules that don’t
translate exact syntactic constituents. For example,
we can’t label

X → 〈 Pour la majorité des ; For most 〉 (6)

because no single node exactly spans For most: the
PP node includes people, and the NP node doesn’t
include For.

We can alleviate this problem by changing the
way we get syntactic labels from parse trees.

3.4 SAMT

The Syntax-Augmented Machine Translation
(SAMT) model (Zollmann and Venugopal, 2006)
extracts more rules than the other syntactic model
by allowing different labels for the rules. In SAMT,
we try several different ways to get a label for a
span, stopping the first time we can assign a label:

• As in simple phrase structure labeling, if a sub-
tree of the parse tree exactly spans a phrase, we
assign that phrase the subtree’s root label.

• If a phrase can be covered by two adjacent sub-
trees with labels A and B, we assign their con-
catenation A+B.

• If a phrase spans part of a subtree labeled A that
could be completed with a subtree B to its right,
we assign A/B.
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• If a phrase spans part of a subtree A but is miss-
ing a B to its left, we assign A\B.

• Finally, if a phrase spans three adjacent sub-
trees with labels A, B, and C, we assign
A+B+C.

Only if all of these assignments fail do we throw
away the potential translation rule.

Under SAMT, we can now label Rule 6. For is
spanned by an IN node, and most is spanned by a JJ
node, so we concatenate the two and label the rule
as

IN+JJ→ 〈 Pour la majorité des ; For most 〉 (7)

3.5 CCG 1-best derivation labeling
Our first CG model is similar to the first phrase struc-
ture parse tree model. We start with a word-aligned
sentence pair, but we parse the target sentence using
a CCG parser instead of a phrase structure parser.

When we extract a rule, we see if the consistent
phrase pair is exactly spanned by a category gener-
ated in the 1-best CCG derivation of the target sen-
tence. If there is such a category, we assign that cat-
egory label to the non-terminal. If not, we throw
away the rule.

To continue our extended example, suppose the
English side of Figure 3 was analyzed by a CCG
parser to produce

For most people

(S/S)/N N/N N
>

N
>

S/S

Then just as in the phrase structure model, we
project the syntactic labels down onto the extractable
rule yielding

S/S → 〈 Pour N ; For N 〉 (8)

This does not take advantage of CCG’s ability to
label almost any fragment of language: the frag-
ments with labels in any particular sentence depend
on the order that categories were combined in the
sentence’s 1-best derivation. We can’t label Rule 6,
because no single category spanned For most in the
derivation. In the next model, we increase the num-
ber of spans we can label.

S/S

S/S N

(S/S)/N N/N N

For peoplemost

Figure 4: A portion of the parse chart for a sentence
starting with “For most people . . . .” Note that the
gray chart cell is not included in the 1-best derivation
of this fragment in Section 3.5.

3.6 CCG parse chart labeling
For this model, we do not use the 1-best CCG deriva-
tion. Instead, when parsing the target sentence, for
each cell in the parse chart, we read the most likely
label according to the parsing model. This lets us as-
sign a label for almost any span of the sentence just
by reading the label from the parse chart.

For example, Figure 4 represents part of a CCG
parse chart for our example fragment of “For most
people.” Each cell in the chart shows the most prob-
able label for its span. The white cells of the chart
are in fact present in the 1-best derivation, which
means we could extract Rule 8 just as in the previous
model.

But the 1-best derivation model cannot label Rule
6, and this model can. The shaded chart cell in Fig-
ure 4 holds the most likely category for the span For
most. So we assign that label to the X:

S/S → 〈 Pour la majorité des ; For most 〉 (9)

By including labels from cells that weren’t used
in the 1-best derivation, we can greatly increase the
number of rules we can label.

4 Comparison of resulting grammars

4.1 Effect of grammar size and label set on
parsing efficiency

There are sound theoretical reasons for reducing the
number of non-terminal labels in a grammar. Trans-
lation with a synchronous context-free grammar re-
quires first parsing with the source-language projec-
tion of the grammar, followed by intersection of the
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target-language projection of the resulting grammar
with a language model. While there are many possi-
ble algorithms for these operations, they all depend
on the size of the grammar.

Consider for example the popular cube pruning
algorithm of Chiang (2007), which is a simple ex-
tension of CKY. It works by first constructing a set
of items of the form 〈A, i, j〉, where each item corre-
sponds to (possibly many) partial analyses by which
nonterminal A generates the sequence of words from
positions i through j of the source sentence. It then
produces an augmented set of items 〈A, i, j, u, v〉, in
which items of the first type are augmented with left
and right language model states u and v. In each
pass, the number of items is linear in the number of
nonterminal symbols of the grammar. This observa-
tion has motivated work in grammar transformations
that reduce the size of the nonterminal set, often re-
sulting in substantial gains in parsing or translation
speed (Song et al., 2008; DeNero et al., 2009; Xiao
et al., 2009).

More formally, the upper bound on parsing com-
plexity is always at least linear in the size of the
grammar constant G, where G is often loosely de-
fined as a grammar constant; Iglesias et al. (2011)
give a nice analysis of the most common translation
algorithms and their dependence on G. Dunlop et
al. (2010) provide a more fine-grained analysis of G,
showing that for a variety of implementation choices
that it depends on either or both the number of rules
in the grammar and the number of nonterminals in
the grammar. Though these are worst-case analyses,
it should be clear that grammars with fewer rules or
nonterminals can generally be processed more effi-
ciently.

4.2 Number of rules and non-terminals
Table 2 shows the number of rules we can extract
under various labeling schemes. The rules were ex-
tracted from an Urdu–English parallel corpus with
202,019 translations, or almost 2 million words in
each language.

As we described before, moving from the phrase-
structure syntactic model to the extended SAMT
model vastly increases the number of translation
rules — from about 7 million to 40 million rules.
But the increased rule coverage comes at a cost: the
non-terminal set has increased in size from 70 (the

Model Rules NTs
Hiero 4,171,473 1

Syntax 7,034,393 70
SAMT 40,744,439 18,368

CG derivations 8,042,683 505
CG parse chart 28,961,161 517

Table 2: Number of translation rules and non-
terminal labels in an Urdu–English grammar under
various models.

size of the set of Penn Treebank tags) to over 18,000.
Comparing the phrase structure syntax model to

the 1-best CCG derivation model, we see that the
number of extracted rules increases slightly, and the
grammar uses a set of about 500 non-terminal labels.
This does not seem like a good trade-off; since we
are extracting from the 1-best CCG derivation there
really aren’t many more rules we can label than with
a 1-best phrase structure derivation.

But when we move to the full CCG parse chart
model, we see a significant difference: when read-
ing labels off of the entire parse chart, instead of
the 1-best derivation, we don’t see a significant in-
crease in the non-terminal label set. That is, most
of the labels we see in parse charts of the train-
ing data already show up in the top derivations: the
complete chart doesn’t contain many new labels that
have never been seen before.

But by using the chart cells, we are able to as-
sign syntactic information to many more translation
rules: over 28 million rules, for a grammar about 3

4
the size of SAMT’s. The parse chart lets us extract
many more rules without significantly increasing the
size of the syntactic label set.

4.3 Sparseness of nonterminals

Examining the histograms in Figure 5 gives us a
different view of the non-terminal label sets in our
models. In each histogram, the horizontal axis mea-
sures label frequency in the corpus. The height of
each bar shows the number of non-terminals with
that frequency.

For the phrase structure syntax model, we see
there are maybe 20 labels out of 70 that show up
on rules less than 1000 times. All the other labels
show up on very many rules.
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Figure 5: Histograms of label frequency for each model, illustrating the sparsity of each model.

Moving to SAMT, with its heuristically-defined
labels, shows a very different story. Not only does
the model have over 18,000 non-terminal labels, but
thousands of them show up on fewer than 10 rules
apiece. If we look at the rare label types, we see that
a lot of them are improbable three way concatena-
tions A+B+C.

The two CCG models have similar sparseness
profiles. We do see some rare labels occurring only
a few times in the grammars, but the number of
singleton labels is an order of magnitude smaller
than SAMT. Most of the CCG labels show up in
the long tail of very common occurrences. Interest-
ingly, when we move to extracting labels from parse
charts rather than derivations, the number of labels
increases only slightly. However, we also obtain a
great deal more evidence for each observed label,
making estimates more reliable.

5 Experiments

5.1 Data

We tested our models on an Urdu–English transla-
tion task, in which syntax-based systems have been
quite effective (Baker et al., 2009; Zollmann et al.,
2008). The training corpus was the National Insti-
tute of Standards and Technology Open Machine
Translation 2009 Evaluation (NIST Open MT09).
According to the MT09 Constrained Training Con-

ditions Resources list2 this data includes NIST Open
MT08 Urdu Resources3 and the NIST Open MT08
Current Test Set Urdu–English4. This gives us
202,019 parallel translations, for approximately 2
million words of training data.

5.2 Experimental design

We used the scripts included with the Moses MT
toolkit (Koehn et al., 2007) to tokenize and nor-
malize the English data. We used a tokenizer and
normalizer developed at the SCALE 2009 workshop
(Baker et al., 2009) to preprocess the Urdu data. We
used GIZA++ (Och and Ney, 2000) to perform word
alignments.

For phrase structure parses of the English data, we
used the Berkeley parser (Petrov and Klein, 2007).
For CCG parses, and for reading labels out of a parse
chart, we used the C&C parser (Clark and Curran,
2007).

After aligning and parsing the training data, we
used the Thrax grammar extractor (Weese et al.,
2011) to extract all of the translation grammars.

We used the same feature set in all the transla-
tion grammars. This includes, for each rule C →
〈f ; e〉, relative-frequency estimates of the probabil-

2http://www.itl.nist.gov/iad/mig/tests/
mt/2009/MT09_ConstrainedResources.pdf

3LDC2009E12
4LDC2009E11

228



Model BLEU sec./sent.
Hiero 25.67 (0.9781) 0.05

Syntax 27.06 (0.9703) 3.04
SAMT 28.06 (0.9714) 63.48

CCG derivations 27.3 (0.9770) 5.24
CCG parse chart 27.64 (0.9673) 33.6

Table 3: Results of translation experiments on
Urdu–English. Higher BLEU scores are better.
BLEU’s brevity penalty is reported in parentheses.

ities p(f |A), p(f |e), p(f |e, A), p(e|A), p(e|f), and
p(e|f, A).

The feature set also includes lexical weighting for
rules as defined by Koehn et al. (2003) and various
binary features as well as counters for the number of
unaligned words in each rule.

To train the feature weights we used the Z-MERT
implementation (Zaidan, 2009) of the Minimum
Error-Rate Training algorithm (Och, 2003).

To decode the test sets, we used the Joshua ma-
chine translation decoder (Weese et al., 2011). The
language model is a 5-gram LM trained on English
GigaWord Fourth Edition.5

5.3 Evaluation criteria

We measure machine translation performance using
the BLEU metric (Papineni et al., 2002). We also
report the translation time for the test set in seconds
per sentence. These results are shown in Table 3.

All of the syntactic labeling schemes show an im-
provement over the Hiero model. Indeed, they all
fall in the range of approximately 27–28 BLEU. We
can see that the 1-best derivation CCG model per-
forms slightly better than the phrase structure model,
and the CCG parse chart model performs a little bet-
ter than that. SAMT has the highest BLEU score.
The models with a larger number of rules perform
better; this supports our assertion that we shouldn’t
throw away too many rules.

When it comes to translation time, the three
smaller models (Hiero, phrase structure syntax, and
CCG 1-best derivations) are significantly faster than
the two larger ones. However, even though the CCG
parse chart model is almost 3

4 the size of SAMT in
terms of number of rules, it doesn’t take 3

4 of the

5LDC2009T13

time. In fact, it takes only half the time of the SAMT
model, thanks to the smaller rule label set.

6 Discussion and Future Work

Finding an appropriate mechanism to inform phrase-
based translation models and their hierarchical vari-
ants with linguistic syntax is a difficult problem
that has attracted intense interest, with a variety
of promising approaches including unsupervised
clustering (Zollmann and Vogel, 2011), merging
(Hanneman et al., 2011), and selection (Mylonakis
and Sima’an, 2011) of labels derived from phrase-
structure parse trees very much like those used by
our baseline systems. What we find particularly
attractive about CCG is that it naturally assigns
linguistically-motivated labels to most spans of a
sentence using a reasonably concise label set, possi-
bility obviating the need for further refinement. In-
deed, the analytical flexibility of CCG has motivated
its increasing use in MT, from applications in lan-
guage modeling (Birch et al., 2007; Hassan et al.,
2007) to more recent proposals to incorporate it into
phrase-based (Mehay, 2010) and hierarchical trans-
lation systems (Auli, 2009).

Our new model builds on these past efforts, rep-
resenting a more fully instantiated model of CCG-
based translation. We have shown that the label
scheme allows us to keep many more translation
rules than labels based on phrase structure syntax,
extracting almost as many rules as the SAMT model,
but keeping the label set an order of magnitude
smaller, which leads to more efficient translation.
This simply scratches the surface of possible uses of
CCG in translation. In future work, we plan to move
from a formally context-free to a formally CCG-
based model of translation, implementing combina-
torial rules such as application, composition, and
type-raising.
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Abstract

Chiang’s hierarchical phrase-based (HPB)
translation model advances the state-of-the-art
in statistical machine translation by expanding
conventional phrases to hierarchical phrases
– phrases that contain sub-phrases. How-
ever, the original HPB model is prone to over-
generation due to lack of linguistic knowl-
edge: the grammar may suggest more deriva-
tions than appropriate, many of which may
lead to ungrammatical translations. On the
other hand, limitations of glue grammar rules
in the original HPB model may actually pre-
vent systems from considering some reason-
able derivations. This paper presents a sim-
ple but effective translation model, called the
Head-Driven HPB (HD-HPB) model, which
incorporates head information in translation
rules to better capture syntax-driven informa-
tion in a derivation. In addition, unlike the
original glue rules, the HD-HPB model allows
improved reordering between any two neigh-
boring non-terminals to explore a larger re-
ordering search space. An extensive set of ex-
periments on Chinese-English translation on
four NIST MT test sets, using both a small
and a large training set, show that our HD-
HPB model consistently and statistically sig-
nificantly outperforms Chiang’s model as well
as a source side SAMT-style model.

1 Introduction

Chiang’s hierarchical phrase-based (HPB) transla-
tion model utilizes synchronous context free gram-
mar (SCFG) for translation derivation (Chiang,
2005; Chiang, 2007) and has been widely adopted

in statistical machine translation (SMT). Typically,
such models define two types of translation rules:
hierarchical (translation) rules which consist of both
terminals and non-terminals, and glue (grammar)
rules which combine translated phrases in a mono-
tone fashion. However, due to lack of linguistic
knowledge, Chiang’s HPB model contains only one
type of non-terminal symbol X , often making it
difficult to select the most appropriate translation
rules.1

One important research question is therefore how
to refine the non-terminal category X using linguis-
tically motivated information: Zollmann and Venu-
gopal (2006) (SAMT) e.g. use (partial) syntactic
categories derived from CFG trees while Zollmann
and Vogel (2011) use word tags, generated by ei-
ther POS analysis or unsupervised word class in-
duction. Almaghout et al. (2011) employ CCG-
based supertags. Mylonakis and Sima’an (2011) use
linguistic information of various granularities such
as Phrase-Pair, Constituent, Concatenation of Con-
stituents, and Partial Constituents, where applica-
ble.

By contrast, and inspired by previous work in
parsing (Charniak, 2000; Collins, 2003), our Head-
Driven HPB (HD-HPB) model is based on the in-
tuition that linguistic heads provide important in-
formation about a constituent or distributionally de-
fined fragment, as in HPB. We identify heads using
linguistically motivated dependency parsing, and
use head information to refine X.

Furthermore, Chiang’s HPB model suffers from
limited phrase reordering by combining translated

1Another non-terminal symbol S is used in glue rules.
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(a) (b) 

zuotian chuxi huiyi 

attended a meeting yesterday 

X2 X1 

X1 X2 

S2 

S1 
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zuotian chuxi huiyi 

attended a meeting yesterday 

X4 X3 

X3 X4 

X2 

X1 

X2 

S2 
X1 

S1 

S1 

X1 

Figure 1: Example of derivations disallowed in Chiang’s
HPB model. The rules with dotted lines are not covered
in Chiang’s model.

phrases in a monotonic way with glue rules. In
addition, once a glue rule is adopted, it requires
all rules above it to be glue rules. For exam-
ple, given a Chinese-English sentence pair (昨
天/zuotian1 出席/chuxi2 会议/huiyi3, Attended2 a3

meeting3 yesterday1), a correct translation is impos-
sible via HPB derivations in Figure 1. For the deriva-
tion in Figure 1(a), swap reordering in the glue rule
(i.e., S1 → 〈S2X2, X2S2〉) is disallowed and, even
if such a swap reordering is available, it lacks useful
information for rule selection. For the derivation in
Figure 1(b), the combination of two non-terminals
(i.e., X2 → 〈X3X4, X3X4〉) is disallowed to form
a new non-terminal which in turn is a sub-phrase of
a hierarchical rule. These limitations prevent tra-
ditional HPB systems from even considering some
reasonable derivations.

To tackle the problem of glue rules, He (2010) ex-
tended the HPB model by using bracketing transduc-
tion grammar (Wu, 1996) instead of the monotone
glue rules, and trained an extra classifier for glue
rules to predict reorderings of neighboring phrases.
By contrast, our HD-HPB model refines the non-
terminal symbol X with syntactic head informa-
tion and provides flexible reordering rules, including
swap, which can mix freely with hierarchical trans-
lation rules for better interleaving of translation and
reordering in translation derivations.

Different from the soft constraint modeling
adopted in (Chan et al., 2007; Marton and Resnik,
2008; Shen et al., 2009; He et al., 2010; Huang et
al., 2010; Gao et al., 2011), our approach encodes
syntactic information in translation rules. However,
the two approaches are not mutually exclusive, as
we could also include a set of syntax-driven features
into our translation model. Our approach maintains
the advantages of Chiang’s HPB model while at the
same time incorporating head information and flex-
ible reordering in a derivation in a natural way. Ex-
periments on Chinese-English translation using four
NIST MT test sets show that our HD-HPB model
significantly outperforms Chiang’s HPB as well as a
SAMT-style refined version of HPB.

The paper is structured as follows: Section 2
describes the synchronous context-free grammar
(SCFG) in our HD-HPB translation model. Sec-
tion 3 presents our model and features, followed by
the decoding algorithm in Section 4. We report ex-
perimental results in Section 5. Finally we conclude
in Section 6.

2 Head-Driven HPB Translation Model

Like Chiang (2005) and Chiang (2007), our HD-
HPB translation model adopts a synchronous con-
text free grammar, a rewriting system which gen-
erates source and target side string pairs simultane-
ously using a context-free grammar. In particular,
each synchronous rule rewrites a non-terminal into
a pair of strings, s and t, where s (or t) contains ter-
minals and non-terminals from the source (or target)
language and there is a one-to-one correspondence
between the non-terminal symbols on both sides.

A good and informative inventory of non-terminal
symbols is always important, especially for a suc-
cessful SCFG-based translation model. Instead of
collapsing all non-terminals in the source language
into a single symbol X as in Chiang (2007), ideally
non-terminals should capture important information
of the word sequences they cover to be able to prop-
erly discriminate between similar and different word
sequences during translation. This motivates our
approach to provide syntax-enriched non-terminal
symbols. Given a word sequence f ij from position i
to position j, we refine the non-terminal symbol X
to reflect some of the internal syntactic structure of
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欧洲/NR 
Ouzhou 

八国/NN 
baguo 

联名/AD
lianming

支持/VV
zhichi 

美国/NR 
meiguo 

对/P
dui

策略/NN
celie 

伊/NR
yi 

root

Eight European countries jointly support America’s stand against Iraq

Figure 2: An example word alignment for a Chinese-English sentence pair with the dependency parse tree for the
Chinese sentence. Here, each Chinese word is attached with its POS tag and Pinyin.

the word sequence covered by X . A correct transla-
tion rule selection therefore not only maps terminals
into terminals, but is both constrained and guided
by syntactic information in the non-terminals. At
the same time, it is not clear whether an “ideal” ap-
proach that captures a full syntactic analysis of the
string fragment covered by a non-terminal is feasi-
ble: the diversity of syntactic structures could make
training impossible and lead to serious data sparse-
ness issues. As a compromise, given a word se-
quence f ij , we first find heads and then concatenate
the POS tags of these heads as f ij’s non-terminal
symbol.2 Our approach is guided by the intuition
that linguistic heads provide important information
about a constituent or distributionally defined frag-
ment, as in HPB. Specifically, we adopt dependency
structure to derive heads, which are defined as:

Definition 1. For word sequence f ij , word
fk (i ≤ k ≤ j) is regarded as a head if it is domi-
nated by a word outside of this sequence.

Note that this definition (i) allows for a word se-
quence to have one or more heads (largely due to
the fact that a word sequence is not necessarily lin-
guistically constrained) and (ii) ensures that heads
are always the highest heads in the sequence from a
dependency structure perspective. For example, the
word sequence ouzhou baguo lianming in Figure 2
has two heads (i.e., baguo and lianming, ouzhou is
not a head of this sequence since its headword baguo
falls within this sequence) and the non-terminal cor-
responding to the sequence is thus labeled as NN-
AD. It is worth noting that in this paper we only
refine non-terminal X on the source side to head-
informed ones, while still usingX on the target side.

2Note that instead of POS tags, it is also possible to use other
types of syntactic information associated with heads to refine
non-terminal symbols (Section 5.5.2).

In our HD-HPB model, the SCFG is defined as
a tuple 〈Σ, N,∆,Λ,<〉, where Σ is a set of source
language terminals,N is a set of non-terminals cate-
gorizing terminals in Σ, ∆ is a set of target language
terminals, Λ is a set of non-terminals categorizing
terminals in ∆, and < is a set of translation rules.
A rule γ in < is in the form of 〈Ps → s, Pt → t, φ〉,
where:

• Ps ∈ N and Pt ∈ Λ;

• s ∈ (Σ ∪N)+ and t ∈ (∆ ∪ Λ)+

• φ is a bijection between non-terminals in s and t.

According to the occurrence of terminals in s and
t, we group the rules in the HD-HPB model into two
categories: head-driven hierarchical rules (HD-HRs)
and non-terminal reordering rules (NRRs), where
the former have at least one terminal on both source
and target sides and the later have no terminals. For
rule extraction, we first identify initial phrase pairs
on word-aligned sentence pairs by using the same
criterion as most phrase-based translation models
(Och and Ney, 2004) and Chiang’s HPB model (Chi-
ang, 2005; Chiang, 2007). We extract HD-HRs and
NRRs based on initial phrase pairs, respectively.

2.1 HD-HRs: Head-Driven Hierarchical Rules
As mentioned, a HD-HR has at least one terminal
on both source and target sides. This is the same
as the hierarchical rules defined in Chiang’s HPB
model (Chiang, 2007), except that we use head POS-
informed non-terminal symbols in the source lan-
guage. We look for initial phrase pairs that con-
tain other phrases and then replace sub-phrases with
their corresponding non-terminal symbols. Given
the word alignment as shown in Figure 2, Table 1
demonstrates the difference between hierarchical
rules in Chiang (2007) and HD-HRs defined here.
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phrase pairs hierarchical rule head-driven hierarchical rule

celie, stand X→celie, stand
NN→celie,

X→stand

dui yi celie1, stand1 against Iraq X→dui yi X1, X1 against Iraq
NN→dui yi NN1,

X→X1 against Iraq

zhichi meiguo, support America’s X→zhichi meiguo, support America’s
VV-NR→zhichi meiguo,

X→support America’s
zhichi meiguo1 dui yi celie2,
support America’s1 stand2 against Iraq

X→X1 dui yi X2,
X1 X2 against Iraq

VV→VV-NR1 dui yi NN2,
X→X1 X2 against Iraq

Table 1: Comparison of hierarchical rules in Chiang (2007) and HD-HRs. Indexed underlines indicate sub-phrases
and corresponding non-terminal symbols. The non-terminals in HD-HRs (e.g., NN, VV, VV-NR) capture the head(s)
POS tags of the corresponding word sequence in the source language.

Similar to Chiang’s HPB model, our HD-HPB
model will result in a large number of rules causing
problems in decoding. To alleviate these problems,
we filter our HD-HRs according to the same con-
straints as described in Chiang (2007). Moreover,
we discard rules that have non-terminals with more
than four heads.

2.2 NRRs: Non-terminal Reordering Rules
NRRs are translation rules without terminals. Given
an initial phrase pair

〈
f ij , e

i∗
j∗

〉
, we check all other

initial phrase pairs
〈
fkl , e

k∗
l∗
〉

which satisfy k = j+1
(i.e., phrase fkl is located immediately to the right
of f ij in the source language). For their target
side translations, there are four possible positional
relationships: monotone, discontinuous monotone,
swap, and discontinuous swap. In order to differen-
tiate non-terminals from those in the target language
(i.e., X), we use Y as a variable for non-terminals in
the source language, and obtain four types of NRRs:

• Monotone 〈Y → Y1Y2, X → X1X2〉;

• Discontinuous monotone
〈Y → Y1Y2, X → X1 . . . X2〉;

• Swap 〈Y → Y1Y2, X → X2X1〉;

• Discontinuous swap
〈Y → Y1Y2, X → X2 . . . X1〉.

For example in Figure 2, the NRR for initial
phrase pairs 〈zhichi meiguo, support America’s〉
and 〈dui yi celie, stand against Iraq〉 would be
〈V V → V V -NR1NN2, X → X1X2〉.

Merging two neighboring non-terminals into a
single non-terminal, NRRs enable the translation

model to explore a wider search space. During train-
ing, we extract four types of NRRs and calculate
probabilities for each type. To speed up decoding,
we currently (i) only use monotone and swap NRRs
and (ii) limit the number of non-terminals in a NRR
to 2.

3 Log-linear Model and Features

Following Och and Ney (2002), we depart from the
traditional noisy-channel approach and use a general
log-linear model. Let d be a derivation from sen-
tence f in the source language to sentence e in the
target language. The probability of d is defined as:

P (d) ∝
∏
i

Øi (d)λi (1)

where Øi are features defined on derivations and
λi are feature weights. In particular, we use a fea-
ture set analogous to the default feature set of Chi-
ang (2007), which includes:

• Phd-hr (t|s) and Phd-hr (s|t), translation probabili-
ties for HD-HRs;

• Plex (t|s) and Plex (s|t), lexical translation proba-
bilities for HD-HRs;

• Ptyhd-hr = exp (−1), rule penalty for HD-HRs;

• Pnrr (t|s), translation probability for NRRs;

• Ptynrr = exp (−1), rule penalty for NRRs;

• Plm (e), language model;

• Ptyword (e) = exp (−|e|), word penalty.
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Algorithm 1: Decoding Algorithm

Input: Sentence f1
n in the source language

Dependency structure of f1
n

HD-HR rule set HDHR
NRR rule set NRR
Initial phrase length K

Output: Best derivation d∗

1. set chart[i, j]=NIL (1 ≤ i ≤ j ≤ n);
2. for l from 1 to n do
3. for all i, j such that j − i = l do
4. if l ≤ K do
5. for all derivations d derived from

HDHR spanning from i to j do
6. add d into chart[i, j]
7. for all derivations d derived from

NRR spanning from i to j do
8. add d into chart[i, j]
9. set d∗ as the top derivation of chart[1, n]
10.return d∗

It is worth pointing out that we define translation
probabilities for NRRs only for the direction from
source language to target language, although trans-
lation probabilities for HD-HRs are defined for both
directions. This is mostly due to the fact that a NRR
excludes terminals and has only two options on the
target side (i.e., either X → X1X2 or X → X2X1).

4 Decoding

Our decoder is based on CKY-style chart parsing
with beam search. Given an input sentence f , it finds
a sentence e in the target language derived from the
best derivation d∗ among all possible derivations D:

d∗ = arg max
d∈D

P (D) (2)

Algorithm 1 presents the decoding process. Given
a source sentence, it searches for the best deriva-
tion bottom-up. For a source span [i, j], it applies
both types of HD-HRs and NRRs. However, HD-
HRs are only applied to generate derivations span-
ning no more than K words – the initial phrase
length limit used in training to extract HD-HRs –
while NRRs are applied to derivations spanning any
length. Unlike in Chiang (2007), it is possible for
a non-terminal generated by a NRR to be included
afterwards by a HD-HR or another NRR. Similar to
Chiang (2007) in generating k-best derivations from

i to j, we make use of cube pruning (Huang and Chi-
ang, 2005) with an integrated language model for
each derivation.

5 Experiments

We evaluate the performance of our HD-HPB model
and compare it with our implementation of Chiang’s
HPB model (Chiang, 2007), a source-side SAMT-
style refined version of HPB (SAMT-HPB), and the
Moses implementation of HPB. For fair compari-
son, we adopt the same parameter settings for HD-
HPB, HPB and SAMT-HPB systems, including ini-
tial phrase length (as 10) in training, the maximum
number of non-terminals (as 2) in translation rules,
maximum number of non-terminals plus terminals
(as 5) on the source, prohibition of non-terminals
to be adjacent on the source, beam threshold β (as
10−5) (to discard derivations with a score worse than
β times the best score in the same chart cell), beam
size b (as 200) (i.e. each chart cell contains at most
b derivations). For Moses HPB, we use “grow-diag-
final-and” to obtain symmetric word alignments, 10
for the maximum phrase length, and the recom-
mended default values for all other parameters.

5.1 Experimental Settings

To examine the efficacy of our approach on training
datasets of different scales, we first train translation
models on a small-sized corpus, and then scale to a
larger one. We use the 2002 NIST MT evaluation
test data (878 sentence pairs) as the development
data, and the 2003, 2004, 2005, 2006-news NIST
MT evaluation test data (919, 1788, 1082, and 616
sentence pairs, respectively) as the test data. To find
heads, we parse the source sentences with the Berke-
ley Parser3 (Petrov and Klein, 2007) trained on Chi-
nese TreeBank 6.0 and use the Penn2Malt toolkit4

to obtain dependency structures.
We obtain the word alignments by running

GIZA++ (Och and Ney, 2000) on the corpus in
both directions, applying “grow-diag-final-and” re-
finement (Koehn et al., 2003). We use the SRI lan-
guage modeling toolkit to train a 5-gram language
model on the Xinhua portion of the Gigaword corpus
and standard MERT (Och, 2003) to tune the feature

3http://code.google.com/p/berkeleyparser/
4http://w3.msi.vxu.se/˜nivre/research/Penn2Malt.html/
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weights on the development data.
For evaluation, the NIST BLEU script (version

12) with the default settings is used to calculate the
NIST and the BLEU scores, which measures case-
insensitive matching of n-grams with n up to 4. To
test whether a performance difference is statistically
significant, we conduct significance tests following
the paired bootstrap approach (Koehn, 2004). In this
paper, ‘**’ and ‘*’ denote p-values less than
0.01 and in-between [0.01, 0.05), respectively.

5.2 Results on Small Data
To test the HD-HPB models, we firstly carried out
experiments using the FBIS corpus as training data,
which contains ˜240K sentence pairs. Table 2 lists
the rule table sizes. The full rule table size (includ-
ing HD-HRs and NRRs) of our HD-HPB model is
about 1.5 times that of Chiang’s, largely due to re-
fining the non-terminal symbolX in Chiang’s model
into head-informed ones in our model. It is also
unsurprising, that the test set-filtered rule table size
of our model is only about 0.8 times that of Chi-
ang’s: this is due to the fact that some of the re-
fined translation rule patterns required by the test
set are unattested in the training data. Furthermore,
the rule table size of NRRs is much smaller than
that of HD-HRs since a NRR contains only two
non-terminals. Table 3 lists the translation perfor-
mance with NIST and BLEU scores. Note that our
re-implementation of Chiang’s original HPB model
performs on a par with Moses HPB. Table 3 shows
that our HD-HPB model significantly outperforms
Chiang’s HPB model with an average improvement
of 1.32 in BLEU and 0.16 in NIST (and similar im-
provements over Moses HPB).

Although HD-HPB has small size of phrase ta-
bles compared to HPB, it still consumes more time
in decoding (e.g., 15.1 vs. 11.0), mostly due to the
flexible reordering of NRRs.

5.3 Results on Large Data
We also conduct experiments on larger training
data with ˜1.5M sentence pairs from the LDC
dataset.5 Table 4 lists the rule table sizes and Ta-
ble 5 presents translation performance with NIST

5This dataset includes LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06

and BLEU scores. It shows that our HD-HPB model
consistently outperforms Chiang’s HPB model with
an average improvement of 1.91 in BLEU and 0.35
in NIST (similar for Moses HPB). Compared to the
improvement achieved on the small data, it is en-
couraging to see that our HD-HPB model benefits
more from larger training data with little adverse ef-
fect on decoding time which increases only slightly
from 15.1 to 16.6 seconds per sentence.

5.4 Comparison with SAMT-HPB

Comparing the performance of SAMT-HPB with
regular HPB in Table 3 and Table 5, it is interest-
ing to see that in general the SAMT-style approach
leads to a deterioration of translation performance
for the small training set (e.g., 30.09 for SAMT-HPB
vs. 30.64 for HPB) while it comes into its own for
the large training set (e.g., 33.54 for SAMT-HPB vs.
32.95 for HPB), indicating that the SAMT-style ap-
proach is more prone to data sparseness than HPB
(or, indeed, HD-HPB).

Comparing the performance of SAMT-HPB with
HD-HPB, shows that our head-driven non-terminal
refining approach consistently outperforms the
SAMT-style approach on an extensive set of ex-
periments (for each test set p < 0.01), indicating
that head information is more effective than (par-
tial) CFG categories. To make the comparison fair,
it is important to note that our implementation of
source-side SAMT-HPB includes the same sophis-
ticated non-terminal re-ordering NRR rules as HD-
HPB (Section 2.2 ). Thus the performance differ-
ences reported here are not due to different reorder-
ing capabilities, but to the discriminative impact of
the head information in HD-HPB over SAMT-style
annotation. Taking lianming zhichi in Figure 2 as an
example, HD-HPB labels the span VV, as lianming
is dominated by zhichi, effecively ignoring lianming
in the translation rule, while the SAMT label is
ADVP:AD+VV6 which is more susceptible to data
sparsity (Table 2 and Table 4). In addition, SAMT
resorts to X if a text span fails to satisify pre-defined
categories. Examining initial phrases extracted from
the SAMT training data shows that 28% of them are
labeled as X. Finally, for Chinese syntactic analy-

6The constituency structure for lianming zhichi is (VP
(ADVP (AD lianming)) (VP (VV zhichi) ...)).
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System Total Rules MT 03 MT 04 MT 05 MT 06 Avg.
HPB 39.6M 2.8M 4.7M 3.3M 3.0M 3.4M

HD-HPB 59.5/0.6M 1.9/0.1M 3.4/0.2M 2.3/0.2M 2.0/0.1M 2.4/0.2M
SAMT-HPB 70.1/0.4M 2.2/0.2M 4.0/0.2M 2.7/0.2M 2.3/0.2M 2.8/0.2M

Table 2: Rule table sizes of different models trained on small data. Note: 1) SAMT-HPB indicates our HD-HPB model
with the non-terminal scheme of Zollmann and Venugopal (2006); 2) For HD-HPB and SAMT-HPB, the rule sizes
separated by / indicate HD-HRs and NRRs, respectively; 2) Except for “Total Rules”, the figures correspond to rules
filtered on the corresponding test set.

System MT 03 MT 04 MT 05 MT 06 Avg. TimeNIST BLEU NIST BLEU NIST BLEU NIST BLEU NIST BLEU
Moses HPB 7.377 29.67 8.209 33.60 7.571 29.49 6.773 28.90 7.483 30.42 NA
HPB 8.137 29.75 9.050 34.06 8.264 30.09 7.788 28.64 8.310 30.64 11.0
HD-HPB 8.308 31.01** 9.211 35.11** 8.426 31.57** 7.930 30.15** 8.469 31.96 15.1
SAMT-HPB 7.886 29.14* 8.703 33.32** 7.961 29.49* 7.307 28.41 7.964 30.09 17.3
HD-HR+Glue 7.966 29.51 8.826 33.68 8.116 29.84 7.474 28.51 8.095 30.39 5.4

Table 3: NIST and BLEU (%) scores of different models trained on small data. Note: 1) HD-HR+Glue indicates our
HD-HPB model replacing NRRs with glue rules; 2) Significance tests for Moses HPB, HD-HPB, SAMT-HPB and
HD-HR+Glue are done against HPB.

System Total Rules MT 03 MT 04 MT 05 MT 06 Avg.
HPB 206.8M 11.3M 17.6M 12.9M 10.4M 13.0M

HD-HPB 318.6/2.3M 7.3/0.3M 12.2/0.4M 8.5/0.3M 6.7/0.2M 8.7/0.3M
SAMT-HPB 371.0/1.1M 8.6/0.3M 14.3/0.4M 10.1/0.3M 7.9/0.3M 10.2/0.3M

Table 4: Rule table sizes of different models trained on large data.

System MT 03 MT 04 MT 05 MT 06 Avg. TimeNIST BLEU NIST BLEU NIST BLEU NIST BLEU NIST BLEU
Moses HPB 7.914 32.94* 8.429 35.16 7.962 32.18 6.483 29.88* 7.697 32.54 NA
HPB 8.583 33.59 9.114 35.39 8.465 32.20 7.532 30.60 8.423 32.95 13.7
HD-HPB 8.885 35.50** 9.494 37.61** 8.871 34.56** 7.839 31.78** 8.772 34.86 16.6
SAMT-HPB 8.644 34.07 9.245 36.52** 8.618 32.90* 7.543 30.66 8.493 33.54 19.1
HD-HR+Glue 8.831 34.58** 9.435 36.55** 8.821 33.84** 7.863 31.06 8.737 34.01 6.7

Table 5: NIST and BLEU (%) scores of different models trained on large data. Note: System labels and significance
testing as in Table 3.
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sis, dependency structure is more reliable than con-
stituency structure. Moreover, SAMT-HPB takes
more time in decoding than HD-HPB due to larger
phrase tables.

5.5 Discussion

5.5.1 Individual Contribution of HD-HRs and
NRRs

Examining translation output shows that on aver-
age each sentence employs 16.6/5.2 HD-HRs/NRRs
in our HD-HPB model, compared to 15.9/3.6 hier-
archical rules/glue rules in Chiang’s model, provid-
ing further indication of the importance of NRRs in
translation. In order to separate out the individual
contributions of the novel HD-HRs and NRRs, we
carry out an additional experiment (HD-HR+Glue)
using HD-HRs with monotonic glue rules only (ad-
justed to refined rule labels, but effectively switching
off the extra reordering power of full NRRs) both
on the small and the large datasets, with interest-
ing results: Table 3 (HD-HR+Glue) shows that for
the small training set most of the improvement of
our full HD-HPB model comes from the NRRs, as
RR+Glue performs on the same level as Chiang’s
original and Moses HPB (the differences are not
statistically significant), perhaps indicating sparse-
ness for the refined HD-HRs given the small train-
ing set. Table 5 shows that for the large training
set, HD-HRs come into their own: on average more
than half of the improvement over HPB (Chiang and
Moses) comes from the refined HD-HRs, the rest
from NRRs.

It is not surprising that compared to the others
HD-HR+Glue takes much less time in decoding.
This is due to the fact that 1) compared to HPB, the
refined translation rule patterns on the source side
have fewer entries in phrase table; 2) compared to
HD-HPB, HD-HR+Glue switches off the extra re-
ordering of NRRs. The decoding time for HD-HPB
and HD-HR+Glue suggests that NRRs are more than
doubling the time required to decode.

5.5.2 Different Head Label Sets
Examining initial phrases extracted from the large

size training data shows that there are 63K types
of refined non-terminals with respect to 33 types of
POS tags. Considering the sparseness in translation
rules caused by this comparatively detained POS tag

set, we carry out an experiment with a reduced set
of non-terminal types by using a less granular POS
tag set (C-HPB). Moreover, due to the fact that con-
catenation of POS tags of heads mostly captures in-
ternal structure of a text span, it is interesting to ex-
amine the effect of other syntactic labels, in partic-
ular dependency labels, to try to better capture the
impact of the external context on the text span. To
this end, we replace the POS tag of head with its
incoming dependency label (DL-HPB), or the com-
bination of (the original fine-grained) POS tag and
its dependency label (POS-DL-HPB). For C-HPB
we use the coarse POS tag set obtained by group-
ing the 33 types of Chinese POS tags into 11 types
following Xia (2000). For example, we generalize
all verbal tags (e.g., VA, VC, VE, and VV ) and all
nominal tags (e.g., NR, NT, and NN) into Verb and
Noun, respectively. We use the dependency labels
in Penn2Malt which defines 9 types of dependency
labels for Chinese, including AMOD, DEP, NMOD,
P, PMOD, ROOT, SBAR, VC, and VMOD.7

Table 6 shows the results trained on large data.
Although the number of non-terminal types de-
creased sharply from 63K to 3K, using the coarse
POS tag set in C-HPB surprisingly lowers the per-
formance with 1.1 BLEU scores on average (e.g.,
33.75 vs. 34.86), indicating that grouping POS
tags using simple linguistic rules is inappropriate for
HD-HPB. We still believe that this initial negative
finding should be supplemented by future work on
groupping POS tags using machine learning tech-
niques considering contextual information.

Table 6 also shows that replacing POS tags
of heads with their dependency labels (DL-HPB)
substantially lowers the average performance from
34.86 on BLEU score to 32.54, probably due to
the very coarse granularity of the dependency la-
bels used. In addition, replacing non-terminal label
with more refined tags (e.g., combination of original
POS tag and dependency label) also lowers trans-
lation performance (POS-DL-HPB). Further experi-
ments with more fine-grained dependency labels are
required.

7Some other types of dependency labels (e.g., SUB, OBJ)
are generated from function tags which are not available in our
automatic parse trees.

239



VV-NR1 dui yi NN2 VV→ , X→ X1 X2 against Iraq 

(b) zhichi meiguo1 dui yi celie2,  

support America’s1 stand2 against Iraq  

VV-NR→ zhichi meiguo , X→ support America’s 

(a) zhichi meiguo, support America’s 

Figure 3: Examples of pharse pairs and their head-driven
translation rules with dependency relation, regarding Fig-
ure 2

System MT 03 MT 04 MT 05 MT 06 Avg.
HPB 33.59 35.39 32.20 30.60 32.95
HD-HPB 35.50 37.61 34.56 31.78 34.86
C-HPB 34.10 36.43 33.46 31.00 33.75
DL-HPB 32.81 35.19 32.27 29.89 32.54
POS-DL-HPB 34.08 36.78 33.14 30.43 33.61
HD-DEP-HPB 35.48 38.17 34.81 32.38 35.21

Table 6: BLEU (%) scores of models trained on large
data.

5.5.3 Encoding Full Dependency Relations in
Translation Rule

Xie et al. (2011) present a dependency-to-string
translation model with a complete dependency struc-
ture on the source side and a moderate average im-
provement of 0.46 BLEU over the HPB baseline. By
contrast, in our HD-HPB approach, dependency in-
formation is used to identify heads in the strings cov-
ered by non-terminals in HD-HR rules, and to refine
non-terminal labels accordingly, with an average im-
provement of 1.91 in BLEU over the HPB baseline
(when trained on the large data). This raises the
question whether and to what extent complete (un-
labeled) dependency information between the string
and the heads in head-labeled non-terminal parts of
the source side of SCFGs in HD-HPB can further
improve results.

Given the source side of a translation rule (ei-
ther HD-HR or NRR), say Ps → s1 . . . sm (where
each si is either a terminal or a head POS in a re-
fined non-terminal), in a further set of experiments
we keep the full unlabeled dependency relations be-

tween s1 . . . sm so as to capture contextual syntactic
information in translation rules. For example, on the
source side of Figure 3 (b) where VV-NR maps into
words zhichi and meiguo while NN maps into word
celie, we keep the full unlabeled dependency rela-
tions among words {zhichi, meiguo, dui, yi, celie}.
HD-DEP-HPB (Table 6) augments translation rules
in HD-HPB with full dependency relations on the
source side. This further boosts the performance
by 0.35 BLEU scores on average over HD-HPB and
outperforms the HPB baseline by 2.26 BLEU scores
on average.

5.5.4 Error Analysis
We carried out a manual error analysis compar-

ing the outputs of our HD-HPB system with those
of Chiang’s (both trained on the large data). We ob-
serve that improved BLEU score often correspond to
better topological ordering of phrases in the hierar-
chical structure of the source side, with a direct im-
pact on which words in a source sentence should be
translated first, and which later. As ungrammatical
translations are often due to inappropriate topologi-
cal orderings of phrases in the hierarchical structure,
guiding the translation through appropriate topolog-
ical ordering should improve translation quality. To
give an example, consider the following input sen-
tence from the 04 NIST MT test data and its two
translation results:

• Input: 中国0 派团1 赴2 美3 采购4 二十多亿5 美
元6高7科技8设备9

• HPB: chinese delegation to us dollar purchase of
more high technology equipment

• HD-HPB: chinese delegation went to the united
states to buy more us high - tech equipment

Figure 4 demonstrates the topological orderings
in the two hierarchical structures. In addition to dis-
fluency and some grammar errors (e.g., a main verb
is missing), the basic HPB system also makes mis-
takes in reordering (e.g., 采购4 二十多亿5 美元6

translated as dollar purchase of more). The poor
translation quality, unsurprisingly, is caused by in-
appropriate topological ordering (Figure 4(a)). By
comparison, the topological ordering reflected in the
hierarchical structure of our HD-HPB model bet-
ter respects syntactic structure (Figure 4(b)). Let
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中国 
0 

派团 
1 

赴 
2 

美 
3 

采购 
4 

二十多亿 
5 

美元 
6 

高 
7 

科技 
8 

设备 
9 

X[4‐4]  X[6‐6] 

X[4‐6] 

X[3‐7] 

X[3‐8] 

X[2‐9] 

X[1‐9] 

X[0‐9] 

S[0‐9] 

(a). Topological orderings of phrases in Chiang’s HPB.  (b). Improved topological orderings of phrases in HD‐HPB.

1. S
[0‐9] → X[0‐9],  

                  X[0‐9] 
2. X[0‐9] → 中国[0‐0] X[1‐9],  
                   chinese X[1‐9] 
3. X[1‐9] → 派团[1‐1] X[2‐9],  
                  delegation X[2‐9] 
4. X[2‐9] → 赴[2‐2] X[3‐8] 设备[9‐9],  
                  to X[3‐8] equipment 
5. X[3‐8] → X[3‐7] 科技,  

X[3‐7] technology 
6. X[3‐7] → 美[3‐3] X[4‐6] 高[7‐7],  

us X[4‐6] high 
7. X[4‐6] → X[4‐4] 二十多亿[5‐5] X[6‐6], 

X[6‐6] X[4‐4] of more 
8. X[4‐4] → 采购[4‐4],  

purchase 
9. X[6‐6] → 美元[6‐6],  

dollar

1. VV[0‐9] → NN[0‐1] VV[2‐9],  
             X → X[0‐1] X[2‐9] 
2. NN[0‐1] → 中国[0‐0] NN[1‐1],  
              X → chinese X[1‐1]  
3. NN[1‐1] → 派团[1‐1],  
              X → delegation 
4. VV[2‐9] → 赴[2‐2] 美[3‐3] VV[4‐9],   
     X → went to the united states to X[4‐9] 
5. VV[4‐9] → VV‐M[4‐6] 高[7‐7] 科技[8‐8] NN[9‐9], 
            X → X[4‐6] high –tech X[9‐9]  
6. VV‐M[4‐6] → 采购[4‐4] M[5‐6], 
                  X → buy X[5‐6]  
7. M[5‐6] → CD[5‐5] M[6‐6],  
            X → X[5‐5] X[6‐6] 
8. CD[5‐5] → 二十多亿[5‐5],  
             X → more 
9. M[6‐6] → 美元[6‐6],  
            X → us 
10. NN[9‐9] → 设备[9‐9],  
             X → equipment 
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Figure 4: An example Chinese sentence and its two hierarchical structures. Note: subscript [i-j] represents spanning
from word i to word j on the source side.

us refer to the HD-HPB hierarchical structure on
the source side as translation parse tree and to the
treebank-based parser derived tree as syntactic parse
tree from which we obtain unlabeled dependency
structure. Examining the translation parse trees of
our HD-HPB model shows that phrases with 1/2/3/4
heads account for 64.9%/23.1%/8.8%/3.2%, respec-
tively. Compared to 37.9% of the phrases in the
translation parse trees of the HPB model, 43.2% of
the phrases of our HD-HPB model correspond to a
linguistically motivated constituent in the syntactic
parse tree with exactly the same text span. In sum,
therefore, instead of simply enforcing hard linguistic
constraints imposed by a full syntactic parse struc-
ture, our model opts for a successful mix of linguis-
tically motivated and combinatorial (matching sub-
phrases in HPB) constraints.

6 Conclusion

In this paper, we present a head-driven hierarchi-
cal phrase-based translation model, which adopts
head information (derived through unlabeled depen-
dency analysis) in the definition of non-terminals
to better differentiate among translation rules. In
addition, improved and better integrated reorder-
ing rules allow better reordering between consecu-
tive non-terminals through exploration of a larger
search space in the derivation. Our model main-
tains the strengths of Chiang’s HPB model while at
the same time it addresses the over-generation prob-
lem caused by using a uniform non-terminal symbol.

Experimental results on Chinese-English translation
across a wide range of training and test sets demon-
strate significant and consistent improvements of our
HD-HPB model over Chiang’s HPB model as well
as over a source side version of the SAMT-style
model.

Currently, we only consider head information in a
word sequence. In the future work, we will exploit
more syntactic and semantic information to system-
atically and automatically define the inventory of
non-terminals (in source and target). For example,
for a non-terminal symbol VV, we believe it will
benefit translation if we use fine-grained dependency
labels (subject, object etc.) used to link it to its gov-
erning head elsewhere in the translation rule.
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Abstract

We introduce the first fully automatic, fully seman-
tic frame based MT evaluation metric, MEANT,
that outperforms all other commonly used auto-
matic metrics in correlating with human judgment
on translation adequacy. Recent work on HMEANT,
which is a human metric, indicates that machine
translation can be better evaluated via semantic
frames than other evaluation paradigms, requiring
only minimal effort from monolingual humans to an-
notate and align semantic frames in the reference and
machine translations. We propose a surprisingly ef-
fective Occam’s razor automation of HMEANT that
combines standard shallow semantic parsing with
a simple maximum weighted bipartite matching al-
gorithm for aligning semantic frames. The match-
ing criterion is based on lexical similarity scoring
of the semantic role fillers through a simple con-
text vector model which can readily be trained us-
ing any publicly available large monolingual cor-
pus. Sentence level correlation analysis, following
standard NIST MetricsMATR protocol, shows that
this fully automated version of HMEANT achieves
significantly higher Kendall correlation with hu-
man adequacy judgments than BLEU, NIST, ME-
TEOR, PER, CDER, WER, or TER. Furthermore,
we demonstrate that performing the semantic frame
alignment automatically actually tends to be just as
good as performing it manually. Despite its high
performance, fully automated MEANT is still able
to preserve HMEANT’s virtues of simplicity, repre-
sentational transparency, and inexpensiveness.

1 Introduction
We introduce the first fully automatic semantic-frame-
based MT evaluation metric capable of outperforming
all other commonly used automatic metrics like BLEU,
NIST, METEOR, PER, CDER, WER, and TER for eval-
uating translation adequacy. This work, MEANT, can be
seen as a fully automated version of HMEANT, which is
a human metric, introduced by Lo and Wu (2011b). De-

spite its high performance, MEANT is still able to pre-
serve HMEANT’s virtues of Occam’s razor simplicity,
representational transparency, and inexpensiveness.

For the past decade, MT evaluation has relied heavily
on inexpensive automatic metrics such as BLEU (Pap-
ineni et al., 2002), NIST (Doddington, 2002), METEOR
(Banerjee and Lavie, 2005), PER (Tillmann et al., 1997),
CDER (Leusch et al., 2006), WER (Nießen et al., 2000),
and TER (Snover et al., 2006). In large part, this is be-
cause automatic metrics significantly shorten the evalua-
tion cycle by providing a fast, easy and cheap quantita-
tive evaluation which can be effectively incorporated into
modern SMT training methods.

Despite the fact that HMEANT, a human metric re-
cently proposed by Lo and Wu (2011b,c,d), was shown
to reflect translation adequacy more accurately than all
of these automatic metrics, it is unfortunately infeasible
to incorporate the HMEANT metrics directly into SMT
training methods, due to the non-automatic processes of
(1) semantic parsing and (2) aligning semantic frames.
In this paper we introduce an automatic metric in which
both the semantic parsing and the alignment of semantic
frames are fully automated. Our aim is to show that even
with full automation, this new metric still outperforms all
the previous automatic metrics mentioned, thus provid-
ing a foundation for future incorporation into the training
of SMT to drive system improvements in providing more
adequate translation output.

N-gram oriented automatic MT evaluation metrics like
BLEU perform well at capturing translation fluency, and
ranking overall systems with respect to each other when
their scores are averaged over entire documents or cor-
pora. However, they do not fare so well in ranking trans-
lations of individual sentences. As MT systems improve,
the n-gram based evaluation metrics have begun to show
their limits. State-of-the-art MT systems are often able to
output translations containing roughly the correct words,
while failing to convey important aspects of the meaning
of the input sentence. Cases where BLEU strongly dis-
agrees with human judgment of translation quality were
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reported in large scale MT evaluation tasks by Callison-
Burch et al. (2006) and Koehn and Monz (2006).

Motivated by the goal of addressing the weaknesses
of n-gram oriented automatic MT evaluation metrics at
evaluating translation adequacy, the HMEANT metric
assesses translation utility by matching the basic event
structure—“who did what to whom, when, where and
why” (Pradhan et al., 2004)—representing the central
meaning conveyed by sentences. As mentioned above,
however, HMEANT requires humans to manually anno-
tate semantic frames in the reference and machine trans-
lations, and then to align the semantic frames—making
it difficult to incorporate HMEANT as an objective func-
tion in the MT system training, evaluating, and optimiz-
ing cycle.

We argue in this paper that both the human seman-
tic parsing and the semantic frame alignment tasks per-
formed within HMEANT can be successfully automated
to produce a state-of-the-art automatic metric. Moreover,
we show that the spirit of Occam’s razor can be preserved
even for the semantic frame alignment, by demonstrating
the effectiveness of a simple maximum weighted bipar-
tite matching algorithm based on the lexical similarity be-
tween semantic frames. In addition, we show empirically
that performing this semantic frame alignment automati-
cally tends to be just as good as performing it manually.
Our results indicate that MEANT, the fully automatic
version of HMEANT, achieves levels of correlation with
human adequacy judgment (in our experiments, approx-
imately 0.37) which significantly outperforms the com-
monly used automatic metrics BLEU, NIST, METEOR,
PER, CDER, WER, and TER (in our experiments, rang-
ing between 0.20 and 0.29).

2 Related Work

2.1 Automatic lexical similarity based metrics

BLEU (Papineni et al., 2002) remains the most widely
used MT evaluation metric despite the fact that a num-
ber of large scale meta-evaluations (Callison-Burch et
al., 2006; Koehn and Monz, 2006) report cases where it
strongly disagrees with human judgments of translation
accuracy. Other lexical similarity based automatic MT
evaluation metrics, like NIST (Doddington, 2002), ME-
TEOR (Banerjee and Lavie, 2005), PER (Tillmann et al.,
1997), CDER (Leusch et al., 2006), WER (Nießen et al.,
2000), and TER (Snover et al., 2006), also perform well
in capturing translation fluency, but share the same prob-
lem that although evaluation with these metrics can be
done very quickly at low cost, their underlying assump-
tion�that a �good� translation is one that shares the
same lexical choices as the reference translation�is not
justified semantically. Lexical similarity does not ade-
quately reflect similarity in meaning.

Generating a translation that contains roughly the cor-
rect words may be necessary—but is far from sufficient—
to preserve the essence of the meaning. We argue that a
translation metric that reflects meaning similarity needs
to be based on similarity of semantic structure, and not
merely flat lexical similarity.

2.2 HMEANT (human SRL based metric)
As mentioned above, despite the fact that the semi-
automatic HMEANT metric recently proposed by Lo and
Wu (2011b,c,d) shows a higher correlation with human
adequacy judgments than all commonly used automatic
MT evaluation metrics, as with other human metrics like
HTER (Snover et al., 2006), it is unfortunately infeasible
to incorporate the HMEANT metrics directly into SMT
training methods. HMEANT requires non-automatic
manual steps of (1) semantic parsing and (2) aligning
semantic frames. Monolingual (or bilingual) annotators
must label the semantic roles in both the reference and
machine translations, and then to align the semantic pred-
icates and role fillers in the MT output to the reference
translations. These annotations allow HMEANT to then
look at the aligned role fillers, and aggregate the trans-
lation accuracy for each role. In the spirit of Occam’s
razor and representational transparency, the HMEANT
score is defined simply in terms of a weighted f-score
over these aligned predicates and role fillers. More pre-
cisely, HMEANT is defined as follows:

1. Human annotators annotate the shallow semantic
structures of both the references and MT output.

2. Human judges align the semantic frames between
the references and MT output by judging the cor-
rectness of the predicates.

3. For each pair of aligned semantic frames,

(a) Human judges determine the translation cor-
rectness of the semantic role fillers.

(b) Human judges align the semantic role fillers
between the reference and MT output accord-
ing to the correctness of the semantic role
fillers.

4. Compute the weighted f-score over the matching
role labels of these aligned predicates and role
fillers.

mi ≡ #tokens filled in aligned frame i of MT
total #tokens in MT

ri ≡ #tokens filled in aligned frame i of REF
total #tokens in REF

Mi,j ≡ total # ARG j of aligned frame i in MT

Ri,j ≡ total # ARG j of aligned frame i in REF

Ci,j ≡ # correct ARG j of aligned frame i in MT

Pi,j ≡ # partially correct ARG j of aligned frame i in MT
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Figure 1: Examples of human semantic frame annotation. Semantic parses of the Chinese input and the English reference trans-
lation are from the Propbank gold standard. The MT output is semantically parsed by monolingual lay annotators according to the
HMEANT guidelines. There are no semantic frames for MT3 because there is no predicate.

precision =

∑
i mi

wpred+
∑

j wj(Ci,j+wpartialPi,j)

wpred+
∑

j wjMi,j∑
i mi

recall =

∑
i ri

wpred+
∑

j wj(Ci,j+wpartialPi,j)

wpred+
∑

j wjRi,j∑
i ri

where mi and ri are the weights for frame, i, in the
MT/REF respectively. These weights estimate the degree
of contribution of each frame to the overall meaning of
the sentence. Mi,j and Ri,j are the total counts of argu-
ment of type j in frame i in the MT and REF respec-
tively. Ci,j and Pi,j are the count of the correctly and
partial correctly translated argument of type j in frame i
in the MT output. Figure 1 shows examples of human se-
mantic frame annotation on reference and machine trans-
lations as used in HMEANT. Table 1 shows examples of
human judges’ decisions for semantic frame alignment
and translation correctness for each semantic roles, for
the “MT2” output from Figure 1.

Unlike HMEANT, MEANT is fully automatic; but
nevertheless, it adheres to HMEANT’s principles of Oc-
cam’s razor simplicity and representational transparency.
These properties crucially facilitate error analysis and
credit/blame assignment that are invaluable for MT sys-
tem modeling.

Furthermore, being fully automatic, MEANT is even
less expensive than HMEANT, which was already shown
by Lo and Wu (2011b,c,d) to be significantly less ex-
pensive than HTER. This makes MEANT a much bet-
ter candidate than HMEANT for future incorporation into
the automatic training of SMT systems to drive improve-
ments in translation adequacy.

2.3 Semantic role labels as features in aggregate
metrics

Giménez and Màrquez (2007, 2008) introduced ULC, an
automatic MT evaluation metric that aggregates many
types of features, including several shallow semantic sim-
ilarity features. However, unlike Lo and Wu (2011b),
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Table 1: Example of SRL annotation for the MT2 output from figure 1 along with the human judgements of translation correctness
for each argument. *Notice that although the decision made by the human judge for “in mainland China” in the reference translation
and “the mainland of China” in MT2 is “correct”, nevertheless the HMEANT computation will not count this as a match since their
role labels do not match.

REF roles REF MT2 roles MT2 decision
PRED ceased Action stop match
ARG0 their sale — — incorrect
ARGM-LOC in mainland China Agent the mainland of China correct*
ARGM-TMP for almost two months Temporal nearly two months correct
— — Experiencer SK - 2 products incorrect
PRED resumed Action resume match
ARG0 sales of complete range of SK

- II products
Experiencer in the mainland of China to

stop selling nearly two months
of SK - 2 products sales

incorrect

ARGM-TMP Until after , their sales had
ceased in mainland China for
almost two months

Temporal So far partial

ARGM-TMP now — — incorrect

the ULC representation is based on flat semantic role
label features that do not capture the structural rela-
tions in semantic frames, i.e., the predicate-argument re-
lations. Also unlike HMEANT, which weights each se-
mantic role type according to its empirically determined
relative importance to the adequate preservation of mean-
ing, ULC uses uniform weights. Although the automatic
ULC metric shows an improved correlation with human
judgment of translation quality (Callison-Burch et al.,
2007; Giménez and Màrquez, 2007; Callison-Burch et
al., 2008; Giménez and Màrquez, 2008), it is not com-
monly used in large-scale MT evaluation campaigns, per-
haps due to its high time cost and/or the difficulty of in-
terpreting its score because of its highly complex combi-
nation of many heterogeneous types of features.

Like system combination approaches, ULC is a vastly
more complex aggregate metric compared to widely used
metrics like BLEU. We believe it is important for auto-
matic semantic MT evaluation metrics to provide rep-
resentational transparency via simple, clear, and trans-
parent scoring schemes that are (a) easily human read-
able to support error analysis, and (b) potentially directly
usable for automatic credit/blame assignment in tuning
tree-structured SMT systems.

3 MEANT: A fully automatic semantic
MT evaluation metric

Like HMEANT, our guiding principle is that a good
translation is one that is useful, in the sense that hu-
man readers may successfully understand at least the ba-
sic event structure�who did what to whom, when, where
and why (Pradhan et al., 2004)�representing the central
meaning of the source utterances. Whereas HMEANT

measures this using a f-score of correctly translated
semantic roles in MT output that are annotated and
compared by monolingual human annotators, MEANT
automates HMEANT as follows (the differences from
HMEANT are italicized):

1. Apply an automatic shallow semantic parser on both
the references and MT output.

2. Apply maximum weighted bipartite matching algo-
rithm to align the semantic frames between the ref-
erences and MT output by the lexical similarity of
the predicates.

3. For each pair of aligned semantic frames,

(a) Lexical similarity scores determine the similar-
ity of the semantic role fillers.

(b) Apply maximum weighted bipartite matching
algorithm to align the semantic role fillers be-
tween the reference and MT output according
to their lexical similarity.

4. Compute the weighted f-score over the matching
role labels of these aligned predicates and role
fillers.

3.1 Automatic semantic parsing

To automate the process of human semantic role label-
ing, we apply an automatic shallow semantic parser on
both the reference and MT output that takes the raw trans-
lation as input and outputs the corresponding predicate-
argument structure. We choose to semantically parse the
translation independently, instead of inducing the parses
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Figure 2: Examples of automatic shallow semantic parses. The Chinese input is parsed by a Chinese automatic shallow semantic
parser. The English reference and machine translations are parsed by an English automatic shallow semantic parser. There are no
semantic frames for mt3 since there is no predicate.

from the input, because it captures the raw meaning con-
veyed in the translation rather than predicting the mean-
ing conveyed in the translation from the input. Figure 2
shows examples of automatic shallow semantic parses on
both reference and machine translations.

3.2 Automatic semantic frame alignment

After reconstructing the shallow semantic parse, the man-
ual semantic frame alignment process is automated by
applying the maximum weighted bipartite matching algo-
rithm where the weights of the edges represent the lexical
similarity of the predicates. A wide range of lexical sim-
ilarity measures are available to us, including for exam-
ple BLEU, METEOR, cosine similarity based on context
vector models (Dagan, 2000), and so forth. In Section
4, we will show the performance of the fully automatic
semantic MT evaluation metric, MEANT ,couple with
different lexical similarity metrics and other commonly
used automatic MT evaluation metrics. In Section 6, we
will discuss aligning the semantic frames according to all
semantic role fillers, instead of the predicates only.

Then, for each pair of aligned semantic frames, we es-
timate the similarity of the semantic role fillers by sum-
ming all the lexical similarity of all the pairwise combi-
nation of tokens between the references and MT output.
After obtaining the similarity of the semantic role fillers,
we again apply the maximum weighted bipartite match-
ing algorithm to align the semantic role fillers between

the references and MT output. Table 2 shows examples
of the human judges’ decisions on semantic frame align-
ment and translation correctness for each semantic role in
the “MT2” output from Figure 2.

3.3 Scoring the semantic similarity
After aligning the semantic frames automatically, the
computation of the MEANT score is largely the same as
stated in Lo and Wu (2011d), except that we now replace
the counts of correctly and partially correctly translated
semantic role fillers by the similarity scores of the predi-
cates and arguments between the references and MT out-
put.

mi ≡ #tokens filled in aligned frame i of MT
total #tokens in MT

ri ≡ #tokens filled in aligned frame i of REF
total #tokens in REF

Mi,j ≡ total # ARG j of aligned frame i in MT

Ri,j ≡ total # ARG j of aligned frame i in REF

Si,pred ≡ sim. of pred of REF and MT in aligned frame i

Si,j ≡ sim. of ARG j of REF and MT in aligned frame i

precision =

∑
i mi

wpredSi,pred+
∑

j wjSi,j

wpred+
∑

j wjMi,j∑
i mi

recall =

∑
i ri

wpredSi,pred+
∑

j wjSi,j

wpred+
∑

j wjRi,j∑
i ri
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Table 2: Automatic semantic frame alignment of the MT2 output from figure 2, along with the automatic lexical similarity scoring
on translation correctness for each argument.

REF roles REF MT2 roles MT2 similarity
PRED ceased PRED stop 0.0377
ARG0 their sales — — —
ARGM-LOC in mainland China — — —
ARGM-TMP for almost two months — — —
— — PRED selling —
— — ARG1 nearly two months of SK —
PRED resumed PRED resumed 1.0
ARG1 sales of complete range of SK

- II products
ARG1 2 products sales 0.0836

ARGM-TMP now ARGM-TMP So far 0.0459

where mi, ri, Mi,j, Ri,j are defined the same as in
HMEANT, and Si,pred and Si,j are the lexical similarities
(BLEU, METEOR, cosine similarity based on a context
vector model, and so on, as discussed in the following
section) of the predicates and arguments of type j be-
tween the reference translations and the MT output.

4 MEANT outperforms all automatic
metrics

We will first show that the fully automatic semantic MT
evaluation metric, MEANT, outperforms all the other
commonly used automatic metrics.

4.1 Experimental setup
For assessing lexical similarity, a wide range of lexi-
cal similarity scoring models are available. We describe
a representative subset of a wide range of experiments
we have performed using all the most typical and com-
monly used measures. On one hand, we report experi-
ments with integrating two commonly used MT evalua-
tion metrics, BLEU and METEOR, as the lexical simi-
larity. On the other hand, we also report experiments
on integrating two common similarity measures—cosine
similarity measure and min/max with mutual information
(Dagan, 2000)—that are based on context vector models,
and trained from the Gigaword corpus with window sizes
of 3 and 5.

The cosine similarity between two sequences of word
tokens, −→u and −→v , is defined as follows:

−→wx = context vector of word token x

wxi = attribute i of context vector −→wx

f(x, wxi) =
count(x, wxi)

count (wxi)

cosine(x, y) =
Σ
i
f(x, wxi)× f(y, wyi)√

Σ
i
f(x, wxi)

2
√

Σ
i
f(y, wyi)

2

cosine(−→u ,−→v ) = Σ
i
Σ
j
cosine(ui, vj)

Using the same definition of wxi, the min/max with
mutual information similarity between two sequences of
word tokens, −→u and −→v , is defined as follows:

P (wxi ∣ x) =
count(x, wxi)∑
i count(x, wxi)

P (wxi) =

∑
y count(y, wxi)∑

y

∑
j count(y, wxj)

MI(x, wxi) = log

(
P (wxi ∣ x)

P (wxi)

)

MinMax-MI(x, y) =
Σ
i

min (MI( x, wxi), MI(y, wyi ))

Σ
i

max (MI( x, wxi), MI(y, wyi ))

MinMax-MI(−→u ,−→v ) = Σ
i
Σ
j

MinMax-MI(ui, vj)

For our benchmark comparison, the evaluation data
for our experiments is the same two sets of sentences,
GALE-A and GALE-B that were used in Lo and Wu
(2011d), where GALE-A is used for estimating the
weight parameters of the metric by optimizing the cor-
relation with human adequacy judgment, and then the
learned weights are applied to testing on GALE-B.

For the automatic semantic role labeling, we used the
publicly available off-the-shelf shallow semantic parser,
ASSERT (Pradhan et al., 2004).

The correlation with human adequacy judgments on
sentence-level system ranking is assessed by the stan-
dard NIST MetricsMaTr procedure (Callison-Burch et
al., 2010) using Kendall correlation coefficients.
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Table 3: Sentence-level correlation with human adequacy judgment on GALE-A (training) and GALE-B (testing) comparing all
commonly used MT evaluation metrics against our proposed new fully automatic semantic frame based MT evaluation metric
integrated with various lexical similarity scores between semantic role fillers: (a) BLEU, (b) METEOR, (c) cosine similarity and
(d) MinMax with mutual information.

GALE-A (training) GALE-B (testing)
Human metrics
HMEANT 0.49 0.27
HTER 0.43 0.20
Automatic metrics
MEANT — —
- with MinMax-MI on context vector model of window size 3 0.37 0.19
- with MinMax-MI on context vector model of window size 5 0.37 0.17
- with Cosine on context vector model of window size 3 0.32 0.13
- with Cosine on context vector model of window size 5 0.30 0.08
- with METEOR 0.17 —
- with BLEU 0.00 —
METEOR 0.20 0.21
NIST 0.29 0.09
TER 0.20 0.10
BLEU 0.20 0.12
PER 0.20 0.07
WER 0.10 0.11
CDER 0.12 0.10

4.2 Results

Table 3 shows that MEANT significantly outperforms all
the other automatic MT evaluation metrics when inte-
grated with a simple similarity measure based on word
context vectors trained from a large monolingual corpus.
We can also see that using min/max with mutual infor-
mation is significantly better than using cosine similarity.
Furthermore, context vector models using a window size
of 3 appear to be as good or better than those using a
window size of 5.

Although the human metrics, HMEANT and HTER,
obviously remain superior, MEANT performs far better
than almost all other automatic metrics. The only excep-
tion is the GALE-B dataset, where METEOR performs
marginally better than MEANT and even HTER. Data
analysis shows that the marginally higher correlation of
METEOR on the GALE-B dataset is a statistical outlier;
it is quite rare for a lexically based automatic metric to
outperform even the human-driven HTER metric.

Interestingly and somewhat surprisingly, using the n-
gram based MT evaluation metrics BLEU and METEOR
as lexical similarity scores does not work well at all for
this purpose, even on the training data (thus obviating the
need to obtain results on the testing data). Analysis in-
dicates that the reason for this is that variation between
alternative paraphrasing of the role fillers makes the num-
ber of matching n-grams quite small, since there are many
synonyms and few exact consecutive n-gram matches.

Table 4: Sentence-level correlation with human adequacy judg-
ment on GALE-A (training) and GALE-B (testing) for aligning
sematnic frame automatically and manually.

Semantic frame alignment GALE-A GALE-B
Automatic 0.37 0.19
Manual 0.35 0.17

In the following sections, we turn to considering sev-
eral questions that naturally arise following these strong
results.

5 Don’t align semantic frames manually

One obvious question is whether the automatic alignment
of semantic frames degrades MEANT’s accuracy, and if
so, the extent to which it hurts.

5.1 Experimental setup

To test this question, we compare the best fully automatic
results of the previous section against a semi-automatic
variant of our proposed metric. In the semi-automatic
variant, the semantic parsing is still performed automati-
cally. However, the semantic frame alignment is instead
done manually by human annotators.

The rest of the experimental setup is the same as that
used in Section 4.
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5.2 Results
Table 4 shows that performing the alignment of semantic
frames automatically is as good—or even better than—
doing the alignment manually. We believe the success of
automatic semantic frame alignment reflects the high de-
gree of reliability of our chosen lexical similarity metric,
when the candidates for role fillers are restricted to the
fairly small set defined by the sentence pairs.

6 Look only at predicates when aligning
semantic frames

Given the positive results of the previous sections, it is
worth asking a deeper question: would it further improve
the correlation with human adequacy judgment of the
metric if the semantic frames were aligned not only by
matching predicates (as HMEANT did), but in addition
by trying to also maximize the match of the semantic role
fillers?

The reason to revisit this question is that even though
Lo and Wu (2011a) showed that in the case of HMEANT
it is effective for human annotators to align semantic
frames according to the predicates only, this could eas-
ily be due to the mental challenge for lay annotators to
compare and keep in mind all the semantic role fillers at
the same time. But in the case of a fully automatic metric,
on the other hand, it is easy for an algorithm to compute
the individual similarities between all the semantic role
fillers and consider the aggregate similarity when opti-
mizing the alignment of semantic frames.

Surprisingly, however, the results will show that even
in the automated case, this still does not help improve the
correlation with human adequacy judgments.

6.1 Experimental setup
To align semantic frames using all semantic roles, we
aggregate the lexical similarity of all the semantic role
fillers into a semantic frame similarity score. We exper-
iment on two variations of the aggregation function (1)
simple linear average of the lexical similarity over the
number of aligned semantic roles in the frames; or (2) the
inverse of the sum of the negative log of the role fillers
similarity.

The rest of the experimental setup is the same as that
used in Section 4.

6.2 Results
Table 5 shows that to align semantic frames, using only
the lexical similarity of the predicates between the frames
in the reference translations and the MT output (0.37
Kendall in GALE-A and 0.19 Kendall in GALE-B) is
more robust than either of the two natural ways of ag-
gregating the lexical similarity of the aligned semantic
role fillers. Aggregating by linear average yields a lower

Table 5: Sentence-level correlation with human adequacy judg-
ments on GALE-A (training set) and GALE-B (testing set) for
aligning semantic frames using predicate only vs. using all se-
mantic role fillers aggregated by (1) the linear average of the
lexical similarity vs. (2) the inverse of the sum of negative log
of the lexical similarity.

Frame alignment GALE-A GALE-B
Predicate only 0.37 0.19
Linear average 0.35 0.10
Inverse of sum of neg. log 0.30 0.17

0.35 Kendall in GALE-A and 0.10 Kendall in GALE-B.
Aggregating by the inverse of the sum of negative logs
yields a lower 0.30 Kendall in GALE-A and 0.17 Kendall
in GALE-B.

What might explain this perhaps surprising result? Our
conjecture is that aggregating the lexical similarities of
the semantic role fillers fails to help find better seman-
tic frame alignments because the lexical similarities are
aggregated with uniform weight across different types of
role fillers. Therefore, the aggregation ignores the fact
that different types of role types contribute to a widely
varying degree to the meaning of an entire semantic
frame—in reality, some role types are much more impor-
tant than others. However, the complexity of the met-
ric would be greatly increased if we added weights for
each semantic roles type for semantic frame alignment
process, and this would not be likely to be worthwhile
given that automatic alignment is already performing as
well as human alignment of semantic frames.

7 Don’t word align semantic role fillers
Another question that naturally arises from the positive
results above is: when aligning the semantic frames,
would word-aligning the tokens within role fillers help?
Specifically, if we had word alignments for every candi-
date pair of role filler strings, we could sum the lexical
similarities only between the aligned tokens—instead of
what we did above, which was to sum the lexical similar-
ities of all pairwise combinations of tokens.

However, experimental results will show that, surpris-
ingly, to judge the similarity of semantic role fillers,
summing the lexical similarities over only word-aligned
tokens—instead of all pairwise combinations of tokens—
does not help to improve the correlation of the semantic
MT evaluation with human adequacy judgment.

7.1 Experimental setup
To avoid the danger of aligning a token in one segment
to excessive numbers of tokens in the other segment,
we adopt a variant of competitive linking by Melamed
(1996). Competitive linking is a greedy best-first word
alignment algorithm.
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Table 6: Sentence-level correlation with human adequacy judg-
ments on GALE-A (training set) and GALE-B (testing set) for
judging semantic role fillers similarity using pairwise tokens vs.
only aligned tokens.

Semantic role filler similarity GALE-A GALE-B
All pairwise tokens 0.37 0.19
Only aligned tokens 0.36 0.17

The rest of the experimental setup is the same as that
used in Section 4.

7.2 Results

Table 6 shows that, surprisingly, judging semantic role
filler similarity using only the aligned tokens (selected
by competitive linking word alignment algorithm) does
not help the correlation with human adequacy judgment.
This is surprising as, intuitively, using only the aligned
tokens should avoid the introduction of noise in judg-
ing the similarity between semantic role fillers because
it avoids adding in similarities for words within semantic
role fillers whose meanings are not close to each other.

How might this outcome be explained? We conjecture
that the word alignments over-constrain the calculation
of segment similarities. The individual lexical similari-
ties are already weighted fairly accurately, so the lexical
similarities between words that do not correspond do not
hurt since they are already close to zero. On the other
hand, in cases where the word alignment is ambiguous,
it is better to aggregate over different possible pairwise
alignments—strictly obeying a hard word alignment un-
desirably forces dropping of some individual lexical sim-
ilarity scores that are actually relevant.

8 Conclusion

We have introduced a new fully automatic semantic MT
evaluation metric, MEANT, that is fundamentally based
on semantic frames, that is the first such metric to out-
perform all other commonly used automatic MT evalu-
ation metrics. Experimental results following the stan-
dard NIST MetricsMATR protocol indicate that our pro-
posed metric achieves levels of correlation with human
adequacy judgment (in our experiments, approximately
0.37) that significantly outperform BLEU, NIST, ME-
TEOR, PER, CDER, WER, and TER (in our experiments,
ranging between 0.20 and 0.29).

We have also shown in this paper that the spirit of Oc-
cam’s razor of HMEANT can be preserved even under
full automation by (1) replacing human semantic role an-
notation with automatic shallow semantic parsing and (2)
replacing human semantic frame alignment with a simple
maximum weighted bipartite matching algorithm based
on the lexical similarity between semantic frames. Under

analysis, we have further shown empirically that perform-
ing this semantic frame alignment automatically tends to
be just as good as performing it manually. Furthermore,
we have shown surprisingly that (1) for aligning seman-
tic frames, using only the similarity of predicates is more
accurate than also taking into account the similarity of se-
mantic role fillers, and (2) to judge similarity between se-
mantic role fillers, aggregating similarity of all pairwise
combination of word tokens is more accurate than con-
sidering only the similarity of the tokens that obey word
alignments.

Papineni et al. (2002) stated in their conclusion that
“We believe that BLEU will accelerate the MT R&D cy-
cle by allowing researchers to rapidly home in on effec-
tive modeling ideas.” since fully automatic metrics allow
inexpensive training and tuning of SMT systems. Devel-
opments in the past decade have more than borne witness
to this statement. However, SMT has progressed to the
stage where simple metrics like BLEU are no longer ca-
pable of driving progress toward preservation of meaning
with respect to proper event structure. We believe that
MEANT that rapidly and accurately reflects the transla-
tion adequacy of MT output by directly assessing who did
what to whom, when, where and why is needed to bring
MT R&D to a new level of improvement in generating
more meaningful MT output.
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Abstract

We introduce a taxonomy of factored phrase-
based translation scenarios and conduct a
range of experiments in this taxonomy. We
point out several common pitfalls when de-
signing factored setups. The paper also de-
scribes our WMT12 submissions CU-BOJAR
and CU-POOR-COMB.

1 Introduction

Koehn and Hoang (2007) introduced “factors” to
phrase-based MT to explicitly capture arbitrary fea-
tures in the phrase-based model. In essence, input
and output tokens are no longer atomic units but
rather vectors of atomic values encoding e.g. the lex-
ical and morphological information separately. Fac-
tored translation has been successfully applied to
many language pairs and with diverse types of infor-
mation encoded in the additional factors, i.a. (Bojar,
2007; Avramidis and Koehn, 2008; Stymne, 2008;
Badr et al., 2008; Ramanathan et al., 2009; Koehn et
al., 2010; Yeniterzi and Oflazer, 2010). On the other
hand, it happens quite frequently, that the factored
setup causes a loss compared to the phrase-based
baseline. The underlying reason is the complexity of
the search space which gets boosted when the model
explicitly includes detailed information, see e.g. Bo-
jar and Kos (2010) or Toutanova et al. (2008).

∗ This work was supported by the project EuroMatrixPlus
(FP7-ICT-2007-3-231720 of the EU and 7E09003+7E11051 of
the Czech Republic) and the Czech Science Foundation grants
P406/11/1499 and P406/10/P259. We are grateful for review-
ers’ comments but we have to obey the 6 page limit. Thanks
also to Aleš Tamchyna for supplementary material on MERT.

Number of Number of
Translation Independent Structure

Steps Searches of Searches Nickname
One One – Direct

Several
One – Single-Step

Several Serial Two-Step
Complex Complex

Figure 1: A taxonomy of factored phrase-based models.

In this paper, we first provide a taxonomy of
(phrase-based) translation setups and then we exam-
ine a range of sample configurations in this taxon-
omy. We don’t state universal rules, because the ap-
plicability of each of the setups depends very much
on the particular language pair, text domain and
amount of data available, but we hope to draw at-
tention to relevant design decisions.

The paper also serves as the description of our
WMT12 submissions CU-BOJAR and CU-POOR-
COMB between English and Czech.

2 A Taxonomy of Factored P-B Models

Figure 1 suggests a taxonomy of various Moses se-
tups. Following the definitions of Koehn and Hoang
(2007), a search consists of several translation and
generation steps: translation steps map source fac-
tors to target factors and generation steps produce
target factors from other target factors.

The taxonomy is vaguely linked to the types of
problems that can be expected with a given config-
uration. Direct translation is likely to suffer from
out-of-vocabulary issues (due to insufficient gener-
alization) on either side. Single-step scenarios have
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a very high risk of combinatorial explosion of trans-
lation options (think cartesian product of all target
side factors) and/or of spurious ambiguity (several
derivations leading to the same output). Such added
ambiguity can lead to n-best lists with way fewer
unique items than the given n, which in turn ren-
ders MERT unstable, see also Bojar and Tamchyna
(2011). Serially connected setups (two as our Two-
Step or more) can lose relevant candidates between
the searches, unless some ambiguous representation
like lattices is passed between the steps.

An independent axis on which Moses setups can
be organized consists of the number and function of
factors on the source and the target side.

We use a very succint notation for the setups ex-
cept the “complex” one: tX-Y denotes a translation
step between the factors X in the source language
and Y in the target language. Generation steps are
denoted with gY-Z, where both Y and Z are target-
side factors. Individual mapping steps are combined
with a plus, while individual source or target factors
are combined with an “a”.

As a simple example, tF-F denotes the direct
translation from source form (F ) to the target form.
A linguistically motivated scenario with one search
can be written as tL-L+tT-T+gLaT-F : translate (1)
the lemma (L) to lemma, (2) the morphological tag
(T) to tag independently and (3) finally generate the
target form from the lemma and the tag.

We use two more operators: “:” delimits al-
ternative decoding paths (Birch et al., 2007) used
within one search and “=” delimits two independent
searches. A plausible setup is e.g. tF-LaT=tLaT-
F:tL-F motivated as follows: the source word form
is translated to the lemma and tag in the target lan-
guage. Then a second search (whose translation ta-
bles can be trained on larger monolingual data) con-
sists of two alternative decoding paths: either the
pair of L and T is translated into the target form, or
as a fallback, the tag is disregarded and the target
form is guessed only from the lemma (and the con-
text as scored by the language model). The example
also illustrated the priorities of the operators.

3 Common Settings

Throughout the experiments, we use the Moses
toolkit (Koehn et al., 2007) and GIZA++ (Och

Dataset Sents (cs/en) Toks (cs/en) Source
Small 197k parallel 4.2M/4.8M CzEng 1.0 news
Large 14.8M parallel 205M/236M CzEng 1.0 all
Mono 18M/50M 317M/1.265G WMT12 mono

Table 1: Summary of training data.

Decoding Path Language Models BLEU
tF-FaLaT form + lemma + tag 13.05±0.44
tF-FaT form + tag 13.01±0.44
tF-FaLaT form + tag 12.99±0.44
tF-F (baseline) form 12.42±0.44
tF-FaT form 12.19±0.44
tF-FaLaT form 12.08±0.45

Table 2: Direct en→cs translation (a single search with
one translation step only).

and Ney, 2000). The texts were processed us-
ing the Treex platform (Popel and Žabokrtský,
2010)1, which included lemmatization and tagging
by Morce (Spoustová et al., 2007). After the tag-
ging, we tokenized further so words like “23-year”
or “Aktualne.cz” became three tokens.

Our training data is summarized in Table 1.2

In most experiments reported here, we use the
Small dataset only. The language model (LM) for
these experiments is a 5-gram one based on the
target-side of Small only.

Our WMT12 submissions are based on the Large
and Mono data. The language model for the large
experiments uses 6-grams of forms and optionally
8-grams of morphological tags. As in previous
years, the language models are interpolated (to-
wards the best cross entropy on WMT08 dataset)
from domain-specific LMs, e.g. czeng-news, czeng-
techdoc, wmtmono-2011, wmtmono-2012.

Except where stated otherwise, we tune on the of-
ficial WMT10 test set and report BLEU (Papineni et
al., 2002) scores on the WMT11 test set.

4 Direct Setups

Table 2 lists our experiments with direct translation,
various factors and language models in our notation.

1http://ufal.mff.cuni.cz/treex/
2We did not include the parallel en-cs data made available

by the WMT12 organizers. This probably explains our loss
compared to UEDIN but allows a direct comparison with CU
TECTOMT, a deep syntactic MT based on the same data.
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Decoding Paths LMs Avg. BLEU Eff. Nbl. Size
tL-L+tT-T+gLaT-F:tF-FaLaT F + L + T 13.31±0.06 12.24±1.33
tL-L+tT-T+gLaT-F F + L + T 13.30±0.05 40.33±3.82
tL-L+tT-T+gLaT-F F + T 13.17±0.01 39.91±2.58
tL-L+tT-T+gLaT-F:tF-FaLaT, 200-best-list F + L + T 13.15±0.24 20.47±5.63
tF-FaLaT F + L + T 13.13±0.06 34.28±3.08
tL-L+tT-T+gLaT-F:tF-FaLaT L + T 13.09±0.06 16.65±1.07
tF-FaT F + T 13.08±0.05 39.67±2.21
tL-L+tT-T+gLaT-F:tF-FaT F + T 13.01±0.43 14.87±5.04
tF-F (baseline) F 12.38±0.03 43.13±0.48
tL-L+tT-T+gLaT-F:tF-F F 12.30±0.03 17.83±3.27

Table 3: Results of three MERT runs of several single-step configurations.

Explicit modelling of target-side morphology im-
proves translation quality, compare tF-FaLaT with
the baseline tF-F. However, two results document
that if some detailed information is distinguished in
the output, it introduces target ambiguity and leads
to a loss in BLEU, unless the detailed information is
actually used in the language model: (1) tF-FaLaT
with LM on forms is worse than the baseline tF-F
but tF-FaLaT with all the three language models is
better, (2) tF-FaLaT with two LMs (forms and tags)
is negligibly worse than tF-FaT with the same lan-
guage models.

5 Single-Step Experiments

Single-step scenarios consist of more than one trans-
lation steps within a single search. We do not distin-
guish whether all the translation steps belong to the
same decoding path or to alternative decoding paths.

Table 3 lists several single-step configurations
(and three direct translations for a compari-
son). The single-step configurations always include
the linguistically-motivated tL-L+tT-T+gLaT-F with
varying language models and optionally with an al-
ternative decoding path to serve as the fallback.

Aware of the low stability of MERT (Clark et al.,
2011), we run MERT three times and report the av-
erage BLEU score including the standard deviation.

The last column in Table 3 lists the average num-
ber of distinct candidates per sentence in the n-
best lists during MERT, dubbed “effective n-best list
size”. Unless stated otherwise, we used 100-best
lists. We see that due to spurious ambiguity, e.g.
various segmentations of the input into phrases, the
effective size does not reach even a half of the limit.

We make three observations here:

(1) In this small data setting with a very morpho-
logically rich language, the complex setup tL-L+tT-
T+gLaT-F does not even need the alternative decod-
ing path tF-F. Ramanathan et al. (2009) report gains
in English-to-Hindi translation and also probably do
not use alternative decoding paths.

(2) Reducing the range of language models used
leads to worse scores, which is in line with the ob-
servation made with direct setups. We are surprised
by the relative importance of the lemma-based LM.

(3) Alternative decoding paths significantly re-
duce effective n-best list size to just 12–18 unique
candidates per sentence. However, we don’t see
an obvious relation to the stability of MERT: the
standard deviations of BLEU average are very
similar except for two outliers: 13.15±0.24 and
13.01±0.43. One of the outliers, 13.15, is actually
a repeated run of the 13.31 with n-best-list size set
to 200. Here we see a slight increase in the effec-
tive size (20 instead of 12) but also a slight loss
in BLEU. We repeated the 13.31 experiment also
with n ∈ {300, 400, 500, 600}, three MERT runs for
each n. All the runs reached BLEU of about 13.30
except for one (n = 600) where the score dropped
to 11.50. The low result was obtained when MERT
ended at 25 iterations, the standard limit. On the
other hand, several successful runs also exhausted
the limit.

Figure 2 plots the BLEU scores in the 25 itera-
tions of the underperforming run with n = 600. The
MERT implementation in the Moses toolkit reports
at each iteration what we call “predicted BLEU”,
i.e. the BLEU of translations selected by the current
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Figure 2: Predicted and real devset BLEU scores.

weight settings from the (accumulated) n-best list.
We plot this predicted BLEU twice: once on the y2
axis alone and for the second time on the primary
y axis together with the real BLEU, i.e. the BLEU
of the dev set when Moses is actually run with the
weight settings. The real BLEU drops several times,
indicating that the prediction was misleading. Sim-
ilar drops were observed in all runs. With bad luck
as here, the iteration limit is reached when the opti-
mization is still recovering from such a drop.

To avoid such a pitfall, one should check the real
BLEU and continue or simply rerun the optimization
if the iteration limit was reached.

6 Two-Step Experiments

The linguistically motivated setups used in the pre-
vious sections are prohibitively expensive for large
data, see also Bojar et al. (2009). A number of
researchers have thus tried diving the complexity
of search into two independent phases: (1) transla-
tion and reordering, and (2) conjugation and declina-
tion. The most promising results were obtained with
the second step predicting individual morphological
features using a specialized tool (Toutanova et al.,
2008; Fraser et al., 2012). Here, we simply use one
more Moses search as Bojar and Kos (2010).

In the first step, source English gets translated to
a simplified Czech and in the second step, the sim-
plified Czech gets fully inflected.

6.1 Factors in Two-Step Setups

Two-step setups can use factors in the source, middle
or the target language. We experiment with factors
only in the middle language (affecting both the first
and the second search) and use only the form in both

source and target sides.
In the middle language, we experiment with one

or two factors. For presentation purposes, we always
speak about two factors: “LOF” (“lemma or form”,
i.e. a representation of the lexical information) and
“MOT” (“modified tag”, i.e. representing the mor-
phological properties). In the single-factor experi-
ments the LOF and MOT are simply concatenated
into a token in the shape LOF+MOT.

Figure 3 illustrates the range of LOFs and MOTs
we experimented with. LOF0 and MOT0 are identi-
cal to the standard Czech lemma and morphological
tag as used e.g. in the Prague Dependency Treebank
(Hajič et al., 2006).

LOF1 and MOT1 together make what Bojar and
Kos (2010) call “pluslemma”. MOT1 is less com-
plex than the full tag by disregarding morphological
attributes not generally overt in the English source
side. For most words, LOF1 is simply the lemma,
but for frequent words, the full form is used. This
includes punctuation, pronouns and the verbs “být”
(to be) and “mı́t” (to have).

MOT2 uses a more coarse grained part of speech
(POS) than MOT1. Depending on the POS, dif-
ferent attributes are included: gender and number
for nouns, pronouns, adjectives and verbs; case for
nouns, pronouns, adjectives and prepositions; nega-
tion for nouns and adjectives; tense and voice for
verbs and finally grade for adjectives. The remain-
ing grammatical categories are encoded using POS,
number, grade and negation.

6.2 Decoding Paths in Two-Step Setups
Each of the searches in the two-step setup can be
as complex as the various single-step configurations.
We test just one decoding path for the one or two
factors in the middle language.

All experiments with one middle factor (i.e. “+”)
follow this config: tF-LOF+MOT = tLOF+MOT-F,
i.e. two direct translations where the first one pro-
duces the concatenated LOF and MOT tokens and
the second one consumes them. The first step uses a
5-gram LOF+MOT language model and the second
step uses a 5-gram LM based on forms.

This setup has the capacity to improve transla-
tion quality by producing forms of words never seen
aligned with a given source form. For example the
English word green would be needed in the parallel
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Word Form LOF0 LOF1 MOT0 MOT1 MOT2 Gloss
lidé člověk člověk NNMP1-----A---1 NPA- NMP1-A people
by být by Vc------------- c--- V----- would
neočekávali očekávat očekávat VpMP---XR-NA--- pPN- VMP-RA expect

Figure 3: Examples of LOFs and MOTs used in our experiments.

Middle Factors 1 2
+ |

LOF0 +/|MOT0 11.11±0.48 12.42±0.48
LOF1 +/|MOT1 12.10±0.48 11.85±0.42
LOF1 +/|MOT2 11.87±0.51 12.47±0.51

Table 4: Two-step experiments.

data with all the morphological variants of the Czech
word zelený. Adding the middle step with appro-
priately reduced morphological information so that
only features overt in the source are represented in
the middle tokens (e.g. negation and number but not
the case) allows the model to find the necessary form
anywhere in the target-side data only:

green→ zelený+NSA-→
{ zeleného (genitive)

zelenému (dative)
. . .

The experiments with two middle factors (i.e. “|”)
use this path: tF-LOFaMOT = tLOFaMOT-F:LOF-
F. The first step is identical, except that now we use
two separate LMs, one for LOFs and one for MOTs.
The second step has two alternative decoding paths:
(1) as before, producing the form from both the LOF
and the MOT, and (2) ignoring the morphological
features from the source altogether and using just
target-side context to choose an appropriate form of
the word. This setup is capable of sacrificing ade-
quacy for a more fluent output.

6.3 Experiments with Two-Step Setups

Table 4 reports the BLEU scores when changing the
number of factors (“+” vs. “|”) in the middle lan-
guage and the type of the LOF and MOT.

We see an interesting difference between MOT1

and MOT0 or 2. The more fine-grained MOT0 or 2
work better in the two-factor “|” setup that allows
to disregard the MOT, while MOT1 works better in
the direct translation “+”.

Overall, we see no improvement over the tF-F

baseline (BLEU of 12.42) and this is mainly due to
to the fact that we used Small data in both steps.

7 A Complex Moses Setup

Obviously, many setups fall under the “complex”
category of our taxonomy, including also some sys-
tem combination approaches. We tried to combine
three Moses systems: (1) CU-BOJAR as described
below, (2) same setup like CU-BOJAR but optimized
towards 1-TER (Snover et al., 2006), and (3) a large-
data two-step setup.3 The system combination is
performed using a fourth Moses search that gets a
lattice (Dyer et al., 2008) of individual systems’ out-
puts, performs an identity translation and scores the
candidates by language models and other features.
The lattice is created from the individual system out-
puts in the ROVER style (Matusov et al., 2008) uti-
lizing the source-to-hypothesis word alignments as
produced by the individual systems. We use our sim-
ple implementation for constructing the confusion
networks and converting them to the lattices. The
“combination Moses” was tuned on the WMT11 test
set towards BLEU. The resulting system is called
CU-POOR-COMB, because we felt it underperformed
the individual systems not only in BLEU but also in
an informal subjective evaluation.

Surprisingly, CU-POOR-COMB won the WMT12
automatic evaluation in TER. In the retrospect, this
is caused by TER overemphasizing word-level pre-
cision. CU-POOR-COMB skipped words not con-
firmed by several systems and its hypotheses are
shorter (18.1 toks/sent) than those by CU-BOJAR

(20.1 toks/sents) or the reference (21.9 toks/sent).
A quick manual inspection of 32 sentences suggests
that about one third or quarter of CU-POOR-COMB

suffer from some information loss whereas the rest
are acceptable or even better paraphrases. Prelim-

3The large two-step setup is identical to the one by (Bojar
and Kos, 2010), except that we use only the current Large and
Mono datasets as described in Section 3.
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Our Scoring matrix.statmt.org
Test Set newstest-2011 newstest-2012
Metric BLEU TER*100 BLEU TER*100 BLEU TER

→cs

CU-POOR-COMB –used–for– –tuning– 14.17±0.53 64.07±0.53 14.0 0.741
CU-BOJAR (tFaT-FaT, lex. r.) 18.10±0.55 62.84±0.71 16.07±0.55 65.52±0.59 15.9 0.759
As ↑ but towards 1-TER 16.10±0.54 61.64±0.59 14.13±0.54 64.28±0.55 – –
Large Two-Step 17.34±0.57 63.47±0.66 15.37±0.54 65.85±0.57 – –

Unused (tFaT-FaT, dist. reord.) 18.07±0.56 62.74±0.70 15.92±0.57 65.50±0.60 – –
Unused (tF-FaT, dist. reord.) 17.85±0.58 63.13±0.68 15.73±0.55 65.85±0.58 – –
Unused (tF-F, lex. reord.) 17.73±0.58 63.04±0.68 15.61±0.57 65.76±0.58 – –
Unused (tFaT-F, dist. reord.) 17.62±0.56 62.97±0.70 15.33±0.58 65.70±0.59 – –
Unused (tF-F, dist. reord.) 17.51±0.57 63.32±0.69 15.48±0.56 65.79±0.58 – –

→en CU-BOJAR (tF-F:tL-F, dist. reord.) 24.65±0.60 58.54±0.66 23.09±0.59 61.24±0.68 21.5 0.726
Unused (tF-F, dist. reord.) 24.62±0.59 58.66±0.66 22.90±0.56 61.63±0.67 – –

Table 5: Summary of large data runs and systems submitted to WMT12 manual evaluation. The upper part lists the
two submissions in en→cs translation and two more systems used in CU-POOR-COMB. The lower part of the table
shows the scores for CU-BOJAR when translating to English. All systems reported here use the Large and Mono data.

inary results of WMT 12 manual ranking indicate
that overall, our system combination performs poor.

8 Overview of Systems Submitted

Table 5 summarizes the scores for our two sys-
tem submissions. We report the scores in our to-
kenization on the official test sets of WMT11 and
WMT12 and also the scores as measured by http:
//matrix.statmt.org. Note that for the lat-
ter, we use the detokenized outputs processed by the
recommended normalization script.4

8.1 Details of CU-BOJAR for en→cs
We deliberately used only direct setups for the large
data and due to time constraints, we ran just a few
configurations, see Table 5.

We knew from previous years that including En-
glish (source) POS tag improves overall target sen-
tence structure: English words are often ambiguous
between noun and verb, so without the POS infor-
mation, verbs got often translated as nouns, render-
ing the sentence incomprehensible. Tagging and in-
cluding the source tag helps, as confirmed by the
tFaT-F setup being somewhat better than tF-F.

We also knew that target-side tag LM is helpful
(esp. if we can afford up to 8-grams in the LM).
This was confirmed by tF-FaT being better than tF-
F. Ultimately, we use tags on both sides: tFaT-FaT

4http://www.statmt.org/wmt11/
normalize-punctuation.perl

and get the best scores. This confirms that our par-
allel data is sufficiently large so that even the added
sparsity due to tags does not cause any trouble.

A little gain comes from a lexicalized reorder-
ing model (or-bi-fe) based on word forms, see CU-
BOJAR reaching 18.10 BLEU on WMT11 test set.

8.2 Details of CU-BOJAR for cs→en

For the translation into English, we tested just two
setups: tF-F and tF-F:tL-T. The latter setup falls
back to the Czech lemma, if the exact form is not
available. The gain is only small, because our paral-
lel data is already quite large.

9 Conclusion

We introduced a simple taxonomy of factored
phrase-based setups and conducted several probes
for English→Czech translation. We gained small
improvements in both small and large data settings.

We also warned about some common pitfalls: (1)
all target-side factors should be accompanied with a
language model to compensate for the added sparse-
ness, (2) alternative decoding paths significantly re-
duce the effective n-best list size, and (3) the infa-
mous instability of MERT can be caused by bad luck
at exhausted iteration limit.

On a general note, we learnt that a breadth-first
search for best configurations should be automated
as much as possible so that more human effort can
be invested into analysis.
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Drahomı́ra Spoustová, Jan Hajič, Jan Votrubec, Pavel Kr-
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Abstract

This paper describes the French-English trans-
lation system developed by the Avenue re-
search group at Carnegie Mellon University
for the Seventh Workshop on Statistical Ma-
chine Translation (NAACL WMT12). We
present a method for training data selection,
a description of our hierarchical phrase-based
translation system, and a discussion of the im-
pact of data size on best practice for system
building.

1 Introduction

We describe the French-English translation sys-
tem constructed by the Avenue research group at
Carnegie Mellon University for the shared trans-
lation task in the Seventh Workshop on Statistical
Machine Translation. The core translation system
uses the hierarchical phrase-based model described
by Chiang (2007) with sentence-level grammars ex-
tracted and scored using the methods described by
Lopez (2008). Improved techniques for data selec-
tion and monolingual text processing significantly
improve the performance of the baseline system.

Over half of all parallel data for the French-
English track is provided by the Giga-FrEn cor-
pus (Callison-Burch et al., 2009). Assembled from
crawls of bilingual websites, this corpus is known to
be noisy, containing sentences that are either not par-
allel or not natural language. Rather than simply in-
cluding or excluding the resource in its entirety, we
use a relatively simple technique inspired by work in
machine translation quality estimation to select the

best portions of the corpus for inclusion in our train-
ing data. Including around 60% of the Giga-FrEn
chosen by this technique yields an improvement of
0.7 BLEU.

Prior to model estimation, we process all parallel
and monolingual data using in-house tokenization
and normalization scripts that detect word bound-
aries better than the provided WMT12 scripts. After
translation, we apply a monolingual rule-based post-
processing step to correct obvious errors and make
sentences more acceptable to human judges. The
post-processing step alone yields an improvement of
0.3 BLEU to the final system.

We conclude with a discussion of the impact of
data size on important decisions for system building.
Experimental results show that “best practice” deci-
sions for smaller data sizes do not necessarily carry
over to systems built with “WMT-scale” data, and
provide some explanation for why this is the case.

2 Training Data

Training data provided for the French-English trans-
lation task includes parallel corpora taken from Eu-
ropean Parliamentary proceedings (Koehn, 2005),
news commentary, and United Nations documents.
Together, these sets total approximately 13 million
sentences. In addition, a large, web-crawled parallel
corpus termed the “Giga-FrEn” (Callison-Burch et
al., 2009) is made available. While this corpus con-
tains over 22 million parallel sentences, it is inher-
ently noisy. Many parallel sentences crawled from
the web are neither parallel nor sentences. To make
use of this large data source, we employ data se-
lection techniques discussed in the next subsection.
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Corpus Sentences
Europarl 1,857,436
News commentary 130,193
UN doc 11,684,454
Giga-FrEn 1stdev 7,535,699
Giga-FrEn 2stdev 5,801,759
Total 27,009,541

Table 1: Parallel training data

Parallel data used to build our final system totals 27
million sentences. Precise figures for the number of
sentences in each data set, including selections from
the Giga-FrEn, are found in Table 1.

2.1 Data Selection as Quality Estimation

Drawing inspiration from the workshop’s featured
task, we cast the problem of data selection as one
of quality estimation. Specia et al. (2009) report
several estimators of translation quality, the most ef-
fective of which detect difficult-to-translate source
sentences, ungrammatical translations, and transla-
tions that align poorly to their source sentences. We
can easily adapt several of these predictive features
to select good sentence pairs from noisy parallel cor-
pora such as the Giga-FrEn.

We first pre-process the Giga-FrEn by removing
lines with invalid Unicode characters, control char-
acters, and insufficient concentrations of Latin char-
acters. We then score each sentence pair in the re-
maining set (roughly 90% of the original corpus)
with the following features:

Source language model: a 4-gram modified
Kneser-Ney smoothed language model trained on
French Europarl, news commentary, UN doc, and
news crawl corpora. This model assigns high scores
to grammatical source sentences and lower scores to
ungrammatical sentences and non-sentences such as
site maps, large lists of names, and blog comments.
Scores are normalized by number of n-grams scored
per sentence (length + 1). The model is built using
the SRILM toolkit (Stolke, 2002).

Target language model: a 4-gram modified
Kneser-Ney smoothed language model trained on
English Europarl, news commentary, UN doc, and
news crawl corpora. This model scores grammati-
cality on the target side.

Word alignment scores: source-target and
target-source MGIZA++ (Gao and Vogel, 2008)
force-alignment scores using IBM Model 4 (Och
and Ney, 2003). Model parameters are estimated
on 2 million words of French-English Europarl and
news commentary text. Scores are normalized by
the number of alignment links. These features mea-
sure the extent to which translations are parallel with
their source sentences.

Fraction of aligned words: source-target and
target-source ratios of aligned words to total words.
These features balance the link-normalized align-
ment scores.

To determine selection criteria, we use this feature
set to score the news test sets from 2008 through
2011 (10K parallel sentences) and calculate the
mean and standard deviation of each feature score
distribution. We then select two subsets of the Giga-
FrEn, “1stdev” and “2stdev”. The 1stdev set in-
cludes sentence pairs for which the score for each
feature is above a threshold defined as the develop-
ment set mean minus one standard deviation. The
2stdev set includes sentence pairs not included in
1stdev that meet the per-feature threshold of mean
minus two standard deviations. Hard, per-feature
thresholding is motivated by the notion that a sen-
tence pair must meet all the criteria discussed above
to constitute good translation. For example, high
source and target language model scores are irrel-
evant if the sentences are not parallel.

As primarily news data is used for determining
thresholds and building language models, this ap-
proach has the added advantage of preferring par-
allel data in the domain we are interested in translat-
ing. Our final translation system uses data from both
1stdev and 2stdev, corresponding to roughly 60% of
the Giga-FrEn corpus.

2.2 Monolingual Data
Monolingual English data includes European Parlia-
mentary proceedings (Koehn, 2005), news commen-
tary, United Nations documents, news crawl, the En-
glish side of the Giga-FrEn, and the English Giga-
word Fourth Edition (Parker et al., 2009). We use all
available data subject to the following selection de-
cisions. We apply the initial filter to the Giga-FrEn
to remove non-text sections, leaving approximately
90% of the corpus. We exclude the known prob-
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Corpus Words
Europarl 59,659,916
News commentary 5,081,368
UN doc 286,300,902
News crawl 1,109,346,008
Giga-FrEn 481,929,410
Gigaword 4th edition 1,960,921,287
Total 3,903,238,891

Table 2: Monolingual language modeling data (uniqued)

lematic New York Times section of the Gigaword.
As many data sets include repeated boilerplate text
such as copyright information or browser compat-
ibility notifications, we unique sentences from the
UN doc, news crawl, Giga-FrEn, and Gigaword sets
by source. Final monolingual data totals 4.7 billion
words before uniqueing and 3.9 billion after. Word
counts for all data sources are shown in Table 2.

2.3 Text Processing

All monolingual and parallel system data is run
through a series of pre-processing steps before
construction of the language model or translation
model. We first run an in-house normalization script
over all text in order to convert certain variably en-
coded characters to a canonical form. For example,
thin spaces and non-breaking spaces are normalized
to standard ASCII space characters, various types of
“curly” and “straight” quotation marks are standard-
ized as ASCII straight quotes, and common French
and English ligatures characters (e.g. œ, fi) are re-
placed with standard equivalents.

English text is tokenized with the Penn Treebank-
style tokenizer attached to the Stanford parser (Klein
and Manning, 2003), using most of the default op-
tions. We set the tokenizer to Americanize vari-
ant spellings such as color vs. colour or behavior
vs. behaviour. Currency-symbol normalization is
avoided.

For French text, we use an in-house tokenization
script. Aside from the standard tokenization based
on punctuation marks, this step includes French-
specific rules for handling apostrophes (French eli-
sion), hyphens in subject-verb inversions (includ-
ing the French t euphonique), and European-style
numbers. When compared to the default WMT12-

provided tokenization script, our custom French
rules more accurately identify word boundaries, par-
ticularly in the case of hyphens. Figure 1 highlights
the differences in sample phrases. Subject-verb in-
versions are broken apart, while other hyphenated
words are unaffected; French aujourd’hui (“today”)
is retained as a single token to match English.

Parallel data is run through a further filtering step
to remove sentence pairs that, by their length char-
acteristics alone, are very unlikely to be true parallel
data. Sentence pairs that contain more than 95 to-
kens on either side are globally discarded, as are sen-
tence pairs where either side contains a token longer
than 25 characters. Remaining pairs are checked for
length ratio between French and English, and sen-
tences are discarded if their English translations are
either too long or too short given the French length.
Allowable ratios are determined from the tokenized
training data and are set such that approximately the
middle 95% of the data, in terms of length ratio, is
kept for each French length.

3 Translation System

Our translation system uses cdec (Dyer et al.,
2010), an implementation of the hierarchical phrase-
based translation model (Chiang, 2007) that uses the
KenLM library (Heafield, 2011) for language model
inference. The system translates from cased French
to cased English; at no point do we lowercase data.

The Parallel data is aligned in both directions us-
ing the MGIZA++ (Gao and Vogel, 2008) imple-
mentation of IBM Model 4 and symmetrized with
the grow-diag-final heuristic (Och and Ney,
2003). The aligned corpus is then encoded as a
suffix array to facilitate sentence-level grammar ex-
traction and scoring (Lopez, 2008). Grammars are
extracted using the heuristics described by Chiang
(Chiang, 2007) and feature scores are calculated ac-
cording to Lopez (2008).

Modified Knesser-Ney smoothed (Chen and
Goodman, 1996) n-gram language models are built
from the monolingual English data using the SRI
language modeling toolkit (Stolke, 2002). We ex-
periment with both 4-gram and 5-gram models.

System parameters are optimized using minimum
error rate training (Och, 2003) to maximize the
corpus-level cased BLEU score (Papineni et al.,
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Base: Y a-t-il un collègue pour prendre la parole
Custom: Y a -t-il un collègue pour prendre la parole
Base: Peut-être , à ce sujet , puis-je dire à M. Ribeiro i Castro
Custom: Peut-être , à ce sujet , puis -je dire à M. Ribeiro i Castro
Base: le procès-verbal de la séance d’ aujourd’ hui
Custom: le procès-verbal de la séance d’ aujourd’hui
Base: s’ établit environ à 1,2 % du PIB
Custom: s’ établit environ à 1.2 % du PIB

Figure 1: Customized French tokenization rules better identify word boundaries.

pré-éĺectoral → pre-electoral
mosaı̂que → mosaique
déragulation → deragulation

Figure 2: Examples of cognate translation

2002) on news-test 2008 (2051 sentences). This de-
velopment set is chosen for its known stability and
reliability.

Our baseline translation system uses Viterbi de-
coding while our final system uses segment-level
Minimum Bayes-Risk decoding (Kumar and Byrne,
2004) over 500-best lists using 1 - BLEU as the loss
function.

3.1 Post-Processing

Our final system includes a monolingual rule-based
post-processing step that corrects obvious transla-
tion errors. Examples of correctable errors include
capitalization, mismatched punctuation, malformed
numbers, and incorrectly split compound words. We
finally employ a coarse cognate translation system
to handle out-of-vocabulary words. We assume that
uncapitalized French source words passed through
to the English output are cognates of English words
and translate them by removing accents. This fre-
quently leads to (in order of desirability) fully cor-
rect translations, correct translations with foreign
spellings, or correct translations with misspellings.
All of the above are generally preferable to untrans-
lated foreign words. Examples of cognate transla-
tions for OOV words in newstest 2011 are shown in
Figure 2.1

1Some OOVs are caused by misspellings in the dev-test
source sentences. In these cases we can salvage misspelled En-
glish words in place of misspelled French words

BLEU (cased) Meteor TER
base 5-gram 28.4 27.4 33.7 53.2
base 4-gram 29.1 28.1 34.0 52.5
+1stdev GFE 29.3 28.3 34.2 52.1
+2stdev GFE 29.8 28.9 34.5 51.7
+5g/1K/MBR 29.9 29.0 34.5 51.5
+post-process 30.2 29.2 34.7 51.3

Table 3: Newstest 2011 (dev-test) translation results

4 Experiments

Beginning with a baseline translation system, we in-
crementally evaluate the contribution of additional
data and components. System performance is eval-
uated on newstest 2011 using BLEU (uncased and
cased) (Papineni et al., 2002), Meteor (Denkowski
and Lavie, 2011), and TER (Snover et al., 2006).
For full consistency with WMT11, we use the NIST
scoring script, TER-0.7.25, and Meteor-1.3 to eval-
uate cased, detokenized translations. Results are
shown in Table 3, where each evaluation point is the
result of a full tune/test run that includes MERT for
parameter optimization.

The baseline translation system is built from 14
million parallel sentences (Europarl, news commen-
tary, and UN doc) and all monolingual data. Gram-
mars are extracted using the “tight” heuristic that
requires phrase pairs to be bounded by word align-
ments. Both 4-gram and 5-gram language models
are evaluated. Viterbi decoding is conducted with a
cube pruning pop limit (Chiang, 2007) of 200. For
this data size, the 4-gram model is shown to signifi-
cantly outperform the 5-gram.

Adding the 1stdev and 2stdev sets from the Giga-
FrEn increases the parallel data size to 27 million
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BLEU (cased) Meteor TER
587M tight 29.1 28.1 34.0 52.5
587M loose 29.3 28.3 34.0 52.5
745M tight 29.8 28.9 34.5 51.7
745M loose 29.6 28.6 34.3 52.0

Table 4: Results for extraction heuristics (dev-test)

sentences and further improves performance. These
runs require new grammars to be extracted, but
use the same 4-gram language model and decoding
method as the baseline system. With large training
data, moving to a 5-gram language model, increas-
ing the cube pruning pop limit to 1000, and using
Minimum Bayes-Risk decoding (Kumar and Byrne,
2004) over 500-best lists collectively show a slight
improvement. Monolingual post-processing yields
further improvement. This decoding/processing
scheme corresponds to our final translation system.

4.1 Impact of Data Size

The WMT French-English track provides an oppor-
tunity to experiment in a space of data size that is
generally not well explored. We examine the impact
of data sizes of hundreds of millions of words on
two significant system building decisions: grammar
extraction and language model estimation. Compar-
ative results are reported on the newstest 2011 set.

In the first case, we compare the “tight” extrac-
tion heuristic that requires phrases to be bounded
by word alignments to the “loose” heuristic that al-
lows unaligned words at phrase edges. Lopez (2008)
shows that for a parallel corpus of 107 million
words, using the loose heuristic produces much
larger grammars and improves performance by a full
BLEU point. However, even our baseline system
is trained on substantially more data (587 million
words on the English side) and the addition of the
Giga-FrEn sets increases data size to 745 million
words, seven times that used in the cited work. For
each data size, we decode with grammars extracted
using each heuristic and a 4-gram language model.
As shown in Table 4, the differences are much
smaller and the tight heuristic actually produces the
best result for the full data scenario. We believe
this to be directly linked to word alignment quality:
smaller training data results in sparser, noisier word

BLEU (cased) Meteor TER
587M 4-gram 29.1 28.1 34.0 52.5
587M 5-gram 28.4 27.4 33.7 53.2
745M 4-gram 29.8 28.9 34.5 51.7
745M 5-gram 29.8 28.9 34.4 51.7

Table 5: Results for language model order (dev-test)

alignments while larger data results in denser, more
accurate alignments. In the first case, accumulating
unaligned words can make up for shortcomings in
alignment quality. In the second, better rules are ex-
tracted by trusting the stronger alignment model.

We also compare 4-gram and 5-gram language
model performance with systems using tight gram-
mars extracted from 587 million and 745 million
sentences. As shown in Table 5, the 4-gram sig-
nificantly outperforms the 5-gram with smaller data
while the two are indistinguishable with larger data2.
With modified Kneser-Ney smoothing, a lower or-
der model will outperform a higher order model if
the higher order model constantly backs off to lower
orders. With stronger grammars learned from larger
parallel data, the system is able to produce output
that matches longer n-grams in the language model.

5 Summary

We have presented the French-English translation
system built for the NAACL WMT12 shared transla-
tion task, including descriptions of our data selection
and text processing techniques. Experimental re-
sults have shown incremental improvement for each
addition to our baseline system. We have finally
discussed the impact of the availability of WMT-
scale data on system building decisions and pro-
vided comparative experimental results.
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Abstract

One of the most notable recent improve-
ments of the TectoMT English-to-Czech trans-
lation is a systematic and theoretically sup-
ported revision of formemes—the annotation
of morpho-syntactic features of content words
in deep dependency syntactic structures based
on the Prague tectogrammatics theory. Our
modifications aim at reducing data sparsity,
increasing consistency across languages and
widening the usage area of this markup.
Formemes can be used not only in MT, but in
various other NLP tasks.

1 Introduction

The cornerstone of the TectoMT tree-to-tree ma-
chine translation system is the deep-syntactic lan-
guage representation following the Prague tec-
togrammatics theory (Sgall et al., 1986), and its ap-
plication in the Prague Dependency Treebank (PDT)
2.01 (Hajič et al., 2006), where each sentence is
analyzed to a dependency tree whose nodes corre-
spond to content words. Each node has a number
of attributes, but the most important (and difficult)
for the transfer phase are lemma—lexical informa-
tion, and formeme—surface morpho-syntactic infor-

∗ This research has been supported by the grants
FP7-ICT-2009-4-247762 (FAUST), FP7-ICT-2009-4-249119
(Metanet), LH12093 (Kontakt II), DF12P01OVV022 (NAKI),
201/09/H057 (Czech Science Foundation), GAUK 116310, and
SVV 265 314. This work has been using language resources de-
veloped and/or stored and/or distributed by the LINDAT-Clarin
project of the Ministry of Education of the Czech Republic
(project LM2010013).

1http://ufal.mff.cuni.cz/pdt2.0

mation, including selected auxiliary words (Ptáček
and Žabokrtský, 2006; Žabokrtský et al., 2008).

This paper focuses on formemes—their definition
and recent improvements of the annotation, which
has been thoroughly revised in the course of prepa-
ration of the CzEng 1.0 parallel corpus (Bojar et al.,
2012b), whose utilization in TectoMT along with the
new formemes version has brought the greatest ben-
efit to our English-Czech MT system in the recent
year. However, the area of possible application of
formemes is not limited to MT only or to the lan-
guage pair used in our system; the underlying ideas
are language-independent.

We summarize the development of morpho-
syntactic annotations related to formemes (Sec-
tion 2), provide an overview of the whole TectoMT
system (Section 3), then describe the formeme an-
notation (Section 4) and our recent improvements
(Section 5), as well as experimental applications, in-
cluding English-Czech MT (Section 6). The main
asset of the formeme revision is a first systematic re-
organization of the existing practical aid, providing
it with a solid theoretical base, but still bearing its
intended applications in mind.

2 Related Work

Numerous theoretical approaches had been made
to morpho-syntactic description, mainly within va-
lency lexicons, starting probably with the work by
Helbig and Schenkel (1969). Perhaps the best one
for Czech is PDT-VALLEX (Hajič et al., 2003), list-
ing all possible subtrees corresponding to valency
arguments (Urešová, 2009). Žabokrtský (2005)
gives an overview of works in this field.
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This kind of information has been most exploited
in structural MT systems, employing semantic re-
lations (Menezes and Richardson, 2001) or surface
tree substructures (Quirk et al., 2005; Marcu et al.,
2006). Formemes, originally developed for Natural
Language Generation (NLG) (Ptáček and Žabokrt-
ský, 2006), have been successfully applied to MT
within the TectoMT system. Our revision of for-
meme annotation aims to improve the MT perfor-
mance, keeping other possible applications in mind.

3 The TectoMT English-Czech Machine
Translation System

The TectoMT system is a structural machine trans-
lation system with deep transfer, first introduced
by Žabokrtský et al. (2008). It currently supports
English-to-Czech translation. Its analysis stage
follows the Prague tectogrammatics theory (Sgall,
1967; Sgall et al., 1986), proceeding over two layers
of structural description, from shallow (analytical)
to deep (tectogrammatical) (see Section 3.1).

The transfer phase of the system is based on Max-
imum Entropy context-sensitive translation models
(Mareček et al., 2010) and Hidden Tree Markov
Models (Žabokrtský and Popel, 2009). It is factor-
ized into three subtasks: lemma, formeme and gram-
matemes translation (see Sections 3.2 and 3.3).

The subsequent generation phase consists of rule-
based components that gradually change the deep
target language representation into a shallow one,
which is then converted to text (cf. Section 6.1).

The version of TectoMT submitted to WMT122

builds upon the WMT11 version. Several rule-based
components were slightly refined. However, most of
the effort was devoted to creating a better and bigger
parallel treebank—CzEng 1.03 (Bojar et al., 2012b),
and re-training the statistical components on this re-
source. Apart from bigger size and improved filter-
ing, one of the main differences between CzEng 0.9
(Bojar and Žabokrtský, 2009) (used in WMT11) and
CzEng 1.0 (used in WMT12) is the revised annota-
tion of formemes.

2http://www.statmt.org/wmt12
3http://ufal.mff.cuni.cz/czeng

3.1 Layers of structural analysis

There are two distinct structural layers used in the
TectoMT system:

• Analytical layer. A surface syntax layer, which
includes all tokens of the sentence, organized
into a labeled dependency tree. The labels cor-
respond to surface syntax functions.

• Tectogrammatical layer. A deep syntax/se-
mantic layer describing the linguistic meaning
of the sentence. Its dependency trees include
only content words as nodes, assigning to each
of them a deep lemma (t-lemma), a semantic
role label (functor), and other deep linguistic
features (grammatemes), such as semantic part-
of-speech, person, tense or modality.

The analytical layer can be obtained using differ-
ent dependency parsers (Popel et al., 2011); the tec-
togrammatical representation is then created by rule-
based modules from the analytical trees.

In contrast to the original PDT annotation,
the TectoMT tectogrammatical layer also includes
formemes describing the surface morpho-syntactic
realization of the nodes (cf. also Section 3.3).

3.2 Transfer: Translation Factorization and
Symmetry

Using the tectogrammatical representation in struc-
tural MT allows separating the problem of translat-
ing a sentence into relatively independent simpler
subtasks: lemma, functors, and grammatemes trans-
lation (Bojar et al., 2009; Žabokrtský, 2010). Since
topology changes to deep syntax trees are rare in MT
transfer, each of these three subtasks allows a vir-
tually symmetric source-target one-to-one mapping,
thus simplifying the initial n-to-m mapping of word
phrases or surface subtrees.

Žabokrtský et al. (2008) obviated the need for
transfer via functors (i.e. semantic role detection)
by applying a formeme transfer instead. While
formeme values are much simpler to obtain by au-
tomatic processing, this approach preserved the ad-
vantage of symmetric one-to-one value translation.

Moreover, translations of a given source morpho-
syntactic construction usually follow a limited num-
ber of patterns in the target language regardless of
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their semantic functions, e.g. a finite clause will
most often be translated as a finite clause.

3.3 Motivation for the Introduction of
Formemes

Surface-oriented formemes have been introduced
into the semantics-oriented tectogrammatical layer,
as it proves beneficial to combine the deep syntax
trees, smaller in size and more consistent across lan-
guages, with the surface morphology and syntax to
provide for a straightforward transition to the surface
level (Žabokrtský, 2010).

The three-fold factorization of the transfer phase
(see Section 3.2) helps address the data sparsity is-
sue faced by today’s MT systems. As the translation
of lemmas and their morpho-syntactic forms is sepa-
rated, combinations unseen in the training data may
appear on the output.

To further reduce data sparsity, only minimal in-
formation needed to reconstruct the surface form is
stored in formemes; morphological categories deriv-
able from elsewhere, i.e. morphological agreement
or grammatemes, are discarded.

4 Czech and English Formemes in
TectoMT

A formeme is a concise description of relevant
morpho-syntactic features of a node in a tectogram-
matical tree (deep syntactic tree whose nodes usu-
ally correspond to content words). The general
shape of revised Czech and English formemes, as
implemented within the Treex4 NLP framework
(Popel and Žabokrtský, 2010) for the TectoMT sys-
tem, consists of three main parts:

1. Syntactic part-of-speech.5 The number of syn-
tactic parts-of-speech is very low, as only con-
tent words are used on the deep layer and the
categories of pronouns and numerals have been
divided under nouns and adjectives accord-
ing to syntactic behavior (Ševčíková-Razímová
and Žabokrtský, 2006). The possible values are
v for verbs, n for nouns, adj for adjectives,
and adv for adverbs.

4http://ufal.mff.cuni.cz/treex/,
https://metacpan.org/module/Treex

5Cf. Section 5.2 for details.

2. Subordinate conjunction/preposition. Applies
only to formemes of prepositional phrases and
subordinate clauses introduced by a conjunc-
tion and contains the respective conjunction or
preposition; e.g. if, on or in_case_of.

3. Form. This part represents the morpho-
syntactic form of the node in question and de-
pends on the part-of-speech (see Table 1).

The two or three parts are concatenated into
a human-readable string to facilitate usage in
hand-written rules as well as statistical systems
(Žabokrtský, 2010), producing values such as
v:inf, v:if+fin or n:into+X. Formeme val-
ues of nodes corresponding to uninflected words are
atomic.

Formemes are detected by rule-based modules op-
erating on deep and surface trees. Example deep
syntax trees annotated with formemes are shown in
Fig. 1. A listing of all possible formeme values is
given in Table 1.

Verbal formemes remain quite consistent in both
languages, except for the greater range of forms in
English (Czech uses adjectives or nouns instead of
gerunds and verbal attributes). Nominal formemes
differ more significantly: Czech is a free-word order
language with rich morphology, where declension
is important to syntactic relations—case is therefore
included in formemes. As English makes its syntac-
tic relations visible rather with word-order than with
morphology, English formemes indicate the syntac-
tic position instead. The same holds for adjecti-
val complements to verbs. Posession is expressed
mostly using nouns in English and adjectives in
Czech, which is also reflected in formemes.

5 Recent Markup Improvements

Our following markup innovations address several
issues found in the previous version and aim to adapt
the range of values more accurately to the intended
applications.

5.1 General Form Changes
The relevant preposition and subordinate conjunc-
tion nodes had been selected based on their depen-
dency labels; we use a simple part-of-speech tag fil-
ter instead in order to minimize the influence of pars-
ing errors and capture more complex prepositions,
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Figure 1: An example English and Czech deep sentence structure annotated with formemes (in typewriter font).

Formeme Language Definition
v:(P+)fin both Verbs as heads of finite clauses
v:rc both Verbs as heads of relative clauses
v:(P+)inf both Infinitive clauses; typically with the particle to in English∗

v:(P+)ger EN Gerunds, e.g. I like reading (v:ger), but I am tired of arguing (v:of+ger).
v:attr EN Present or past participles (i.e. -ing or -ed forms) in the attributive syntactic

position, e.g. Striking (v:attr) teachers hate bored (v:attr) students.
n:[1..7] CS Bare nouns; the numbers indicate morphological case†

n:X CS Bare nouns that cannot be inflected
n:subj EN Nouns in the subject position (i.e. in front of the main verb of the clause)
n:obj EN Nouns in the object position (i.e. following the verb with no preposition)
n:obj1, n:obj2 EN Nouns in the object position; distinguishing the two objects of ditransitive

verbs (e.g. give, consider)
n:adv EN Nouns in an adverbial position, e.g. The sales went up by 1 % last month
n:P+X EN Prepositional phrases
n:P+[1..7] CS Prepositional phrases; the preposition surface form is combined with the re-

quired case‡

n:attr both Nominal attributes, e.g. insurance company or president Smith in English
and prezident Smith in Czech

n:poss EN English possessive pronouns and nouns with the ’s suffix
adj:attr both Adjectival attributes (Czech inflection forms need not be stored thanks to

congruency with the parent noun)
adj:compl EN Direct adjectival complements to verbs
adj:[1..7] CS Direct adjectival complements to verbs (morphological case must be stored

in Czech, as it is determined by valency)
adj:poss CS Czech possesive adjectives and pronouns; a counterpart to English n:poss
adv both Adverbs (not inflected, can take no prepositions etc.)
x both Coordinating conjunctions, other uninflected words
drop both Deep tree nodes which do not appear on the surface (e.g. pro-drop pronouns)

∗I.e. infinitives as head of clauses, not infinitives as parts of compound verb forms with finite auxiliary verbs.
†Numbers are traditionally used to mark morphological case in Czech; 1 stands for nominative, 2 for genitive etc.
‡Since many prepositions may govern multiple cases in Czech, the case number is necessary.

Table 1: A listing of all possible formeme values, indicating their usage in Czech, English or both languages. “P+”
denotes the (lowercased) surface form of a preposition or a subordinate conjunction. Round brackets denote optional
parts, square brackets denote a set of alternatives.
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e.g. in case of. Our revision also allows combining
prepositions with all English gerunds and infinitives,
preventing a loss of important data.

We also use the lowercased surface form in the
middle formeme part instead of lemmas to allow for
a more straightforward surface form generation.

5.2 Introducing Syntactic Part-of-Speech
Formemes originally contained the semantic part-of-
speech (sempos) (Razímová and Žabokrtský, 2006)
as their first part. We replaced it with a syntac-
tic part-of-speech (syntpos), since it proved compli-
cated to assign sempos reliably by a rule-based mod-
ule and morpho-syntactic behavior is more relevant
to formemes than semantics.

The syntpos is assigned in two steps:

1. A preliminary syntpos is selected, using our
categorization based on the part-of-speech tag
and lemma.

2. The final syntpos is selected according to the
syntactic position of the node, addressing nom-
inal usage of adjectives and cardinal numerals
(see Sections 5.4 and 5.5).

5.3 Capturing Czech Nominal Attributes
Detecting the attributive usage of nouns is straight-
forward for English, where any noun depending di-
rectly on another noun is considered an attribute.
In Czech, one needs to distinguish case-congruent
attributes from others that have a fixed case. We
aimed at assigning the n:attr formeme only in the
former case and thus replaced the original method
based on word order with a less error-prone one
based on congruency and named entity recognition.

5.4 Numerals: Distinguishing Usage and
Correcting Czech Case

The new formemes now distinguish adjectival and
nominal usage of cardinal numerals (cf. also Sec-
tion 5.2), e.g. the number in 5 potatoes is now as-
signed the adj:attr formeme, whereas Apollo 11
is given n:attr. The new situation is analogous
in Czech, with nominal usages of numerals having
their morphological case marked in formemes.

To reduce data sparsity in the new formemes ver-
sion, we counter the inconsistent syntactic behavior
of Czech cardinal numerals, where 1-4 behave like

The word banán is in genitive (n:2), but would have an ac-
cusative (n:4) form if the numeral behaved like an adjective.

Figure 2: Case correction with numerals in Czech.

adjectives but other numerals behave like nouns and
shift their semantically governing noun to the po-
sition of a genitive attribute. An example of this
change is given in Fig. 2.

5.5 Adjectives: Nominal Usage and Case
The new formemes address the usage of adjectives
in the syntactic position of nouns (cf. Section 5.2),
which occurs only rarely, thus preventing sparse val-
ues, namely in these syntactic positions:

• The subject. We replaced the originally as-
signed adj:compl value, which was impos-
sible to tell from adjectival objects, with the
formeme a noun would have in the same po-
sition, e.g. in the sentence Many of them were
late, the subject many is assigned n:subj.

• Prepositional phrases. Syntactic behavior of
adjectives is identical to nouns here; we thus
assign them the formeme values a noun would
receive in the same position, e.g. n:of+X in-
stead of adj:of+X in He is one of the best at
school.

In Czech, we detect nominal usage of adjectives
in verbal direct objects as well, employing large-
coverage valency lexicons (Lopatková et al., 2008;
Hajič et al., 2003).

Instead of assigning the compl value in Czech,
our formemes revision includes the case of adjecti-
val complements, which depends on the valency of
the respective verb.

5.6 Mutual Information Across Languages
The changes described above have been motivated
not only by theoretical linguistic description of the
languages in question, but also by the intended us-
age within the TectoMT translation system. Instead
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of retraining the translation model after each change,
we devised a simpler and faster estimate to measure
the asset of our innovations: using Mutual Informa-
tion (MI) (Manning and Schütze, 1999, p. 66) of
formemes in Czech and English trees.

We expect that an inter-language MI increase will
lead to lower noise in formeme-to-formeme transla-
tion dictionary (Bojar et al., 2009, cf. Section 3.2),
thus achieving higher MT output quality.

Using the analysis pipeline from CzEng1.0, we
measured the inter-language MI on sentences from
the Prague Czech-English Dependency Treebank
(PCEDT) 2.0 (Bojar et al., 2012a). The overall re-
sults show an MI increase from 1.598 to 1.687 (Bo-
jar et al., 2012b). Several proposed markup changes
have been discarded as they led to an inter-language
MI drop; e.g. removing the v:rc relative clause
formeme or merging the v:attr and adj:attr
values in English.

6 Experimental Usage

We list here our experiments with the newly de-
veloped annotation: an NLG experiment aimed at
assessing the impact of formemes on the synthesis
phase of the TectoMT system, and the usage in the
English-Czech MT as a whole.

6.1 Czech Synthesis
The synthesis phase of the TectoMT system relies
heavily on the information included in formemes, as
its rule-based blocks use solely formemes and gram-
mar rules to gradually change a deep tree node into
a surface subtree.

To directly measure the suitability of our changes
for the synthesis stage of the TectoMT system, we
used a Czech-to-Czech round trip—deep analysis of
Czech PDT 2.0 development set sentences using the
CzEng 1.0 pipeline (Bojar et al., 2012b), followed
directly by the synthesis part of the TectoMT sys-
tem. The results were evaluated using the BLEU
metric (Papineni et al., 2002) with the original sen-
tences as reference; they indicate a higher suitability
of the new formemes for deep Czech synthesis (see
Table 2).

6.2 English-Czech Machine Translation
To measure the influence of the presented formeme
revision on the translation quality, we compared

Version BLEU
Original formemes 0.6818
Revised formemes 0.7092

Table 2: A comparison of formeme versions in Czech-to-
Czech round trip.

Version BLEU
Original formemes 0.1190
Revised formemes 0.1199

Table 3: A comparison of formeme versions in English-
to-Czech TectoMT translation on the WMT12 test set.

two translation scenarios—one using the origi-
nal formemes and the second using the revised
formemes in the formeme-to-formeme translation
model. Due to time reasons, we were able to
train both translation models only on 1/2 of the
CzEng 1.0 training data.

The results in Table 3 demonstrate a slight6 BLEU
gain when using the revised formemes version. The
gain is expected to be greater if several rule-based
modules of the transfer phase are adapted to the re-
visions.

7 Conclusion and Further Work

We have presented a systematic and theoretically
supported revision of a surface morpho-syntactic
markup within a deep dependency annotation sce-
nario, designed to facilitate the TectoMT transfer
phase. Our first practical experiments proved the
merits of our innovations in the tasks of Czech syn-
thesis and deep structural MT as a whole. We have
also experimented with formemes in the functor as-
signment (semantic role labelling) task and gained
moderate improvements (ca. 1-1.5% accuracy).

In future, we intend to tune the rule-based parts
of our MT transfer for the new version of formemes
and examine further possibilities of data sparsity re-
duction (e.g. by merging synonymous formemes).
We are also planning to create formeme annotation
modules for further languages to widen the range of
language pairs used in the TectoMT system.

6Significant at 90% level using pairwise bootstrap resam-
pling test (Koehn, 2004).
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José B. Mariño, Enric Monte and José A. R. Fonollosa
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Abstract
This paper describes the UPC participation in
the WMT 12 evaluation campaign. All sys-
tems presented are based on standard phrase-
based Moses systems. Variations adopted sev-
eral improvement techniques such as mor-
phology simplification and generation and do-
main adaptation. The morphology simpli-
fication overcomes the data sparsity prob-
lem when translating into morphologically-
rich languages such as Spanish by translat-
ing first to a morphology-simplified language
and secondly leave the morphology gener-
ation to an independent classification task.
The domain adaptation approach improves the
SMT system by adding new translation units
learned from MT-output and reference align-
ment. Results depict an improvement on TER,
METEOR, NIST and BLEU scores compared
to our baseline system, obtaining on the of-
ficial test set more benefits from the domain
adaptation approach than from the morpho-
logical generalization method.

1 Introduction

TALP-UPC (Center of Speech and Language
Applications and Technology at the Universitat
Politècnica de Catalunya) has participated in the
WMT12 shared task translating across two direc-
tions: English to Spanish and Spanish to English
tasks.

For the Spanish to English task we submitted a
baseline system that uses all parallel training data
and a combination of different target language mod-
els (LM) and Part-Of-Speech (POS) language mod-
els. A similar configuration was submitted for the

English to Spanish task as baseline. Our main ap-
proaches enriched the latter baseline in two indepen-
dent ways: morphology simplification and domain
adaptation by deriving new units into the phrase-
table. Furthermore, additional specific strategies
have been addressed on all systems to deal with well
known linguistic phenomena in Spanish such as cli-
tics and contractions.

The paper is presented as follows. Section 2
presents the main rationale for the phrase-based sys-
tem and the main pipeline of our baseline system.
Section 3 presents the approaches taken to improve
the baseline system on the English to Spanish task.
Section 4 presents the obtained results on internal
and official test sets while conclusions and further
work are presented in Section 5.

2 Baseline system: Phrase-Based SMT

Classically, a phrase-based translation system im-
plements a log-linear model in which a foreign lan-
guage sentence f j

1 = f1, f2, . . . , fj

is translated into
another language sentence eI

1 = e1, e2, . . . , eI

by
searching for the translation hypothesis that max-
imizes a log-linear combination of feature models
(Brown et al., 1990):

êI

1 = arg max

e

I
1

(
MX

m=1

�
m

h
m

�
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1, f
J

1

�
)

(1)

where the separate feature functions h
m

refer to
the system models and the set of �

m

refers to the
weights corresponding to these models. As fea-
ture functions we used the standard models available
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the$ NATO$ mission$ officially$ ended$

la$ misión$ de$ la$ OTAN$ terminó$ oficialmente$
DAFS$ NCFS$ SPS$ DAFS$ NP$ VMIS3S0$ RG$

Figure 1: Factored phrase-based MT based on trans-
lation from surface to surface and Part-of-Speech

on Moses, i.e., relative frequencies, lexical weights,
word and phrase penalty, wbe-msd-bidirectional-fe
reordering models and two language models, one for
surface and one for POS tags. Phrase scoring was
computed using Good-Turing discounting (Foster et
al., 2006).

The tuning process was done using MERT (Och,
2003) with Minimum Bayes-Risk decoding (MBR)
(Kumar and Bryne, 2004) on Moses and focusing on
minimizing the BLEU score (Papineni et al., 2002)
of the development set. Final translations were also
computed using MBR decoding.

Additionally to the settings mentioned before, we
worked with a factored version of the corpus. Fac-
tored corpora augments surface forms with addi-
tional information, such as POS tags or lemmas as
shown in Figure 1. In that case, factors other than
surface (e.g. POS) are usually less sparse, allowing
to build factor-specific language models with higher-
order n-grams. These higher-order language models
usually help to obtain more syntactically correct out-
put. Concretely we map input source surfaces to tar-
get surfaces and POS tags.

2.1 Corpus used

The baseline system was trained using all paral-
lel corpora, i.e. the European Parliament (EPPS)
(Koehn, 2005), News Commentary and United Na-
tions. Table 1 shows the statistics of the training data
after the cleaning process described later on Subsec-
tion 2.2.

Regarding the monolingual data, there was also
more News corpora separated by years for Spanish
and English and there was the Gigaword monolin-
gual corpus for English. All data can be found on
the Translation Task’s website1. We used all News
corpora (and Gigaword for English) to build the lan-

1http://www.statmt.org/wmt12/translation-task.html

Corpus Sent. Words Vocab. avg.len.

EPPS Eng 1.90 M 49.40 M 124.03 k 26.05
Spa 52.66 M 154.67 k 27.28

News.Com Eng 0.15 M 3.73 M 62.70 k 24.20
Spa 4.33 M 73.97 k 28.09

UN Eng 8.38 M 205.68 M 575.04 k 24.54
Spa 239.40 M 598.54 k 28.56

Table 1: English-Spanish corpora statistics for
NAACL-WMT 2012 after cleaning process

guage model. Initially, a LM was built for every cor-
pus and then they were combined to produce de final
LM. Table 2 presents the statistics of each corpora,
again after the cleaning process.

Corpus Sent. Words Vocab.

EPPS
Eng 2.22 M 59.88 M 144.03 k
Spa 2.12 M 61.97 M 174.92 k

News.Com. Eng 0.21 M 5.08 M 72.55 k
Spa 0.18 M 5.24 M 81.56 k

UN Eng 11.20 M 315.90 M 767.12 k
Spa 11.20 M 372.21 M 725.73 k

News.07 Eng 3.79 M 90.25 M 711.55 k
Spa 0.05 M 1.33 M 64.10 k

News.08 Eng 13.01 M 308.82 M 1555.53 k
Spa 1.71 M 49.97 M 377.56 k

News.09 Eng 14.75 M 348.24 M 1648.05 k
Spa 1.07 M 30.57 M 287.81 k

News.10 Eng 6.81 M 158.15 M 915.14 k
Spa 0.69 M 19.58 M 226.76 k

News.11 Eng 13.46 M 312.50 M 1345.79 k
Spa 5.11 M 151.06 M 668.63 k

Giga Eng 22.52 M 657.88 M 3860.67 k

Table 2: Details of monolingual corpora used for
building language-models.

For internal testing we used the News 2011’s data
and concatenated the remaining three years of News
data as a single parallel corpus for development. Ta-
ble 3 shows the statistics for these two sets and in-
cludes in the last rows the statistics of the official test
set for this year’s translation task.

2.2 Corpus processing

All corpora were processed in order to remove or
normalize ambiguous or special characters such as
quotes and spaces. Among other TALP-UPC spe-
cific scripts, we used a modified version of the
normalized-punctuation script provided by the orga-
nizers in order to skip the reordering rules which in-
volved quotes and stop punctuation signs.
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Corpus Sent. Words Vocab. avg.len.

dev Eng 7.57 k 189.01 k 18.61 k 24.98
Spa 202.80 k 21.75 k 26.80

test11 Eng 3.00 k 74.73 k 10.82 k 24.88
Spa 81.01 k 12.16 k 26.98

test12 Eng 3.00 k 72.91 k 10.24 k 24.28
Spa 80.38 k 12.02 k 26.77

Table 3: Detail of development and test corpora used
to tune and test the system.

POS-Tagging and tokenization for both Spanish
and English data sets were obtained using FreeLing
(Padró et al., 2010). Freeling tokenization is able
to deal with contractions (“del”! “de el”) and cli-
tics separation (“cómpramelo” ! “compra me lo”)
in Spanish and English. Stemming was performed
using Snowball (Porter, 2001).

Surface text was lowercased conditionally based
on the POS tagging: proper nouns and adjectives
were separated from other POS categories to deter-
mine if a string should be fully lowercased (no spe-
cial property), partially lowercased (proper noun or
adjective) or not lowercased at all (acronym).

Bilingual corpora were cleaned with clean-
corpus-n script of Moses (Koehn et al., 2007) re-
moving all sentence pair with more than 70 words
in any language, considering the already tokenized
data. That script also ensures a maximum length
ratio below of nine (9) words between source and
target sentences.

Postprocessing in both languages consisted of a
recasing step using Moses recaser script. Further-
more we built an additional script in order to check
the casing of output names with respect to source
sentence names and case them accordingly, with ex-
ception of names placed at beginning of the sen-
tence. After recasing, a final detokenization step
was performed using standard Moses tools. Span-
ish postprocessing also included two special scripts
to recover contractions and clitics.

2.3 Language Model and alignment
configuration

Word alignment was performed at stem level with
GIZA++ toolkit (Och and Ney, 2003) and grow-
diag-final-and joint alignment.

Language models were built from the monolin-

gual data provided covering different domains: Eu-
roparl, News and UN. We built them using Kneser-
Ney algorithm (Chen and Goodman, 1999), inter-
polation in order to avoid over-fitting and consider-
ing unknown words. First we built a 5-gram lan-
guage model for each corpus; then, the final LM
was obtained interpolating them all towards the de-
velopment set. We used SRI Language Model (Stol-
cke, 2002) toolkit, which provides compute-best-mix
script for the interpolation.

The POS language model was built analogously
to the surface language with some variants: it was a
7-gram LM, without discounting nor interpolation.

3 Improvement strategies

3.1 Motivations

In order to improve the baseline system we present
two different strategies. First we present an im-
provement strategy based on morphology simplifi-
cation plus generation to deal with the problems
raised by morphological rich languages such as
Spanish. Second we present a domain adaptation
strategy that consists in deriving new units into the
phrase-table.

3.2 Morphology simplification

The first improvement strategy is based on morphol-
ogy simplification when translating from English to
Spanish.

The problems raised when translating from a lan-
guage such as English into richer morphology lan-
guages are well known and are a research line of
interest nowadays (Popovic and Ney, 2004; Koehn
and Hoang, 2007; de Gispert and Mariño, 2008;
Toutanova et al., 2008; Clifton and Sarkar, 2011). In
that direction, inflection causes a very large target-
language lexicon with a significant data sparsity
problem. In addition, system output is limited only
to the inflected phrases available in the parallel train-
ing corpus. Hence, SMT systems cannot gener-
ate proper inflections unless they have learned them
from the appropriate phrases. That would require to
have a parallel corpus containing all possible word
inflections for all phrases available, which it is an
unfeasible task.

The morphology related problems in MT have
been addressed from different approaches and may
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Figure 2: Above, flow diagram of the training of simplified morphology translation models. Below, Spanish
morphology generation as an independent classification task.

Type Text
PLAIN la Comisión puede llegar

TARGET: a paralizar el programa
TARGET+PoS la Comisión VMIP3S0[poder]

(Gen. Sur.): llegar a paralizar el programa
TARGET+PoS la Comisión VMIPpn0[poder]
(Simpl. PoS): llegar a paralizar el programa

Table 4: Example of morphology simplification
steps taken for Spanish verbs.

be summarized in four categories: i) factored mod-
els (Koehn and Hoang, 2007), enriched input mod-
els (Avramidis and Koehn, 2008; Ueffing and Ney,
2003), segmented translation (Virpioja et al., 2007)
and morphology generation (Toutanova et al., 2008;
de Gispert and Mariño, 2008).

Our strategy for dealing with morphology gener-
ation is based in the latter approach (de Gispert and
Mariño, 2008) (Figure 2). We center our strategy in
simplifying only verb forms as previous studies in-
dicate that they contribute to the main improvement
(Ueffing and Ney, 2003; de Gispert and Mariño,
2008). That strategy makes clear the real impact
of morphology simplification by providing an upper
bound oracle for the studied scenarios.

The approach is as follows: First, target verbs
are simplified substituting them with their sim-
plified forms (Table 4). In this example, the
verb form ‘puede’ (he can) is transformed into
‘VMIPpn0[poder]’, indicating simplified POS and
base form (lemma); where ‘p’ and ‘n’ represent any

person and number once simplified (from 3rd per-
son singular). Secondly, standard MT models are
obtained from English into simplified morphology
Spanish. Morphology prediction acts as a black box,
with its models estimated over a simplified morphol-
ogy parallel texts (including target language model
and lexicon models).

Generation is implemented by Decision Directed
Acyclic Graphs (DDAG) (Platt et al., 2000) com-
pound of binary SVM classifiers. In detail, a DDAG
combines many two-class classifiers to a multi-
classification task (Hernández et al., 2010).

3.3 Domain adaptation

Depending on the available resources, different do-
main adaptation techniques are possible. Usually,
the baseline system is built with a large out-of-
domain corpus (in our case the European Parlia-
ment) and we aim to adapt to another domain that
has limited data, either only monolingual or hope-
fully bilingual as well. The WMT Translation Task
focuses on adapting the system to a news domain,
offering an in-domain parallel corpus to work with.

In case of additional target monolingual data, pre-
vious works have focused on language model inter-
polations (Bulyko et al., 2007; Mohit et al., 2009;
Wu et al., 2008). When parallel in-domain data
is available, the latest researches have focused on
mixture model adaptation of the translation model
(Civera and Juan, 2007; Foster and Kuhn, 2007; Fos-
ter et al., 2010). Our work is closer to the latest ap-
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proaches. We used the in-domain parallel data to
adapt the translation model, but focusing on the de-
coding errors that the out-of-domain baseline system
made while translating the in-domain corpus. The
idea is to detect where the system made its mistakes
and use the in-domain data to teach it how to correct
them.

Our approach began with a baseline system built
with the Parliament and the United Nations parallel
corpora but without the News parallel corpus. The
rest of the configuration remained the same for the
baseline. With this alternative baseline system, we
translated the source side of the News parallel cor-
pus to obtain a revised corpus of it, as defined in
(Henrı́quez Q. et al., 2011). The revised corpus con-
sists of the source side, the output translation and the
target side, also called the target correction. The out-
put translation and its reference are then compare to
detect possible mistakes that the system caused dur-
ing decoding.

The translation was used as a pivot to find a word-
to-word alignment between the source side and the
target correction. The word-to-word alignment be-
tween source side and translation was provided by
Moses during decoding. The word-to-word align-
ment between the output translation and target cor-
rection was obtained following these steps:

1. Translation Edit Rate (Snover et al., 2006) be-
tween each output translation and target correc-
tion sentence pair was computed to obtain its
edit path and detect which words do not change
between sentences. Words that did not change
were directly linked

2. Going from left to right, for each unaligned
word w

out

on the output translation sentence
and each word w

trg

on the target correction
sentence, a similarity function was computed
between them and w

out

got aligned with the
word w

trg

that maximized this similarity.

The similarity function was defined as a linear
combination of features that considered if the words
w

out

and w
trg

were identical, if the previous or fol-
lowing word of any of them were aligned with each
other and a lexical weight between them using the
bilingual lexical features from the baseline as refer-
ences.

With both word-to-word alignments computed for
a sentence pair, we linked source word w

src

with tar-
get word w

trg

is and only if exists a output transla-
tion word w

out

such that there is a link between w
src

and w
out

and a link between w
out

and w
trg

.
After aligning the corpus, we built the transla-

tion and reordering model of it, using the baseline
settings. We called these translation and reorder-
ing models, revised models. They include phrases
found in the baseline that were correctly chosen dur-
ing decoding and also new phrases that came from
the differences between the output translation and its
correction.

Finally, the revised translation model features
were linearly combined with their corresponding
baseline features to build the final translation model,
called the derived translation model. The combina-
tion was computed in the following way:

hi

d

(s, t) = ↵hi

b

(s, t) + (1� ↵)hi

r

(s, t) (2)

where hi

d

(s, t) is the derived feature function i for
the bilingual phrase (s, t), hi

b

(s, t) is the baseline
feature function of and hi

r

(s, t) the revised feature
function. A value of ↵ = 0.60 was chosen after de-
termining it was the one that maximized the BLEU
score of the development set during tuning. Differ-
ent values for ↵ were considered, between 0.50 and
0.95 with increments of 0.05 between them.

Regarding the reordering model, we added the un-
seen phrases from the revised reordering model into
the baseline reordering model, leaving the remaining
baseline phrase reordering weights intact.

4 Results

4.1 Language Model perplexities

LM Perplexity
Surface POS

Baseline 205.36 13.23
Simplified 193.66 12.66

Table 6: Perplexities obtained across baseline and
morphology simplification.

Before evaluating translation performance, we
studied to what extent the morphology simplifica-
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EN!ES BLEU NIST TER METEOR
CS CI CS CI CS CI

test11

Baseline 30.7 32.53 7.820 8.120 57.19 55.05
Morph. Oracle 31.56 33.35 7.949 8.233 56.44 –
Morph. Gen. 31.03 32.85 7.866 8.163 56.95 55.39
Adaptation 31.16 32.93 7.857 8.155 56.88 55.19

test12

Baseline 31.21 32.74 7.981 8.244 55.76 55.48
Morph. Oracle 32 33.41 8.090 8.339 55.15 –
Morph. Gen. 31.46 32.98 8.010 8.274 55.62 55.66
Adaptation 31.73 33.24 8.037 8.294 55.37 55.82

(a) English!Spanish

ES!EN BLEU NIST TER METEOR
CS CI CS CI CS CI

test11 Baseline 28.81 30.29 7.670 7.933 59.01 51.09
test12 32.27 33.81 8.014 8.282 56.26 53.96

(b) Spanish!English

Table 5: Automatic scores for English$Spanish translations. CS and CI indicate Case-Sensitive or Case-
Insensitive evaluations.

tion strategy may help decreasing the language mod-
els perplexity.

In table 6 we can see the effects of simplification.
Perplexity is computed from the corresponding in-
ternal test sets to the baseline or simplified language
models.

In general terms, the simplification process is
slightly effective, yielding an averaged improvement
of �5.02%.

4.2 Translation performance

Evaluations were performed with different transla-
tion quality measures: BLEU, NIST, TER and ME-
TEOR (Denkowski and Lavie, 2011) which evalu-
ate distinct aspects of the quality of the translations.
First we evaluated the WMT11 test (test11) as an
internal indicator of our systems. Later we did the
same analysis with the WMT12 official test files.

Table 5 presents the obtained results. Experi-
ments began building the baseline system, which
included the special treatment for clitics, contrac-
tions and casing as described in Section 2.2. Once
the baseline was set, we proceeded with two paral-
lel lines, one for morphology simplification and the
other for domain adaptation.

For morphology generation approach (Table 5)

oracles (Morph. Oracle) represent how much gain
we could expect with a perfect generation module
and generation (Morph. Gen.) represent the actual
performance combining simplification and the gen-
eration strategies. Oracles achieve a promising av-
eraged improvement of +1.79% (depending on the
metric or the test set) with respect to the baseline.
However, generation only improves the baseline by
a +0.61%, encouraging us to keep working on that
strategy.

Regarding the domain adaptation approach, we
evaluated the internal test set (test11). As we can
see again on Table 5a the adaptation strategy outper-
forms the baseline on all quality measures starting
with an averaged gain of +0.94%.

Comparing the two approaches, we can see that
the domain adaptation method was better in terms of
BLEU score and TER than the morphology genera-
tion but the latter was better on NIST and METEOR
on our internal test set. This made us decided for the
latter as the primary system submitted, leaving the
domain adaptation approach system as a contrastive
submission. Additionally to the automatic quality
measures, we are particularly interested in the man-
ual evaluation results, as we believe the morphology
generation will be more sensitive to this type of eval-
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uation than to automatic metrics.
Official results (test12) can be found on Table 5b.

Surprisingly, this time the domain adaptation ap-
proach performed better than the morphology sim-
plification on all metrics: BLEU, NIST, TER and
METEOR, with an averaged gain of +1.04% over
the baseline system, which ranks our submissions
second and third in terms of BLEU scores (con-
trastive and primary respectively) when compared
with all other submissions for the WMT12 transla-
tion task.

5 Conclusions and further work

This papers describes the UPC participation during
the 2012 WMT’s Translation Task. We have partici-
pated with a baseline system for Spanish-to-English,
a baseline system for English-to-Spanish and two in-
dependent enhancements to the baseline system for
English-to-Spanish as well.

Our primary submission applied morphology sim-
plification and generation with the objective of ease
the translation process when dealing with rich mor-
phology languages like Spanish, deferring the mor-
phology generation as an external post-process clas-
sification task.

The second approach focused on domain adapta-
tion. Instead of concatenating the training News par-
allel data together with the European Parliament and
United Nations, a preliminary system was built with
the latter two and separated translation and reorder-
ing models were computed using the News parallel
data. These models were then added to the prelimi-
nary models in order to build the adapted system.

Results showed that both approaches performed
better than the baseline system, being the domain
adaptation configuration the one that performed bet-
ter for 2012 test in terms of all automatic quality
indicators: BLEU, NIST, TER and METEOR. We
look forward the the manual evaluation results as we
believe our primary system may be more sensitive to
this type of human evaluation.

Future work should focus on combining the two
approaches, applying first morphological general-
ization to the training data and then using the domain
adaptation technique on the resulting corpora in or-
der to determine the joined benefits of both strate-
gies.
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Abstract

We present Joshua 4.0, the newest version
of our open-source decoder for parsing-based
statistical machine translation. The main con-
tributions in this release are the introduction
of a compact grammar representation based
on packed tries, and the integration of our
implementation of pairwise ranking optimiza-
tion, J-PRO. We further present the exten-
sion of the Thrax SCFG grammar extractor
to pivot-based extraction of syntactically in-
formed sentential paraphrases.

1 Introduction

Joshua is an open-source toolkit1 for parsing-based
statistical machine translation of human languages.
The original version of Joshua (Li et al., 2009) was
a reimplementation of the Python-based Hiero ma-
chine translation system (Chiang, 2007). It was later
extended to support grammars with rich syntactic
labels (Li et al., 2010a). More recent efforts in-
troduced the Thrax module, an extensible Hadoop-
based extraction toolkit for synchronous context-
free grammars (Weese et al., 2011).

In this paper we describe a set of recent exten-
sions to the Joshua system. We present a new com-
pact grammar representation format that leverages
sparse features, quantization, and data redundancies
to store grammars in a dense binary format. This al-
lows for both near-instantaneous start-up times and
decoding with extremely large grammars. In Sec-
tion 2 we outline our packed grammar format and

1joshua-decoder.org

present experimental results regarding its impact on
decoding speed, memory use and translation quality.

Additionally, we present Joshua’s implementation
of the pairwise ranking optimization (Hopkins and
May, 2011) approach to translation model tuning.
J-PRO, like Z-MERT, makes it easy to implement
new metrics and comes with both a built-in percep-
tron classifier and out-of-the-box support for widely
used binary classifiers such as MegaM and Max-
Ent (Daumé III and Marcu, 2006; Manning and
Klein, 2003). We describe our implementation in
Section 3, presenting experimental results on perfor-
mance, classifier convergence, and tuning speed.

Finally, we introduce the inclusion of bilingual
pivoting-based paraphrase extraction into Thrax,
Joshua’s grammar extractor. Thrax’s paraphrase ex-
traction mode is simple to use, and yields state-of-
the-art syntactically informed sentential paraphrases
(Ganitkevitch et al., 2011). The full feature set of
Thrax (Weese et al., 2011) is supported for para-
phrase grammars. An easily configured feature-level
pruning mechanism allows to keep the paraphrase
grammar size manageable. Section 4 presents de-
tails on our paraphrase extraction module.

2 Compact Grammar Representation

Statistical machine translation systems tend to per-
form better when trained on larger amounts of bilin-
gual parallel data. Using tools such as Thrax, trans-
lation models and their parameters are extracted
and estimated from the data. In Joshua, translation
models are represented as synchronous context-free
grammars (SCFGs). An SCFG is a collection of
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rules {ri} that take the form:

ri = Ci → 〈αi, γi,∼i, ~ϕi〉, (1)

where left-hand side Ci is a nonterminal symbol, the
source side αi and the target side γi are sequences
of both nonterminal and terminal symbols. Further,
∼i is a one-to-one correspondence between the non-
terminal symbols of αi and γi, and ~ϕi is a vector of
features quantifying the probability of αi translat-
ing to γi, as well as other characteristics of the rule
(Weese et al., 2011). At decoding time, Joshua loads
the grammar rules into memory in their entirety, and
stores them in a trie data structure indexed by the
rules’ source side. This allows the decoder to effi-
ciently look up rules that are applicable to a particu-
lar span of the (partially translated) input.

As the size of the training corpus grows, so does
the resulting translation grammar. Using more di-
verse sets of nonterminal labels – which can signifi-
cantly improve translation performance – further ag-
gravates this problem. As a consequence, the space
requirements for storing the grammar in memory
during decoding quickly grow impractical. In some
cases grammars may become too large to fit into the
memory on a single machine.

As an alternative to the commonly used trie struc-
tures based on hash maps, we propose a packed trie
representation for SCFGs. The approach we take is
similar to work on efficiently storing large phrase
tables by Zens and Ney (2007) and language mod-
els by Heafield (2011) and Pauls and Klein (2011) –
both language model implementations are now inte-
grated with Joshua.

2.1 Packed Synchronous Tries

For our grammar representation, we break the SCFG
up into three distinct structures. As Figure 1 in-
dicates, we store the grammar rules’ source sides
{αi}, target sides {γi}, and feature data {~ϕi} in sep-
arate formats of their own. Each of the structures
is packed into a flat array, and can thus be quickly
read into memory. All terminal and nonterminal
symbols in the grammar are mapped to integer sym-
bol id’s using a globally accessible vocabulary map.
We will now describe the implementation details for
each representation and their interactions in turn.

2.1.1 Source-Side Trie
The source-side trie (or source trie) is designed

to facilitate efficient lookup of grammar rules by
source side, and to allow us to completely specify a
matching set of rule with a single integer index into
the trie. We store the source sides {αi} of a grammar
in a downward-linking trie, i.e. each trie node main-
tains a record of its children. The trie is packed into
an array of 32-bit integers. Figure 1 illustrates the
composition of a node in the source-side trie. All
information regarding the node is stored in a con-
tiguous block of integers, and decomposes into two
parts: a linking block and a rule block.

The linking block stores the links to the child trie
nodes. It consists of an integer n, the number of chil-
dren, and n blocks of two integers each, containing
the symbol id aj leading to the child and the child
node’s address sj (as an index into the source-side
array). The children in the link block are sorted by
symbol id, allowing for a lookup via binary or inter-
polation search.

The rule block stores all information necessary to
reconstruct the rules that share the source side that
led to the current source trie node. It stores the num-
ber of rules, m, and then a tuple of three integers
for each of the m rules: we store the symbol id of
the left-hand side, an index into the target-side trie
and a data block id. The rules in the data block are
initially in an arbitrary order, but are sorted by ap-
plication cost upon loading.

2.1.2 Target-Side Trie
The target-side trie (or target trie) is designed to

enable us to uniquely identify a target side γi with a
single pointer into the trie, as well as to exploit re-
dundancies in the target side string. Like the source
trie, it is stored as an array of integers. However,
the target trie is a reversed, or upward-linking trie:
a trie node retains a link to its parent, as well as the
symbol id labeling said link.

As illustrated in Figure 1, the target trie is ac-
cessed by reading an array index from the source
trie, pointing to a trie node at depth d. We then fol-
low the parent links to the trie root, accumulating
target side symbols gj into a target side string gd

1 as
we go along. In order to match this traversal, the tar-
get strings are entered into the trie in reverse order,
i.e. last word first. In order to determine d from a
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Figure 1: An illustration of our packed grammar data structures. The source sides of the grammar rules are
stored in a packed trie. Each node may contain n children and the symbols linking to them, and m entries
for rules that share the same source side. Each rule entry links to a node in the target-side trie, where the full
target string can be retrieved by walking up the trie until the root is reached. The rule entries also contain
a data block id, which identifies feature data attached to the rule. The features are encoded according to a
type/quantization specification and stored as variable-length blocks of data in a byte buffer.

pointer into the target trie, we maintain an offset ta-
ble in which we keep track of where each new trie
level begins in the array. By first searching the offset
table, we can determine d, and thus know how much
space to allocate for the complete target side string.

To further benefit from the overlap there may be
among the target sides in the grammar, we drop the
nonterminal labels from the target string prior to in-
serting them into the trie. For richly labeled gram-
mars, this collapses all lexically identical target sides
that share the same nonterminal reordering behavior,
but vary in nonterminal labels into a single path in
the trie. Since the nonterminal labels are retained in
the rules’ source sides, we do not lose any informa-
tion by doing this.

2.1.3 Features and Other Data

We designed the data format for the grammar
rules’ feature values to be easily extended to include
other information that we may want to attach to a
rule, such as word alignments, or locations of occur-
rences in the training data. In order to that, each rule
ri has a unique block id bi associated with it. This
block id identifies the information associated with

the rule in every attached data store. All data stores
are implemented as memory-mapped byte buffers
that are only loaded into memory when actually re-
quested by the decoder. The format for the feature
data is detailed in the following.

The rules’ feature values are stored as sparse fea-
tures in contiguous blocks of variable length in a
byte buffer. As shown in Figure 1, a lookup table
is used to map the bi to the index of the block in the
buffer. Each block is structured as follows: a sin-
gle integer, n, for the number of features, followed
by n feature entries. Each feature entry is led by an
integer for the feature id fj , and followed by a field
of variable length for the feature value vj . The size
of the value is determined by the type of the feature.
Joshua maintains a quantization configuration which
maps each feature id to a type handler or quantizer.
After reading a feature id from the byte buffer, we
retrieve the responsible quantizer and use it to read
the value from the byte buffer.

Joshua’s packed grammar format supports Java’s
standard primitive types, as well as an 8-bit quan-
tizer. We chose 8 bit as a compromise between
compression, value decoding speed and transla-
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Grammar Format Memory

Hiero (43M rules)
Baseline 13.6G
Packed 1.8G

Syntax (200M rules)
Baseline 99.5G
Packed 9.8G

Packed 8-bit 5.8G

Table 1: Decoding-time memory use for the packed
grammar versus the standard grammar format. Even
without lossy quantization the packed grammar rep-
resentation yields significant savings in memory
consumption. Adding 8-bit quantization for the real-
valued features in the grammar reduces even large
syntactic grammars to a manageable size.

tion performance (Federico and Bertoldi, 2006).
Our quantization approach follows Federico and
Bertoldi (2006) and Heafield (2011) in partitioning
the value histogram into 256 equal-sized buckets.
We quantize by mapping each feature value onto the
weighted average of its bucket. Joshua allows for an
easily per-feature specification of type. Quantizers
can be share statistics across multiple features with
similar value distributions.

2.2 Experiments

We assess the packed grammar representation’s
memory efficiency and impact on the decoding
speed on the WMT12 French-English task. Ta-
ble 1 shows a comparison of the memory needed
to store our WMT12 French-English grammars at
runtime. We can observe a substantial decrease in
memory consumption for both Hiero-style gram-
mars and the much larger syntactically annotated
grammars. Even without any feature value quantiza-
tion, the packed format achieves an 80% reduction
in space requirements. Adding 8-bit quantization
for the log-probability features yields even smaller
grammar sizes, in this case a reduction of over 94%.

In order to avoid costly repeated retrievals of indi-
vidual feature values of rules, we compute and cache
the stateless application cost for each grammar rule
at grammar loading time. This, alongside with a lazy
approach to rule lookup allows us to largely avoid
losses in decoding speed.

Figure shows a translation progress graph for the
WMT12 French-English development set. Both sys-
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Figure 2: A visualization of the loading and decod-
ing speed on the WMT12 French-English develop-
ment set contrasting the packed grammar represen-
tation with the standard format. Grammar loading
for the packed grammar representation is substan-
tially faster than that for the baseline setup. Even
with a slightly slower decoding speed (note the dif-
ference in the slopes) the packed grammar finishes
in less than half the time, compared to the standard
format.

tems load a Hiero-style grammar with 43 million
rules, and use 16 threads for parallel decoding. The
initial loading time for the packed grammar repre-
sentation is dramatically shorter than that for the
baseline setup (a total of 176 seconds for loading and
sorting the grammar, versus 1897 for the standard
format). Even though decoding speed is slightly
slower with the packed grammars (an average of 5.3
seconds per sentence versus 4.2 for the baseline), the
effective translation speed is more than twice that of
the baseline (1004 seconds to complete decoding the
2489 sentences, versus 2551 seconds with the stan-
dard setup).

3 J-PRO: Pairwise Ranking Optimization
in Joshua

Pairwise ranking optimization (PRO) proposed by
(Hopkins and May, 2011) is a new method for dis-
criminative parameter tuning in statistical machine
translation. It is reported to be more stable than the
popular MERT algorithm (Och, 2003) and is more
scalable with regard to the number of features. PRO
treats parameter tuning as an n-best list reranking
problem, and the idea is similar to other pairwise
ranking techniques like ranking SVM and IR SVMs
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(Li, 2011). The algorithm can be described thusly:
Let h(c) = 〈w,Φ(c)〉 be the linear model score

of a candidate translation c, in which Φ(c) is the
feature vector of c and w is the parameter vector.
Also let g(c) be the metric score of c (without loss
of generality, we assume a higher score indicates a
better translation). We aim to find a parameter vector
w such that for a pair of candidates {ci, cj} in an n-
best list,

(h(ci)− h(cj))(g(ci)− g(cj)) =

〈w,Φ(ci)−Φ(cj)〉(g(ci)− g(cj)) > 0,

namely the order of the model score is consistent
with that of the metric score. This can be turned into
a binary classification problem, by adding instance

∆Φij = Φ(ci)−Φ(cj)

with class label sign(g(ci) − g(cj)) to the training
data (and symmetrically add instance

∆Φji = Φ(cj)−Φ(ci)

with class label sign(g(cj) − g(ci)) at the same
time), then using any binary classifier to find the w
which determines a hyperplane separating the two
classes (therefore the performance of PRO depends
on the choice of classifier to a large extent). Given
a training set with T sentences, there are O(Tn2)
pairs of candidates that can be added to the training
set, this number is usually much too large for effi-
cient training. To make the task more tractable, PRO
samples a subset of the candidate pairs so that only
those pairs whose metric score difference is large
enough are qualified as training instances. This fol-
lows the intuition that high score differential makes
it easier to separate good translations from bad ones.

3.1 Implementation
PRO is implemented in Joshua 4.0 named J-PRO.
In order to ensure compatibility with the decoder
and the parameter tuning module Z-MERT (Zaidan,
2009) included in all versions of Joshua, J-PRO is
built upon the architecture of Z-MERT with sim-
ilar usage and configuration files(with a few extra
lines specifying PRO-related parameters). J-PRO in-
herits Z-MERT’s ability to easily plug in new met-
rics. Since PRO allows using any off-the-shelf bi-
nary classifiers, J-PRO provides a Java interface that

enables easy plug-in of any classifier. Currently, J-
PRO supports three classifiers:

• Perceptron (Rosenblatt, 1958): the percep-
tron is self-contained in J-PRO, no external re-
sources required.

• MegaM (Daumé III and Marcu, 2006): the clas-
sifier used by Hopkins and May (2011).2

• Maximum entropy classifier (Manning and
Klein, 2003): the Stanford toolkit for maxi-
mum entropy classification.3

The user may specify which classifier he wants to
use and the classifier-specific parameters in the J-
PRO configuration file.

The PRO approach is capable of handling a large
number of features, allowing the use of sparse dis-
criminative features for machine translation. How-
ever, Hollingshead and Roark (2008) demonstrated
that naively tuning weights for a heterogeneous fea-
ture set composed of both dense and sparse features
can yield subpar results. Thus, to better handle the
relation between dense and sparse features and pro-
vide a flexible selection of training schemes, J-PRO
supports the following four training modes. We as-
sume M dense features and N sparse features are
used:

1. Tune the dense feature parameters only, just
like Z-MERT (M parameters to tune).

2. Tune the dense + sparse feature parameters to-
gether (M +N parameters to tune).

3. Tune the sparse feature parameters only with
the dense feature parameters fixed, and sparse
feature parameters scaled by a manually speci-
fied constant (N parameters to tune).

4. Tune the dense feature parameters and the scal-
ing factor for sparse features, with the sparse
feature parameters fixed (M+1 parameters to
tune).

J-PRO supports n-best list input with a sparse fea-
ture format which enumerates only the firing fea-
tures together with their values. This enables a more
compact feature representation when numerous fea-
tures are involved in training.

2hal3.name/megam
3nlp.stanford.edu/software
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Figure 3: Experimental results on the development and test sets. The x-axis is the number of iterations (up to
30) and the y-axis is the BLEU score. The three curves in each figure correspond to three classifiers. Upper
row: results trained using only dense features (10 features); Lower row: results trained using dense+sparse
features (1026 features). Left column: development set (MT03); Middle column: test set (MT04); Right
column: test set (MT05).

Datasets Z-MERT
J-PRO

Percep MegaM Max-Ent
Dev (MT03) 32.2 31.9 32.0 32.0
Test (MT04) 32.6 32.7 32.7 32.6
Test (MT05) 30.7 30.9 31.0 30.9

Table 2: Comparison between the results given by Z-MERT and J-PRO (trained with 10 features).

3.2 Experiments

We did our experiments using J-PRO on the NIST
Chinese-English data, and BLEU score was used as
the quality metric for experiments reported in this
section.4 The experimental settings are as the fol-
lowing:

Datasets: MT03 dataset (998 sentences) as devel-
opment set for parameter tuning, MT04 (1788 sen-
tences) and MT05 (1082 sentences) as test sets.

Features: Dense feature set include the 10 regular
features used in the Hiero system; Sparse feature set

4We also experimented with other metrics including TER,
METEOR and TER-BLEU. Similar trends as reported in this
section were observed. These results are omitted here due to
limited space.

includes 1016 target-side rule POS bi-gram features
as used in (Li et al., 2010b).

Classifiers: Perceptron, MegaM and Maximum
entropy.

PRO parameters: Γ = 8000 (number of candidate
pairs sampled uniformly from the n-best list), α = 1
(sample acceptance probability), Ξ = 50 (number of
top candidates to be added to the training set).

Figure 3 shows the BLEU score curves on the
development and test sets as a function of itera-
tions. The upper and lower rows correspond to
the results trained with 10 dense features and 1026
dense+sparse features respectively. We intentionally
selected very bad initial parameter vectors to verify
the robustness of the algorithm. It can be seen that

288



with each iteration, the BLEU score increases mono-
tonically on both development and test sets, and be-
gins to converge after a few iterations. When only 10
features are involved, all classifiers give almost the
same performance. However, when scaled to over a
thousand features, the maximum entropy classifier
becomes unstable and the curve fluctuates signifi-
cantly. In this situation MegaM behaves well, but
the J-PRO built-in perceptron gives the most robust
performance.

Table 2 compares the results of running Z-MERT
and J-PRO. Since MERT is not able to handle nu-
merous sparse features, we only report results for
the 10-feature setup. The scores for both setups
are quite close to each other, with Z-MERT doing
slightly better on the development set but J-PRO
yielding slightly better performance on the test set.

4 Thrax: Grammar Extraction at Scale

4.1 Translation Grammars

In previous years, our grammar extraction methods
were limited by either memory-bounded extractors.
Moving towards a parallelized grammar extraction
process, we switched from Joshua’s formerly built-
in extraction module to Thrax for WMT11. How-
ever, we were limited to a simple pseudo-distributed
Hadoop setup. In a pseudo-distributed cluster, all
tasks run on separate cores on the same machine
and access the local file system simultaneously, in-
stead of being distributed over different physical ma-
chines and harddrives. This setup proved unreliable
for larger extractions, and we were forced to reduce
the amount of data that we used to train our transla-
tion models.

For this year, however, we had a permanent clus-
ter at our disposal, which made it easy to extract
grammars from all of the available WMT12 data.
We found that on a properly distributed Hadoop
setup Thrax was able to extract both Hiero gram-
mars and the much larger SAMT grammars on the
complete WMT12 training data for all tested lan-
guage pairs. The runtimes and resulting (unfiltered)
grammar sizes for each language pair are shown in
Table 3 (for Hiero) and Table 4 (for SAMT).

Language Pair Time Rules
Cs – En 4h41m 133M
De – En 5h20m 219M
Fr – En 16h47m 374M
Es – En 16h22m 413M

Table 3: Extraction times and grammar sizes for Hi-
ero grammars using the Europarl and News Com-
mentary training data for each listed language pair.

Language Pair Time Rules
Cs – En 7h59m 223M
De – En 9h18m 328M
Fr – En 25h46m 654M
Es – En 28h10m 716M

Table 4: Extraction times and grammar sizes for
the SAMT grammars using the Europarl and News
Commentary training data for each listed language
pair.

4.2 Paraphrase Extraction

Recently English-to-English text generation tasks
have seen renewed interest in the NLP commu-
nity. Paraphrases are a key component in large-
scale state-of-the-art text-to-text generation systems.
We present an extended version of Thrax that im-
plements distributed, Hadoop-based paraphrase ex-
traction via the pivoting approach (Bannard and
Callison-Burch, 2005). Our toolkit is capable of
extracting syntactically informed paraphrase gram-
mars at scale. The paraphrase grammars obtained
with Thrax have been shown to achieve state-of-the-
art results on text-to-text generation tasks (Ganitke-
vitch et al., 2011).

For every supported translation feature, Thrax im-
plements a corresponding pivoted feature for para-
phrases. The pivoted features are set up to be aware
of the prerequisite translation features they are de-
rived from. This allows Thrax to automatically de-
tect the needed translation features and spawn the
corresponding map-reduce passes before the pivot-
ing stage takes place. In addition to features use-
ful for translation, Thrax also offers a number of
features geared towards text-to-text generation tasks
such as sentence compression or text simplification.

Due to the long tail of translations in unpruned
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Source Bitext Sentences Words Pruning Rules
Fr – En 1.6M 45M p(e1|e2), p(e2|e1) > 0.001 49M

{Da + Sv + Cs + De + Es + Fr} – En 9.5M 100M
p(e1|e2), p(e2|e1) > 0.02 31M
p(e1|e2), p(e2|e1) > 0.001 91M

Table 5: Large paraphrase grammars extracted from EuroParl data using Thrax. The sentence and word
counts refer to the English side of the bitexts used.

translation grammars and the combinatorial effect
of pivoting, paraphrase grammars can easily grow
very large. We implement a simple feature-level
pruning approach that allows the user to specify up-
per or lower bounds for any pivoted feature. If a
paraphrase rule is not within these bounds, it is dis-
carded. Additionally, pivoted features are aware of
the bounding relationship between their value and
the value of their prerequisite translation features
(i.e. whether the pivoted feature’s value can be guar-
anteed to never be larger than the value of the trans-
lation feature). Thrax uses this knowledge to dis-
card overly weak translation rules before the pivot-
ing stage, leading to a substantial speedup in the ex-
traction process.

Table 5 gives a few examples of large paraphrase
grammars extracted from WMT training data. With
appropriate pruning settings, we are able to obtain
paraphrase grammars estimated over bitexts with
more than 100 million words.

5 Additional New Features

• With the help of the respective original au-
thors, the language model implementations by
Heafield (2011) and Pauls and Klein (2011)
have been integrated with Joshua, dropping
support for the slower and more difficult to
compile SRILM toolkit (Stolcke, 2002).

• We modified Joshua so that it can be used as
a parser to analyze pairs of sentences using a
synchronous context-free grammar. We imple-
mented the two-pass parsing algorithm of Dyer
(2010).

6 Conclusion

We present a new iteration of the Joshua machine
translation toolkit. Our system has been extended to-
wards efficiently supporting large-scale experiments

in parsing-based machine translation and text-to-text
generation: Joshua 4.0 supports compactly repre-
sented large grammars with its packed grammars,
as well as large language models via KenLM and
BerkeleyLM.We include an implementation of PRO,
allowing for stable and fast tuning of large feature
sets, and extend our toolkit beyond pure translation
applications by extending Thrax with a large-scale
paraphrase extraction module.
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Abstract

We present a variant of phrase-based SMT that
uses source-side parsing and a constituent re-
ordering model based on word alignments in
the word-aligned training corpus to predict hi-
erarchical block-wise reordering of the input.
Multiple possible translation orders are rep-
resented compactly in a source order lattice.
This source order lattice is then annotated with
phrase-level translations to form a lattice of to-
kens in the target language. Various feature
functions are combined in a log-linear fashion
to evaluate paths through that lattice.

1 Introduction

Dealing with word order differences is one of the
major challenges in automatic translation between
human languages. With its moderate context sen-
sitivity and reliance onn-gram language models,
phrase-based statistical machine translation (PB-
SMT) (Koehn et al., 2003) is usually quite good
at performing small word order changes — for
instance, the inversion of adjective and noun in
English-to-French translation and vice versa. How-
ever, it regularly fails to execute word order changes
over long distances, as they are required, for exam-
ple, to accommodate the substantial differences in
the word order in subordinate clauses between Ger-
man and English, or to cope with the phenomenon
of the “sentence bracket” (Satzklammer) in German
main clauses, in which the finite part of the verb
complex and additional elements (separable pre-
fixes, participles, infinitives, etc.) form a bracket that
encloses most of the arguments and other adverbial

constituents, as shown in Fig. 1. In order to keep de-
coding complexity in check, phrase-based decoders
such as theMoses system (Koehnet al., 2007) rou-
tinely limit the maximum distance for word order
changes to six or seven word positions, thus rul-
ing out, a priori, word order changes necessary to
achieve good and fluent translations.

As is generally acknowledged, word order dif-
ferences are not entirely arbitrary. By and large
they follow syntactic structure. An analysis of
word-aligned French-English data by Fox (2002)
showed that word alignment links rarely cross syn-
tactic boundaries. Wu’s (1997)Inversion Transac-
tion Grammar (ITG), assumes that word order dif-
ferences can be accounted for by hierarchical inver-
sion of adjacent blocks of text. Yamada and Knight
(2001) present a stochastic model for transforming
English parse trees into Japanese word sequences
within a source-channel framework for Japanese-
to-English translation. Collinset al. (2005) per-
form heuristic word re-ordering from German into
English word order based on German parse trees
with a particular focus on the aforementioned drastic
word order differences between German and English
clause structure.

Building on Chiang (2007), several systems under
active development (e.g., Weeseet al., 2011; Dyer
et al., 2010) rely on synchronous context-free gram-
mars to deal with word order differences. In essence,
these systems parse the input while synchronously
building a parse tree in the translation target lan-
guage, using probabilities of the source and target
trees as well as correspondence probabilities to eval-
uate translation hypotheses.
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“Dieser1 Vorschlag2 wird3 sicherlich4 im5 Ausschuß6 gründlich7 diskutiert8 werden9 müssen10 .”

“This1 proposal2 will 3 certainly4 have10 to10 be9 discussed8 toroughly7 in5 the5 commission6.”

Figure 1: The sentence bracket (Satzklammer) in German.

The system presented in this paper takes a slightly
different route and is closer to the approach taken
by Collins et al. (2005): we parse only monolin-
gually on the source side, re-order, and then trans-
late. However, unlike Collinset al. we do not use a
series of rules to perform the transformations (nor do
we re-order the training data on the source side), but
try to learn reordering rules from the word-aligned
corpus with the original word order on both sides.
Moreover, we do not commit to a single parse and
a single re-ordering of the source at translation time
but consider multiple parse alternatives to create a
lattice of possible translation orders. Each vertex in
the lattice corresponds to a specific subset of source
words translated up to that point.

Individual edges and sequences of edges in this
lattice are annotated with word- and phrase1-level
translations extracted from the word-aligned train-
ing corpus, in the same way as phrase tables for PB-
SMT are constructed2. An optimal path through the
lattice is determined by dynamic programming, con-
sidering a variety of feature functions combined in a
log-linear fashion.

In the following, we first describe the individ-
ual processing steps in more detail and then try to
shed some light on the system’s performance in this
year’s shared task. Due to space limitations, many
details will have to be skipped.

2 System Description

2.1 Grammatical framework

The central idea underlying this work is that gram-
mar constrains word reordering: we are allowed to
permute siblings in a CFG tree, or the governor and
its dependents in a dependency structure, but we are
not allowed to break phrase coherence by moving

1“Phrase” being any contiguous sequence of words in this con-
text, as in PBSMT.

2Except that we do not pre-compute phrase tables but construct
them dynamically on the fly using suffix arrays, as suggested
by Callison-Burchet al. (2005).

words out of their respective sub-tree. Obviously,
we need to be careful in the precise formulation of
our grammar, so as not to over-constrain word order
options. For example, the German parse tree for the
phraseein1 [zu hoher]2 Preis3 in Fig. 2 below rules
out the proper word order of its English translation
[too high]2 a1 price3.

NP

Det
ein1

N′

AP
[zu hoher]2

N
Preis3

Figure 2: X-bar syntax can be too restrictive. This tree
does not allow the word order of the English translation
[too high]2 a1 price3.

In her analysis of phrasal cohesion in transla-
tion, Fox (2002) pointed out that phrasal cohesion
is greater with respect to dependency structure than
with respect to constituent structure. We therefore
decided to rely on the segmentation granularity in-
herent in dependency parses.

2.2 Parsing

For parsing, we developed our own hybrid left-
corner dependency parser for German. In many re-
spects, it is inspired by the work on dependency
parsing by Eisner (1996) (edge factorization) and
McDonaldet al. (2005) (choice of features for edge
scores). From the generative point of view, we can
imagine the following generative process: We start
with the root word of the sentence. A Markov pro-
cess then generates this word’s immediate depen-
dents from left to right, at some point placing the
head word itself. The dependents (but not the head
word) are then expanded recursively in the same
fashion. At parse time we process the input left to
right, deciding for each word what its governors are,
or whether it governs some items to its left or right.
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Since each word has exactly one governor (bar the
root word), we renormalize edge scores by marginal-
izing over the potential governors. If the word is po-
tentially the left corner of a sub-tree, we establish a
new rule (akin to a dotted rule in an Earley parser)
and add it to the parse chart. For potential gover-
nors to the left, we scan the parse chart for partial
productions that end immediately before the word
in question and extend them by the word in ques-
tion. Whenever we add an item to a partial produc-
tion that is “past or reaching its head” (i.e., the span
covered by the rule includes the sub-tree’s root or the
newly added item is the root), we treat the sub-tree
as a new item in a bottom-up fashion, i.e., determine
potential governors outside of the span covered, add
a new rule if the sub-tree could be the left corner of a
larger sub-tree, etc. In addition to the joint probabil-
ity of all individual edges, we also consider the cost
of adding an item to a partial production. To reduce
parse complexity, we use a beam to limit the number
of potential governors that are considered for each
item. Unlike conventional CFGs, the set of “rules”
in this grammar is not finite; rules are generated on
the fly by a Markov process. This adds robustness;
we can always attach an item (token or sub-tree) to
one of its immediate neighbors.

2.3 Construction of a source order lattice (SOL)

Rows and columns in the parse chart correspond to
the start and end positions of parse spans in the sen-
tence. Each cell contains zero or more production
rules that correspond to different segmentations of
the respective span into sub-spans that may be re-
ordered during translation. Based on the underly-
ing part-of-speech tags, we retrieve similar syntactic
configurations from the word-aligned, source-side-
parsed training corpus.

For each example retrieved from the training cor-
pus, we determine, from the word alignment infor-
mation in the training corpus, the order in which the
dependents and the head word are translated. To re-
duce noise from alignment errors, each example is
weighted by the joint lexical translation probability
of the words immediately involved in the produc-
tion (i.e., the head and its dependents, but not grand-
children). Thus, examples with unlikely word align-
ments count less than examples that have highly
probable word alignments. If exact matches for the

production rule in question cannot be found in the
corpus (which happens frequently), we fall back on
a factorized model that maps from source to target
positions based on the part-of-speech of the depen-
dent in question and its governor. Words that are part
of the verb complex (auxiliaries, separable prefixes,
the ‘lexical head’, etc.) are grouped together and re-
ceive special treatment. (This is currently work in
progress; at this point, we translate only the lexical
head, but ignore negation and auxiliaries.)

For each of the topN segmentations suggested
by the parser, translation order probabilities are
computed on the basis of the weighted occurrence
counts, and used to set the edge weights in a lat-
tice of possible translation orders, which we call the
Source Order Lattice (SOL). Each vertex in this lat-
tice corresponds to a specific set of source words
translated so far. (In principle, the number of ver-
tices in this lattice is exponential in the length of the
input sentence; in practice, since we consider only a
small number of possibilities, their number is quite
manageable.) For each chunk of text in the sug-
gested order of translation, we increase the weight
of the edge between the vertex representing the set
of words translated so far and the vertex represent-
ing the set of words translated after this chunk has
been translated by the probability of translating the
chunk in question at this particular point in the trans-
lation process. Edges representing two or more con-
secutive words (with the exception of those repre-
senting a verb complex) are recursively replaced by
local SOLs, until each edge corresponds to a single
word in the source sentence.

2.4 Constructing a target word lattice

The global SOL thus constructed is then transformed
into a Target Word Lattice (TWL), while maintain-
ing underlying alignment information. Each individ-
ual edge or sequence of adjacent edges correspond-
ing to a contiguous sequence of words in the source
sentence is replaced by a lattice that encodes the
range of possible translations for the respective word
or phrase. Translations are extracted from the word-
aligned bilingual training corpus with the phrase-
extraction method that is commonly used in phrase-
based SMT. As it is done in theJoshua system
(Weeseet al., 2011), we extract phrase translations
on the fly from the word-aligned bilingual corpus
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using suffix arrays instead of using pre-computed
phrase tables.

2.5 Search

Once constructed, the TWL is searched with dy-
namic programming with a beam search. Hypothe-
ses are scored by a log-linear combination of the fol-
lowing feature functions. Feature values are normal-
ized by hypothesis length unless noted otherwise, to
safeguard against growth of cumulative feature val-
ues at different rates as the length of a hypothesis in-
creases, and to keep hypotheses of different lengths
mutually comparable.

• Distortion probabilities from the SOL as de-
scribed above.

• Relative phrase translation frequencies
based on counts in the training corpus.

• Lexical translation probabilities: forward
(p (target | source); normalized by target
length) and backward (p (source | target);
normalized by source length). Lexical transla-
tion probabilities are based on alignment link
counts in the word-aligned corpus.

• N -gram language model probability as esti-
mated with the SRILM toolkit.

• Fluency. Simple length-based normalization
of joint n-gram probabilities is problematic. It
entices the decoder to “throw in” additional,
highly frequent words to increase the language
model score. Inversely, lack of normalization
provides an incentive to keep translation hy-
potheses as short as possible, even at the ex-
pense of fluency. This fluency feature func-
tion computes the ratio of the language model
probability of each proposed target word in
context and its unigram probability. Rewards
(p (wi |wi−k+1 . . . wi−1) > p (wi)) and penal-
ties (p (wi |wi−k+1 . . . wi−1) < p (wi)) re-
ceive different weights in the log-linear com-
bination. Rewards are normalized by tar-
get length; penalties by the number of source
words translated. The rationale between the
different forms of normalization is this: if we
don’t normalize rewards by hypothesis length,
we have an incentive to pad the translation with

highly frequent tokens (commas, ‘the’) wher-
ever their probability in context is higher than
their simple unigram probability. Awkwardly
placed tokens, on the other hand, should always
trigger a penalty, and the system should not
be allowed to soften the blow by adding more
poorly, but not quite as poorly placed tokens.
Normalization of penalties by covered source
length is an acknowledgement of the fact that
in longer sentences, the probability of having
points of disfluency increases. We use two re-
ward/penalty pairs sets of fluency feature func-
tions. One operates on surface forms, the other
one on part-of-speech tag sequences.

• Cumulative probability density of observed
n-gram counts. This feature function penal-
izesn-grams that do not occur as often as they
should (even if observed), based on prior obser-
vation, and rewards those that do. Consider the
following sequence of words in English:

can you are

The sequencecan you is fairly frequent, and so
is you are. However,can you are is not. With
standardn-gram back-off models, the model,
upon not finding the full contextcan you for
are, will back off to the contextyou and thus
assign an inappropriately high probability to
p (are | can you).

Then-gram cdf feature models the event as a
Bernoulli experiment. Suppose, for example,
thatp (are | you) = .01, and we have observed
can you 1000 times, but have never seencan
you are. Then the expected count of observa-
tions is 10 and

cdf (0 | 1000; .01) = (1− .01)1000 ≈ .000043

3 Training and tuning

The system was trained on the German-English part
of Europarl corpus (v.5). The language model for
English was trained on all monolingual data avail-
able for WMT-2010. We true-cased, but did not
lower-case the data. Word alignment was performed
with multi-threaded Giza++ (Gao and Vogel, 2008).

In order to bootstrap training data for our parser,
we parsed the German side of the Europarl corpus
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with the Berkeley Parser (Petrovet al., 2006; Petrov
and Klein, 2007) and converted the CFG structures
to dependency structures using simple hand-written
heuristics to identify the head in each phrase, simi-
lar to those used by Magerman (1995) and Collins
(1996). This head was then selected as the gover-
nor of the respective phrase. Part-of-speech tagging
and lemmatization on the English side as well as the
German development and test data was performed
with the tool TreeTagger (Schmid, 1995).

For tuning the model parameters, we tried to ap-
ply pairwise rank optimization (PRO) (Hopkins and
May, 2011), but we were not able to achieve results
that beat our hand-tuned parameter settings.

4 Evaluation

Unfortunately, with a BLEU score of .121, (.150 af-
ter several bug fixes in the program code), our sys-
tem performed extremely poorly in the shared task.
We have since tried to track down the reasons for the
poor performance, but have not been able to find a
compelling explanation for it.

A partial explanation may lie in the fact that we
used only the Europarl data for training.3 However,
our system also lags far behind a baseline Moses
system trained on the same subset of data used for
our system, which achieves a BLEU score of .184.

Since our feature functions are very similar to
those used in MOSES, we suspect that better tuning
of the feature weights might close the gap. We are
currently in the process of implementing and test-
ing other parameter tuning methods (in addition to
manual tuning and PRO), specifically lattice-based
minimum error rate training (Machereyet al., 2008)
and batch MIRA (Cherry and Foster, 2012).

5 Conclusion

We have presented a variant of PBSMT that uses
syntactic information from source-side parses in or-
der to account better for word-order differences in
German-to-English machine translation, while pre-
serving the advantages of PBSMT. Several compo-
nents were developed from scratch, such as a depen-
dency parser for German and a reordering model for
parse constituents, as well as several novel variants

3Participation in the shared task was a short term decision, and
we did not have the time to re-train our system.

of n-gram based fluency measures. While our re-
sults for this year’s shared task are certainly disap-
pointing, we nevertheless believe that we are on the
right track. We are not ready to give up quite yet.
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Abstract

We describe the systems developed by the
team of the Qatar Computing Research Insti-
tute for the WMT12 Shared Translation Task.
We used a phrase-based statistical machine
translation model with several non-standard
settings, most notably tuning data selection
and phrase table combination. The evaluation
results show that we rank second in BLEU and
TER for Spanish-English, and in the top tier
for German-English.

1 Introduction

The team of the Qatar Computing Research Insti-
tute (QCRI) participated in the Shared Translation
Task of WMT12 for two language pairs:1 Spanish-
English and German-English. We used the state-of-
the-art phrase-based model (Koehn et al., 2003) for
statistical machine translation (SMT) with several
non-standard settings, e.g., data selection and phrase
table combination. The evaluation results show that
we rank second in BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006) for Spanish-English, and
in the top tier for German-English.

In Section 2, we describe the parameters of our
baseline system and the non-standard settings we
experimented with. In Section 3, we discuss our
primary and secondary submissions for the two lan-
guage pairs. Finally, in Section 4, we provide a short
summary.

1The WMT12 organizers invited systems translating be-
tween English and four other European languages, in both di-
rections: French, Spanish, German, and Czech. However, we
only participated in Spanish→English and German→English.

2 System Description

Below, in Section 2.1, we first describe our initial
configuration; then, we discuss our incremental im-
provements. We explored several non-standard set-
tings and extensions and we evaluated their impact
with respect to different baselines. These baselines
are denoted in the tables below by a #number that
corresponds to systems in Figures 1 for Spanish-
English and in Figure 2 for German-English.

We report case insensitive BLEU calculated on
the news2011 testing data using the NIST scoring
tool v.11b.

2.1 Initial Configuration
Our baseline system can be summarized as follows:

• Training: News Commentary + Europarl train-
ing bi-texts;

• Tuning: news2010;

• Testing: news2011;

• Tokenization: splitting words containing a
dash, e.g., first-order becomes first @-@ order;

• Maximum sentence length: 100 tokens;

• Truecasing: convert sentence-initial words to
their most frequent case in the training dataset;

• Word alignments: directed IBM model 4
(Brown et al., 1993) alignments in both direc-
tions, then grow-diag-final-and heuristics;

• Maximum phrase length: 7 tokens;

• Phrase table scores: forward & reverse phrase
translation probabilities, forward & reverse lex-
ical translation probabilities, phrase penalty;
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• Language model: 5-gram, trained on the target
side of the two training bi-texts;

• Reordering: lexicalized, msd-bidirectional-fe;

• Detokenization: reconnecting words that were
split around dashes;

• Model parameter optimization: minimum error
rate training (MERT), optimizing BLEU.

2.2 Phrase Tables
We experimented with two non-standard settings:

Smoothing. The four standard scores associated
with each phrase pair in the phrase table (forward
& reverse phrase translation probabilities, forward
& reverse lexical translation probabilities) are nor-
mally used unsmoothed. We also experimented with
Good-Turing and Kneser-Ney smoothing (Chen and
Goodman, 1999). As Table 1 shows, the latter works
a bit better for both Spanish-English and German-
English.

es-en de-en

Baseline (es:#3,de:#4) 29.98 22.03
Good Turing 29.98 22.07
Kneser-Ney 30.16 22.30

Table 1: Phrase table smoothing.

Phrase table combination. We built two phrase
tables, one for News Commentary + Europarl and an
additional one for the UN bi-text. We then merged
them,2 adding additional features to each entry in
the merged phrase table: F1, F2, and F3. The
value of F1/F2 is 1 if the phrase pair came from the
first/second phrase table, and 0.5 otherwise, while
F3 is 1 if the phrase pair was in both tables, and 0.5
otherwise. We optimized the weights for all features,
including the additional ones, using MERT.3 Table 2
shows that this improves by +0.42 BLEU points.

2In theory, we should also re-normalize the conditional
probabilities (forward/reverse phrase translation probability,
and forward/reverse lexicalized phrase translation probability)
since they may not sum to one anymore. In practice, this is
not that important since the log-linear phrase-based SMT model
does not require that the phrase table features be probabilities
(e.g., F1, F2, F3, and the phrase penalty are not probabilities);
moreover, we have extra features whose impact is bigger.

3This is similar but different from (Nakov, 2008): when a
phrase pair appeared in both tables, they only kept the entry
from the first table, while we keep the entries from both tables.

es-en

Baseline (es:#7) 30.94
Merging (1) News+EP with (2) UN 31.36

Table 2: Phrase table merging.

2.3 Language Models
We built the language models (LM) for our systems
using a probabilistic 5-gram model with Kneser-
Ney (KN) smoothing. We experimented with LMs
trained on different training datasets. We used the
SRILM toolkit (Stolcke, 2002) for training the lan-
guage models, and the KenLM toolkit (Heafield
and Lavie, 2010) for binarizing the resulting ARPA
models for faster loading with the Moses decoder
(Koehn et al., 2007).

2.3.1 Using WMT12 Corpora Only
We trained 5-gram LMs on datasets provided by

the task organizers. The results are presented in
Table 3. The first line reports the baseline BLEU
scores using a language model trained on the target
side of the News Commentary + Europarl training
bi-texts. The second line shows the results when us-
ing an interpolation (minimizing the perplexity on
the news2010 tuning dataset) of different language
models, trained on the following corpora:

• the monolingual News Commentary corpus
plus the English sides of all training News
Commentary v.7 bi-texts (for French-English,
Spanish-English, German-English, and Czech-
English), with duplicate sentences removed
(5.5M word tokens; one LM);

• the News Crawl 2007-2011 corpora, (1213M
word tokens; separate LM for each of these five
years);

• the Europarl v.7 monolingual corpus (60M
word tokens; one LM);

• the English side of the Spanish-English UN bi-
text (360M word tokens; one LM).

The last line in Table 3 shows the results when
using an additional 5-gram LM in the interpolation,
one trained on the English side of the 109 French-
English bi-text (662M word tokens).
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We can see that using these interpolations yields
very sizable improvements of 1.7-2.5 BLEU points
over the baseline. However, while the impact of
adding the 109 bi-text to the interpolation is clearly
visible for Spanish-English (+0.47 BLEU), it is al-
most negligible for German-English (+0.06 BLEU).

Corpora es-en de-en

Baseline (es:#1, de:#2) 27.34 20.01
News + EP + UN (interp.) 29.36 21.66
News + EP + UN + 109 (interp.) 29.83 21.72

Table 3: LMs using the provided corpora only.

2.3.2 Using Gigaword
In addition to the WMT12 data, we used the LDC

Gigaword v.5 corpus. We divided the corpus into
reasonably-sized chunks of text of about 2GB per
chunk, and we built a separate intermediate language
model for each chunk. Then, we interpolated these
language models, minimizing the perplexity on the
news2010 development set as with the previous
LMs. We experimented with two different strate-
gies for creating the chunks by segmenting the cor-
pus according to (a) data source, e.g., AFP, Xinhua,
etc., and (b) year of release. We thus compared the
advantages of interpolating epoch-consistent LMs
vs. source-coherent LMs. We trained individual
LMs for each of the segments and we added them
to a pool. Finally, we selected the ten most relevant
ones from this pool based on their perplexity on the
news2010 devset, and we interpolated them.

The results are shown in Table 4. The first line
shows the baseline, which uses an interpolation of
the nine LMs from the previous subsection. The
following two lines show the results when using an
LM trained on Gigaword only. We can see that for
Spanish-English, interpolation by year performs bet-
ter, while for German-English, it is better to use the
by-source chunks. However, the following two lines
show that when we translate with two LMs, one built
from the WMT12 data only and one built using Gi-
gaword data only, interpolation by year is preferable
for Gigaword for both language pairs. For our sub-
mitted systems, we used the LMs shown in bold in
Table 4: we used a single LM for Spanish-English
and two LMs for German-English.

Language Models es-en de-en

Baseline (es:#5, de:#6) 30.31 22.48
GW by year 30.68 22.32
GW by source 30.52 22.56
News-etc + GW by year 30.60 22.71
News-etc + GW by source 30.55 22.54

Table 4: LMs using Gigaword.

2.4 Parameter Tuning and Data Selection

Parameter tuning is a very important step in SMT.
The standard procedure consists of performing a se-
ries of iterations of MERT to choose the model pa-
rameters that maximize the translation quality on a
development set, e.g., as measured by BLEU. While
the procedure is widely adopted, it is also recognized
that the selection of an appropriate development set
is important since it biases the parameters towards
specific types of translations. This is illustrated in
Table 5, which shows BLEU on the news2011 testset
when using different development sets for MERT.

Devset es-en

news2008 29.47
news2009 29.14
news2010 29.61

Table 5: Using different tuning sets for MERT.

To address this problem, we performed a selection
of development data using an n-gram-based similar-
ity ranking. The selection was performed over a pool
of candidate sentences drawn from the news2008,
news2009, and news2010 tuning datasets. The sim-
ilarity metric was defined as follows:

sim(f, g) = 2match(f, g) ∗ lenpen(f, g) (1)

where 2match represents the number of bi-gram
matches between sentences f and g, and lenpen is
a length penalty to discourage unbalanced matches.

We penalized the length difference using an
inverted-squared sigmoid function:

lenpen(f, g) = 3− 4 ∗ sig
([ |f | − |g|

α

]2)
(2)
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where |.| denotes the length of a sentence in num-
ber of words, α controls the maximal tolerance to
differences, and sig is the sigmoid function.

To generate a suitable development set, we av-
eraged the similarity scores of candidate sentences
w.r.t. to the target testset. For instance:

sf =
1

|G|
∑
g∈G

sim(f, g) (3)

where G is the set of the test sentences.
Finally, we selected a pool of candidates f from

news2008, news2009 and news2011 to generate a
2000-best tuning set. The results when using each of
the above penalty functions are presented on Table 6.

devset es-en

baseline (es:#6) 30.68
selection (α = 5) 30.94
selection (α = 10) 30.90

Table 6: Selecting sentences for MERT.

The average length of the source-side sentences
in our selected sentence pairs was smaller than in
our baseline, the news2011 development dataset.
This means that our selected source-side sentences
tended to be shorter than in the baseline. Moreover,
the standard deviation of the sentence lengths was
smaller for our samples as well, which means that
there were fewer long sentences; this is good since
long sentences can take very long to translate. As
a result, we observed sizable speedup in parameter
tuning when running MERT on our selected tuning
datasets.

2.5 Decoding and Hypothesis Reranking
We experimented with two decoding settings:
(1) monotone at punctuation reordering (Tillmann
and Ney, 2003), and (2) minimum Bayes risk decod-
ing (Kumar and Byrne, 2004). The results are shown
in Table 7. We can see that both yield improvements
in BLEU, even if small.

2.6 System Combination
As the final step in our translation system, we per-
formed hypothesis re-combination of the output of
several of our systems using the Multi-Engine MT
system (MEMT) (Heafield and Lavie, 2010).

es-en de-en

Baseline (es:#2,de:#3) 29.83 21.72
+MP 29.98 22.03

Baseline (es:#4,de:#5) 30.16 22.30
+MBR 30.31 22.48

Table 7: Decoding parameters. Experiments with
monotone at punctuation (MP) reordering, and minimum
Bayes risk (MBR) decoding.

The results for the actual news2012 testset are
shown in Table 8: the system combination results
are our primary submission. We can see that system
combination yielded 0.4 BLEU points of improve-
ment for Spanish-English and 0.2-0.3 BLEU points
for German-English.

3 Our Submissions

Here we briefly describe the cumulative improve-
ments when applying the above modifications to our
baseline system, leading to our official submissions
for the WMT12 Shared Translation Task.

3.1 Spanish-English

The development of our final Spanish-English sys-
tem involved several incremental improvements,
which have been described above and which are
summarized in Figure 1. We started with a base-
line system (see Section 2.1), which scored 27.34
BLEU points. From there, using a large inter-
polated language model trained on the provided
data (see Section 2.3.1) yielded +2.49 BLEU points
of improvement. Monotone-at-punctuation de-
coding contributed an additional improvement of
+0.15, smoothing the phrase table using Kneser-Ney
boosted the score by +0.18, and using minimum
Bayes risk decoding added another +0.15 BLEU
points. Changing the language model to one trained
on Gigaword v.5 and interpolated by year yielded
+0.37 additional points of improvement. Another
+0.26 points came from tuning data selection. Fi-
nally, using the UN data in a merged phrase ta-
ble (see Section 2.2) yielded another +0.42 BLEU
points. Overall, we achieve a total improvement
over our initial baseline of about 4 BLEU points.
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Figure 1: Incremental improvements for the Spanish-English system.

3.2 German-English
Figure 2 shows a similar sequence of improvements
for our German-English system. We started with a
baseline (see Section 2.1) that scored 19.79 BLEU
points. Next, we performed compound splitting for
the German side of the training, the development
and the testing bi-texts, which yielded +0.22 BLEU
points of improvement. Using a large interpolated
language model trained on the provided corpora (see
Section 2.3.1) added another +1.71. Monotone-at-
punctuation decoding contributed +0.31, smoothing
the phrase table using Kneser-Ney boosted the score
by +0.27, and using minimum Bayes risk decoding
added another +0.18 BLEU points. Finally, adding a
second language model trained on the Gigaword v.5
corpus interpolated by year yielded +0.23 additional
BLEU points. Overall, we achieved about 3 BLEU
points of total improvement over our initial baseline.

3.3 Final Submissions
For both language pairs, our primary submission
was a combination of the output of several of our
best systems shown in Figures 1 and 2, which use
different experimental settings; our secondary sub-
mission was our best individual system, i.e., the
right-most one in Figures 1 and 2.

The official BLEU scores, both cased and lower-
cased, for our primary and secondary submissions,
as evaluated on the news2012 dataset, are shown
in Table 8. For Spanish-English, we achieved the
second highest BLEU and TER scores, while for
German-English we were ranked in the top tier.

news2012
lower cased

Spanish-English
Primary 34.0 32.9
Secondary 33.6 32.5

German-English
Primary 23.9 22.6
Secondary 23.6 22.4

Table 8: The official BLEU scores for our submissions
to the WMT12 Shared Translation Task.

4 Conclusion

We have described the primary and the secondary
systems developed by the team of the Qatar Com-
puting Research Institute for Spanish-English and
German-English machine translation of news text
for the WMT12 Shared Translation Task.

We experimented with phrase-based SMT, explor-
ing a number of non-standard settings, most notably
tuning data selection and phrase table combination,
which we described and evaluated in a cumulative
fashion. The automatic evaluation metrics,4 have
ranked our system second for Spanish-English and
in the top tier for German-English.

We plan to continue our work on data selection
for phrase table and the language model training, in
addition to data selection for tuning.

4The evaluation scores for WMT12 are available online:
http://matrix.statmt.org/
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Figure 2: Incremental improvements for the German-English system.
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Abstract

This paper describes the statistical ma-
chine translation (SMT) systems developed at
RWTH Aachen University for the translation
task of the NAACL 2012 Seventh Workshop on
Statistical Machine Translation (WMT 2012).
We participated in the evaluation campaign
for the French-English and German-English
language pairs in both translation directions.
Both hierarchical and phrase-based SMT sys-
tems are applied. A number of different tech-
niques are evaluated, including an insertion
model, different lexical smoothing methods,
a discriminative reordering extension for the
hierarchical system, reverse translation, and
system combination. By application of these
methods we achieve considerable improve-
ments over the respective baseline systems.

1 Introduction

For the WMT 2012 shared translation task1 RWTH
utilized state-of-the-art phrase-based and hierarchi-
cal translation systems as well as an in-house sys-
tem combination framework. We give a survey of
these systems and the basic methods they implement
in Section 2. For both the French-English (Sec-
tion 3) and the German-English (Section 4) language
pair, we investigate several different advanced tech-
niques. We concentrate on specific research direc-
tions for each of the translation tasks and present the
respective techniques along with the empirical re-
sults they yield: For the French→English task (Sec-
tion 3.1), we apply a standard phrase-based system.

1http://www.statmt.org/wmt12/
translation-task.html

For the English→French task (Section 3.2), we aug-
ment a hierarchical phrase-based setup with a num-
ber of enhancements like an insertion model, dif-
ferent lexical smoothing methods, and a discrimina-
tive reordering extension. For the German→English
(Section 4.3) and English→German (Section 4.4)
tasks, we utilize morpho-syntactic analysis to pre-
process the data (Section 4.1) and employ sys-
tem combination to produce a consensus hypothesis
from normal and reverse translations (Section 4.2) of
phrase-based and hierarchical phrase-based setups.

2 Translation Systems

2.1 Phrase-Based System
The phrase-based translation (PBT) system used
in this work is an in-house implementation of the
state-of-the-art decoder described in (Zens and Ney,
2008). We use the standard set of models with
phrase translation probabilities and lexical smooth-
ing in both directions, word and phrase penalty,
distance-based distortion model, an n-gram target
language model and three binary count features. The
parameter weights are optimized with minimum er-
ror rate training (MERT) (Och, 2003).

2.2 Hierarchical Phrase-Based System
For our hierarchical phrase-based translation
(HPBT) setups, we employ the open source trans-
lation toolkit Jane (Vilar et al., 2010; Stein et
al., 2011; Vilar et al., 2012), which has been
developed at RWTH and is freely available for
non-commercial use. In hierarchical phrase-based
translation (Chiang, 2007), a weighted synchronous
context-free grammar is induced from parallel text.
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In addition to contiguous lexical phrases, hierar-
chical phrases with up to two gaps are extracted.
The search is carried out with a parsing-based
procedure. The standard models integrated into our
Jane systems are: phrase translation probabilities
and lexical smoothing probabilities in both trans-
lation directions, word and phrase penalty, binary
features marking hierarchical phrases, glue rule,
and rules with non-terminals at the boundaries,
four binary count features, and an n-gram language
model. Optional additional models comprise IBM
model 1 (Brown et al., 1993), discriminative word
lexicon (DWL) models and triplet lexicon models
(Mauser et al., 2009), discriminative reordering ex-
tensions (Huck et al., 2011a), insertion and deletion
models (Huck and Ney, 2012), and several syntactic
enhancements like preference grammars (Stein
et al., 2010) and string-to-dependency features
(Peter et al., 2011). We utilize the cube pruning
algorithm (Huang and Chiang, 2007) for decoding
and optimize the model weights with MERT.

2.3 System Combination

System combination is used to produce consen-
sus translations from multiple hypotheses generated
with different translation engines. The basic concept
of RWTH’s approach to machine translation system
combination is described in (Matusov et al., 2006;
Matusov et al., 2008). This approach includes an
enhanced alignment and reordering framework. A
lattice is built from the input hypotheses. The trans-
lation with the best score within the lattice according
to a couple of statistical models is selected as con-
sensus translation.

2.4 Other Tools and Techniques

We employ GIZA++ (Och and Ney, 2003) to train
word alignments. The two trained alignments are
heuristically merged to obtain a symmetrized word
alignment for phrase extraction. All language mod-
els (LMs) are created with the SRILM toolkit (Stol-
cke, 2002) and are standard 4-gram LMs with in-
terpolated modified Kneser-Ney smoothing (Kneser
and Ney, 1995; Chen and Goodman, 1998). We
evaluate in truecase, using the BLEU (Papineni et al.,
2002) and TER (Snover et al., 2006) measures.

French English
EP + NC Sentences 2.1M

Running Words 63.3M 57.6M
Vocabulary 147.8K 128.5K
Singletons 5.4K 5.1K

+ 109 Sentences 22.9M
Running Words 728.6M 624.0M
Vocabulary 1.7M 1.7M
Singletons 0.8M 0.8M

+ UN Sentences 35.4M
Running Words 1 113.5M 956.4M
Vocabulary 1.9M 2.0M
Singletons 0.9M 1.0M

Table 1: Corpus statistics of the preprocessed French-
English parallel training data. EP denotes Europarl, NC
denotes News Commentary. In the data, numerical quan-
tities have been replaced by a single category symbol.

3 French-English Setups

We trained phrase-based translation systems for
French→English and hierarchical phrase-based
translation systems for English→French. Corpus
statistics for the French-English parallel data are
given in Table 1. The LMs are 4-grams trained on
the provided resources for the respective language
(Europarl, News Commentary, UN, 109, and mono-
lingual News Crawl language model training data).2

For French→English we also investigate a smaller
English LM on Europarl and News Commentary
data only. For English→French we experiment with
additional target-side data from the LDC French Gi-
gaword Second Edition (LDC2009T28), which is an
archive of newswire text data that has been acquired
over several years by the LDC.3 The LDC French
Gigaword v2 is permitted for constrained submis-
sions in the WMT shared translation task. As a de-
velopment set for MERT, we use newstest2009 in all
setups.

3.1 Experimental Results French→English
For the French→English task, the phrase-based
SMT system (PBT) is set up using the standard mod-
els listed in Section 2.1. We vary the training data
we use to train the system and compare the results.

2The parallel 109 corpus is often also referred to as WMT
Giga French-English release 2.

3http://www.ldc.upenn.edu
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newstest2008 newstest2009 newstest2010 newstest2011
French→English BLEU TER BLEU TER BLEU TER BLEU TER

PBT baseline 20.3 63.8 23.0 60.0 23.2 59.1 24.7 57.3
+ LM: +109+UN 22.5 61.4 26.2 57.3 26.6 56.1 27.7 54.5

+ TM: +109 23.3 60.8 27.6 56.2 27.6 55.4 29.1 53.4

Table 2: Results for the French→English task (truecase). newstest2009 is used as development set. BLEU and TER
are given in percentage.

newstest2008 newstest2009 newstest2010 newstest2011
English→French BLEU TER BLEU TER BLEU TER BLEU TER

HPBT 20.9 66.0 23.6 62.5 25.1 60.2 27.4 57.6
+ 109 and UN 22.5 63.2 25.4 59.8 27.0 57.1 29.9 53.9

+ LDC Gigaword v2 23.0 63.0 25.9 59.4 27.3 56.9 29.6 54.1
+ insertion model 23.0 62.9 26.1 59.2 27.2 56.8 30.0 53.7

+ noisy-or lexical scores 23.2 62.5 26.1 59.0 27.6 56.4 30.2 53.4
+ DWL 23.3 62.5 26.2 58.9 27.9 55.9 30.4 53.2

+ IBM-1 23.4 62.3 26.2 58.8 28.0 55.7 30.4 53.1
+ discrim. RO 23.5 62.2 26.7 58.5 28.1 55.9 30.8 52.8

Table 3: Results for the English→French task (truecase). newstest2009 is used as development set. BLEU and TER
are given in percentage.

It should be noted that these setups do not use any
English LDC Gigaword data for LM training at all.

Our baseline system uses the Europarl and News
Commentary data for training LM and phrase table.
Corpus statistics are shown in the ”EP+NC” section
of Table 1. This results in a performance of 24.7
points BLEU on newstest2011. Then we add the 109

as well as UN data and more monolingual English
data from the News Crawl corpus to the data used
for training the language model. This system ob-
tains a score of 27.7 points BLEU on newstest2011.
Our final system uses Europarl, News Commentary,
109 and UN data and News Crawl monolingual data
for LM training and the Europarl, News Commen-
tary and 109 data (Table 1) for phrase table training.
Using these data sets the system reaches 29.1 points
BLEU.

The experimental results are summarized in Ta-
ble 2.

3.2 Experimental Results English→French

For the English→French task, the baseline system is
a hierarchical phrase-based setup including the stan-
dard models as listed in Section 2.2, apart from the
binary count features. We limit the recursion depth

for hierarchical rules with a shallow-1 grammar (de
Gispert et al., 2010).

In a shallow-1 grammar, the generic non-terminal
X of the standard hierarchical approach is replaced
by two distinct non-terminals XH and XP . By
changing the left-hand sides of the rules, lexical
phrases are allowed to be derived from XP only, hi-
erarchical phrases from XH only. On all right-hand
sides of hierarchical rules, the X is replaced by XP .
Gaps within hierarchical phrases can thus solely be
filled with purely lexicalized phrases, but not a sec-
ond time with hierarchical phrases. The initial rule
is substituted with

S → 〈XP∼0,XP∼0〉
S → 〈XH∼0,XH∼0〉 ,

(1)

and the glue rule is substituted with

S → 〈S∼0XP∼1, S∼0XP∼1〉
S → 〈S∼0XH∼1, S∼0XH∼1〉 .

(2)

The main benefit of a restriction of the recursion
depth is a gain in decoding efficiency, thus allow-
ing us to set up systems more rapidly and to explore
more model combinations and more system config-
urations.
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The experimental results for English→French are
given in Table 3. Starting from the shallow hi-
erarchical baseline setup on Europarl and News
Commentary parallel data only (but Europarl, News
Commentary, 109, UN, and News Crawl data for LM
training), we are able to improve translation qual-
ity considerably by first adopting more parallel (109

and UN) and monolingual (French LDC Gigaword
v2) training resources and then employing several
different models that are not included in the baseline
already. We proceed with individual descriptions of
the methods we use and report their respective effect
in BLEU on the test sets.

109 and UN (up to +2.5 points BLEU) While the
amount of provided parallel data from Europarl
and News Commentary sources is rather lim-
ited (around 2M sentence pairs in total), the
UN and the 109 corpus each provide a substan-
tial collection of further training material. By
appending both corpora, we end up at roughly
35M parallel sentences (cf. Table 1). We utilize
this full amount of data in our system, but ex-
tract a phrase table with only lexical (i.e. non-
hierarchical) phrases from the full parallel data.
We add it as a second phrase table to the base-
line system, with a binary feature that enables
the system to reward or penalize the application
of phrases from this table.

LDC Gigaword v2 (up to +0.5 points BLEU)
The LDC French Gigaword Second Edition
(LDC2009T28) provides some more monolin-
gual French resources. We include a total of
28.2M sentences from both the AFP and APW
collections in our LM training data.

insertion model (up to +0.4 points BLEU) We add
an insertion model to the log-linear model com-
bination. This model is designed as a means to
avoid the omission of content words in the hy-
potheses. It is implemented as a phrase-level
feature function which counts the number of in-
serted words. We apply the model in source-to-
target and target-to-source direction. A target-
side word is considered inserted based on lexi-
cal probabilities with the words on the foreign
language side of the phrase, and vice versa for
a source-side word. As thresholds, we compute

individual arithmetic averages for each word
from the vocabulary (Huck and Ney, 2012).

noisy-or lexical scores (up to +0.4 points BLEU) In
our baseline system, the tNorm(·) lexical scor-
ing variant as described in (Huck et al., 2011a)
is employed with a relative frequency (RF) lex-
icon model for phrase table smoothing. The
single-word based translation probabilities of
the RF lexicon model are extracted from word-
aligned parallel training data, in the fashion
of (Koehn et al., 2003). We exchange the base-
line lexical scoring with a noisy-or (Zens and
Ney, 2004) lexical scoring variant tNoisyOr(·).

DWL (up to +0.3 points BLEU) We augment
our system with phrase-level lexical scores
from discriminative word lexicon (DWL) mod-
els (Mauser et al., 2009; Huck et al., 2011a)
in both source-to-target and target-to-source di-
rection. The DWLs are trained on News Com-
mentary data only.

IBM-1 (up to +0.1 points BLEU) On News Com-
mentary and Europarl data, we train IBM
model-1 (Brown et al., 1993) lexicons in both
translation directions and also use them to com-
pute phrase-level scores.

discrim. RO (up to +0.4 points BLEU) The modi-
fication of the grammar to a shallow-1 version
restricts the search space of the decoder and is
convenient to prevent overgeneration. In order
not to be too restrictive, we reintroduce more
flexibility into the search process by extending
the grammar with specific reordering rules

XP → 〈XP∼0XP∼1,XP∼1XP∼0〉
XP → 〈XP∼0XP∼1,XP∼0XP∼1〉 .

(3)

The upper rule in Equation (3) is a swap rule
that allows adjacent lexical phrases to be trans-
posed, the lower rule is added for symmetry
reasons, in particular because sequences as-
sembled with these rules are allowed to fill gaps
within hierarchical phrases. Note that we apply
a length constraint of 10 to the number of ter-
minals spanned by an XP . We introduce two
binary indicator features, one for each of the
two rules in Equation (3). In addition to adding
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German English
Sentences 2.0M
Running Words 55.3M 55.7M
Vocabulary 191.6K 129.0K
Singletons 75.5K 51.8K

Table 4: Corpus statistics of the preprocessed German-
English parallel training data (Europarl and News Com-
mentary). In the data, numerical quantities have been re-
placed by a single category symbol.

these rules, a discriminatively trained lexical-
ized reordering model is applied (Huck et al.,
2012).

4 German-English Setups

We trained phrase-based and hierarchical transla-
tion systems for both translation directions of the
German-English language pair. Corpus statistics for
German-English can be found in Table 4. The lan-
guage models are 4-grams trained on the respective
target side of the bilingual data as well as on the pro-
vided News Crawl corpus. For the English language
model the 109 French-English, UN and LDC Giga-
word Fourth Edition corpora are used additionally.
For the 109 French-English, UN and LDC Gigaword
corpora we apply the data selection technique de-
scribed in (Moore and Lewis, 2010). We examine
two different language models, one with LDC data
and one without. All German→English systems are
optimized on newstest2010. For English→German,
we use newstest2009 as development set. The news-
test2011 set is used as test set and the scores for new-
stest2008 are included for completeness.

4.1 Morpho-Syntactic Analysis

In order to reduce the source vocabulary size for
the German→English translation, the German text
is preprocessed by splitting German compound
words with the frequency-based method described in
(Koehn and Knight, 2003). To further reduce trans-
lation complexity of PBT, we employ the long-range
part-of-speech based reordering rules proposed by
Popović and Ney (2006).

4.2 Reverse Translation

For reverse translations we need to change the word
order of the bilingual corpus. For example, if we re-

verse both source and target language, the original
training example “der Hund mag die Katze . → the
dog likes the cat .” is converted into a new training
example “. Katze die mag Hund der→ . cat the likes
dog the”. We call this type of modification of source
or target language reversion. A system trained of
this data is called reverse. This modification changes
the corpora and hence the language model and align-
ment training produce different results.

4.3 Experimental Results German→English

Our results for the German→English task are shown
in Table 5. For this task, we apply the idea of reverse
translation for both the phrase-based and the hierar-
chical approach. It seems that the reversed systems
perform slightly worse. However, when we em-
ploy system combination using both reverse trans-
lation setups (PBT reverse and HPBT reverse) and
both baseline setups (PBT baseline and HPBT base-
line), the translation quality is improved by up to 0.4
points in BLEU and 1.0 points TER compared to the
best single system.

The addition of LDC Gigaword corpora (+GW)
to the language model training data of the baseline
setups shows improvements in both BLEU and TER.
Furthermore, with the system combination including
these setups, we are able to report an improvement
of up to 0.7 points BLEU and 1.0 points TER over the
best single setup. Compared to the system combina-
tion based on systems which are not using the LDC
Gigaword corpora, we gain 0.3 points in BLEU and
0.4 points in TER.

4.4 Experimental Results English→German

Our results for the English→German task are shown
in Table 6. For this task, we first compare sys-
tems using one, two or three language models of
different parts of the data. The language model
for systems with only one language model is cre-
ated with all monolingual and parallel data. A lan-
guage model with all monolingual data and a lan-
guage model with all parallel data is created for the
systems with two language models. For the systems
with three language models, we also split the parallel
data in two parts consisting of either only Europarl
data or only News Commentary data. For PBT the
system with two language models performs best for
all test sets. Further, we apply the idea of reverse
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newstest2008 newstest2009 newstest2010 newstest2011
German→English BLEU TER BLEU TER BLEU TER BLEU TER

PBT baseline 21.1 62.3 20.8 61.4 23.7 59.3 21.3 61.3
PBT reverse 20.8 62.4 20.6 61.5 23.6 59.2 21.2 61.2
HPBT baseline 21.3 62.5 20.9 61.7 23.9 59.4 21.3 61.6
HPBT reverse 21.2 63.5 20.9 62.0 23.6 59.2 21.4 61.9
system combination (secondary) 21.5 61.6 21.2 60.6 24.3 58.3 21.7 60.3
PBT baseline +GW 21.5 61.9 21.2 61.1 24.0 59.0 21.3 61.4
PBT reverse 20.8 62.4 20.6 61.5 23.6 59.2 21.2 61.2
HPBT baseline +GW 21.6 62.3 21.3 61.3 24.0 59.4 21.6 61.5
HPBT reverse 21.2 63.5 20.9 62.0 23.6 59.2 21.4 61.9
system combination (primary) 21.9 61.2 21.4 60.5 24.7 58.0 21.9 60.2

Table 5: Results for the German→English task (truecase). +GW denotes the usage of LDC Gigaword data for the
language model, newstest2010 serves as development set. BLEU and TER are given in percentage.

newstest2008 newstest2009 newstest2010 newstest2011
English→German BLEU TER BLEU TER BLEU TER BLEU TER

PBT baseline 1 LM 14.6 71.7 14.8 70.8 15.8 66.9 15.3 70.0
PBT baseline 2 LM (*) 14.9 70.9 14.9 70.4 16.0 66.3 15.4 69.5
PBT baseline 3 LM 14.8 71.5 14.9 70.5 16.0 66.7 15.1 70.1
PBT reverse 2 LM (*) 14.9 71.4 15.1 70.2 15.9 66.5 15.0 69.7
HPBT baseline 2 LM (*) 15.1 71.8 15.3 71.1 16.2 67.4 15.4 70.3
HPBT baseline 2 LM opt on 4bleu-ter 15.2 68.4 15.0 67.7 15.9 64.6 15.1 67.1
HPBT reverse 2 LM (*) 15.4 71.3 15.3 70.7 16.7 66.9 15.5 70.1
syscombi of (*) 15.6 69.2 15.4 68.9 16.5 65.0 15.6 68.0

Table 6: Results for the English→German task (truecase). newstest2009 is used as development set. BLEU and TER
are given in percentage.

translation for both the phrase-based and the hier-
archical approach. The PBT reverse 2 LM systems
perform slightly worse compared to PBT baseline 2
LM. The HPBT reverse 2 LM performs better com-
pared to HPBT baseline 2 LM. When we employ
system combination using both reverse translation
setups (PBT reverse 2 LM and HPBT reverse 2 LM)
and both baseline setups (PBT baseline 2 LM and
HPBT baseline 2 LM), the translation quality is im-
proved by up to 0.2 points in BLEU and 2.1 points in
TER compared to the best single system.

5 Conclusion

For the participation in the WMT 2012 shared trans-
lation task, RWTH experimented with both phrase-
based and hierarchical translation systems. Several
different techniques were evaluated and yielded con-
siderable improvements over the respective base-

line systems as well as over our last year’s setups
(Huck et al., 2011b). Among these techniques are
an insertion model, the noisy-or lexical scoring vari-
ant, additional phrase-level lexical scores from IBM
model 1 and discriminative word lexicon models, a
discriminative reordering extension for hierarchical
translation, reverse translation, and system combi-
nation.
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Abstract

We describe a substitution-based system for
hybrid machine translation (MT) that has been
extended with machine learning components
controlling its phrase selection. The approach
is based on a rule-based MT (RBMT) system
which creates template translations. Based
on the rule-based generation parse tree and
target-to-target alignments, we identify the set
of “interesting” translation candidates from
one or more translation engines which could
be substituted into our translation templates.
The substitution process is either controlled by
the output from a binary classifier trained on
feature vectors from the different MT engines,
or it is depending on weights for the decision
factors, which have been tuned using MERT.
We are able to observe improvements in terms
of BLEU scores over a baseline version of the
hybrid system.

1 Introduction

In recent years, machine translation (MT) systems
have achieved increasingly better translation quality.
Still each paradigm has its own challenges: while
statistical MT (SMT) systems suffer from a lack of
grammatical structure, resulting in ungrammatical
sentences, RBMT systems have to deal with a lack
of lexical coverage. Hybrid architectures intend to
combine the advantages of the individual paradigms
to achieve an overall better translation.

Federmann et al. (2010) and Federmann and Hun-
sicker (2011) have shown that using a substitution-
based approach can improve the translation quality
of a baseline RBMT system. Our submission to

WMT12 is a new, improved version following these
approaches. The output of an RBMT engine serves
as our translation backbone, and we substitute noun
phrases by translations mined from other systems.

2 System Architecture

Our hybrid MT system combines translation output
from:

a) the Lucy RBMT system, described in more
detail in (Alonso and Thurmair, 2003);

b) the Linguatec RBMT system (Aleksic and
Thurmair, 2011);

c) Moses (Koehn et al., 2007);

d) Joshua (Li et al., 2009).

Lucy provides us with the translation skeleton,
which is described in more detail in Section 2.2
while systems b)–d) are aligned to this translation
template and mined for substitution candidates. We
give more detailed information on these systems in
Section 2.3.

2.1 Basic Approach

We first identify “interesting” phrases inside the
rule-based translation and then compute the most
probable correspondences in the translation output
from the other systems. For the resulting phrases,
we apply a factored substitution method that decides
whether the original RBMT phrase should be kept or
rather be replaced by one of the candidate phrases.
A schematic overview of our hybrid system and its
main components is given in Figure 1.
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Figure 1: Schematic overview of the architecture of our
substitution-based, hybrid MT system.

In previous years, it turned out that the alignment
of the candidate translations to the source contained
too many errors. In this version of our system, we
thus changed the alignment method that connects the
other translations. Only the rule-based template is
aligned to the source. As we make use of the Lucy
RBMT analysis parse trees, this alignment is very
good. The other translations are now connected to
the rule-based template using a confusion network
approach. This also reduces computational efforts,
as we now can compute the substitution candidates
directly from the template without detouring over
the source. During system training and tuning, this
new approach has resulted in a reduced number of
erroneous alignment links.

Additionally, we also changed our set of decision
factors, increasing their total number. Whereas an
older version of this system only used four factors,
we now consider the following twelve factors:

1. frequency: frequency of a given candidate
phrase compared to total number of candidates
for the current phrase;

2. LM(phrase): language model (LM) score of
the phrase;

3. LM(phrase+1): phrase with right-context;

4. LM(phrase-1): phrase with left-context;

5. Part-of-speech match?: checks if the part-of-
speech tags of the left/right context match the
current candidate phrase’s context;

6. LM(pos) LM score for part-of-speech (PoS);

7. LM(pos+1) PoS with right-context;

8. LM(pos-1) PoS with left-context;

9. Lemma checks if the lemma of the candidate
phrase fits the reference;

10. LM(lemma) LM score for the lemma;

11. LM(lemma+1) lemma with right-context;

12. LM(lemma-1) lemma with left-context.

The language model was trained using the SRILM
toolkit (Stolcke, 2002), on the EuroParl (Koehn,
2005) corpus, and lemmatised or part-of-speech
tagged versions, respectively. We used the Tree-
Tagger (Schmid, 1994) for lemmatisation as well as
part-of-speech tagging.

The substitution algorithm itself was also adapted.
We investigated two machine learning approaches.
In the previous version, the system used a hand-
written decision tree to perform the substitution:

1. the first of the two new approaches consisted
of machine learning this decision tree from
annotated data;

2. the second approach was to assign a weight to
each factor and using MERT tuning of these
weights on a development set.

Both approaches are described in more detail later in
Section 2.4.

2.2 Rule-Based Translation Templates

The Lucy RBMT system provides us with parse tree
structures for each of the three phases of its transfer-
based translation approach: analysis, transfer and
generation. Out of these structures, we can extract
linguistic phrases which later represent the “slots”
for substitution. Previous work has shown that these
structures are of a good grammatical quality due to
the grammar Lucy uses.
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2.3 Substitution Candidate Translations

Whereas in our previous work, we solely relied on
candidates retrieved from SMT systems, this time
we also included an additional RBMT system into
the architecture. Knowing that statistical systems
make similar errors, we hope to balance out this fact
by exploiting also a system of a different paradigm,
namely RBMT.

To create the statistical translations, we used state-
of-the-art SMT systems. Both our Moses and Joshua
systems were trained on the EuroParl corpus and
News Commentary1 training data. We performed
tuning on the “newstest2011” data set using MERT.

We compile alignments between translations
with the alignment module of MANY (Barrault,
2010). This module uses a modified version of
TERp (Snover et al., 2009) and a set of different
costs to create the best alignment between any two
given sentences. In our case, each single candidate
translation is aligned to the translation template that
has been produced by the Lucy RBMT system. As
we do not use the source in this alignment tech-
nique, we can use any translation system, regardless
of whether this system provides us with a source-to-
target alignment.

In earlier versions of this system, we compiled the
source-to-target alignments for the candidate trans-
lations using GIZA++ (Och and Ney, 2003), but
these alignments contained many errors. By using
target-to-target alignments, we are able to reduce the
amount of those errors which is, of course, preferred.

2.4 Substitution Approaches

Using the parse tree structures provided by Lucy, we
extract “interesting” phrases for substitution. This
includes noun phrases of various complexity, then
simple verb phrases consisting of only the main
verb, and finally adjective phrases. Through the
target-to-target alignments we identify and collect
the set of potential substitution candidates. Phrase
substitution can be performed using two methods.

2.4.1 Machine-Learned Decision Tree
Previous work used hand-crafted rules. These are

now replaced by a classifier which was trained on
annotated data. Our training set D can formally be

1Available at http://www.statmt.org/wmt12/

represented as

D = {(xi, yi)|xi ∈ Rp, yi ∈ {−1, 1}}ni=1 (1)

where each xi represents the feature vector for some
sentence i while the yi value contains the annotated
class information. We use a binary classification
scheme, simply defining 1 as “good” and −1 as
“bad” translations.

In order to make use of machine (ML) learn-
ing methods such as decision trees (Breiman et al.,
1984), Support Vector Machines (Vapnik, 1995),
or the Perceptron (Rosenblatt, 1958) algorithm, we
have to prepare our training set with a sufficiently
large amount of annotated training instances.

To create the training data set, we computed the
feature vectors and all possible substitution candi-
dates for the WMT12 “newstest2011” development
set. Human annotators were then given the task to
assign to each candidate whether it was a “good” or
a “bad” substitution. We used Appraise (Federmann,
2010) for the annotation, and collected a set of
24,996 labeled training instances with the help of six
human annotators. Table 1 gives an overview of the
data sets characteristics. The decision tree learned
from this data replaces the hand-crafted rules.

2.4.2 Weights Tuned with MERT
Another approach we followed was to assign

weights to the chosen decision factors and to use
Minimal Error Rate Training to get the best weights.
Using the twelve factors described in Section 2.1,
we assign uniformly distributed weights and create
n-best lists. Each n-best lists contains a total of
n+2 hypotheses, with n being the number of candi-
date systems. It contains the Lucy template trans-
lations, the hybrid translation using the best can-
didates as well as a hypothesis for each candidate
system. In the latter translation, each potential can-
didate for substitution is selected and replaces the
original sub phrase in the baseline. The n-best list is

Translation Candidates

Total “good” “bad”

Count 24,996 10,666 14,330

Table 1: Training data set characteristics
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Hybrid Systems Baseline Systems

Baseline +Decision Tree +MERT Lucy Linguatec Joshua Moses

BLEU 13.9 14.2 14.3 14.0 14.7 14.6 15.9
BLEU-cased 13.5 13.8 13.9 13.7 14.2 13.5 14.9
TER 0.776 0.773 0.768 0.774 0.775 0.772 0.774

Table 2: Experimental results for all component and hybrid systems applied to the WMT12 “newstest2012” test set
data for language pair English→German.

sorted by the final score of the feature vectors mak-
ing up each hypothesis. We used Z-MERT (Zaidan,
2009) to optimise the set of feature weights on the
“newstest2011” development set.

3 Evaluation

Using the “newstest2012” test set, we created base-
line translations for the four MT systems used in our
hybrid system. Then we performed three runs of our
hybrid system:

a) a baseline run, using the factors and uniformly
distributed weights;

b) a run using the weights trained on the develop-
ment set;

c) a run using the decision tree learned from an-
notated data.

Table 2 shows the results for automatic metrics’
scores. Besides BLEU (Papineni et al., 2001), we
also report its case-sensitive variant, BLEU-cased,
and TER (Snover et al., 2006) scores.

Comparing the scores, we see that both advanced
hybrid methods perform better than the original,
baseline hybrid as well as the Lucy baseline system.
The MERT approach performs slightly better than
the decision tree. This proves that using machine-
learning to adapt the substitution approach results in
better translation quality.

Other baseline systems, however, still outperform
the hybrid systems. In part this is due to the fact that
we are preserving the basic structure of the RBMT
translation and do not reorder the new hybrid trans-
lation. To improve the hybrid approach further, there
is more research required.

4 Conclusion and Outlook

In this paper, we have described how machine-
learning approaches can be used to improve the
phrase substitution component of a hybrid machine
translation system.

We reported on two different approaches, the first
using a binary classifier learned from annotated data,
and the second using feature weights tuned with
MERT. Both systems achieved improved automatic
metrics’ scores on the WMT12 “newstest2012” test
set for the language pair English→German.

Future work will have to investigate ways how to
achieve a closer integration of the individual base-
line translations. This might be done by also taking
into account reordering of the linguistic phrases as
shown in the tree structures. We will also need to
examine the differences between the classifier and
MERT approach, to see whether we can integrate
them to improve the selection process even further.

Also, we have to further evaluate the machine
learning performance via, e.g., cross-validation-
based tuning, to improve the prediction rate of the
classifier model. We intend to explore other machine
learning techniques such as SVMs as well.
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Abstract

We report on findings of exploiting large data
sets for translation modeling, language mod-
eling and tuning for the development of com-
petitive machine translation systems for eight
language pairs.

1 Introduction

We report on experiments carried out for the devel-
opment of competitive systems on the datasets of the
2012 Workshop on Statistical Machine Translation.
Our main focus was directed on the effective use
of all the available training data during training of
translation and language models and tuning.

We use the open source machine translation sys-
tem Moses (Koehn et al., 2007) and other standard
open source tools, hence all our experiments are
straightforwardly replicable1.

Compared to all single system submissions by
participants of the workshop we achieved the best
BLEU scores for four language pairs (es-en, en-es,
cs-en, en-cs), the 2nd best results for two language
pairs (fr-en, de-en), as well as a 3rd place (en-de)
and a 5th place (en-fr) for the remaining pairs. We
improved upon this in the post-evaluation period for
some of the language pairs by more systematically
applying our methods.

During the development of our system, we saw
most gains from using large corpora for translation
model training, especially when using subsampling
techniques for out-of-domain sets, using large cor-
pora for language model training, and larger tuning
sets. We also observed mixed results with alternative
tuning methods. We also experimented with hierar-
chical models and semi-supervised training, but did
not achieve any improvements.

1Configuration files and instructions are available at http:
//www.statmt.org/wmt12/uedin/.

LP Baseline +UN
fr-en 28.2 28.4 (+.2)
es-en 29.1 28.9 (–.2)
en-fr 28.8 28.7 (–.1)
en-es 31.0 30.9 (–.1)
LP Baseline +GigaFrEn
fr-en 28.7 29.1 (+.4)
en-fr 29.3 30.3 (+1.0)

Table 1: Gains from larger translation models: UN (about
300 million English words), GigaFrEn (about 550 million
English words).

We report all results in case-sensitive BLEU (mt-
eval13a) on the newstest2011 test set (Callison-
Burch et al., 2011). Please also note that base-
line scores vary throughout the paper, since different
methods were investigated at different time points.

2 Better Translation Models

2.1 Using Large Training Sets

The WMT evaluation campaign works with the
largest training sets in the field. Our French-English
systems are trained on a parallel corpus with 1,072
million French and 934 million English words.
Training a system on this amount of data takes about
two weeks.

The basic data sets for the language pairs are the
Europarl and NewsCommentary corpora consist of
about 50 million words and 3 million words, respec-
tively. These corpora are quite close to the target
domain of news reports, and give quite good results.
Table 1 shows the gains from using the much larger
UN (about 300 million words) and GigaFrEn cor-
pora (about 550 million words).

From these results, it is not clear if the UN is help-
ful, but the GigaFrEn corpus gives large gains (+0.4
BLEU and +1.0 BLEU).
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Model 1 Moore-Lewis
LP Base- Before After Before After

line 10% 50% 10% 50% 10% 50% 10% 50%
fr-en 29.3 28.5(–.8) 29.1(–.2) 28.6(–.7) 28.9(–.4) 29.1(–.2) 29.6(+.3) 29.1(–.2) 29.4(+.1)
en-fr 30.1 29.1(–1.0) 30.1(±.0) 29.3(–.8) 29.8(–.3) 29.9(–.2) 30.2(+.1) 29.9(–.2) 30.1(±.0)
es-en 29.0 28.9(–.1) 29.0(±.0) 29.0(±.0) 29.0(±.0) 29.0(±.0) 29.1(+.1) 29.4(+.4) 29.2(+.2)
en-es 30.9 30.9(±.0) 31.0(+.1) 30.8(–.1) 30.7(–.2) 31.4(+.5) 31.5(+.6) 31.5(+.6) 31.3(+.4)

Table 2: Subsampling UN and GigaFrEn corpora using Model 1 and Moore-Lewis filtering, before and after word
alignment

2.2 Subsampling

We experimented with two different types of sub-
sampling techniques – Model 1, similar to that used
by Schwenk et al. (2011), and modified Moore-
Lewis (Axelrod et al., 2011) – for the language pairs
es-en, en-es, fr-en and en-fr. In each case the idea
was to include the NewsCommentary and Europarl
corpora in their entirety, and to score the sentences
in the remaining corpora (the selection corpus) using
one of the two measures, adding either the top 10%
or top 50% of the selection corpus to the training
data.

For Model 1 filtering, we trained IBM Model 1
on Europarl and NewsCommentary concatenated, in
both directions, and scored the sentences in the se-
lection corpus using the length-normalised sum of
the IBM Model scores. For the modified Moore-
Lewis filtering, we trained two 5-gram language
models for source and target, the first on 5M sen-
tences from the news2011 monolingual data, and
the second on 5M words from the selection corpus,
using the same vocabulary. The modified Moore-
Lewis score for a sentence is the sum of the source
and target’s perplexity difference for the two lan-
guage models.

For the Spanish experiments, the selection corpus
was the UN data, whilst for the French experiments
it was the UN data and the GigaFrEn data, concate-
nated and with duplicates removed.

The results of the subsampling are shown in Ta-
ble 2, where the BLEU scores are averaged over
2 tuning runs. The conclusion was that modified
Moore-Lewis subsampling was effective (and was
used in our final submissions), but Model 1 sam-
pling made no difference for the Spanish systems,
and was harmful for the French systems.

3 Better Language Models

In previous years, we were not able to make use
of the monolingual LDC Gigaword corpora due to
lack of sufficiently powerful computing resources.
These corpora exist for English (4.3 billion words),
Spanish (1.1 billion words), and French (0.8 billion
words). With the acquisition of large memory ma-
chines2, we were now able to train language models
on this data. Use of these large language models dur-
ing decoding is aided by more efficient storage and
inference (Heafield, 2011).

Still, even with that much RAM it is not possi-
ble to train a language model with SRILM (Stolke,
2002) in one pass. Hence, we broke up the train-
ing corpus by source (New York Times, Washington
Post, ...) and trained separate language model for
each. The largest individual corpus was the English
New York Times portion which consists of 1.5 billion
words and took close to 100GB of RAM. We also
trained individual language models for each year of
WMT12’s monolingual corpus.

We interpolated the language models using the
SRILM toolkit. The toolkit has a limit of 10 lan-
guage models to be merged at once, so we had to in-
terpolate sub-groups of some of the language models
(the WMT12 monolingual news models) first. It is
not clear if this is harmful, but building separate lan-
guage model for each source and year and interpo-
late those many more models did hurt significantly.

Table 3 shows that we gain around half a BLEU

point into Spanish and French, as well as German–
English, and around one and a half BLEU points for
the other language pairs into English.

2Dell Poweredge R710, equipped with two 6-core Intel
Xeon X5660 CPUs running at 2.8GHz, with each core able to
run two threads (24 threads total), six 3TB disks and 144GB
RAM, and cost £6000.
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LP Baseline +LDC Giga
de-en 21.9 22.4 (+.5)
cs-en 24.2 25.6 (+1.4)
fr-en 29.1 31.0 (+1.9)
es-en 29.1 30.7 (+1.6)
en-es 31.5 31.8 (+.3)
en-fr 30.3 30.8 (+.5)

Table 3: Using the LDC Gigaword corpora to train larger
language models.

LP Baseline Big-Tune
de-en 21.4 21.6 (+.2)
fr-en 28.4 28.7 (+.3)
es-en 28.9 29.0 (+.1)
cs-en 23.9 24.1 (+.2)
en-de 15.8 15.9 (+.1)
en-fr 28.7 29.2 (+.5)
en-es 30.9 31.2 (+.2)
en-cs 17.2 17.4 (+.2)

Table 4: Using a larger tuning set (7567 sentences) by
combining newstest 2008 to 2010.

4 Better Tuning

4.1 Bigger Tuning Sets

In recent experiments, mainly geared towards using
much larger feature sets, we learned that larger tun-
ing sets may give better and more stable results. We
tested this hypothesis here as well.

By concatenating the sets from three years (2008-
2010), we constructed a tuning set of 7567 sentences
per language. Table 4 shows that we gain on average
about +0.2 BLEU points.

4.2 Pairwise Ranked Optimization

We recently added an implementation of the pair-
wise ranked optimization (PRO) tuning method
(Hopkins and May, 2011) to Moses as an alterna-
tive to Och’s (2003) minimum error rate training
(MERT). We checked if this method gives us better
results. Table 5 shows a mixed picture. PRO gives
slightly shorter translations, probably because it op-
timises sentence rather than corpus BLEU, which has
a noticeable effect on the BLEU score. For 2 lan-
guage pairs we see better results, for 4 worse, and
for 1 there is no difference. On other data and lan-

LP MERT PRO PRO-MERT
de-en 21.7 (1.01) 21.9 (1.00) +.2 21.7 (1.01) ±.0
es-en 29.1 (1.02) 29.1 (1.01) ±.0 29.1 (1.02) ±.0
cs-en 24.2 (1.03) 24.5 (1.00) +.3 24.2 (1.03) ±.0
en-de 16.0 (1.00) 15.7 (0.96) –.3 16.0 (1.00) ±.0
en-fr 29.3 (0.98) 28.9 (0.96) –.4 29.3 (0.98) ±.0
en-es 31.5 (0.98) 31.3 (0.97) –.2 31.4 (0.98) –.1
en-cs 17.4 (0.97) 16.9 (0.92) –.5 17.3 (0.97) –.1

Table 5: Replacing the line search method of MERT with
pairwise ranked optimization (PRO).

guage conditions we have observed better and more
stable results with PRO.

We tried to use PRO to generate starting points for
MERT optimization. Theoretically this will lead to
better optimization on the tuning set, since MERT
optimization steps on PRO weights will never lead
to worse results on the sampled n-best lists. This
method (PRO-MERT in the table) applied here,
however, did not lead to significantly different re-
sults than plain MERT.

5 What did not Work

Not everything we tried worked out. Notably, two
promising directions — hierarchical models and
semi-supervised learning — did not yield any im-
provements. It is not clear if we failed or if the
methods failed, but we will investigate this further
in future work.

5.1 Hierarchical Models

Hierarchical models (Chiang, 2007) have been sup-
ported already for a few years by Moses, and they
give significantly better performance for Chinese–
English over phrase-based models. While we have
not yet seen benefits for many other language pairs,
the eight language pairs of WMT12 allowed us to
compare these two models more extensively, also
in view of recent enhancements resulting in better
search accuracy.

Since hierarchical models are much larger
(roughly 10 times bigger), we trained hierarchical
models on downsized training data for most lan-
guage pairs. For Spanish and French, this ex-
cludes UN and GigaFrEn; for Czech some parts
of the CzEng corpus were excluded based on their
lower language model interpolation weights relative
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LP Phrase Downsized Hierarchical
de-en 21.6 same 21.4 (–.2)
fr-en 28.7 27.9 27.6 (–.3)
es-en 29.0 28.9 28.4 (–.5)
cs-en 24.1 22.4 22.0 (–.4)
en-de 15.9 same 15.5 (–.4)
en-fr 29.2 28.8 28.0 (–.8)
en-es 31.2 30.8 30.4 (–.4)
en-cs 17.4 16.2 15.6 (–.6)

Table 6: Hierarchical phrase models vs. baseline phrase-
based models.

to their size.
Table 6 shows inferior performance for all lan-

guage pairs (by about half a BLEU point), although
results for German–English are close (–0.2 BLEU).

5.2 Semi-Supervised Learning

Other research groups have reported improvements
using semi-supervised learning methods to cre-
ate synthetic parallel data from monolingual data
(Schwenk et al., 2008; Abdul-Rauf and Schwenk,
2009; Bertoldi and Federico, 2009; Lambert et al.,
2011). The idea is to translate in-domain monolin-
gual data with a baseline system and filter the result
for use as an additional parallel corpus.

Table 7 shows out results when trying to emulate
the approach of Lambert et al. (2011). We translate
the some of the 2011 monolingual news data (139
million words for French and 100 million words for
English) from the target language into the source
language with a baseline system trained on Europarl
and News Commentary. Adding all the obtained
data hurts (except for minimal improvements over
a small French-English system). When we filtered
out half of the sentences based on translation scores,
results were even worse.
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Abstract

This paper describes the joint QUAERO sub-
mission to the WMT 2012 machine transla-
tion evaluation. Four groups (RWTH Aachen
University, Karlsruhe Institute of Technol-
ogy, LIMSI-CNRS, and SYSTRAN) of the
QUAERO project submitted a joint translation
for the WMT German→English task. Each
group translated the data sets with their own
systems and finally the RWTH system combi-
nation combined these translations in our final
submission. Experimental results show im-
provements of up to 1.7 points in BLEU and
3.4 points in TER compared to the best single
system.

1 Introduction

QUAERO is a European research and develop-
ment program with the goal of developing multi-
media and multilingual indexing and management
tools for professional and general public applica-
tions (http://www.quaero.org). Research in machine
translation is mainly assigned to the four groups
participating in this joint submission. The aim of
this WMT submission was to show the quality of a
joint translation by combining the knowledge of the
four project partners. Each group develop and main-
tain their own different machine translation system.
These single systems differ not only in their general
approach, but also in the preprocessing of training
and test data. To take the advantage of these dif-
ferences of each translation system, we combined
all hypotheses of the different systems, using the
RWTH system combination approach.

This paper is structured as follows. In Section
2, the different engines of all four groups are in-
troduced. In Section 3, the RWTH Aachen system
combination approach is presented. Experiments
with different system selections for system combi-
nation are described in Section 4. Finally in Section
5, we discuss the results.

2 Translation Systems

For WMT 2012 each QUAERO partner trained their
systems on the parallel Europarl and News Com-
mentary corpora. All single systems were tuned
on the newstest2009 or newstest2010 development
set. The newstest2011 dev set was used to train
the system combination parameters. Finally, the
newstest2008-newstest2010 dev sets were used to
compare the results of the different system combina-
tion settings. In this Section all four different system
engines are presented.

2.1 RWTH Aachen Single Systems

For the WMT 2012 evaluation the RWTH utilized
RWTH’s state-of-the-art phrase-based and hierar-
chical translation systems. GIZA++ (Och and Ney,
2003) was employed to train word alignments, lan-
guage models have been created with the SRILM
toolkit (Stolcke, 2002).

2.1.1 Phrase-Based System
The phrase-based translation (PBT) system is

similar to the one described in Zens and Ney (2008).
After phrase pair extraction from the word-aligned
parallel corpus, the translation probabilities are esti-
mated by relative frequencies. The standard feature
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set also includes an n-gram language model, phrase-
level IBM-1 and word-, phrase- and distortion-
penalties, which are combined in log-linear fash-
ion. The model weights are optimized with standard
Mert (Och, 2003) on 200-best lists. The optimiza-
tion criterium is BLEU.

2.1.2 Hierarchical System
For the hierarchical setups (HPBT) described in

this paper, the open source Jane toolkit (Vilar et
al., 2010) is employed. Jane has been developed at
RWTH and implements the hierarchical approach as
introduced by Chiang (2007) with some state-of-the-
art extensions. In hierarchical phrase-based transla-
tion, a weighted synchronous context-free grammar
is induced from parallel text. In addition to contigu-
ous lexical phrases, hierarchical phrases with up to
two gaps are extracted. The search is typically car-
ried out using the cube pruning algorithm (Huang
and Chiang, 2007). The model weights are opti-
mized with standard Mert (Och, 2003) on 100-best
lists. The optimization criterium is 4BLEU −TER.

2.1.3 Preprocessing
In order to reduce the source vocabulary size

translation, the German text was preprocessed
by splitting German compound words with the
frequency-based method described in (Koehn and
Knight, 2003a). To further reduce translation com-
plexity for the phrase-based approach, we performed
the long-range part-of-speech based reordering rules
proposed by (Popović et al., 2006).

2.1.4 Language Model
For both decoders a 4-gram language model is ap-

plied. The language model is trained on the par-
allel data as well as the provided News crawl, the
109 French-English, UN and LDC Gigaword Fourth
Edition corpora. For the 109 French-English, UN
and LDC Gigaword corpora RWTH applied the data
selection technique described in (Moore and Lewis,
2010).

2.2 Karlsruhe Institute of Technology Single
System

2.2.1 Preprocessing
We preprocess the training data prior to training

the system, first by normalizing symbols such as

quotes, dashes and apostrophes. Then smart-casing
of the first words of each sentence is performed. For
the German part of the training corpus we use the
hunspell1 lexicon to learn a mapping from old Ger-
man spelling to new German spelling to obtain a cor-
pus with homogenous spelling. In addition, we per-
form compound splitting as described in (Koehn and
Knight, 2003b). Finally, we remove very long sen-
tences, empty lines, and sentences that probably are
not parallel due to length mismatch.

2.2.2 System Overview
The KIT system uses an in-house phrase-based

decoder (Vogel, 2003) to perform translation and op-
timization with regard to the BLEU score is done us-
ing Minimum Error Rate Training as described in
Venugopal et al. (2005).

2.2.3 Translation Models
The translation model is trained on the Europarl

and News Commentary Corpus and the phrase ta-
ble is based on a discriminative word alignment
(Niehues and Vogel, 2008).

In addition, the system applies a bilingual lan-
guage model (Niehues et al., 2011) to extend the
context of source language words available for trans-
lation.

Furthermore, we use a discriminative word lexi-
con as introduced in (Mauser et al., 2009). The lex-
icon was trained and integrated into our system as
described in (Mediani et al., 2011).

At last, we tried to find translations for
out-of-vocabulary (OOV) words by using quasi-
morphological operations as described in Niehues
and Waibel (2011). For each OOV word, we try to
find a related word that we can translate. We modify
the ending letters of the OOV word and learn quasi-
morphological operations to be performed on the
known translation of the related word to synthesize
a translation for the OOV word. By this approach
we were for example able to translate Kaminen into
chimneys using the known translation Kamin # chim-
ney.

2.2.4 Language Models
We use two 4-gram SRI language models, one

trained on the News Shuffle corpus and one trained

1http://hunspell.sourceforge.net/
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on the Gigaword corpus. Furthermore, we use a 5-
gram cluster-based language model trained on the
News Shuffle corpus. The word clusters were cre-
ated using the MKCLS algorithm. We used 100
word clusters.

2.2.5 Reordering Model

Reordering is performed based on part-of-speech
tags obtained using the TreeTagger (Schmid, 1994).
Based on these tags we learn probabilistic continu-
ous (Rottmann and Vogel, 2007) and discontinuous
(Niehues and Kolss, 2009) rules to cover short and
long-range reorderings. The rules are learned from
the training corpus and the alignment. In addition,
we learned tree-based reordering rules. Therefore,
the training corpus was parsed by the Stanford parser
(Rafferty and Manning, 2008). The tree-based rules
consist of the head node of a subtree and all its
children as well as the new order and a probability.
These rules were applied recursively. The reordering
rules are applied to the source sentences and the re-
ordered sentence variants as well as the original se-
quence are encoded in a word lattice which is used
as input to the decoder. For the test sentences, the
reordering based on parts-of-speech and trees allows
us to change the word order in the source sentence
so that the sentence can be translated more easily.
In addition, we build reordering lattices for all train-
ing sentences and then extract phrase pairs from the
monotone source path as well as from the reordered
paths.

2.3 LIMSI-CNRS Single System

LIMSI’s system is built with n-code (Crego et al.,
2011), an open source statistical machine translation
system based on bilingual n-gram2. In this approach,
the translation model relies on a specific decomposi-
tion of the joint probability of a sentence pair P(s, t)
using the n-gram assumption: a sentence pair is de-
composed into a sequence of bilingual units called
tuples, defining a joint segmentation of the source
and target. In the approach of (Mariño et al., 2006),
this segmentation is a by-product of source reorder-
ing which ultimately derives from initial word and
phrase alignments.

2http://ncode.limsi.fr/

2.3.1 An Overview of n-code

The baseline translation model is implemented as
a stochastic finite-state transducer trained using a
n-gram model of (source,target) pairs (Casacuberta
and Vidal, 2004). Training this model requires to
reorder source sentences so as to match the target
word order. This is performed by a stochastic finite-
state reordering model, which uses part-of-speech
information3 to generalize reordering patterns be-
yond lexical regularities.

In addition to the translation model, eleven fea-
ture functions are combined: a target-language
model; four lexicon models; two lexicalized reorder-
ing models (Tillmann, 2004) aiming at predicting
the orientation of the next translation unit; a ’weak’
distance-based distortion model; and finally a word-
bonus model and a tuple-bonus model which com-
pensate for the system preference for short transla-
tions. The four lexicon models are similar to the ones
used in a standard phrase based system: two scores
correspond to the relative frequencies of the tuples
and two lexical weights estimated from the automat-
ically generated word alignments. The weights asso-
ciated to feature functions are optimally combined
using a discriminative training framework (Och,
2003), using the newstest2009 development set.

The overall search is based on a beam-search
strategy on top of a dynamic programming algo-
rithm. Reordering hypotheses are computed in a
preprocessing step, making use of reordering rules
built from the word reorderings introduced in the tu-
ple extraction process. The resulting reordering hy-
potheses are passed to the decoder in the form of
word lattices (Crego and Mariño, 2007).

2.3.2 Continuous Space Translation Models

One critical issue with standard n-gram transla-
tion models is that the elementary units are bilingual
pairs, which means that the underlying vocabulary
can be quite large. Unfortunately, the parallel data
available to train these models are typically smaller
than the corresponding monolingual corpora used to
train target language models. It is very likely then,
that such models should face severe estimation prob-
lems. In such setting, using neural network language

3Part-of-speech labels for English and German are com-
puted using the TreeTagger (Schmid, 1995).
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model techniques seem all the more appropriate. For
this study, we follow the recommendations of Le et
al. (2012), who propose to factor the joint proba-
bility of a sentence pair by decomposing tuples in
two (source and target) parts, and further each part
in words. This yields a word factored translation
model that can be estimated in a continuous space
using the SOUL architecture (Le et al., 2011).

The design and integration of a SOUL model for
large SMT tasks is far from easy, given the computa-
tional cost of computing n-gram probabilities. The
solution used here was to resort to a two pass ap-
proach: the first pass uses a conventional back-off
n-gram model to produce a k-best list; in the second
pass, the k-best list is reordered using the probabil-
ities of m-gram SOUL translation models. In the
following experiments, we used a fixed context size
for SOUL of m = 10, and used k = 300.

2.3.3 Corpora and Data Preprocessing
The parallel data is word-aligned using

MGIZA++4 with default settings. For the En-
glish monolingual training data, we used the same
setup as last year5 and thus the same target language
model as detailed in (Allauzen et al., 2011).

For English, we took advantage of our in-house
text processing tools for tokenization and detok-
enization steps (Déchelotte et al., 2008) and our sys-
tem was built in ”true-case”. As German is mor-
phologically more complex than English, the default
policy which consists in treating each word form
independently is plagued with data sparsity, which
is detrimental both at training and decoding time.
Thus, the German side was normalized using a spe-
cific pre-processing scheme (Allauzen et al., 2010;
Durgar El-Kahlout and Yvon, 2010), which notably
aims at reducing the lexical redundancy by (i) nor-
malizing the orthography, (ii) neutralizing most in-
flections and (iii) splitting complex compounds.

2.4 SYSTRAN Software, Inc. Single System

The data submitted by SYSTRAN were obtained by
a system composed of the standard SYSTRAN MT
engine in combination with a statistical post editing
(SPE) component.

4http://geek.kyloo.net/software
5The fifth edition of the English Gigaword (LDC2011T07)

was not used.

The SYSTRAN system is traditionally classi-
fied as a rule-based system. However, over the
decades, its development has always been driven by
pragmatic considerations, progressively integrating
many of the most efficient MT approaches and tech-
niques. Nowadays, the baseline engine can be con-
sidered as a linguistic-oriented system making use of
dependency analysis, general transfer rules as well
as of large manually encoded dictionaries (100k -
800k entries per language pair).

The SYSTRAN phrase-based SPE component
views the output of the rule-based system as the
source language, and the (human) reference trans-
lation as the target language, see (L. Dugast and
Koehn, 2007). It performs corrections and adaptions
learned from the 5-gram language model trained on
the parallel target-to-target corpus. Moreover, the
following measures - limiting unwanted statistical
effects - were applied:

• Named entities, time and numeric expressions
are replaced by special tokens on both sides.
This usually improves word alignment, since
the vocabulary size is significantly reduced. In
addition, entity translation is handled more re-
liably by the rule-based engine.

• The intersection of both vocabularies (i.e. vo-
cabularies of the rule-based output and the ref-
erence translation) is used to produce an addi-
tional parallel corpus to help to improve word
alignment.

• Singleton phrase pairs are deleted from the
phrase table to avoid overfitting.

• Phrase pairs not containing the same number
of entities on the source and the target side are
also discarded.

The SPE language model was trained on 2M bilin-
gual phrases from the news/Europarl corpora, pro-
vided as training data for WMT 2012. An addi-
tional language model built from 15M phrases of
the English LDC Gigaword corpus using Kneser-
Ney (Kneser and Ney, 1995) smoothing was added.
Weights for these separate models were tuned by
the Mert algorithm provided in the Moses toolkit
(P. Koehn et al., 2007), using the provided news de-
velopment set.
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3 RWTH Aachen System Combination

System combination is used to produce consensus
translations from multiple hypotheses produced with
different translation engines that are better in terms
of translation quality than any of the individual hy-
potheses. The basic concept of RWTH’s approach
to machine translation system combination has been
described by Matusov et al. (2006; 2008). This ap-
proach includes an enhanced alignment and reorder-
ing framework. A lattice is built from the input hy-
potheses. The translation with the best score within
the lattice according to a couple of statistical models
is selected as consensus translation.

4 Experiments

This year, we tried different sets of single systems
for system combination. As RWTH has two dif-
ferent translation systems, we put the output of
both systems into system combination. Although
both systems have the same preprocessing and lan-
guage model, their hypotheses differ because of
their different decoding approach. Compared to
the other systems, the system by SYSTRAN has a
completely different approach (see section 2.4). It
is mainly based on a rule-based system. For the
German→English pair, SYSTRAN achieves a lower
BLEU score in each test set compared to the other
groups. However, since the SYSTRAN system is
very different to the others, we still obtain an im-
provement when we add it also to system combina-
tion.

We did experiments with different optimization
criteria for the system combination optimization.
All results are listed in Table 1 (unoptimized), Table
2 (optimized on BLEU) and Table 3 (optimized on
TER-BLEU). Further, we investigated, whether we
will loose performance, if a single system is dropped
from the system combination. The results show that
for each optimization criteria we need all systems to
achieve the best results.

For the BLEU optimized system combination, we
obtain an improvement compared to the best sin-
gle systems for all dev sets. For newstest2008, we
get an improvement of 1.5 points in BLEU and 1.5
points in TER compared to the best single system of
Karlsruhe Institute of Technology. For newstest2009
we get an improvement of 1.9 points in BLEU and

1.5 points in TER compared to the best single sys-
tem. The system combination of all systems outper-
forms the best single system with 1.9 points in BLEU

and 1.9 points in TER for newstest2010. For new-
stest2011 the improvement is 1.3 points in BLEU

and 2.9 points in TER.
For the TER-BLEU optimized system combina-

tion, we achieved more improvement in TER com-
pared to the BLEU optimized system combination.
For newstest2008, we get an improvement of 0.8
points in BLEU and 3.0 points in TER compared to
the best single system of Karlsruhe Institute of Tech-
nology. The system combinations performs better
on newstest2009 with 1.3 points in BLEU and 2.7
points in TER. For newstest2010, we get an im-
provement of 1.7 points in BLEU and 3.4 points in
TER and for newstest2011 we get an improvement
of 0.7 points in BLEU and 2.5 points in TER.

5 Conclusion

The four statistical machine translation systems of
Karlsruhe Institute of Technology, RWTH Aachen
and LIMSI and the very structural approach of SYS-
TRAN produce hypotheses with a huge variability
compared to the others. Finally, the RWTH Aachen
system combination combined all single system hy-
potheses to one hypothesis with a higher BLEU and
a lower TER score compared to each single sys-
tem. For each optimization criteria the system com-
binations using all single systems outperforms the
system combinations using one less single system.
Although the single system of SYSTRAN has the
worst error scores and the RWTH single systems are
similar, we achieved the best result in using all single
systems. For the WMT 12 evaluation, we submitted
the system combination of all systems optimized on
BLEU.
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M. Popović, D. Stein, and H. Ney. 2006. Statistical
Machine Translation of German Compound Words.
In FinTAL - 5th International Conference on Natural
Language Processing, Springer Verlag, LNCS, pages
616–624.

Anna N. Rafferty and Christopher D. Manning. 2008.
Parsing three German treebanks: lexicalized and un-
lexicalized baselines. In Proceedings of the Workshop
on Parsing German.

K. Rottmann and S. Vogel. 2007. Word Reordering in
Statistical Machine Translation with a POS-Based Dis-
tortion Model. In TMI, Skövde, Sweden.
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Abstract

This paper describes LIMSI’s submissions to
the shared translation task. We report results
for French-English and German-English in
both directions. Our submissions use n-code,
an open source system based on bilingual
n-grams. In this approach, both the transla-
tion and target language models are estimated
as conventional smoothed n-gram models; an
approach we extend here by estimating the
translation probabilities in a continuous space
using neural networks. Experimental results
show a significant and consistent BLEU im-
provement of approximately 1 point for all
conditions. We also report preliminary experi-
ments using an “on-the-fly” translation model.

1 Introduction

This paper describes LIMSI’s submissions to the
shared translation task of the Seventh Workshop
on Statistical Machine Translation. LIMSI partic-
ipated in the French-English and German-English
tasks in both directions. For this evaluation, we
used n-code, an open source in-house Statistical
Machine Translation (SMT) system based on bilin-
gual n-grams1. The main novelty of this year’s
participation is the use, in a large scale system, of
the continuous space translation models described
in (Hai-Son et al., 2012). These models estimate the
n-gram probabilities of bilingual translation units
using neural networks. We also investigate an alter-
native approach where the translation probabilities
of a phrase based system are estimated “on-the-fly”

1http://ncode.limsi.fr/

by sampling relevant examples, instead of consider-
ing the entire training set. Finally we also describe
the use in a rescoring step of several additional fea-
tures based on IBM1 models and word sense disam-
biguation information.

The rest of this paper is organized as follows. Sec-
tion 2 provides an overview of the baseline systems
built with n-code, including the standard transla-
tion model (TM). The continuous space translation
models are then described in Section 3. As in our
previous participations, several steps of data pre-
processing, cleaning and filtering are applied, and
their improvement took a non-negligible part of our
work. These steps are summarized in Section 5.
The last two sections report experimental results ob-
tained with the “on-the-fly” system in Section 6 and
with n-code in Section 7.

2 System overview

n-code implements the bilingual n-gram approach
to SMT (Casacuberta and Vidal, 2004; Mariño et al.,
2006; Crego and Mariño, 2006). In this framework,
translation is divided in two steps: a source reorder-
ing step and a (monotonic) translation step. Source
reordering is based on a set of learned rewrite rules
that non-deterministically reorder the input words.
Applying these rules result in a finite-state graph of
possible source reorderings, which is then searched
for the best possible candidate translation.

2.1 Features

Given a source sentence s of I words, the best trans-
lation hypothesis t̂ is defined as the sequence of J
words that maximizes a linear combination of fea-
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ture functions:

t̂ = arg max
t,a

{
M∑

m=1

λmhm(a, s, t)

}
(1)

where λm is the weight associated with feature func-
tion hm and a denotes an alignment between source
and target phrases. Among the feature functions, the
peculiar form of the translation model constitute one
of the main difference between the n-gram approach
and standard phrase-based systems. This will be fur-
ther detailled in section 2.2 and 3.

In addition to the translation model, fourteen
feature functions are combined: a target-language
model (Section 5.3); four lexicon models; six lexi-
calized reordering models (Tillmann, 2004; Crego
et al., 2011) aiming at predicting the orientation of
the next translation unit; a “weak” distance-based
distortion model; and finally a word-bonus model
and a tuple-bonus model which compensate for the
system preference for short translations. The four
lexicon models are similar to the ones used in stan-
dard phrase-based systems: two scores correspond
to the relative frequencies of the tuples and two lexi-
cal weights are estimated from the automatic word
alignments. The weights vector λ is learned us-
ing a discriminative training framework (Och, 2003)
(Minimum Error Rate Training (MERT)) using the
newstest2009 as development set and BLEU (Pap-
ineni et al., 2002) as the optimization criteria.

2.2 Standard n-gram translation models

n-gram translation models rely on a specific de-
composition of the joint probability of a sentence
pair P (s, t): a sentence pair is assumed to be
decomposed into a sequence of L bilingual units
called tuples defining a joint segmentation: (s, t) =
u1, ..., uL

2. In the approach of (Mariño et al., 2006),
this segmentation is a by-product of source reorder-
ing obtained by “unfolding” initial word alignments.

In this framework, the basic translation units are
tuples, which are the analogous of phrase pairs and
represent a matching u = (s, t) between a source
s and a target t phrase (see Figure 1). Using the
n-gram assumption, the joint probability of a seg-

2From now on, (s, t) thus denotes an aligned sentence pair,
and we omit the alignment variable a in further developments.

mented sentence pair decomposes as:

P (s, t) =
L∏

i=1

P (ui|ui−1, ..., ui−n+1) (2)

During the training phase (Mariño et al., 2006), tu-
ples are extracted from a word-aligned corpus (us-
ing MGIZA++3 with default settings) in such a
way that a unique segmentation of the bilingual
corpus is achieved. A baseline n-gram translation
model is then estimated over a training corpus com-
posed of tuple sequences using modified Knesser-
Ney Smoothing (Chen and Goodman, 1998).

2.3 Inference
During decoding, source sentences are represented
in the form of word lattices containing the most
promising reordering hypotheses, so as to reproduce
the word order modifications introduced during the
tuple extraction process. Hence, only those reorder-
ing hypotheses are translated and they are intro-
duced using a set of reordering rules automatically
learned from the word alignments.

In the example in Figure 1, the rule [prix no-
bel de la paix ; nobel de la paix prix] repro-
duces the invertion of the French words that is ob-
served when translating from French into English.
Typically, part-of-speech (POS) information is used
to increase the generalization power of these rules.
Hence, rewrite rules are built using POS rather than
surface word forms (Crego and Mariño, 2006).

3 SOUL translation models

A first issue with the model described by equa-
tion (2) is that the elementary units are bilingual
pairs. As a consequence, the underlying vocabulary,
hence the number of parameters, can be quite large,
even for small translation tasks. Due to data sparsity
issues, such model are bound to face severe estima-
tion problems. Another problem with (2) is that the
source and target sides play symmetric roles: yet,
in decoding, the source side is known and only the
target side must be predicted.

3.1 A word factored translation model
To overcome these issues, the n-gram probability in
equation (2) can be factored by decomposing tuples

3http://www.kyloo.net/software/doku.php
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 s̅8: à 

 t̅8: to 

 s̅9: recevoir 

 t̅9: receive 

 s̅10: le 

 t̅10: the 

 s̅11: nobel de la paix 

 t̅11: nobel peace 

 s̅12: prix 

 t̅12: prize 

 u8  u9  u10  u11  u12 

S :   .... 

T :   .... 

à recevoir le prix nobel de la paixorg :   ....

....

....

Figure 1: Extract of a French-English sentence pair segmented into bilingual units. The original (org) French sentence
appears at the top of the figure, just above the reordered source s and target t. The pair (s, t) decomposes into a
sequence of L bilingual units (tuples) u1, ..., uL. Each tuple ui contains a source and a target phrase: si and ti.

in two parts (source and target), and by taking words
as the basic units of the n-gram TM. This may seem
to be a regression with respect to current state-of-
the-art SMT systems, as the shift from the word-
based model of (Brown et al., 1993) to the phrase-
based models of (Zens et al., 2002) is usually con-
sidered as a major breakthrough of the recent years.
Indeed, one important motivation for considering
phrases was to capture local context in translation
and reordering. It should however be emphasized
that the decomposition of phrases into words is only
re-introduced here as a way to mitigate the param-
eter estimation problems. Translation units are still
pairs of phrases, derived from a bilingual segmen-
tation in tuples synchronizing the source and target
n-gram streams. In fact, the estimation policy de-
scribed in section 4 will actually allow us to take into
account larger contexts than is possible with conven-
tional n-gram models.

Let sk
i denote the kth word of source tuple si.

Considering the example of Figure 1, s111 denotes
the source word nobel, s411 the source word paix.
We finally denote hn−1(tki ) the sequence made of
the n− 1 words preceding tki in the target sentence:
in Figure 1, h3(t211) thus refers to the three words
context receive the nobel associated with t211 peace.
Using these notations, equation (2) is rewritten as:

P (a, s, t) =
L∏

i=1

[ |ti|∏
k=1

P
(
tki |hn−1(tki ), h

n−1(s1i+1)
)

×
|si|∏
k=1

P
(
sk
i |hn−1(t1i ), h

n−1(sk
i )
)] (3)

This decomposition relies on the n-gram assump-
tion, this time at the word level. Therefore, this
model estimates the joint probability of a sentence

pair using two sliding windows of length n, one for
each language; however, the moves of these win-
dows remain synchronized by the tuple segmenta-
tion. Moreover, the context is not limited to the cur-
rent phrase, and continues to include words from ad-
jacent phrases. Using the example of Figure 1, the
contribution of the target phrase t11 = nobel, peace
to P (s, t) using a 3- gram model is:

P
(
nobel|[receive, the], [la, paix]

)
×P
(
peace|[the, nobel], [la, paix]

)
.

A benefit of this new formulation is that the vo-
cabularies involved only contain words, and are thus
much smaller that tuple vocabularies. These models
are thus less at risk to be plagued by data sparsity is-
sues. Moreover, the decomposition (3) now involves
two models: the first term represents a TM, the sec-
ond term is best viewed as a reordering model. In
this formulation, the TM only predicts the target
phrase, given its source and target contexts.

P (s, t) =
L∏

i=1

[ |si|∏
k=1

P
(
sk
i |hn−1(sk

i ), h
n−1(t1i+1)

)
×
|ti|∏
k=1

P
(
tki |hn−1(s1i ), h

n−1(tki )
)] (4)

4 The principles of SOUL

In section 3.1, we defined a n-gram translation
model based on equations (3) and (4). A major diffi-
culty with such models is to reliably estimate their
parameters, the numbers of which grow exponen-
tially with the order of the model. This problem
is aggravated in natural language processing due to

332



the well-known data sparsity issue. In this work,
we take advantage of the recent proposal of (Le et
al., 2011). Using a specific neural network architec-
ture (the Structured OUtput Layer or SOUL model),
it becomes possible to handle large vocabulary lan-
guage modeling tasks. This approach was experi-
mented last year for target language models only and
is now extended to translation models. More details
about the SOUL architecture can be found in (Le et
al., 2011), while its extension to translation models
is more precisely described in (Hai-Son et al., 2012).

The integration of SOUL models for large SMT
tasks is carried out using a two-pass approach: the
first pass uses conventional back-off n-gram trans-
lation and language models to produce a k-best list
(the k most likely translations); in the second pass,
the probability of a m-gram SOUL model is com-
puted for each hypothesis and the k-best list is ac-
cordingly reordered. In all the following experi-
ments, we used a context size for SOUL of m = 10,
and used k = 300. The two decompositions of equa-
tions (3) and (4) are used by introducing 4 scores
during the rescoring step.

5 Corpora and data pre-processing

Concerning data pre-processing, we started from our
submissions from last year (Allauzen et al., 2011)
and mainly upgraded the corpora and the associated
language-dependent pre-processing routines.

5.1 Pre-processing

We used in-house text processing tools for the to-
kenization and detokenization steps (Déchelotte et
al., 2008). Previous experiments have demonstrated
that better normalization tools provide better BLEU
scores: all systems are thus built in “true-case”.
Compared to last year, the pre-processing of utf-8
characters was significantly improved.

As German is morphologically more complex
than English, the default policy which consists in
treating each word form independently is plagued
with data sparsity, which severely impacts both
training (alignment) and decoding (due to unknown
forms). When translating from German into En-
glish, the German side is thus normalized using a
specific pre-processing scheme (described in (Al-
lauzen et al., 2010; Durgar El-Kahlout and Yvon,

2010)), which aims at reducing the lexical redun-
dancy by (i) normalizing the orthography, (ii) neu-
tralizing most inflections and (iii) splitting complex
compounds. All parallel corpora were POS-tagged
with the TreeTagger (Schmid, 1994); in addition, for
German, fine-grained POS labels were also needed
for pre-processing and were obtained using the RF-
Tagger (Schmid and Laws, 2008).

5.2 Bilingual corpora
As for last year’s evaluation, we used all the avail-
able parallel data for the German-English language
pair, while only a subpart of the French-English par-
allel data was selected. Word alignment models
were trained using all the data, whereas the transla-
tion models were estimated on a subpart of the par-
allel data: the UN corpus was discarded for this step
and about half of the French-English Giga corpus
was filtered based on a perplexity criterion as in (Al-
lauzen et al., 2011)).

For French-English, we mainly upgraded the
training material from last year by extracting the
new parts from the common data. The word
alignment models trained last year were then up-
dated by running a forced alignment 4 of the new
data. These new word-aligned data was added to
last year’s parallel corpus and constitute the train-
ing material for the translation models and feature
functions described in Section 2. Given the large
amount of available data, three different bilingual
n-gram models are estimated, one for each source of
data: News-Commentary, Europarl, and the French-
English Giga corpus. These models are then added
to the weighted mixture defined by equation (1). For
German-English, we simply used all the available
parallel data to train one single translation models.

5.3 Monolingual corpora and language models
For the monolingual training data, we also used the
same setup as last year. For German, all the train-
ing data allowed in the constrained task were di-
vided into several sets based on dates or genres:
News-Commentary, the news crawled from the Web
grouped by year, and Europarl. For each subset,
a standard 4-gram LM was estimated using inter-
polated Kneser-Ney smoothing (Kneser and Ney,

4The forced alignment step consists in an additional EM it-
eration.
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1995; Chen and Goodman, 1998). The resulting
LMs are then linearly combined using interpolation
coefficients chosen so as to minimize the perplexity
of the development set. The German vocabulary is
created using all the words contained in the parallel
data and expanded to reach a total of 500k words by
including the most frequent words observed in the
monolingual News data for 2011.

For French and English, the same monolingual
corpora as last year were used5. We did not observe
any perplexity decrease in our attempts to include
the new data specifically provided for this year’s
evaluation. We therefore used the same language
models as in (Allauzen et al., 2011).

6 “On-the-fly” system

We also developped an alternative approach imple-
menting “on-the-fly” estimation of the parameter of
a standard phase-based model, using Moses (Koehn
et al., 2007) as the decoder. Implementing on-the-
fly estimation for n-code, while possible in the-
ory, is less appealing due to the computational cost
of estimating a smoothed language model. Given
an input source file, it is possible to compute only
those statistics which are required to translate the
phrases it contains. As in previous works on on-
the-fly model estimation for SMT (Callison-Burch
et al., 2005; Lopez, 2008), we compute a suffix
array for the source corpus. This further enables
to consider only a subset of translation examples,
which we select by deterministic random sampling,
meaning that the sample is chosen randomly with
respect to the full corpus but that the same sample
is always returned for a given value of sample size,
hereafter denoted N . In our experiments, we used
N = 1, 000 and computed from the sample and the
word alignments (we used the same tokenization and
word alignments as in all other submitted systems)
the same translation6 and lexical reordering models
as the standard training scripts of the Moses system.

Experiments were run on the data sets used for
WMT English-French machine translation evalua-
tion tasks, using the same corpora and optimization

5The fifth edition of the English Gigaword (LDC2011T07)
was not used.

6An approximation is used for p(f |e), and coherent transla-
tion estimation is used; see (Lopez, 2008).

procedure as in our other experiments. The only no-
table difference is our use of the Moses decoder in-
stead of the n-gram-based system. As shown in Ta-
ble 1, our on-the-fly system achieves a result (31.7
BLEU point) that is slightly worst than the n-code
baseline (32.0) and slightly better than the equiva-
lent Moses baseline (31.5), but does it much faster.
Model estimation for the test file is reduced to 2
hours and 50 minutes, with an additional overhead
for loading and writing files of one and a half hours,
compared to roughly 210 hours for our baseline sys-
tems under comparable hardware conditions.

7 Experimental results

7.1 n-code with SOUL

Table 1 summarizes the experimental results sub-
mitted to the shared translation for French-English
and German-English in both directions. The perfor-
mances are measured in terms of BLEU on new-
stest2011, last year’s test set, and this year’s test
set newstest2012. For the former, BLEU scores are
computed with the NIST script mteva-v13.pl, while
we provide for newstest2012 the results computed
by the organizers 7. The Baseline results are ob-
tained with standard n-gram models estimated with
back-off, both for the bilingual and monolingual tar-
get models. With standard n-gram estimates, the or-
der is limited to n = 4. For instance, the n-code
French-English baseline achieves a 0.5 BLEU point
improvement over a Moses system trained with the
same data setup in both directions.

From Table 1, it can be observed that adding
the SOUL models (translation models and target
language model) consistently improves the base-
line, with an increase of 1 BLEU point. Con-
trastive experiments show that the SOUL target LM
does not bring significant gain when added to the
SOUL translation models. For instance, a gain of
0.3 BLEU point is observed when translating from
French to English with the addition of the SOUL tar-
get LM. In the other translation directions, the differ-
ences are negligible.

7All results come from the official website: http://
matrix.statmt.org/matrix/.
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Direction System BLEU
test2011 test2012∗

en2fr Baseline 32.0 28.9
+ SOUL TM 33.4 29.9
on-the-fly 31.7 28.6

fr2en Baseline 30.2 30.4
+ SOUL TM 31.1 31.5

en2de Baseline 15.4 16.0
+ SOUL TM 16.6 17.0

de2en Baseline 21.8 22.9
+ SOUL TM 22.8 23.9

Table 1: Experimental results in terms of BLEU scores
measured on the newstest2011 and newstest2012. For
newstest2012, the scores are provided by the organizers.

7.2 Experiments with additional features
For this year’s evaluation, we also investigated sev-
eral additional features based on IBM1 models and
word sense disambiguation (WSD) information in
rescoring. As for the SOUL models, these features
are added after the n-best list generation step.

In previous work (Och et al., 2004; Hasan, 2011),
the IBM1 features (Brown et al., 1993) are found
helpful. As the IBM1 model is asymmetric, two
models are estimated, one in both directions. Con-
trary to the reported results, these additional features
do not yield significant improvements over the base-
line system. We assume that the difficulty is to add
information to an already extensively optimized sys-
tem. Moreover, the IBM1 models are estimated on
the same training corpora as the translation system,
a fact that may explain the redundancy of these ad-
ditional features.

In a separate series of experiments, we also add
WSD features calculated according to a variation of
the method proposed in (Apidianaki, 2009). For
each word of a subset of the input (source lan-
guage) vocabulary, a simple WSD classifier pro-
duces a probability distribution over a set of trans-
lations8. During reranking, each translation hypoth-
esis is scanned and the word translations that match
one of the proposed variant are rewarded using an
additional score. While this method had given some

8The difference with the method described in (Apidianaki,
2009) is that no sense clustering is performed, and each transla-
tion is represented by a separate weighted source feature vector
which is used for disambiguation

small gains on a smaller dataset (IWSLT’11), we did
not observe here any improvement over the base-
line system. Additional analysis hints that (i) most
of the proposed variants are already covered by the
translation model with high probabilities and (ii) that
these variants are seldom found in the reference sen-
tences. This means that, in the situation in which
only one reference is provided, the hypotheses with
a high score for the WSD feature are not adequately
rewarded with the actual references.

8 Conclusion

In this paper, we described our submissions to
WMT’12 in the French-English and German-
English shared translation tasks, in both directions.
As for our last year’s participation, our main sys-
tems are built with n-code, the open source Statis-
tical Machine Translation system based on bilingual
n-grams. Our contributions are threefold. First, we
have experimented a new kind of translation mod-
els, where the bilingual n-gram distribution are es-
timated in a continuous space with neural networks.
As shown in past evaluations with target language
model, there is a significant reward for using this
kind of models in a rescoring step. We observed that,
in general, the continuous space translation model
yields a slightly larger improvement than the target
translation model. However, their combination does
not result in an additional gain.

We also reported preliminary results with a sys-
tem ”on-the-fly”, where the training data are sam-
pled according to the data to be translated in order
to train contextually adapted system. While this sys-
tem achieves comparable performance to our base-
line system, it is worth noticing that its total train-
ing time is much smaller than a comparable Moses
system. Finally, we investigated several additional
features based on IBM1 models and word sense dis-
ambiguation information in rescoring. While these
methods have sometimes been reported to help im-
prove the results, we did not observe any improve-
ment here over the baseline system.
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Abstract 

This paper describes the UPM system for the 

Spanish-English translation task at the 

NAACL 2012 workshop on statistical ma-

chine translation. This system is based on Mo-

ses. We have used all available free corpora, 

cleaning and deleting some repetitions. In this 

paper, we also propose a technique for select-

ing the sentences for tuning the system. This 

technique is based on the similarity with the 

sentences to translate. With our approach, we 

improve the BLEU score from 28.37% to 

28.57%. And as a result of the WMT12 chal-

lenge we have obtained a 31.80% BLEU with 

the 2012 test set. Finally, we explain different 

experiments that we have carried out after the 

competition. 

1 Introduction 

The Speech Technology Group at the Technical 

University of Madrid has participated in the sev-

enth workshop on statistical machine translation in 

the Spanish-English translation task. 

Our submission is based on the state-of-the-art 

SMT toolkit Moses (Koehn et al., 2007). Firstly, 

we have proved different corpora for training the 

system: cleaning the whole corpus and deleting 

some repetitions in order to have a better perfor-

mance of the translation model. 

There are several related works on filtering the 

training corpus by removing noisy data that use a 

similarity measure based on the alignment score or 

based on sentences length (Khadivi and Ney, 

2005). 

In this paper, we also propose a technique for 

selecting the most appropriate sentences for tuning 

the system, based on the similarity with the Span-

ish sentences to translate. This technique is an up-

date of the technique proposed by our group in the 

last WMT11 challenge (López-Ludeña and San-

Segundo, 2011). There are other works related to 

select the development set (Hui et al., 2010) that 

combine different development sets in order to find 

the more similar one with test set. 

There are also works related to select sentences, 

but for training instead of tuning, based on the sim-

ilarity with the source test sentences. Some of them 

are based on transductive learning: semi-

supervised methods for the effective use of mono-

lingual data from the source language in order to 

improve translation quality (Ueffing, 2007); meth-

ods using instance selection with feature decay 

algorithms (Bicici and Yuret, 2011); or using TF-

IDF algorithm (Lü et al., 2007). There are also 

works based on selecting training material with 

active learning: using language model adaptation 

(Shinozaki et al., 2011); or perplexity-based meth-

ods (Mandal et al., 2008). 

In this work, we have used the proposed selec-

tion method only for tuning. 

The rest of the paper is organized as follows. 

Next section overviews the system. Section 3 de-

scribes the used corpora. Section 4 explains the 

experiments carried out before the competition. 

Section 5 describes the sentences selection tech-

nique for tuning. Section 6 summarizes the results: 

before the WMT12 challenge, the corresponding to 

the competition and the last experiments. Finally, 

section 7 shows the conclusions. 

2 Overall description of the system  

The translation system used is based on Moses, the 

software released to support the translation task 

(http://www.statmt.org/wmt12/) at the NAACL 

2012 workshop on statistical machine translation.  
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The Moses decoder is used for the translation 

process (Koehn et al., 2007). This program is a 

beam search decoder for phrase-based statistical 

machine translation models.  

We have used GIZA++ (Och and Ney, 2003) for 

the word alignment computation. In order to gen-

erate the translation model, the parameter “align-

ment” was fixed to “grow-diag-final” (default 

value), and the parameter “reordering” was fixed to 

“msd-bidirectional-fe” as the best option, based on 

experiments on the development set. 

In order to extract phrases (Koehn et al 2003), 

the considered alignment was grow-diag-final. And 

the parameter “max-phrase-length” was fixed to 

“7” (default value), based on experiments on the 

development set. 

Finally, we have built a 5-gram language model, 

using the IRSTLM language modeling toolkit 

(Federico and Cettolo, 2007). 

Additionally, we have used the following tools 

for pre-processing the training corpus: 

tokenizer.perl, lowercase.perl, clean-corpus-n.perl. 

And the following ones for recasing, detokenizer 

and normalizing punctuation in the translation out-

put: train-recaser.perl, recase.perl, detokenizer.perl 

and normalize-punctuation.perl. 

In addition, we have used Freeling (Padró et al., 

2010) in some experiments, an open source library 

of natural language analyzers, but we did not im-

prove our experiments by using Freeling. We used 

this tool in order to extract factors for Spanish 

words in order to train factored translation models. 

3 Corpora used in these experiments 

For the system development, only the free cor-

pora distributed in the NAACL 2012 translation 

task has been used, so any researcher can validate 

these experiments easily. 

In order to train the translation model, we used 

the union of the Europarl corpus, the United Na-

tions Organization (UNO) corpus and the News 

Commentary corpus. 

A 5-gram language model was built joining the 

following monolingual corpora: Europarl, News 

commentary, United Nations and News Crawl. We 

have not used the Gigaword corpus. 

In order to tune the model weights, the 2010 and 

2011 test set were used for development. We did 

not use the complete set, but a sentences selection 

in order to improve the tuning process. This selec-

tion will be explained in section 5. 

The main characteristics of the corpora are 

shown in Table 1. All the parallel corpora has been 

cleaned with clean-corpus-n.perl, lowercased with 

lowercase.perl and tokenized with tokenizer.perl.  

All these tools can be also free downloaded 

from http://www.statmt.org/wmt12/. 

We observed that the parallel corpora, specially 

the UNO corpus, have many repeated sentences. 

We noted that these repetitions can cause a bad 

training. So, after cleaning the parallel corpora 

with the clean-corpus-n.perl tool, we eliminated all 

repetitions that appear more than 3 times in the 

parallel corpus. 

Table 1: Size of the corpora used in our experi-

ments 

4 Previous experiments 

Several experiments were carried out by using 

different number of sentences, as it is shown in 

Table 2.  

In these experiments, we used the 2010 test set 

for tuning (news-test2010) and the 2011 test set for 

test (news-test2011). And a 5-gram language mod-

el was built with the IRSTLM tool. For evaluating 

the performance of the translation system, the 

BLEU (BiLingual Evaluation Understudy) metric 

  
Original sen-

tences 

Translation 

Model (TM)  

Europarl (EU) 1,965,734 

UNO 11,196,913 

News commentary 

(NC) 
157,302 

Total 13,319,949 

Total clean 9,530,335 

Total without repe-

titions 
4,907,778 

Language 

Model (LM) 

Europarl  2,218,201 

UNO 11,196,913 

News commentary 

(NC) 
212,517 

News Crawl (NCR) 51,827,710 

Total 65,455,341 

Tuning 

news-test2010 2,489 

news-test2011 3,003 

Total 5,492 

Total selected 4,500 

Test news-test2012 3,003 

339



has been computed using the NIST tool (mteval.pl) 

(Papipeni et al., 2002). 

Firstly, we checked the contribution of UNO 

corpus in the final result. As it is shown in Table 2, 

the results improve when we add the UNO corpus, 

although this difference is small compared to the 

increasing of number of sentences: with 1,643,597 

sentences we have a 28.24% BLEU and if we add 

around other 8 million sentences more, the BLEU 

score only increase 0.13 points (28.37%). 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Previous experiments using news-

test2010 for tuning and news-test2011 as test set 

 

We observed that UNO corpus have a lot of re-

peated sentences. So, we decided to remove repeti-

tions in the whole corpus. With this action, we 

aimed to keep the UNO sentences that let us to 

improve the BLEU score and, on the other hand, to 

delete the sentences that do not contribute in any 

way, reducing the training time. 

We did some experiments deleting repetitions: 

allowing 5 repetitions, 3 repetitions and, finally, 1 

repetition (no repetitions). Table 2 shows how the 

results improve deleting more than 3 repetitions. 

So, finally, we improved the BLEU score from 

23.24% without UNO corpus to 28.37% adding the 

UNO and to 28.47% deleting all sentences repeat-

ed more than 3 times.  

5 Selecting the development corpus 

When the system is trained, different model 

weights must be tuned corresponding to the main 

four features of the system: translation model, lan-

guage model, reordering model and word penalty. 

Initially, these weights are equal, but it is necessary 

to optimize their values in order to get a better per-

formance. Development corpus is used to adapt the 

different weights used in the translation process for 

combining the different sources of information. 

The weight selection is performed by using the 

minimum error rate training (MERT) for log-linear 

model parameter estimation (Och, 2003). 

It is not demonstrated that the weights with bet-

ter performance on the development set provide 

better results on the unseen test set. Because of 

this, this paper proposes a sentence selection tech-

nique that allows selecting the sentences of the 

development set that have more similarity with the 

sentences to translate (source test set): if the 

weights are tuned with sentences more similar to 

the sentence in the test set, the tuned weights will 

allow obtaining better translation results.  

We have considered two alternatives for compu-

ting the similarity between a sentence and the test 

set. As it will be shown, with these methods the 

results improve. 

The first alternative consists of the similarity 

method proposed in (López-Ludeña and San-

Segundo, 2011), that computed a 3-gram language 

model considering the source language sentences 

from the test set. After that, the system computes 

the similarity of each source sentence in the valida-

tion corpus considering the language model ob-

tained in the first step and, finally, a threshold is 

defined for selecting a subset with the higher simi-

larity.  

The second method that we propose now is a 

modification of the first one. With the formula of 

the first method, it was observed that, in some cas-

es, the unigram probabilities had a relevant signifi-

cance in the similarity, compared to 2-gram or 3-

grams. The system was selecting sentences that 

have more unigrams that coincide with the source 

test sentences. However, these unigrams some-

times were not part of “good” bigrams or trigrams. 

Moreover, it was detected that the previous strate-

gy was selecting short sentences, leaving the long 

ones out. 

Considering the previous aspects, a second 

method was proposed and evaluated, trying to cor-

rect these effects. The proposal was to remove the 

unigram effect by normalizing the similarity meas-

ure with the unigram probabilities of the word se-

quence. So, the similarity measure is computed 

now using the following equation: 
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Training 
Deleting 

repetitions 

Number 

of sen-

tences 

BLEU 

(%) 

EU+NC NO 1,643,597 28.24 

EU+NC+

UNO 
NO 9,530,335 28.37 

EU+NC+

UNO 
YES (> 1) 2,112,968 28.12 

EU+NC

+UNO 
YES (> 3) 4,907,778 28.47 

EU+NC+

UNO 
YES (> 5) 6,270,441 28.28 
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Where Pn is the probability of the word ‘n’ in 

the sentence considering the language model 

trained with the source language sentences of the 

test set.  

For example, if one sentence is “A B C D” 

(where each letter is a word of the validation sen-

tence): 
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Each probability is extracted from the language 

model calculated in the first step. This similarity is 

the negative of the source sentence perplexity giv-

en the language model. 

With all the similarities organized in a sorted 

list, it is possible to define a threshold selecting a 

subset with the higher similarity. For example, cal-

culating the similarity of all sentences in our de-

velopment corpus (around 2,500 sentences) a 

similarity histogram is obtained (Figure 1). 
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 Figure 1: Similarity histogram of the source de-

velopment sentences respect to the language model 

trained with the source language sentence of the 

test set 
 

This histogram indicates the number of sentenc-

es inside each interval. There are 100 different in-

tervals: the minimum similarity is mapped into 0 

and the maximum one into 100. As it is shown, the 

similarity distribution is very similar to a Gaussian 

distribution. 

Finally, source development sentences with a 

similarity lower than the threshold are eliminated 

from the development set (the corresponding target 

sentences are also removed). 

All the experiments have been carried out in the 

Spanish into English translation system, using the 

corpora described in section 3 to generate the 

translation and language models. 

In order to evaluate the system, the test set of the 

EMNLP 2011 workshop on statistical machine 

translation (news-test2011) was considered. 

In order to adapt the different weights used in 

the translation process, the test set of the ACL 

2010 workshop on statistical machine translation 

(news-test2010) has been used for weight tuning. 

The previous selection strategies allow filtering 

this validation set, selecting the most similar sen-

tences to the test set. 

Figure 2 and Table 3 show the different results 

with each number of selected sentences. 
 

Table 3: Results with different number of devel-

opment sentences 
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Figure 2: Results with different number of devel-

opment sentences 

 

Figure 2 shows that the BLEU score improves 

when the number of sentences of the development 

corpus increases from 0 to around 1,500 sentences 

with both methods. However, with more than 

1,500 sentences (selected with the first similarity 

computation method) and more than 2,000 (select-

Sentences se-

lected for de-

velopment 

BLEU results (%) 

Normalized 

similarity 

Similarity 

(López-Ludeña 

and San-Segundo, 

2011) 

500 28.01 28.36 

1,000 28.11 28.47 

1,500 28.57 28.51 

2,000 28.57 28.36 

2,489 (Base-

line) 
28.47 28.47 

ORACLE 28.91 28.91 
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ed with the normalized similarity method), the 

BLEU score starts to decrease. This decrement 

reveals that there is a subset of sentences that are 

quite different from the test sentences and they are 

not appropriate for tuning the model weights. 

The best obtained result has been 28.57% BLEU 

with 1,500 sentences of the development corpus, 

selected with the normalized similarity method. 

The improvement reached is 30% of the possible 

improvement (considering the ORACLE experi-

ment). This result is better than using the complete 

development corpus (28.47% BLEU). 

When comparing both alternatives to compute 

the similarity between a sentence (from the valida-

tion set) and a set of sentences (source sentences 

from the test set), we can see that the normalized 

similarity method allows a higher improvement. 

The main reason is that the similarity method se-

lects sentences including information about similar 

unigrams, but sometimes, these unigrams are not 

part of “good” bigrams or trigrams. Moreover, this 

strategy selects short sentences, leaving the long 

ones out. When using the normalized similarity 

method, these two problems are reduced. 

6 Results 

 Test set 
BLEU 

(%) 

BLEU 

cased 

(%) 

TER 

(%) 

Baseline 
news-

test2011 
28.37 25.76 59.9 

Best result 
news-

test2011 
28.57 25.98 59.8 

WMT12 

result 

news-

test2012 
31.80 28.90 57.9 

Table 4: Final results of the translation system 

 

Table 4 shows the results with the 2011 test set: 

we have a 28.37% BLEU as baseline using the 

whole corpora and finally we obtain a 28.57% 

BLEU with the deletion of repetitions and the sen-

tences selection for tuning.  

With this configuration, we have obtained a 

31.8% BLEU with the 2012 test set as a result of 

the competition of this year. 

6.1 Other experiments 

We have carried out other experiments with the 

2012 test set: factored models, Minimum Bayes 

Risk Decoding (MBR) and other sets for tuning. 

However, they did not finish before the competi-

tion deadline. 

• Factored models using Freeling 

Firstly, we have trained factored models in 

Spanish with Moses (Koehn and Hoang, 2007). 

We have only factored the source language (Span-

ish) and, in order to obtain the factors for each 

Spanish word, we have used Freeling 

(http://nlp.lsi.upc.edu/freeling/). 

When running the Freeling analyzer with a 

Spanish sentence and the output option “tagged”, 

we obtain, for each word, an associated lemma, a 

coded tag with morphological and syntactic infor-

mation, and a probability. For instance, with the 

sentence “la inflación europea se deslizó en los 

alimentos”, we obtain: 

 

word lemma tag probability 

la el DA0FS0 0.972 

inflación inflación NCFS000 1.000 

europea europeo AQ0FS0 0.900 

se se P00CN000 0.465 

deslizó deslizar VMIS3S0 1.000 

en en SPS00 1.000 

los el DA0MP0 0.976 

alimentos alimento NCMP000 1.000 

Table 5: Freeling analyzer output 
 

We take advantage of the lemma (second col-

umn) associated to each word and we use it as fac-

tor. So, the previous sentence is factorized as “la|el 

inflación|inflación europea|europeo se|se des-

lizó|deslizar en|en los|el alimentos|alimento” 

This way, two models are generated in the trans-

lation process. For the GIZA++ alignment we used 

the second factor (lemma) instead of the word. 

Results show that there is not improvement by 

using Freeling. BLEU score is a bit lower (30.95% 

in contrast to the 31.80% obtained without 

Freeling). However, we want to continue doing 

experiments with Freeling with other different 

GIZA++ alignment options different to the default 

value “grow-diag-final”. 

On the other hand, we want to prove different 

sets for tuning. When using factored models, there 

are more weights to be adjusted and it is possible 

that 4,500 sentences are insufficient. 
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• MBR 

The use of Minumum Bayes Risk (MBR) (Ku-

mar and Byrne, 2004) consists of, instead of select-

ing the translation with the highest probability, 

minimum Bayes risk decoding selects the transla-

tion that is most similar to the highest scoring 

translations. The idea is to choose hypotheses that 

minimize Bayes Risk as oppose to those that max-

imize posterior probability. 

If we set up this option for decoding, the results 

improve from 31.80% to 31.99%. 

• Tuning with a 2008-2011 test set sen-

tences selection 

We have also changed the set for tuning, includ-

ing the 2008 and 2009 test set in addition to the 

2009 and 2010 sets. With the four sets we have 

around 10,000 sentences. For tuning, we have se-

lected 8,000 of these sentences with the normalized 

similarity method explained in section 5. 

Table 6 shows that the results are worse. How-

ever, we have established the threshold based on 

previous experiments with the 2010 and 2011 sets. 

Now, we should test different threshold with the 

four sets in order to determine the best one. 
 

 
BLEU 

(%) 

BLEU cased 

(%) 

TER 

(%) 

WMT result 31.80 28.90 53.5 

Freeling 30.95 28.03 54.9 

MBR 31.99 29.06 53.4 

Tuning sets 

(2008-2011) 
31.55 28.62 53.8 

Table 6: Results of the experiments after competi-

tion 

7 Conclusions 

This paper has described the UPM statistical 

machine translation system for the Spanish-English 

translation task at the WMT12. This system is 

based on Moses. We have checked that deleting 

repetitions of the corpus, we can improve lightly 

the results: we increase the BLEU score from 

28.37% with the whole corpora to 28.47% allow-

ing only 3 repetitions of each sentence. Although 

this improvement is not significant (we have a con-

fidence interval of ±0.35), we can say that we ob-

tain a similar result by reducing very much the 

training time. 

We have also proposed a method for selecting 

the sentences used for tuning the system. This se-

lection is based on the normalized similarity with 

the source language test set. With this technique 

we improve the BLEU score from 28.47% to 

28.57%. Although this result is not significant, we 

can appreciate an improving tendency by selecting 

the training sentences. 

As a result of WMT12 challenge, we have ob-

tained a 31.8% BLEU in Spanish-English transla-

tion with the 2012 test set. Our system takes 

around 40 hours for training, 16 hours for tuning 

(with 5 minutes for the sentences selection) and 3 

hours to translate and to recase the test sentences in 

an 3.33 GHz Intel PC with 24 cores. 

Finally, we have presented other additional ex-

periments after the competition. We can improve a 

bit more the results to 32% BLEU by using the 

MBR decoding option. 
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Abstract 

This paper describes the PROMT submission 
for the WMT12 shared translation task. We 
participated in two language pairs: English-
French and English-Spanish. The translations 
were made using the PROMT DeepHybrid 
engine, which is the first hybrid version of the 
PROMT system. We report on improvements 
over our baseline RBMT output both in terms 
of automatic evaluation metrics and linguistic 
analysis. 

1 Introduction 

In this paper we present the PROMT DeepHy-
brid submission for WMT12 shared translation 
task for two language pairs: English-French and 
English-Spanish. 

A common approach to create hybrid machine 
translation (MT) systems on the basis of rule-based 
machine translation (RBMT) systems is to build a 
statistical phrase-based post-editing (SPE) system 
using state-of-the-art SMT technologies (see Si-
mard et al. 2007). An SPE system views the output 
of the RBMT system as the source language, and 
reference human translations as the target lan-
guage. SPE systems are used to correct typical 
mistakes of the RBMT output and to adapt RBMT 
systems to specific domains. (Dugast et al. 2007) 
report on good results both in terms of automatic 
evaluation metrics and human evaluation for the 
SPE systems based on PORTAGE (Sadat et al. 
2005) and Moses (Koehn et al. 2007). However, an 
SMT model in fact makes translation output less 

predictable in comparison with RBMT output. We 
propose a different approach to hybrid MT tech-
nology. We developed and incorporated the SPE 
component into our translation system (the statisti-
cal post-editing data is controlled by the PROMT 
hybrid translation engine). Besides, we have an 
internal language model (LM) component that 
scores the generated translation candidates. 

The remainder of the paper is organized as fol-
lows: in section 2 we provide the detailed descrip-
tion of our hybrid MT technology. In section 3 we 
evaluate the performance of the technology on two 
language pairs: English-French and English-
Spanish. We gain improvements over the baseline 
RBMT system in terms of BLEU score on test sets. 
We also introduce the results of linguistic evalua-
tion performed by our experts. Section 4 summa-
rizes the key findings and outlines open issues for 
future work. 

2 System description 

The PROMT DeepHybrid system is based on 
our RBMT engine. The baseline system has been 
augmented with several modules for hybrid train-
ing and translation. The training technology is fully 
automated, but each step can be fulfilled and tuned 
separately. 

2.1 Rule-based component 

PROMT covers 51 language pairs for 13 differ-
ent source languages. Our system is traditionally 
classified as a ‘rule-based’ system. PROMT uses 
morphosyntactic analyzers to analyze the source 
sentence and transfer rules to translate the sentence 
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into the target language. The crucial component of 
our system is the PROMT bilingual dictionaries 
which contain up to 250K entries for each lan-
guage pair. Each entry is supplied with various 
linguistic (lexical and grammatical, morphological, 
semantic) features. Besides the ‘baseline’ diction-
aries the PROMT system has a large number of 
domain-specific dictionaries. 

2.2 Parallel corpus processing 

We have a specific component for processing 
parallel corpora before training the hybrid system. 
This component can process data in plain text and 
XML formats. We also perform substantial data 
filtering. All punctuation and special symbols 
(ligatures etc.) are normalized. The length of the 
words in a sentence and the length of sentences are 
taken into account (sentences having length above 
a set threshold are discarded). All duplicated sen-
tences are discarded as well. On top of that, we 
remove parallel segments with different number of 
sentences because such segments corrupt phrase 
alignment. Strings containing few alphabetic sym-
bols and untranslated sentences are filtered out 
from the parallel corpus. 

2.3 Automated dictionary extraction  

 

 
 

The extraction technology is shown in figure 1. 
The whole process can be subdivided into two 
separate tasks: 1) statistical alignment of a parallel 

corpus 2) extraction of syntactic phrases from the 
source and target sides of the parallel corpus. We 
then combine the results of these tasks to extract 
bilingual terminology. We use GIZA++ to perform 
the word alignment (Och and Ney, 2003). Then we 
use the common heuristics to extract parallel 
phrase pairs (Koehn et al. 2007). We use the 
PROMT parsers to extract grammatically correct 
phrases from source and target sides of the parallel 
corpora. PROMT parsers are rule-based multi-level 
morphosyntactic analyzers. Parsers extract noun 
phrases, verb phrases and adverbial phrases. The 
extraction is done as follows: each sentence of the 
corpus is parsed, a parse tree is created, the ex-
tracted syntactic phrases are stored in memory; 
after the whole corpus is processed, all extracted 
phrases are lemmatized and presented in a list. 
Each phrase is supplied with a set of linguistic fea-
tures (part of speech, lemma, lemma frequency 
etc.). The next step is building a bilingual glossary 
using two sets of syntactic phrases extracted from 
the source and the target sides of the parallel cor-
pus on the one hand and a statistically aligned set 
of phrase pairs on the other hand. We do not add 
geographic names, proper names and named enti-
ties (dates etc.) to the glossary because they are 
well processed by the RBMT engine. 

2.4 Statistical phrase-based post-editing  

The technology of obtaining data for statistical 
post-editing is standard. We translate the source 
corpus using the RBMT engine. Then we align the 
MT corpus and the target corpus using GIZA++ 
and extract parallel phrase pairs to obtain a phrase-
table. Then the phrase-table is filtered. The phrase 
length and translation probability are taken into 
account. Only pairs having length of the source 
phrase from three to seven words are selected. This 
specific length range was chosen according to the 
detailed analysis of the resulting hybrid MT quality 
performed by our linguists. The selected phrase 
pairs are stored in the special SPE component of 
the hybrid engine and are used to apply post-
editing to the translation candidates generated by 
the RBMT engine during the translation process. 
 

2.5 Language model component  

The language model (LM) component is used to 
score the translation candidates generated by the 

Figure 1. Dictionary extraction pipeline. 
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engine. The RBMT engine can generate several 
translation candidates depending on the number of 
homonymic words and phrases and transfer rules 
variants. Statistical phrase-based post-editing is 
applied separately to each of the generated candi-
dates. All of the candidates (with and without post-
edition) are scored by the LM component and the 
candidate with the lowest perplexity one is se-
lected. 

3 Experimental setting  

We used the total Europarliament (EP) and 
NewsCommentary (NC) corpora provided by the 
organizers for the English-Spanish submission. We  

 
translated both (EP and NC) corpora using the 
RBMT engine and then built a single phrase-table 
for both corpora. Then we filtered the phrase-table 
according to the source phrase length and transla-  

Table 2. Number of entries in the extracted English-
French dictionary. 

 
tion probabilities as described in section 2.4. Only 
10% of the initial phrase-table were used as statis-
tical post-editing data. The target 5-gram language 
model was trained on all provided monolingual 
data except the LDC corpora. We did not extract 
the dictionary for this language pair. 

As for the English-French submission, we per-
formed bilingual training data selection from EP 
and United Nations (UN) corpora. We trained the 
source and target language models on English and 
French monolingual News corpora respectively. 
These models were used to score each sentence 
pair of EP and UN corpora. Then we selected sen-
tence pairs from EP and UN corpora via the geo-
metric mean of perplexities of the source and target 
sentences. About 85% of EP (35M words of the 
source corpus) and 35% of UN (68M words of the 

source corpus) were selected. Then we translated 
the selected EP and UN subcorpora and the whole 
NC corpus with the RBMT engine. A single 
phrase-table was built for all three corpora. The 
phrase-table was fitered with the same parameters 
as for the English-Spanish submission. Approxi-
mately 8% of the initial phrase-table were used as 
statistical post-editing data. The target 5-gram lan-
guage model was trained on all provided monolin-
gual data except the LDC corpora. 

We also performed automated dictionary extrac-
tion for the English-French pair. Examples of the 
extracted entries can be found in Table 1. The de-
tails about the extracted dictionary can be found in  
 

 
Table 2. We only extracted verbs, nouns and noun 
phrases for this shared task. The translations for 
extracted verbs and nouns are automatically added 
into the existing PROMT dictionary entries using 
our multifunctional dictionary component. Thus 
we increase the number of lexical variants and 
generated translation candidates. The extracted 
noun phrases are added to the PROMT dictionary 
as new entries. We only extract ‘informative’ en-
tries, i.e. the noun phrases which are absent in the 
baseline PROMT dictionary or have an incorrect or 
infrequent translation. It should also be mentioned 
that the initial size of the noun phrases glossary 
was over 25K entries, but we decided to raise the 
source phrase frequency threshold a bit. Our hy-
pothesis was that non-frequent phrases from out-
of-domain corpora (EP and UN) would not fit for 
translation of news texts. 20K entries are selected. 

4 Experimental results and linguistic 
evaluation 

In this section we present the results of our ex-
periments on newstest2012. BLEU scores for dif-
ferent system configurations are presented in 
Table 3. The percentage of sentences changed by 
statistical post-editing compared to baseline 
RBMT output is presented in Table 4. We also 

Part of speech nouns noun phrases verbs 
Number of entries 1187 19780 215 

KEY KEY_FRQ TRANSLATION PROB POS 
comprehensive peace agreement 2427 accord de paix global 0,803049 n 
automaker 7 constructeur automobile  0,428571 n 
contemplate 452 envisager  0,400443 v 

Table 1. Examples of extracted dictionary entries.
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provide details of linguistic evaluation performed 
for the English-French submission. 
 

 
Table 3. Translation results in terms of BLEU score for 
newstest2012. 
 
 
Language pair Impact 
English-French 43% 
English-Spanish 48% 
 
Table 4. Impact of statistical post-editing on 
newstest2012 (percentage of sentences changed by sta-
tistical post-editing). 
 
 

 
Table 5. Statistics on improvements, degradations and 
equivalents for the DeepHybrid translation compared to 
baseline RBMT output (newstest2012). 

 
Our linguists compared 100 random RBMT and 

DeepHybrid (with extracted dictionary and statisti-
cal post-editing) translations for both language 
pairs in terms of improvements and degradations. 
The results presented in Table 5 show that the 
DeepHybrid engine outperforms the RBMT engine 
according to human evaluation. Most of the degra-
dations are minor grammatical issues (wrong num-
ber, disagreement etc.). 

5 Conclusions and future work 

We presented the PROMT DeepHybrid system 
submissions for WMT12 shared translation task. 
We showed improvements both in terms of BLEU 
scores and human evaluation compared to baseline 
PROMT RBMT engine. 

We extracted a dictionary from a corpus of over 
200M words. The size of the dictionary (~20K en-
tries) is relatively small due to our robust linguistic 
and statistical data filtering. However, such filter-
ing minimizes the number of possible mistransla-
tions and guarantees that the extracted entries are 
universal. We are planning to add the extracted 
data to our baseline English-French dictionary after 
manual check and perform the same experiments 
for other language pairs. 

As for statistical post-editing, the impact on the 
RBMT output is quite moderate (less than 50%). 
This is also due to our approach which includes 
filtering out infrequent phrase pairs from statistical 
post-editing data. We assume that the RBMT out-
put is already good enough and therefore does not 
require much statistical post-editing to be applied. 
It should be mentioned that for the present we only 
use perplexity to score translation candidates. Sev-
eral other features will be implemented in the next 
version of the hybrid engine. To avoid grammatical 
inconsistency in the hybrid MT output, we are 
planning to apply linguistic filters to statistical 
post-editing data. 
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System configuration BLEU 
(English-
French) 

BLEU 
(English-
Spanish) 

RBMT (baseline) 24.00 27.26 
Hybrid (+LM) 24.09 27.26 
Hybrid (+LM +dictionary) 24.25 - 
Hybrid (+LM +SPE) - 28.60 
Hybrid (+LM +dictionary +SPE) 24.80 - 

Language 
pair 

Improv Degrad Equiv 

English-French 54 16 30 
English-Spanish 48 20 32 
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Abstract

This paper describes the phrase-based SMT
systems developed for our participation
in the WMT12 Shared Translation Task.
Translations for English↔German and
English↔French were generated using a
phrase-based translation system which is
extended by additional models such as
bilingual, fine-grained part-of-speech (POS)
and automatic cluster language models and
discriminative word lexica. In addition, we
explicitly handle out-of-vocabulary (OOV)
words in German, if we have translations for
other morphological forms of the same stem.
Furthermore, we extended the POS-based
reordering approach to also use information
from syntactic trees.

1 Introduction

In this paper, we describe our systems for the
NAACL 2012 Seventh Workshop on Statistical Ma-
chine Translation. We participated in the Shared
Translation Task and submitted translations for
English↔German and English↔French. We use a
phrase-based decoder that can use lattices as input
and developed several models that extend the stan-
dard log-linear model combination of phrase-based
MT. In addition to the POS-based reordering model
used in past years, for German-English we extended
it to also use rules learned using syntax trees.

The translation model was extended by the bilin-
gual language model and a discriminative word lex-
icon using a maximum entropy classifier. For the
French-English and English-French translation sys-
tems, we also used phrase table adaptation to avoid

overestimation of the probabilities of the huge, but
noisy Giga corpus. In the German-English system,
we tried to learn translations for OOV words by ex-
ploring different morphological forms of the OOVs
with the same lemma.

Furthermore, we combined different language
models in the log-linear model. We used word-
based language models trained on different parts of
the training corpus as well as POS-based language
models using fine-grained POS information and lan-
guage models trained on automatic word clusters.

The paper is organized as follows: The next sec-
tion gives a detailed description of our systems in-
cluding all the models. The translation results for
all directions are presented afterwards and we close
with a conclusion.

2 System Description

For the French↔English systems the phrase table
is based on a GIZA++ word alignment, while the
systems for German↔English use a discriminative
word alignment as described in Niehues and Vogel
(2008). The language models are 4-gram SRI lan-
guage models using Kneser-Ney smoothing trained
by the SRILM Toolkit (Stolcke, 2002).

The problem of word reordering is addressed with
POS-based and tree-based reordering models as de-
scribed in Section 2.3. The POS tags used in the
reordering model are obtained using the TreeTagger
(Schmid, 1994). The syntactic parse trees are gen-
erated using the Stanford Parser (Rafferty and Man-
ning, 2008).

An in-house phrase-based decoder (Vogel, 2003)
is used to perform translation. Optimization with
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regard to the BLEU score is done using Minimum
Error Rate Training as described in Venugopal et al.
(2005). During decoding only the top 10 translation
options for every source phrase are considered.

2.1 Data
Our translation models were trained on the EPPS
and News Commentary (NC) corpora. Furthermore,
the additional available data for French and English
(i.e. UN and Giga corpora) were exploited in the
corresponding systems.

The systems were tuned with the news-test2011
data, while news-test2011 was used for testing in all
our systems. We trained language models for each
language on the monolingual part of the training cor-
pora as well as the News Shuffle and the Gigaword
(version 4) corpora. The discriminative word align-
ment model was trained on 500 hand-aligned sen-
tences selected from the EPPS corpus.

2.2 Preprocessing
The training data is preprocessed prior to training
the system. This includes normalizing special sym-
bols, smart-casing the first word of each sentence
and removing long sentences and sentences with
length mismatch.

For the German parts of the training corpus, in
order to obtain a homogenous spelling, we use the
hunspell1 lexicon to map words written according to
old German spelling rules to new German spelling
rules.

In order to reduce the OOV problem of German
compound words, Compound splitting as described
in Koehn and Knight (2003) is applied to the Ger-
man part of the corpus for the German-to-English
system.

The Giga corpus received a special preprocessing
by removing noisy pairs using an SVM classifier as
described in Mediani et al. (2011). The SVM clas-
sifier training and test sets consist of randomly se-
lected sentence pairs from the corpora of EPPS, NC,
tuning, and test sets. Giving at the end around 16
million sentence pairs.

2.3 Word Reordering
In contrast to modeling the reordering by a distance-
based reordering model and/or a lexicalized distor-

1http://hunspell.sourceforge.net/

tion model, we use a different approach that relies on
POS sequences. By abstracting from surface words
to POS, we expect to model the reordering more ac-
curately. For German-to-English, we additionally
apply reordering rules learned from syntactic parse
trees.

2.3.1 POS-based Reordering Model
In order to build the POS-based reordering model,

we first learn probabilistic rules from the POS tags
of the training corpus and the alignment. Contin-
uous reordering rules are extracted as described in
Rottmann and Vogel (2007) to model short-range re-
orderings. When translating between German and
English, we apply a modified reordering model with
non-continuous rules to cover also long-range re-
orderings (Niehues and Kolss, 2009).

2.3.2 Tree-based Reordering Model
Word order is quite different between German and

English. And during translation especially verbs or
verb particles need to be shifted over a long dis-
tance in a sentence. Using discontinuous POS rules
already improves the translation tremendously. In
addition, we apply a tree-based reordering model
for the German-English translation. Syntactic parse
trees provide information about the words in a sen-
tence that form constituents and should therefore be
treated as inseparable units by the reordering model.
For the tree-based reordering model, syntactic parse
trees are generated for the whole training corpus.
Then the word alignment between the source and
target language part of the corpus is used to learn
rules on how to reorder the constituents in a Ger-
man source sentence to make it matches the English
target sentence word order better. In order to apply
the rules to the source text, POS tags and a parse
tree are generated for each sentence. Then the POS-
based and tree-based reordering rules are applied.
The original order of words as well as the reordered
sentence variants generated by the rules are encoded
in a word lattice. The lattice is then used as input to
the decoder.

For the test sentences, the reordering based on
POS and trees allows us to change the word order
in the source sentence so that the sentence can be
translated more easily. In addition, we build reorder-
ing lattices for all training sentences and then extract
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phrase pairs from the monotone source path as well
as from the reordered paths.

2.4 Translation Models

In addition to the models used in the baseline system
described above, we conducted experiments includ-
ing additional models that enhance translation qual-
ity by introducing alternative or additional informa-
tion into the translation modeling process.

2.4.1 Phrase table adaptation
Since the Giga corpus is huge, but noisy, it is

advantageous to also use the translation probabil-
ities of the phrase pair extracted only from the
more reliable EPPS and News commentary cor-
pus. Therefore, we build two phrase tables for the
French↔English system. One trained on all data
and the other only trained on the EPPS and News
commentary corpus. The two models are then com-
bined using a log-linear combination to achieve the
adaptation towards the cleaner corpora as described
in (Niehues et al., 2010). The newly created trans-
lation model uses the four scores from the general
model as well as the two smoothed relative frequen-
cies of both directions from the smaller, but cleaner
model. If a phrase pair does not occur in the in-
domain part, a default score is used instead of a rela-
tive frequency. In our case, we used the lowest prob-
ability.

2.4.2 Bilingual Language Model
In phrase-based systems the source sentence is

segmented by the decoder according to the best com-
bination of phrases that maximize the translation
and language model scores. This segmentation into
phrases leads to the loss of context information at
the phrase boundaries. Although more target side
context is available to the language model, source
side context would also be valuable for the decoder
when searching for the best translation hypothesis.
To make also source language context available we
use a bilingual language model, in which each token
consists of a target word and all source words it is
aligned to. The bilingual tokens enter the translation
process as an additional target factor and the bilin-
gual language model is applied to the additional fac-
tor like a normal language model. For more details
see Niehues et al. (2011).

2.4.3 Discriminative Word Lexica
Mauser et al. (2009) have shown that the use

of discriminative word lexica (DWL) can improve
the translation quality. For every target word, they
trained a maximum entropy model to determine
whether this target word should be in the translated
sentence or not using one feature per one source
word.

When applying DWL in our experiments, we
would like to have the same conditions for the train-
ing and test case. For this we would need to change
the score of the feature only if a new word is added
to the hypothesis. If a word is added the second time,
we do not want to change the feature value. In order
to keep track of this, additional bookkeeping would
be required. Also the other models in our translation
system will prevent us from using a word too often.

Therefore, we ignore this problem and can calcu-
late the score for every phrase pair before starting
with the translation. This leads to the following def-
inition of the model:

p(e|f) =
J∏

j=1

p(ej |f) (1)

In this definition, p(ej |f) is calculated using a max-
imum likelihood classifier.

Each classifier is trained independently on the
parallel training data. All sentences pairs where the
target word e occurs in the target sentence are used
as positive examples. We could now use all other
sentences as negative examples. But in many of
these sentences, we would anyway not generate the
target word, since there is no phrase pair that trans-
lates any of the source words into the target word.

Therefore, we build a target vocabulary for every
training sentence. This vocabulary consists of all
target side words of phrase pairs matching a source
phrase in the source part of the training sentence.
Then we use all sentence pairs where e is in the tar-
get vocabulary but not in the target sentences as neg-
ative examples. This has shown to have a postive
influence on the translation quality (Mediani et al.,
2011) and also reduces training time.

2.4.4 Quasi-Morphological Operations for
OOV words

Since German is a highly inflected language, there
will be always some word forms of a given Ger-
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Figure 1: Quasi-morphological operations

man lemma that did not occur in the training data.
In order to be able to also translate unseen word
forms, we try to learn quasi-morphological opera-
tions that change the lexical entry of a known word
form to the unknown word form. These have shown
to be beneficial in Niehues and Waibel (2011) using
Wikipedia2 titles. The idea is illustrated in Figure 1.

If we look at the data, our system is able to trans-
late a German word Kamin (engl. chimney), but not
the dative plural form Kaminen. To address this
problem, we try to automatically learn rules how
words can be modified. If we look at the example,
we would like the system to learn the following rule.
If an “en” is appended to a German word, as it is
done when creating the dative plural form of Kami-
nen, we need to add an “s” to the end of the English
word in order to perform the same morphological
word transformation. We use only rules where the
ending of the word has at most 3 letters.

Depending on the POS, number, gender or case of
the involved words, the same operation on the source
side does not necessarily correspond to the same op-
eration on the target side.

To account for this ambiguity, we rank the differ-
ent target operation using the following four features
and use the best ranked one. Firstly, we should not
generate target words that do not exist. Here, we
have an advantage that we can use monolingual data
to determine whether the word exists. In addition,
a target operation that often coincides with a given
source operation should be better than one that is
rarely used together with the source operation. We
therefore look at pairs of entries in the lexicon and
count in how many of them the source operation can
be applied to the source side and the target operation
can be applied to the target side. We then use only
operations that occur at least ten times. Furthermore,

2http://www.wikipedia.org/

we use the ending of the source and target word to
determine which pair of operations should be used.

Integration We only use the proposed method for
OOVs and do not try to improve translations of
words that the baseline system already covers. We
look for phrase pairs, for which a source operation
ops exists that changes one of the source words f1

into the OOV word f2. Since we need to apply a
target operation to one word on the target side of the
phrase pair, we only consider phrase pairs where f1

is aligned to one of the target words of the phrase
containing e1. If a target operation exists given f1

and ops, we select the one with the highest rank.
Then we generate a new phrase pair by applying
ops to f1 and opt to e1 keeping the original scores
from the phrase pairs, since the original and syn-
thesized phrase pair are not directly competing any-
way. We do not add several phrase pairs generated
by different operations, since we would then need to
add the features used for ranking the operations into
the MERT. This is problematic, since the operations
were only used for very few words and therefore a
good estimation of the weights is not possible.

2.5 Language Models

The 4-gram language models generated by the
SRILM toolkit are used as the main language mod-
els for all of our systems. For English-French and
French-English systems, we use a good quality cor-
pus as in-domain data to train in-domain language
models. Additionally, we apply the POS and clus-
ter language models in different systems. All lan-
guage models are integrated into the translation sys-
tem by a log-linear combination and received opti-
mal weights during tuning by the MERT.

2.5.1 POS Language Models
The POS language model is trained on the POS

sequences of the target language. In this evalua-
tion, the POS language model is applied for the
English-German system. We expect that having ad-
ditional information in form of probabilities of POS
sequences should help especially in case of the rich
morphology of German. The POS tags are gener-
ated with the RFTagger (Schmid and Laws, 2008)
for German, which produces fine-grained tags that
include person, gender and case information. We
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use a 9-gram language model on the News Shuf-
fle corpus and the German side of all parallel cor-
pora. More details and discussions about the POS
language model can be found in Herrmann et al.
(2011).

2.5.2 Cluster Language Models
The cluster language model follows a similar idea

as the POS language model. Since there is a data
sparsity problem when we substitute words with the
word classes, it is possible to make use of larger
context information. In the POS language model,
POS tags are the word classes. Here, we generated
word classes in a different way. First, we cluster
the words in the corpus using the MKCLS algorithm
(Och, 1999) given a number of classes. Second, we
replace the words in the corpus by their cluster IDs.
Finally, we train an n-gram language model on this
corpus consisting of cluster IDs. Generally, all clus-
ter language models used in our systems are 5-gram.

3 Results

Using the models described above we performed
several experiments leading finally to the systems
used for generating the translations submitted to the
workshop. The following sections describe the ex-
periments for the individual language pairs and show
the translation results. The results are reported as
case-sensitive BLEU scores (Papineni et al., 2002)
on one reference translation.

3.1 German-English
The experiments for the German-English translation
system are summarized in Table 1. The Baseline
system uses POS-based reordering, discriminative
word alignment and a language model trained on the
News Shuffle corpus. By adding lattice phrase ex-
traction small improvements of the translation qual-
ity could be gained.

Further improvements could be gained by adding
a language model trained on the Gigaword corpus
and adding a bilingual and cluster-based language
model. We used 50 word classes and trained a 5-
gram language model. Afterwards, the translation
quality was improved by also using a discriminative
word lexicon. Finally, the best system was achieved
by using Tree-based reordering and using special
treatment for the OOVs. This system generates a

BLEU score of 22.31 on the test data. For the last
two systems, we did not perform new optimization
runs.

System Dev Test
Baseline 23.64 21.32
+ Lattice Phrase Extraction 23.76 21.36
+ Gigaward Language Model 24.01 21.73
+ Bilingual LM 24.19 21.91
+ Cluster LM 24.16 22.09
+ DWL 24.19 22.19
+ Tree-based Reordering - 22.26
+ OOV - 22.31

Table 1: Translation results for German-English

3.2 English-German

The English-German baseline system uses also
POS-based reordering, discriminative word align-
ment and a language model based on EPPS, NC and
News Shuffle. A small gain could be achieved by the
POS-based language model and the bilingual lan-
guage model. Further gain was achieved by using
also a cluster-based language model. For this lan-
guage model, we use 100 word classes and trained
a 5-gram language model. Finally, the best system
uses the discriminative word lexicon.

System Dev Test
Baseline 17.06 15.57
+ POSLM 17.27 15.63
+ Bilingual LM 17.40 15.78
+ Cluster LM 17.77 16.06
+ DWL 17.75 16.28

Table 2: Translation results for English-German

3.3 English-French

Table 3 summarizes how our English-French sys-
tem evolved. The baseline system here was trained
on the EPPS, NC, and UN corpora, while the lan-
guage model was trained on all the French part of
the parallel corpora (including the Giga corpus). It
also uses short-range reordering trained on EPPS
and NC. This system had a BLEU score of around
26.7. The Giga parallel data turned out to be quite
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beneficial for this task. It improves the scores by
more than 1 BLEU point. More importantly, addi-
tional language models boosted the system quality:
around 1.8 points. In fact, three language models
were log-linearly combined: In addition to the afore-
mentioned, two additional language models were
trained on the monolingual sets (one for News and
one for Gigaword). We could get an improvement
of around 0.2 by retraining the reordering rules on
EPPS and NC only, but using Giza alignment from
the whole data. Adapting the translation model by
using EPPS and NC as in-domain data improves the
BLEU score by only 0.1. This small improvement
might be due to the fact that the news domain is
very broad and that the Giga corpus has already been
carefully cleaned and filtered. Furthermore, using a
bilingual language model enhances the BLEU score
by almost 0.3. Finally, incorporating a cluster lan-
guage model adds an additional 0.1 to the score.
This leads to a system with 30.58.

System Dev Test
Baseline 24.96 26.67
+ GigParData 26.12 28.16
+ Big LMs 29.22 29.92
+ All Reo 29.14 30.10
+ PT Adaptation 29.15 30.22
+ Bilingual LM 29.17 30.49
+ Cluster LM 29.08 30.58

Table 3: Translation results for English-French

3.4 French-English

The development of our system for the French-
English direction is summarized in Table 4. The
baseline system for this direction was trained on the
EPPS, NC, UN and Giga parallel corpora, while the
language model was trained on the French part of the
parallel training corpora. The baseline system in-
cludes the POS-based reordering model with short-
range rules. The largest improvement of 1.7 BLEU
score was achieved by the integration of the bigger
language models which are trained on the English
version of News Shuffle and the Gigaword corpus
(v4). We did not add the language models from the
monolingual English version of EPPS and NC data,
since the experiments have shown that they did not

provide improvement in our system. The second
largest improvement came from the domain adap-
tation that includes an in-domain language model
and adaptations to the phrase extraction. The BLEU
score has improved about 1 BLEU in total. The in-
domain data we used here are parallel EPPS and NC
corpus. Further gains were obtained by augmenting
the system with a bilingual language model adding
around 0.2 BLEU to the previous score. The sub-
mitted system was obtained by adding the cluster
5-gram language model trained on the News Shuf-
fle corpus with 100 clusters and thus giving 30.25 as
the final score.

System Dev Test
Baseline 25.81 27.15
+ Indomain LM 26.17 27.91
+ PT Adaptation 26.33 28.11
+ Big LMs 28.90 29.82
+ Bilingual LM 29.14 30.09
+ Cluster LM 29.31 30.25

Table 4: Translation results for French-English

4 Conclusions

We have presented the systems for our participation
in the WMT 2012 Evaluation for English↔German
and English↔French. In all systems we could im-
prove by using a class-based language model. Fur-
thermore, the translation quality could be improved
by using a discriminative word lexicon. Therefore,
we trained a maximum entropy classifier for ev-
ery target word. For English↔French, adapting the
phrase table helps to avoid using wrong parts of the
noisy Giga corpus. For the German-to-English sys-
tem, we could improve the translation quality addi-
tionally by using a tree-based reordering model and
by special handling of OOV words. For the inverse
direction we could improve the translation quality
by using a 9-gram language model trained on the
fine-grained POS tags.
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Abstract

This paper describes our submissions for the
WMT-12 translation task using Kriya - our hi-
erarchical phrase-based system. We submitted
systems in French-English and English-Czech
language pairs. In addition to the baseline sys-
tem following the standard MT pipeline, we
tried ensemble decoding for French-English.
The ensemble decoding method improved the
BLEU score by 0.4 points over the baseline
in newstest-2011. For English-Czech, we seg-
mented the Czech side of the corpora and
trained two different segmented models in ad-
dition to our baseline system.

1 Baseline Systems

Our shared task submissions are trained in the hier-
archical phrase-based model (Chiang, 2007) frame-
work. Specifically, we use Kriya (Sankaran et al.,
2012) - our in-house Hiero-style system for training
and decoding. We now briefly explain the baseline
systems in French-English and English-Czech lan-
guage pairs.

We use GIZA++ for word alignments and the
Moses (Koehn et al., 2007) phrase-extractor for ex-
tracting the initial phrases. The translation models
are trained using the rule extraction module in Kriya.
In both cases, we pre-processed the training data by
running it through the usual pre-processing pipeline
of tokenization and lowercasing.

For French-English baseline system, we trained
a simplified hierarchical phrase-based model where
the right-hand side can have at most one non-
terminal (denoted as 1NT) instead of the usual two

non-terminal (2NT) model. In our earlier experi-
ments we found the 1NT model to perform com-
parably to the 2NT model for close language pairs
such as French-English (Sankaran et al., 2012) at the
same time resulting in a smaller model. We used the
shared-task training data consisting of Europarl (v7),
News commentary and UN documents for training
the translation models having a total of 15 M sen-
tence pairs (we did not use the Fr-En Giga paral-
lel corpus for the training). We trained a 5-gram
language model for English using the English Gi-
gaword (v4).

For English-Czech, we trained a standard Hiero
model that has up to two non-terminals on the right-
hand side. We used the Europarl (v7), news com-
mentary and CzEng (v0.9) corpora having 7.95M
sentence pairs for training translation models. We
trained a 5-gram language model using the Czech
side of the parallel corpora and did not use the Czech
monolingual corpus.

The baseline systems use the following 8 stan-
dard Hiero features: rule probabilities p(e|f) and
p(f |e); lexical weights pl(e|f) and pl(f |e); word
penalty, phrase penalty, language model and glue
rule penalty.

1.1 LM Integration in Kriya

The kriya decoder is based on a modified CYK al-
gorithm similar to that of Chiang (2007). We use
a novel approach in computing the language model
(LM) scores in Kriya, which deserves a mention
here.

The CKY decoder in Hiero-style systems can
freely combine target hypotheses generated in inter-
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mediate cells with hierarchical rules in the higher
cells. Thus the generation of the target hypotheses
are fragmented and out of order in Hiero, compared
to the left to right order preferred by n-gram lan-
guage models.

This leads to challenges in estimating LM scores
for partial target hypotheses and this is typically ad-
dressed by adding a sentence initial marker (<s>)
to the beginning of each derivation path.1 Thus the
language model scores for the hypothesis in the in-
termediate cell are approximated, with the true lan-
guage model score (taking into account sentence
boundaries) being computed in the last cell that
spans the entire source sentence.

Kriya uses a novel idea for computing LM scores:
for each of the target hypothesis fragment, it finds
the best position for the fragment in the final sen-
tence and uses the corresponding score. Specifi-
cally, we compute three different scores correspond-
ing to the three states where the fragment can end
up in the final sentence, viz. sentence initial, middle
and final and choose the best score. Thus given a
fragment tf consisting of a sequence of target to-
kens, we compute LM scores for (i) <s> tf , (ii)
tf and (iii) tf </s> and use the best score (only)
for pruning.2 While this increases the number of
LM queries, we exploit the language model state in-
formation in KenLM (Heafield, 2011) to optimize
the queries by saving the scores for the unchanged
states. Our earlier experiments showed significant
reduction in search errors due to this approach, in
addition to a small but consistent increase in BLEU
score (Sankaran et al., 2012).

2 French-English System

In addition to the baseline system, we also trained
separate systems for News and Non-News genres
for applying ensemble decoding (Razmara et al.,
2012). The news genre system was trained only us-
ing the news-commentary corpus (about 137K sen-

1Alternately systems add sentence boundary markers (<s>
and </s>) to the training data so that they are explicitly present
in the translation and language models. While this can speed
up the decoding as the cube pruning is more aggressive, it also
limits the applicability of rules having the boundary contexts.

2This ensures the the LM score estimates are never underes-
timated for pruning. We retain the LM score for fragment (case
ii) for estimating the score for the full candidate sentence later.

tence pairs) and the non-news genre system was
trained on the Europarl and UN documents data
(14.8M sentence pairs). The ensemble decoding
framework combines the models of these two sys-
tems dynamically when decoding the testset. The
idea is to effectively use the small amount of news
genre data in order to maximize the performance on
the news-based testsets. In the following sections,
we explain in broader detail how this system combi-
nation technique works as well as the details of this
experiment and the evaluation results.

2.1 Ensemble Decoding

In the ensemble decoding framework we view trans-
lation task as a domain mixing problem involving
news and non-news genres. The official training
data is from two major sources: news-commentary
data and Europarl/UN data and we hope to exploit
the distinctive nature of the two genres. Given that
the news data is smaller comparing to parliamen-
tary proceedings data, we could tune the ensemble
decoding to appropriately boost the weight for the
news genre mode during decoding. The ensemble
decoding approach (Razmara et al., 2012) takes ad-
vantage of multiple translation models with the goal
of constructing a system that outperforms all the
component models. The key strength of this system
combination method is that the systems are com-
bined dynamically at decode time. This enables the
decoder to pick the best hypotheses for each span of
the input.

In ensemble decoding, given a number of transla-
tion systems which are already trained and tuned, all
of the hypotheses from component models are used
in order to translate a sentence. The scores of such
rules are combined in the decoder (i.e. CKY) using
various mixture operations to assign a single score to
them. Depending on the mixture operation used for
combining the scores, we would get different mix-
ture scores.

Ensemble decoding extends the log-linear frame-
work which is found in state-of-the-art machine
translation systems. Specifically, the probability of
a phrase-pair (ē, f̄) in the ensemble model is:

p(ē | f̄) ∝ exp

(
w1 · φ1︸ ︷︷ ︸

1st model

⊕ w2 · φ2︸ ︷︷ ︸
2nd model

⊕ · · ·
)
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where⊕ denotes the mixture operation between two
or more model scores.

Mixture operations receive two or more scores
(probabilities) and return the mixture score (prob-
ability). In this section, we explore different options
for this mixture operation.

Weighted Sum (wsum): in wsum the ensemble
probability is proportional to the weighted sum
of all individual model probabilities.

p(ē | f̄) ∝
M∑
m

λm exp
(
wm · φm

)
where m denotes the index of component mod-
els, M is the total number of them and λi is the
weight for component i.

Weighted Max (wmax): where the ensemble score
is the weighted max of all model scores.

p(ē | f̄) ∝ max
m

(
λm exp

(
wm · φm

))
Product (prod): in prod, the probability of the en-

semble model or a rule is computed as the prod-
uct of the probabilities of all components (or
equally the sum of log-probabilities). When
using this mixture operation, ensemble de-
coding would be a generalization of the log-
linear framework over multiple models. Prod-
uct models can also make use of weights to
control the contribution of each component.
These models are generally known as Logarith-
mic Opinion Pools (LOPs) where:

p(ē | f̄) ∝ exp
( M∑

m

λm wm · φm

)
Model Switching: in model switching, each cell in

the CKY chart gets populated only by rules
from one of the models and the other mod-
els’ rules are discarded. This is based on the
hypothesis that each component model is an
expert on different parts of sentence. In this
method, we need to define a binary indicator
function δ(f̄ ,m) for each span and component
model.

δ(f̄ ,m) =


1, m = argmax

n∈M
ψ(f̄ , n)

0, otherwise

The criteria for choosing a model for each cell,
ψ(f̄ , n), could be based on:

Max: for each cell, the model that has the
highest weighted top-rule score wins:

ψ(f̄ , n) = λn max
e

(wn · φn(ē, f̄))

Sum: Instead of comparing only the score of
the top rules, the model with the high-
est weighted sum of the probability of
the rules wins (taking into account the
ttl(translation table limit) limit on the
number of rules suggested by each model
for each cell):

ψ(f̄ , n) = λn

∑
ē

exp
(
wn · φn(ē, f̄)

)
The probability of each phrase-pair (ē, f̄) is
computed as:

p(ē | f̄) =
∑
m

δ(f̄ ,m) pm(ē | f̄)

Since log-linear models usually look for the best
derivation, they do not need to normalize the scores
to form probabilities. Therefore, the scores that dif-
ferent models assign to each phrase-pair may not be
in the same scale. Therefore, mixing their scores
might wash out the information in one (or some)
of the models. We applied a heuristic to deal with
this problem where the scores are normalized over
a shorter list. So the list of rules coming from each
model for a certain cell in the CKY chart is normal-
ized before getting mixed with other phrase-table
rules. However, experiments showed using normal-
ized scores hurts the BLEU score radically. So we
use the normalized scores only for pruning and for
mixing the actual scores are used.

As a more principled way, we used a toolkit,
CONDOR (Vanden Berghen and Bersini, 2005), to
optimize the weights of our component models on
a dev-set. CONDOR, which is publicly available, is
a direct optimizer based on Powell’s algorithm that
does not require explicit gradient information for the
objective function.

2.2 Experiments and Results
As mentioned earlier all the experiments reported
for French-English use a simpler Hiero translation
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Method Devset Test-11 Test-12
Baseline Hiero 26.03 27.63 28.15
News data 24.02 26.47 26.27
Non-news data 26.09 27.87 28.15
Ensemble PROD 25.66 28.25 28.09

Table 1: French-English BLEU scores. Best performing
setting is shown in Boldface.

model having at most one non-terminal (1NT) on the
right-hand side. We use 7567 sentence pairs from
news-tests 2008 through 2010 for tuning and use
news-test 2011 for testing in addition to the 2012
test data. The feature weights were tuned using
MERT (Och, 2003) and we report the devset (IBM)
BLEU scores and the testset BLEU scores computed
using the official evaluation script (mteval-v11b.pl).

The results for the French-English experiments
are reported in Table 1. We note that both baseline
Hiero model and the model trained from the non-
news genre get comparable BLEU scores. The news
genre model however gets a lesser BLEU score and
this is to be expected due to the very small training
data available for this genre.

Table 2 shows the results of applying various mix-
ture operations on the devset and testset, both in nor-
malized (denoted by Norm.) and un-normalized set-
tings (denoted by Base). We present results for these
mixture operations using uniform weights (i.e. un-
tuned weights) and for PROD we also present the
results using the weights optimized by CONDOR.
Most of the mixture operations outperform the Test-
11 BLEU of the baseline models (shown in Table 1)
even with uniform (untuned) weights. We took the
best performing operation (i.e. PROD) and tuned its
component weights using our optimizer which lead
to 0.26 points improvement over its uniform-weight
version.

The last row in Table 1 reports the BLEU score
for this mixture operation with the tuned weights
on the Test-12 dataset and it is marginally less than
the baseline model. While this is disappointing, this
also runs counter to our empirical results from other
datasets. We are currently investigating this aspect
as we hope to improve the robustness and applicabil-
ity of our ensemble approach for different datasets
and language pairs.

Mix. Operation Weights Base Norm.
WMAX uniform 27.67 27.94
WSUM uniform 27.72 27.95
SWITCHMAX uniform 27.96 26.21
SWITCHSUM uniform 27.98 27.98
PROD uniform 27.99 28.09
PROD optimized 28.25 28.11

Table 2: Applying ensemble decoding with different mix-
ture operations on the Test-11 dataset. Best performing
setting is shown in Boldface.

3 English-Czech System

3.1 Morpheme Segmented Model

For English-Czech, we additionally experimented
using morphologically segmented versions of the
Czech side of the parallel data, since previous
work (Clifton and Sarkar, 2011) has shown that seg-
mentation of morphologically rich languages can
aid translation. To derive the segmentation, we
built an unsupervised morphological segmentation
model using the Morfessor toolkit (Creutz and La-
gus, 2007).

Morfessor uses minimum description length cri-
teria to train a HMM-based segmentation model.
Varying the perplexity threshold in Morfessor does
not segment more word types, but rather over-
segments the same word types. We hand tuned the
model parameters over training data size and per-
plexity; these control the granularity and coverage of
the segmentations. Specifically, we trained different
segmenter models on varying sets of most frequent
words and different perplexities and identified two
sets that performed best based on a separate held-
out set. These two sets correspond to 500k most fre-
quent words and a perplexity of 50 (denoted SM1)
and 10k most frequent words and a perplexity of 20
(denoted SM2). We then used these two models to
segment the entire data set and generate two differ-
ent segmented training sets. These models had the
best combination of segmentation coverage of the
training data and largest segments, since we found
empirically that smaller segments were less mean-
ingful in the translation model. The SM2 segmenta-
tion segmented more words than SM1, but more fre-
quently segmented words into single-character units.
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For example, the Czech word ‘dlaebnı́’ is broken
into the useful components ‘dlaeb + nı́’ by SM1, but
is oversegmented into ‘dl + a + e + b + nı́’ by SM2.
However, SM1 fails to find a segmentation at all for
the related word ‘dlaebnı́mi’, while SM2 breaks it
up similiarly with an additional suffix: ‘dl + a + e +
b + nı́ + mi’.

With these segmentation models, we segmented
the target side of the training and dev data before
training the translation model. Similarly, we also
train segmented language models corresponding to
the two sets SM1 and SM2. The MERT tuning step
uses the segmented dev-set reference to evaluate the
segmented hypotheses generated by the decoder for
optimizing the weights for the BLEU score. How-
ever for evaluating the test-set, we stitched the seg-
ments in the decoder output back into unsegmented
forms in a post-processing step, before performing
evaluation against the original unsegmented refer-
ences. The hypotheses generated by the decoder
can have incomplete dangling segments where one
or more prefixes and/or suffixes are missing. While
these dangling segments could be handled in a dif-
ferent way, we use a simple heuristic of ignoring the
segment marker ’+’ by just removing the segment
marker. In next section, we report the results of us-
ing the unsegmented model as well as its segmented
counterparts.

3.2 Experiments and Results

In the English-Czech experiments, we used the same
datasets for the dev and test sets as in French-
English experiments (dev: news-tests 2008, 2009,
2010 with 7567 sentence pairs and test: news-
test2011 with 3003 sentence pairs). Similarly,
MERT (Och, 2003) has been used to tune the feature
weights and we report the BLEU scores of two test-
sets computed using the official evaluation script
(mteval-v11b.pl).

Table 3.2 shows the results of different segmenta-
tion schemes on the WMT-11 and WMT-12 test-sets.
SM1 slightly outperformed the other two models in
Test-11, however the unsegmented model performed
best in Test-12, though marginally. We are currently
investigating this and are also considering the pos-
sibility employing the idea of morpheme prediction
in the post-decoding step in combination with this
morpheme-based translation as suggested by Clifton

Segmentation Test-11 Test-12
Baseline Hiero 14.65 12.40
SM1 : 500k-ppl50 14.75 12.34
SM2 : 10k-ppl20 14.57 12.34

Table 3: The English-Czech results for different segmen-
tation settings. Best performing setting is shown in Bold-
face.

and Sarkar (2011).

4 Conclusion

We submitted systems in two language pairs French-
English and English-Czech for WMT-12 shared
task. In French-English, we experimented the en-
semble decoding framework that effectively utilizes
the small amount of news genre data to improve the
performance in the testset belonging to the same
genre. We obtained a moderate gain of 0.4 BLEU
points with the ensemble decoding over the baseline
system in newstest-2011. For newstest-2012, it per-
forms comparably to that of the baseline and we are
presently investigating the lack of improvement in
newstest-2012. For Cz-En, We found that the BLEU
scores do not substantially differ from each other
and also the minor differences are not consistent for
Test-11 and Test-12.
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Abstract

We present an improved version of DEPFIX
(Mareček et al., 2011), a system for auto-
matic rule-based post-processing of English-
to-Czech MT outputs designed to increase
their fluency. We enhanced the rule set used
by the original DEPFIX system and measured
the performance of the individual rules.

We also modified the dependency parser of
McDonald et al. (2005) in two ways to adjust
it for the parsing of MT outputs. We show that
our system is able to improve the quality of the
state-of-the-art MT systems.

1 Introduction

The today’s outputs of Machine Translation (MT)
often contain serious grammatical errors. This
is particularly apparent in statistical MT systems
(SMT), which do not employ structural linguistic
rules. These systems have been dominating the area
in the recent years (Callison-Burch et al., 2011).
Such errors make the translated text less fluent and
may even lead to unintelligibility or misleading
statements. The problem is more evident in lan-
guages with rich morphology, such as Czech, where
morphological agreement is of a relatively high im-
portance for the interpretation of syntactic relations.

The DEPFIX system (Mareček et al., 2011) at-
tempts to correct some of the frequent SMT sys-

∗This research has been supported by the European Union
Seventh Framework Programme (FP7) under grant agree-
ment n◦ 247762 (Faust), and by the grants GAUK116310,
GA201/09/H057 (Res-Informatica), and LH12093.

tems’ errors in English-to-Czech translations.1 It an-
alyzes the target sentence (the SMT output in Czech
language) using a morphological tagger and a de-
pendency parser and attempts to correct it by apply-
ing several rules which enforce consistency with the
Czech grammar. Most of the rules use the source
sentence (the SMT input in English language) as a
source of information about the sentence structure.
The source sentence is also tagged and parsed, and
word-to-word alignment with the target sentence is
determined.

In this paper, we present DEPFIX 2012, an im-
proved version of the original DEPFIX 2011 system.
It makes use of a new parser, described briefly in
Section 3, which is adapted to handle the generally
ungrammatical target sentences better. We have also
enhanced the set of grammar correction rules, for
which we give a detailed description in Section 4.
Section 5 gives an account of the experiments per-
formed to evaluate the DEPFIX 2012 system and
compare it to DEPFIX 2011. Section 6 then con-
cludes the paper.

2 Related Work

Our approach can be regarded as converse to the
more common way of using an SMT system to auto-
matically post-edit the output of a rule-based transla-
tion system, as described e.g. in (Simard et al., 2007)
or (Lagarda et al., 2009).

The DEPFIX system is implemented in the

1Although we apply the DEPFIX system just to SMT systems
in this paper as it mainly targets the errors induced by this type
of MT systems, it can be applied to virtually any MT system
(Mareček et al., 2011).
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TectoMT/Treex NLP framework (Popel and
Žabokrtský, 2010),2 using the Morče tagger (Spous-
tová et al., 2007) and the MST parser (McDonald
et al., 2005) trained on the CoNLL 2007 Shared
Task English data (Nivre et al., 2007) to analyze the
source sentences. The source and target sentences
are aligned using GIZA++ (Och and Ney, 2003).

3 Parsing

The DEPFIX 2011 system used the MST parser (Mc-
Donald et al., 2005) with an improved feature set
for Czech (Novák and Žabokrtský, 2007) trained on
the Prague Dependency Treebank (PDT) 2.0 (Hajič
and others, 2006) to analyze the target sentences.
DEPFIX 2012 uses a reimplementation of the MST
parser capable of utilizing parallel features from the
source side in the parsing of the target sentence.

The source text is usually grammatical and there-
fore is likely to be analyzed more reliably. The
source structure obtained in this way can then pro-
vide hints for the target parser. We use local features
projected through the GIZA++ word alignment – i.e.
for each target word, we add features computed over
its aligned source word, if there is one.

To address the differences between the gold stan-
dard training data and SMT outputs, we “worsen”
the treebank used to train the parser, i.e. introduce
errors similar to those found in target sentences:
The trees retain their correct structure, only the word
forms are modified to resemble SMT output.

We have computed a “part-of-speech tag er-
ror model” on parallel sentences from the Prague
Czech-English Dependency Treebank (PCEDT) 2.0
(Bojar et al., 2012), comparing the gold standard
Czech translations to the output of an SMT system
(Koehn et al., 2007) and estimating the Maximum
Likelihood probabilities of errors for each part-of-
speech tag. We then applied this error model to the
Czech PCEDT 2.0 sentences and used the resulting
“worsened” treebank to train the parser.

4 Rules

DEPFIX 2012 uses 20 hand-written rules, address-
ing various frequent errors in MT output. Each
rule takes an analyzed target sentence as its in-
put, often together with its analyzed source sen-

2http://ufal.mff.cuni.cz/treex

tence, and attempts to correct any errors found –
usually by changing morphosyntactic categories of
a word (such as number, gender, case, person and
dependency label) and regenerating the correspond-
ing word form if necessary, more rarely by deleting
superfluous particles or auxiliary words or changing
the target dependency tree structure. However, nei-
ther word order problems nor bad lexical choices are
corrected.

Many rules were already present in DEPFIX 2011.
However, most were modified in DEPFIX 2012 to
achieve better performance (denoted as modified),
and new rules were added (new). Rules not modified
since DEPFIX 2011 are denoted as reused.

The order of rule application is important as there
are dependencies among the rules, e.g. FixPrepo-
sitionNounAgreement (enforcing noun-preposition
congruency) depends on FixPrepositionalCase (fix-
ing incorrectly tagged prepositional case). The rules
are applied in the order listed in Table 2.

4.1 Analysis Fixing Rules

Analysis fixing rules try to detect and rectify tagger
and parser errors. They do not change word forms
and are therefore invisible on the output as such;
however, rules of other types benefit from their cor-
rections.

FixPrepositionalCase (new)
This rule corrects part-of-speech-tag errors in

prepositional phrases. It looks for all words that de-
pend on a preposition and do not match its part-of-
speech tag case. It tries to find and assign a com-
mon morphological case fitting for both the word
form and the preposition. Infrequent preposition-
case combinations are not considered.

FixReflexiveTantum (new)
If the word form ‘se’ or ‘si’ is classified as reflex-

ive tantum particle by the parser, but does not be-
long to an actual reflexive tantum verb (or a dever-
bative noun or an adjective), its dependency label is
changed to a different value, based on the context.

FixNounNumber (reused)
If a noun is tagged as singular in target but as plu-

ral in source, the tag is likely to be incorrect. This
rule tries to find a tag that would match both the
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source number and the target word form, changing
the target case if necessary.

FixPrepositionWithoutChildren (reused)
A target preposition with no child nodes is clearly

an analysis error. This rule tries to find children for
childless prepositions by projecting the children of
the aligned source preposition to the target side.

FixAuxVChildren (new)
Since auxiliary verbs must not have child nodes,

we rehang all their children to the governing full
verb.

4.2 Agreement Fixing Rules
These rules relate to morphological agreement re-
quired by Czech grammar, which they try to enforce
in case it is violated. Czech grammar requires agree-
ment in morphological gender, number, case and
person where applicable.

These rules typically use the source sentence only
for confirmation.

FixRelativePronoun (new)
The Czech word relative pronoun ‘který’ is as-

signed gender and number identical to the closest
preceding noun or pronoun, if the source analysis
confirms that it depends on this noun/pronoun.

FixSubject (modified)
The subject (if the subject dependency label is

confirmed by the source analysis) will have its case
set to nominative; the number is changed if this leads
to the word form staying unchanged.

FixVerbAuxBeAgreement (modified)
If an auxiliary verb is a child of an infinitive, the

auxiliary verb receives the gender and number of the
subject, which is a child of the infinitive (see also
FixAuxVChildren).

FixSubjectPredicateAgreement (modified)
An active verb form receives the number and per-

son from its subject (whose relation to the verb must
be confirmed by the source).

FixSubjectPastParticipleAgreement (modified)
A past participle verb form receives the number

and gender from its subject (confirmed by the source
analysis).

FixPassiveAuxBeAgreement (modified)
An auxiliary verb ‘být’ (‘to be’) depending on a

passive verb form receives its gender and number.

FixPrepositionNounAgreement (modified)
A noun or adjective depending on a preposition

receives its case. The dependency must be con-
firmed in the source.

FixNounAdjectiveAgreement (modified)
An adjective (or an adjective-like pronoun or nu-

meral) preceding its governing noun receives its
gender, number and case.

4.3 Translation Fixing Rules
The following rules detect and correct structures of-
ten mistranslated by SMT systems. They usually de-
pend heavily on the source sentence.

FixBy (new)
English preposition ‘by’ is translated to Czech us-

ing the instrumental case (if modifying a verb, e.g.
‘built by David’: ‘postaveno Davidem’) or using the
genitive case (if modifying a noun, e.g. ‘songs by
David’: ‘pı́sně Davida’).

FixPresentContinuous (modified)
If the source sentence is in a continuous tense (e.g.

‘Ondřej isn’t experimenting.’), the auxiliary verb ‘to
be’ must not appear on the output, which is often
the case (e.g. *‘Ondřej nenı́ experimentovat.’). This
rule deletes the auxiliary verb in target and transfers
its morphological categories to the main verb (e.g.
‘Ondřej neexperimentuje.’).

FixVerbByEnSubject (new)
If the subject of the source sentence is a personal

pronoun, its following morphological categeries are
propagated to the target predicate:

• person
• number (except for ‘you’, which does not ex-

hibit number)
• gender (only in case of ‘he’ or ‘she’, which ex-

hibit the natural gender)

FixOf (new)
English preposition ‘of’ modifying a noun is

translated to Czech using the genitive case (e.g. ‘pic-
tures of Rudolf’: ‘obrázky Rudolfa’).
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FixAuxT (reused)
Reflexive tantum particles ‘se’ or ‘si’ not belong-

ing to any verb or adjective are deleted. This situa-
tion usually occurs when the meaning of the source
verb/adjective is lost in translation and only the par-
ticle is produced.

4.4 Other Rules

VocalizePrepos (reused)
Prepositions ‘k’, ‘s’, ‘v’, ‘z’ are vocalized (i.e.

changed to ‘ke’, ‘se’, ‘ve’, ‘ze’) where neces-
sary. The vocalization rules in Czech are similar to
‘a’/‘an’ distinction in English.

FixFirstWordCapitalization (new)
If the first word of source is capitalized and the

first word of target is not, this rule capitalizes it.

5 Experiments and Results

For parameter tuning, we used datasets from the
WMT10 translation task and translations by ON-
LINEB and CU-BOJAR systems.

5.1 Manual Evaluation

Manual evaluation of both DEPFIX 2011 and DEP-
FIX 2012 was performed on the WMT113 test set
translated by ONLINEB. 500 sentences were ran-
domly selected and blind-evaluated by two indepen-
dent annotators, who were presented with outputs of
ONLINEB, DEPFIX 2011 and DEPFIX 2012. (For
246 sentences, at least one of the DEPFIX setups
modified the ONLINEB translation.) They provided
us with a pairwise comparison of the three setups,
with the possibility to mark the sentence as “indef-
inite” if translations were of equal quality. The re-
sults are given in Table 1.

In Table 2, we use the manual evaluation to mea-
sure the performance of the individual rules in DEP-
FIX 2012. For each rule, we ran DEPFIX 2012 with
this rule disabled and compared the output to the
output of the full DEPFIX 2012. The number of
affected sentences on the whole WMT11 test set,
given as “changed”, represents the impact of the
rule. The number of affected sentences selected for
manual evaluation is listed as “evaluated”. Finally,
the annotators’ ratings of the “evaluated” sentences

3http://www.statmt.org/wmt11

A / B Setup 1 Setup 2 Indefinitebetter better
Setup 1 better 55% 1% 11%
Setup 2 better 1% 8% 4%
Indefinite 3% 2% 15%

Table 3: Inter-annotator agreement matrix for ONLINEB
+ DEPFIX 2012 as Setup 1 and ONLINEB as Setup 2.

(suggesting whether the rule improved or worsened
the translation, or whether the result was indefinite)
were counted and divided by the number of anno-
tators to get the average performance of each rule.
Please note that the lower the “evaluated” number,
the lower the confidence of the results.

The inter-annotator agreement matrix for com-
parison of ONLINEB + DEPFIX 2012 (denoted as
Setup 1) with ONLINEB (Setup 2) is given in Ta-
ble 3. The results for the other two setup pairs were
similar, with the average inter-annotator agreement
being 77%.

5.2 Automatic Evaluation
We also performed several experiments with auto-
matic evaluation using the standard BLEU metric
(Papineni et al., 2002). As the effect of DEPFIX in
terms of BLEU is rather small, the results are not as
confident as the results of manual evaluation.4

In Table 4, we compare the DEPFIX 2011 and
DEPFIX 2012 systems and measure the contribution
of parser adaptation (Section 3) and rule improve-
ments (Section 4). It can be seen that the com-
bined effect of applying both system modifications
is greater than when they are applied alone. The im-
provement of DEPFIX 2012 over ONLINEB without
DEPFIX is statistically significant at 95% confidence
level.

The effect of DEPFIX 2012 on the outputs of some
of the best-scoring SMT systems in the WMT12
Translation Task5 is shown in Table 5. Although
DEPFIX 2012 was tuned only on ONLINEB and CU-
BOJAR system outputs, it improves the BLEU score
of all the best-scoring systems, which suggests that

4As already noted by Mareček et al. (2011), BLEU seems
not to be very suitable for evaluation of DEPFIX. See (Kos and
Bojar, 2009) for a detailed study of BLEU performance when
applied to evaluation of MT systems with Czech as the target
language.

5http://www.statmt.org/wmt12
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Setup 1 Setup 2
Differing

Annotator
Setup 1 Setup 2

Indefinite
sentences better better

ONLINEB
ONLINEB 169

A 58% 13% 29%
+ DEPFIX 2011 B 47% 11% 42%
ONLINEB

ONLINEB 234
A 65% 14% 21%

+ DEPFIX 2012 B 59% 11% 30%
ONLINEB ONLINEB

148
A 54% 24% 22%

+ DEPFIX 2012 + DEPFIX 2011 B 56% 22% 22%

Table 1: Manual pairwise comparison on 500 sentences from WMT11 test set processed by ONLINEB, ONLINEB +
DEPFIX 2011 and ONLINEB + DEPFIX 2012. Evaluated by two independent annotators.

Sentences
Rule changed evaluated impr. % wors. % indef. %
FixPrepositionalCase 34 5 3 60 2 40 0 0
FixReflexiveTantum 1 0 – – – – – –
FixNounNumber 80 11 5 45 5 45 1 9
FixPrepositionWithoutChildren 16 6 3 50 3 50 0 0
FixBy 75 13 10.5 81 1 8 1.5 12
FixAuxVChildren 26 6 4.5 75 0 0 1.5 25
FixRelativePronoun 56 8 6 75 2 25 0 0
FixSubject 142 18 13.5 75 3 17 1.5 8
FixVerbAuxBeAgreement 8 2 1 50 1 50 0 0
FixPresentContinuous 30 7 5.5 79 1 14 0.5 7
FixSubjectPredicateAgreement 87 10 5.5 55 1 10 3.5 35
FixSubjectPastParticipleAgreement 396 63 46.5 74 9.5 15 7 11
FixVerbByEnSubject 25 6 5 83 0 0 1 17
FixPassiveAuxBeAgreement 43 8 6 75 0.5 6 1.5 19
FixPrepositionNounAgreement 388 62 40 65 13 21 9 15
FixOf 84 13 11.5 88 0 0 1.5 12
FixNounAdjectiveAgreement 575 108 69.5 64 20 19 18.5 17
FixAuxT 38 7 4 57 1 14 2 29
VocalizePrepos 53 12 6 50 2.5 21 3.5 29
FixFirstWordCapitalization 0 0 – – – – – –

Table 2: Impact and accuracy of individual DEPFIX 2012 rules using manual evaluation on 500 sentences from
WMT11 test set translated by ONLINEB. The number of changed sentences is counted on the whole WMT11 test
set, i.e. 3003 sentences. The numbers of improved, worsened and indefinite translations are averaged over the annota-
tors.
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DEPFIX setup BLEU
without DEPFIX 19.37
DEPFIX 2011 19.41
DEPFIX 2011 + new parser 19.42
DEPFIX 2011 + new rules 19.48
DEPFIX 2012 19.56

Table 4: Performance of ONLINEB and various DEPFIX
setups on the WMT11 test set.

System BLEU
ONLINEB 16.25
ONLINEB + DEPFIX 2012 16.31
UEDIN 15.54
UEDIN + DEPFIX 2012 15.75
CU-BOJAR 15.41
CU-BOJAR + DEPFIX 2012 15.45
CU-TAMCH-BOJ 15.35
CU-TAMCH-BOJ + DEPFIX 2012 15.39

Table 5: Comparison of BLEU of baseline system output
and corrected system output on WMT12 test set.

it is able to improve the quality of various SMT
systems when applied to their outputs. (The im-
provement on UEDIN is statistically significant at
95% confidence level.) We submitted the ONLINEB
+ DEPFIX 2012 system to the WMT12 Translation
Task as CU-DEPFIX.

6 Conclusion

We have presented two improvements to DEPFIX,
a system of rule-based post-editing of English-to-
Czech Machine Translation outputs proven by man-
ual and automatic evaluation to improve the qual-
ity of the translations produced by state-of-the-art
SMT systems. First, improvements in the existing
rules and implementation of new ones, which can be
regarded as an additive, evolutionary change. Sec-
ond, a modified dependency parser, adjusted to pars-
ing of SMT outputs by training it on a parallel tree-
bank with worsened word forms on the Czech side.
We showed that both changes led to a better perfor-
mance of the new DEPFIX 2012, both individually
and combined.

In future, we are planning to incorporate deeper
analysis, devising rules that would operate on the

deep-syntactic, or tectogrammatical, layer. The
Czech and English tectogrammatical trees are more
similar to each other, which should enable us to ex-
ploit more information from the source sentences.
We also hope to be able to perform more complex
corrections, such as changing the part of speech of a
word when necessary.

Following the success of our modified parser, we
would also like to modify the tagger in a similar way,
since incorrect analyses produced by the tagger of-
ten hinder the correct function of our rules, some-
times leading to a rule worsening the translation in-
stead of improving it.

As observed e.g. by Groves and Schmidtke (2009)
for English-to-German and English-to-French trans-
lations, SMT systems for other language pairs also
tend to produce reoccurring grammatical errors. We
believe that these could be easily detected and cor-
rected in a rule-based way, using an approach similar
to ours.
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Ondřej Bojar, Jan Hajič, Eva Hajičová, Jarmila Panevová,
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Kamil Kos and Ondřej Bojar. 2009. Evaluation of ma-
chine translation metrics for czech as the target lan-
guage. The Prague Bulletin of Mathematical Linguis-
tics, 92(-1):135–148.

Antonio L. Lagarda, Vicent Alabau, Francisco Casacu-
berta, Roberto Silva, and Enrique Diaz-de Liano.
2009. Statistical post-editing of a rule-based ma-
chine translation system. In Proceedings of Human
Language Technologies: The 2009 Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics, Companion Vol-
ume: Short Papers, pages 217–220. Association for
Computational Linguistics.
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Abstract

This paper describes the development of
French–English and English–French statisti-
cal machine translation systems for the 2012
WMT shared task evaluation. We developed
phrase-based systems based on the Moses de-
coder, trained on the provided data only. Ad-
ditionally, new features this year included im-
proved language and translation model adap-
tation using the cross-entropy score for the
corpus selection.

1 Introduction

This paper describes the statistical machine trans-
lation systems developed by the Computer Science
laboratory at the University of Le Mans (LIUM) for
the 2012 WMT shared task evaluation. We only
considered the translation between French and En-
glish (in both directions). The main differences with
respect to previous year’s system (Schwenk et al.,
2011) are as follows: (i) use of more training data as
provided by the organizers and (ii) better selection
of the monolingual and parallel data according to
the domain, using the cross-entropy difference with
respect to in-domain and out-of-domain language
models (Moore and Lewis, 2010). We kept some
previous features: the improvement of the transla-
tion model adaptation by unsupervised training, a
parallel corpus retrieved by Information Retrieval
(IR) techniques and finally, the rescoring with a con-
tinuous space target language model for the trans-
lation into French. These different points are de-
scribed in the rest of the paper, together with a sum-
mary of the experimental results showing the impact
of each component.

2 Resources Used

The following sections describe how the resources
provided or allowed in the shared task were used to
train the translation and language models of the sys-
tem.

2.1 Bilingual data

The latest version of the News-Commentary (NC)
corpus and of the Europarl (Eparl) corpus (version
7) were used. We also took as training data a subset
of the French–English Gigaword (109) corpus. This
year we changed the filters applied to select this sub-
set (see Sect. 2.4). We also included in the training
data the test sets from previous shared tasks, that we
called the ntsXX corpus and which was composed
of newstest2008, newstest2009, newssyscomb2009.

2.2 Development data

Development was initially done on newstest2010,
and newstest2011 was used as internal test set (Sec-
tion 3.1). The development and internal test sets
were then (Section 4) switched (tuning was done
on newstest2011 and internal evaluation on new-
stest2010). The default Moses tokenization was
used. However, we added abbreviations for the
French tokenizer. All our models are case sensitive
and include punctuation. The BLEU scores reported
in this paper were calculated with the mteval-v13
tool and are case insensitive.

2.3 Use of Automatic Translations

Available human translated bitexts such as the Eu-
roparl or 109 corpus seem to be out-of domain for
this task. We used two types of automatically ex-
tracted resources to adapt our system to the domain.
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First, we generated automatic translations of the
provided monolingual News corpus in French and
English, for years 2009, 2010 and 2011, and selected
the sentences with a normalised translation cost (re-
turned by the decoder) inferior to a threshold. The
resulting bitexts contain no new translations, since
all words of the translation output come from the
translation model, but they contain new combina-
tions (phrases) of known words, and reinforce the
probability of some phrase pairs (Schwenk, 2008).
Like last year, we directly used the word-to-word
alignments produced by the decoder at the output
instead of GIZA’s alignments. This speeds-up the
procedure and yields the same results in our experi-
ments. A detailed comparison is given in (Lambert
et al., 2011).

Second, as in last year’s evaluation, we auto-
matically extracted and aligned parallel sentences
from comparable in-domain corpora. We used the
AFP (Agence France Presse) and APW (Associated
Press Worldstream Service) news texts since there
are available in the French and English LDC Giga-
word corpora. The general architecture of our par-
allel sentence extraction system is described in de-
tail by Abdul-Rauf and Schwenk (2009). We first
translated 91M words from French into English us-
ing our first stage SMT system. These English sen-
tences were then used to search for translations in
the English AFP and APW texts of the Gigaword
corpus using information retrieval techniques. The
Lemur toolkit (Ogilvie and Callan, 2001) was used
for this purpose. Search was limited to a window of
±5 days of the date of the French news text. The re-
trieved candidate sentences were then filtered using
the Translation Error Rate (TER) with respect to the
automatic translations. In this study, sentences with
a TER below 75% were kept. Sentences containing
a large fraction of numbers were discarded. By these
means, about 27M words of additional bitexts were
obtained.

2.4 Domain-based Data selection

Before training the target language models, a text se-
lection has been made using the cross-entropy differ-
ence method (Moore and Lewis, 2010). This tech-
nique works by computing the difference between
two cross-entropy values.

We first score an out-of-domain corpus against

a language model trained on a set of in-domain
data and compute the cross-entropy for each sen-
tence. Then, we score the same out-of-domain cor-
pus against a language model trained on a random
sample of itself, with a size roughly equal to the in-
domain corpus. From this point, the difference be-
tween in-domain cross-entropy and out-of-domain
cross-entropy is computed for each sentence, and
these sentences are sorted regarding this score.

By estimating and minimizing on a development
set the perplexity of several percentages of the sorted
out-of-domain corpus, we can then estimate the the-
oretical best point of data size for this specific cor-
pus. According the original paper and given our re-
sults, this leads to better selection than the simple
perplexity sorting (Gao et al., 2002). This way, we
can be assured to discard the vast majority of noise
in the corpora and to select data well-related to the
task.

In this task, the French and English target lan-
guage models were trained on data selected from all
provided monolingual corpora. In addition, LDC’s
Gigaword collection was used for both languages.
Data corresponding to the development and test pe-
riods were removed from the Gigaword collections.
We had time to apply the domain-based data selec-
tion only for French. Thus all data were used for
English.

We used this method to filter the French–English
109 parallel corpus as well, based on the differ-
ence between in-domain cross-entropy and out-of-
domain cross-entropy calculated for each sentence
of the English side of the corpus. We kept 49 mil-
lion words (in the English side) to train our models,
called 109

f .

3 Architecture of the SMT system

The goal of statistical machine translation (SMT) is
to produce a target sentence e from a source sentence
f . We have build phrase-based systems (Koehn et
al., 2003; Och and Ney, 2003), using the standard
log linear framework in order to introduce several
models explaining the translation process:

e∗ = arg max p(e|f)

= arg max
e
{exp(

∑
i

λihi(e, f))} (1)
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The feature functions hi are the system models
and the λi weights are typically optimized to maxi-
mize a scoring function on a development set (Och,
2003). The phrase-based system uses fourteen fea-
tures functions, namely phrase and lexical transla-
tion probabilities in both directions, seven features
for the lexicalized distortion model, a word and a
phrase penalty and a target language model (LM).

The system is based on the Moses SMT toolkit
(Koehn et al., 2007) and is constructed as follows.
First, word alignments in both directions are cal-
culated. We used a multi-threaded version of the
GIZA++ tool (Gao and Vogel, 2008).1 This speeds
up the process and corrects an error of GIZA++ that
can appear with rare words.

Phrases and lexical reorderings are extracted us-
ing the default settings of the Moses toolkit. The
parameters of Moses were tuned using the MERT
tool. We repeated the training process three times,
each with a different seed value for the optimisation
algorithm. In this way we have a rough idea of the
error introduced by the tuning process.

4-gram back-off LMs were used. The word list
contains all the words of the bitext used to train the
translation model and all words that appear at least
ten times in the monolingual corpora. Words of the
monolingual corpora containing special characters
or sequences of uppercase characters were not in-
cluded in the word list. Separate LMs were build
on each data source with the SRI LM toolkit (Stol-
cke, 2002) and then linearly interpolated, optimizing
the coefficients with an EM procedure. The perplex-
ities of these LMs on newstest2011 were 119.1 for
French and 174.8 for English. In addition, we build a
5-gram continuous space language model for French
(Schwenk, 2007). These models were trained on
all the available texts using a resampling technique.
The continuous space language model is interpo-
lated with the 4-gram back-off model and used to
rescore n-best lists. This reduces the perplexity by
about 13% relative.

3.1 Number translation

We have also performed some experiments with
number translation. English and French do not use

1The source is available at http://www.cs.cmu.edu/
˜qing/

the same conventions for integer and decimal num-
bers. For example, the English decimal number 0.99
is translated in French by 0,99. In the same way,
the English integer 32,000 is translated in French by
32 000. It should be possible to perform these mod-
ifications by rules.

In this study, we first replaced the numbers by a
tag @@NUM for integer and @@DEC for decimal num-
bers. Integers in the range 1 to 31 were not replaced
since they appear in dates. Then, we created the tar-
get language model using the tagged corpora. Ta-
ble 1 shows results of experiments performed with
and without rule-based number translation.

Corpus NT BLEU TER
NC no 26.57 (0.07) 58.13 (0.06)
NC yes 26.84 (0.15) 57.71 (0.34)
Eparl+NC no 29.28 (0.11) 55.28 (0.13)
Eparl+NC yes 29.26 (0.10) 55.44 (0.29)

Table 1: Results of the study on number translation (NT)
from English to French

We did observe small gains in the translation
quality when only the news-commentary bitexts are
used, but there were no differences when more train-
ing data is available. Due to time constraints, this
procedure was not used in the submitted system.

4 Results and Discussion

The results of our SMT systems are summarized in
Table 2. The MT metric scores for the development
set are the average of three optimisations performed
with different seeds (see Section 3). For the test set,
they are the average of four values: the three val-
ues corresponding to these different optimisations,
plus a fourth value obtained by taking as weight for
each model, the average of the weights obtained in
the three optimisations (Cettolo et al., 2011). The
numbers in parentheses are the standard deviation of
these three or four values. The standard deviation
gives a lower bound of the significance of the differ-
ence between two systems. If the difference between
two average scores is less than the sum of the stan-
dard deviations, we can say that this difference is not
significant. The reverse is not true.

The results of Table 2 show that adding several
adapted corpora (the filtered 109 corpus, the syn-
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Bitext #Source newstest2011 newstest2010
Words (M) BLEU TER BLEU TER

Translation : En→Fr
Eparl+NC 57 30.91 (0.05) 53.61 (0.12) 28.45 (0.08) 56.29 (0.20)
Eparl+NC+ntsXX 58 31.12 (0.08) 53.67 (0.08) 28.49 (0.04) 56.45 (0.12)
Eparl+NC+ntsXX+109

f 107 31.67 (0.06) 53.29 (0.03) 29.38 (0.12) 55.45 (0.15)
Eparl+NC+ntsXX+109

f +IR 133 32.41 (0.02) 52.20 (0.02) 29.48 (0.11) 55.33 (0.20)
Eparl+NC+ntsXX+109

f +news+IR 162 32.26 (0.04) 52.24 (0.12) 29.79 (0.12) 55.04 (0.20)
Translation : Fr→En
Eparl+NC 64 29.59 (0.12) 51.86 (0.06) 28.12 (0.05) 53.19 (0.06)
Eparl+NC+ntsXX 64 29.59 (0.04) 51.89 (0.14) 28.32 (0.08) 53.22 (0.08)
Eparl+NC+ntsXX+109

f 120 30.69 (0.06) 50.77 (0.04) 28.95 (0.14) 52.62 (0.14)
Eparl+NC+ntsXX+109

f +IR 149 30.56 (0.02) 50.94 (0.15) 28.67 (0.11) 52.78 (0.06)
Eparl+NC+ntsXX+109

f +news+IR 179 30.85 (0.07) 50.72 (0.03) 28.94 (0.05) 52.57 (0.02)

Table 2: English–French and French–English results: number of source words (in million) and scores on the develop-
ment (newstest2011) and internal test (newstest2010) sets for the different systems developed. The BLEU scores and
the number in parentheses are the average and standard deviation over 3 or 4 values when available (see Section 4.)

thetic corpus and the corpus retrieved via IR meth-
ods) to the Eparl+NC+ntsXX baseline, a gain of 1.1
BLEU points and 1.4 TER points was achieved for
the English–French system.

On the other hand, adding the bitexts extracted
from the comparable corpus (IR) does actually hurt
the performance of the French–English system: the
BLEU score decreases from 28.95 to 28.67 on our
internal test set. During the evaluation period, we
added all the corpora at once and we observed this
only in our analysis after the evaluation.

In both translation directions our
best system was the one trained on
Eparl+NC+ntsXX+109

f +News+IR. Finally, we
applied a continuous space language model for the
system translating into French.
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Abstract

We provide a few insights on data selection for
machine translation. We evaluate the quality
of the new CzEng 1.0, a parallel data source
used in WMT12. We describe a simple tech-
nique for reducing out-of-vocabulary rate af-
ter phrase extraction. We discuss the bene-
fits of tuning towards multiple reference trans-
lations for English-Czech language pair. We
introduce a novel approach to data selection
by full-text indexing and search: we select
sentences similar to the test set from a large
monolingual corpus and explore several op-
tions of incorporating them in a machine trans-
lation system. We show that this method can
improve translation quality. Finally, we de-
scribe our submitted system CU-TAMCH-BOJ.

1 Introduction

Selecting suitable data is important in all stages of
creating an SMT system. For training, the data size
plays an essential role, but the data should also be as
clean as possible. The new CzEng 1.0 was prepared
with the emphasis on data quality and we evaluate
it against the previous version to show whether the
effect for MT is positive.

Out-of-vocabulary rate is another problem related
to data selection. We present a simple technique to
reduce it by including words that became spurious
OOVs during phrase extraction.

∗ This work was supported by the project EuroMatrixPlus
(FP7-ICT-2007-3-231720 of the EU and 7E09003+7E11051 of
the Czech Republic) and the Czech Science Foundation grants
P406/11/1499 and P406/10/P259.

Another topic we explore is to use multiple refer-
ences for tuning to make the procedure more robust
as suggested by Dyer et al. (2011). We evaluate this
approach for translating from English into Czech.

The main focus of our paper however lies in pre-
senting a method for data selection using full-text
search. We index a large monolingual corpus and
then extract sentences from it that are similar to the
input sentences. We use these sentences in several
ways: to create a new language model, a new phrase
table and a tuning set. The method can be seen as
a kind of domain adaptation. We show that it con-
tributes positively to translation quality and we pro-
vide a thorough evaluation.

2 Data and Tools

2.1 Comparison of CzEng 1.0 and 0.9

As this year’s WMT is the first to include the new
version of CzEng (Bojar et al., 2012b), we carried
out a few experiments to compare its suitability for
MT with its predecessor, CzEng 0.9. Apart from
size (which has almost doubled), there are impor-
tant differences between the two versions. In CzEng
0.9, the largest portion by far came from movie sub-
titles (a data source of varying quality), followed by
EU legislation and technical manuals. On the other
hand, CzEng 1.0 has over 4 million sentence pairs
from fiction and nearly the same amount of data
from EU legislation. Roughly 3 million sentence
pairs come from movie subtitles. This proportion
of domains suggests a higher quality of data. More-
over, sentences in CzEng 1.0 were automatically fil-
tered using a maximum entropy classifier that uti-
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Vocab. [k]
Corpus and Domain Sents BLEU En Cs
CzEng 0.9 all 1M 14.77±0.12 187 360
CzEng 1.0 15.23±0.18 221 396
CzEng 0.9 news 100k 14.34±0.05 53 125
CzEng 1.0 14.01±0.13 47 113

Table 1: Comparison of CzEng 0.9 and 1.0.

lized a variety of features.
We trained contrastive phrase-based Moses SMT

systems—the first one on 1 million randomly se-
lected sentence pairs from CzEng 0.9, the other on
the same amount of data from CzEng 1.0. Another
contrastive pair of MT systems was based on small
in-domain data only: 100k sentences from the news
sections of CzEng 0.9 and 1.0. For each experiment,
the random selection was done 5 times. In both
experiments, identical data were used for the LM
(News Crawl corpus from 2011), tuning (WMT10
test set) and evaluation (WMT11 test set).

Table 1 shows the results. The ± sign in this case
denotes the standard deviation over the 5 experi-
ments (each with a different random sample of train-
ing data). The results indicate that overall, CzEng
1.0 is a more suitable source of parallel data—most
likely thanks to the more favorable distribution of
domains. However in the small in-domain setting,
using CzEng 0.9 data resulted in significantly higher
BLEU scores.

The vocabulary size of the news section seems to
have dropped since 0.9. We attribute this to the filter-
ing: sentences with obscure words are hard to align
so they are likely to be filtered out (the word align-
ment score as output by Giza++ received a large
weight in the classifier training). These unusual
words then do not appear in the vocabulary.

2.2 Lucene

Apache Lucene1 is a high performance open-source
search engine library written in Java. We use Lucene
to take advantage of the information retrieval (IR)
technique for domain adaptation. Each sentence of
a large corpus is indexed as a separate document; a
document is the unit of indexing and searching in
Lucene. The sentences (documents) can then be re-

1http://lucene.apache.org

trieved based on Lucene similarity formula2, given
a “query corpus”. Lucene uses Boolean model for
initial filtering of documents. Vector Space Model
with a refined version of Tf-idf statistic is then used
to score the remaining candidates.

In the normal IR scenario, the query is usually
small. However, for domain adaptation a query can
be a whole corpus. Lucene does not allow such
big queries. This problem is resolved by taking
the query corpus sentence by sentence and search-
ing many times. The final score of a sentence in the
index is calculated as the average of the scores from
the sentence-level queries. Methods that make use
of this functionality are discussed in Section 5.

3 Reducing OOV by Relaxing Alignments

Out-of-vocabulary (OOV) rate has been shown to
increase during phrase extraction (Bojar and Kos,
2010). This is due to unfortunate alignment of some
words—no consistent phrase pair that includes them
can be extracted. This issue can be partially over-
come by adding translations of these “lost” words
(according to Giza++ word alignment) to the ex-
tracted phrase table. This is not our original tech-
nique, it was suggested by Mermer and Saraclar
(2011), though it is not included in the published ab-
stract.

The extraction of phrases in the (hierarchical) de-
coder Jane (Stein et al., 2011) offers a range of sim-
ilar heuristics. Tinsley et al. (2009) also observes
gains when extending the set of phrases consistent
with the word alignment by phrases consistent with
aligned parses.

We evaluated this technique on two sets of train-
ing data—the news section of CzEng 1.0 and the
whole CzEng 1.0. The OOV rate of the phrase table
was reduced nearly to the corpus OOV rate in both
cases, however the improvement was negligible—
only a handful of the newly added words occurred
in the test set. Table 2 shows the results. Trans-
lation performance using the improved phrase table
was identical to the baseline.

2http://tiny.cc/ca2ccw
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Test Set OOV % New
CzEng Sections Baseline Reduced Phrases
news (197k sents) 3.69 3.66 12034
all (14.8M sents) 1.09 1.09 154204

Table 2: Source-side phrase table OOV.

Sections 1 reference 3 references
news 11.37±0.47 11.62±0.50
all 16.07±0.55 15.90±0.57

Table 3: BLEU scores on WMT12 test set when tuning
on WMT11 test set towards one or more references.

4 Tuning to Multiple Reference
Translations

Tuning towards multiple reference translations has
been shown to help translation quality, see Dyer et
al. (2011) and the cited works. Thanks to the other
references, more possible translations of each word
are considered correct, as well as various orderings
of words.

We tried two approaches: tuning to one true refer-
ence and one pseudo-reference, and tuning to multi-
ple human-translated references.

For the first method, which resembles computer-
generated references via paraphrasing as used in
(Dyer et al., 2011), we created the pseudo-reference
by translating the development set using TectoMT,
a deep syntactic MT with rich linguistic processing
implemented in the Treex platform3. We hoped that
the very different output of this decoder would be
beneficial for tuning, however we achieved no im-
provement at all.

For the second experiment we used 3 translations
of WMT11 test set. One is the true reference dis-
tributed for the shared task and two were translated
manually from the German version of the data into
Czech. We achieved a small improvement in final
BLEU score when training on a small data set. On
the complete constrained training data for WMT12,
there was no improvement—in fact, the BLEU score
as evaluated on the WMT12 test set was negligibly
lower. Table 3 summarizes our results. The ± sign
denotes the confidence bounds estimated via boot-
strap resampling (Koehn, 2004).

3http://ufal.ms.mff.cuni.cz/treex/

Used Selected Sel. Sents Avg
Models per Trans. Total BLEU±std
None — 0 12.39±0.06
LM — 16k – rand. sel. 12.18±0.06
LM 3 16k 12.73±0.04
LM 100 502k 14.21±0.11
LM 1000 3.8M 15.12±0.08
LM All Sents 18.3M 15.55±0.11

Table 4: Results of experiments with Lucene, language
model adapted.

5 Experiments with Domain Adaptation

Domain adaptation is widely recognized as a tech-
nique which can significantly improve translation
quality (Wu et al., 2008; Bertoldi and Federico,
2009; Daumé and Jagarlamudi, 2011). In our ex-
periments we tried to select sentences close to the
source side of the test set and use them to improve
the final translation.

The parallel data used in this section are only
small: the news section of CzEng 1.0 (197k sentence
pairs, 4.2M Czech words, 4.8M English words). We
tuned the models on WMT09 test set and evaluated
on WMT11 test set. The techniques examined here
rely on a large monolingual corpus to select data
from. We used all the monolingual data provided by
the organizers of WMT11 (18.3M sentences, 316M
words).

5.1 Tailoring the Language Model

Our first attempt was to tailor the language model
to the test set. Our approach is similar to Zhao et
al. (2004). In Moore and Lewis (2010), the authors
compare several approaches to selecting data for LM
and Axelrod et al. (2011) extend their ideas and ap-
ply them to MT.

Naturally, we only used the source side of the test
set. First we translated the test set using a baseline
translation system. Lucene indexer was then used
to select sentences similar to the translated ones in
the large target-side monolingual corpus. Finally, a
new language model was created from the selected
sentences.

The weight of the new LM has to reflect the im-
portance of the language model during both MERT
tuning as well as final application on (a different)
test set. If the new LM were based only on the final
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test set, MERT would underestimate its value and
vice versa. Therefore, we actually translated both
our development (WMT09) as well as final test set
(WMT11) using the baseline model and created a
LM relevant to their union.

The results of performed experiments with do-
main adaptation are in Table 4. To compensate for
low stability of MERT, we ran the optimization five
times and report the average BLEU achieved. The
± value indicates the standard deviation of the five
runs.

The first row provides the scores for the baseline
experiment with no tailored language model. We
have run the experiment for three values of selected
sentences per one sentence of the test corpus: 3,
100 and 1000 closest-matching sentences were ex-
tracted. With more and more data in the LM, the
scores increase. The second line in Table 4 confirms
the usefulness of the sentence selection. Picking the
same amount of 16k sentences randomly performs
worse. As the last row indicates, taking all available
data leads to the best score.

Note that when selecting the sentences, we used
lemmas instead of word forms to reduce data sparse-
ness. So Lucene was actually indexing the lemma-
tized version of the monolingual data and the base-
line translation translated English lemmas to Czech
lemmas when creating the “query corpus”. The final
models were created from the original sentences, not
their lemmatized versions.

5.2 Tailoring the Translation Model
Reverse self-training is a trick that allows to improve
the translation model using (target-side) monolin-
gual data and can lead to a performance improve-
ment (Bojar and Tamchyna, 2011; Lambert et al.,
2011).

In our scenario, we translated the selected sen-
tences (in the opposite direction, i.e. from the target
into the source language). Then we created a new
translation model (in the original direction) based on
the alignment of selected sentences and their reverse
translation. This new model is finally combined with
the baseline model and weighted by MERT. The
whole scenario is shown in Figure 1.

The results of our experiments are in Table 5. We
ran the experiment with translation model adaptation
for 100 most similar sentences selected by Lucene.

Each experiment was again performed five times.
Due to the low stability of tuning, we also tried in-
creasing the size of n-best lists used by MERT.

Experiments with tailored translation model are
significantly better than the baseline but the im-
provement against the experiment with only the lan-
guage model adapted (with the corresponding 100
sentences selected) is very small.

5.3 Discussion of Domain Adaptation
Experiments

According to the results, using Lucene improves
translation performance already in the case when
only three sentences are selected for each translated
sentence. Our results are further supported by the
contrastive setup that used a language model cre-
ated from a random selection of the same number of
sentences—the translation quality even slightly de-
graded.

On the other hand, adding more sentences to lan-
guage model further improves results and the best
result is achieved when the language model is cre-
ated using the whole monolingual corpus. This
could have two reasons:

Too good domain match. The domain of the
whole monolingual corpus is too close to the test
corpus. Adding the whole monolingual corpus is
thus the best option. For more diverse monolingual
data, some domain-aware subsampling like our ap-
proach is likely to actually help.

Our style of retrieval. Our queries to Lucene
represent sentences as simple bags of words. Lucene
prefers less frequent words and the structure of the
sentence is therefore often ignored. For example it
prefers to retrieve sentences with the same proper
name rather than sentences with similar phrases or
longer expressions. This may not be the best option
for language modelling.

Our method can thus be useful mainly in the case
when the data available are too large to be processed
as a whole. It can also highly reduce the compu-
tation power and time necessary to achieve good
translation quality: the result achieved using the lan-
guage model created via Lucene for 1000 selected
sentences is not significantly worse than the result
achieved using the whole monolingual corpus but
the required data are 5 times smaller.
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Test Set [EN]

Translated TS [CS]

Sentences Similar to Translated TS [CS]

Reverse Translated Sentences Similar to Translated TS [EN]

Lucene

Baseline Translation [EN->CS]

Domain Adapted LM

Reverse Translation TM

Reverse Translation [CS->EN]

Original LMOriginal TM

Test Set [EN]

Translated Test Set [CS]

Final Translation [EN->CS]

Figure 1: Scenario of reverse self-training.

Used N-Best Sel. Sents Sel. Sents Avg
Models per Trans. Sent. Total BLEU±std
None 100 — 0 12.39±0.06
None 200 — 0 12.4±0.03

LM + TM 100 100 502k 14.32±0.13
LM + TM 200 100 502k 14.36±0.07

Table 5: Results of experiments with Lucene, translation model applied.

5.4 Tuning Towards Selected Data

Domain adaptation can also be done by selecting a
suitable development corpus (Zheng et al., 2010; Li
et al., 2004). The final model parameters depend on
the domain of the development corpus. By choos-
ing a development corpus that is close to our test
set we might tune in the right direction. We imple-
mented this adaptation by querying the source side
of our large parallel corpus using the source side of
the test corpus. After that, the development corpus
is constructed from the selected sentences and their
corresponding reference translations.

This experiment uses a fixed model based on the
news section of CzEng 1.0. We only use different
tuning sets and run the MERT optimization. All the
resulting systems are tested on the WMT11 test set:

Baseline system is tuned on 2489 sentence pairs
selected randomly from whole CzEng 1.0 parallel
corpus. Lucene system uses 2489 sentence pairs se-
lected from CzEng 1.0 using Lucene. The selection
is done by choosing the most similar sentences to the
source side of the final test set. WMT10 system is

System avg BLEU±std
Baseline 11.41±0.25
Lucene 12.31±0.01
WMT10 12.37±0.02
Perfect selection 12.64±0.02
Bad selection 6.37±0.64

Table 6: Results of tuning with different corpora

tuned on 2489 sentence pairs of WMT10 test set. To
identify an upper bound, we also include a Perfect
selection system which is tuned on the final WMT11
test set. Naturally, this is not a fair competitor.

In order to make the results more reliable, it is
necessary to repeat the experiment several times
(Clark et al., 2011). Lucene and the WMT10 system
were tuned 3 times while baseline system was tuned
9 times because of randomness in selection of tun-
ing corpora (3 different tuning corpora each tuned 3
times). The results are shown in Table 6.

Even though the variance of the baseline system
is high (because we randomly selected corpora 3
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times), the difference in scores between baseline
and Lucene system is high enough to conclude that
tuning on Lucene-selected corpus helps translation
quality. Still it does not give better BLEU score
than system tuned on WMT10 corpus. One possi-
ble reason is that the whole CzEng 1.0 is of some-
what lower quality than the news section. Given that
our final test set (WMT11) is also from the news
domain, tuning towards WMT10 corpus probably
leads to a better domain adaptation that tuning to-
wards all the domains in CzEng.

The tuning set must not overlap with the training
set. To illustrate the problem, we did a small exper-
iment with the same settings as above and randomly
selected 2489 sentences from training corpora. We
again ran the random selection 3 times and tuned 3
times with each of the extracted tuning sets, see the
“Bad selection” in Table 6.

In all the experiments with badly selected sen-
tences, the distortion and language model get an
extremely low weight compared to the weights of
translation model. This is because they are not use-
ful in translation of tuning data which was already
seen during training. Instead of reordering two short
phrases A and B, system already knows the transla-
tion of the phrase A B so no distortion is needed. On
unseen sentences, such weights lead to poor results.

This amplifies a drawback of our approach:
source texts have to be known prior to system tuning
or even before phrase extraction.

There are methods available that could tackle this
problem. Wuebker et al. (2010) store phrase pair
counts per sentence when extracting phrases and
thus they can reestimate the probabilities when a
sentence has to be excluded from the phrase tables.
For large parallel corpora, suffix arrays (Callison-
Burch et al., 2005) have been used. Suffix arrays
allow for a quick retrieval of relevant sentence pairs,
the phrase extraction is postponed and performed on
the fly for each input sentence. It is trivial to fil-
ter out sentences belonging to the tuning set during
this delayed extraction. With dynamic suffix arrays
(Levenberg et al., 2010), one could even simply re-
move the tuning sentences from the suffix array.

6 Submitted Systems

This paper covers the submissions CU-TAMCH-BOJ.
We translated from English into Czech. Our setup
was very similar to CU-BOJAR (Bojar et al., 2012a),
but our primary submission is tuned on multiple ref-
erence translations as described in Section 4.

Apart from the additional references, this is a con-
strained setup. CzEng 1.0 were the only parallel data
used in training. We used a factored model to trans-
late the combination of English surface form and
part-of-speech tag into Czech form+POS. We used
separate 6-gram language models trained on CzEng
1.0 (interpolated by domain) and all News Crawl
corpora (18.3M setences, interpolated by years).
Additionaly, we created an 8-gram language model
on target POS tags. For reordering, we employed a
lexicalized model trained on CzEng 1.0.

Table 7 summarizes the official result of the pri-
mary submission and a contrastive baseline (tuned to
just one reference translation). There is a slight de-
crease in BLEU, but the translation error rate (TER)
is slightly better when more references were used.
The differences are however very small, suggesting
that tuning to more references did not have any sig-
nificant effect.

System BLEU TER
multiple references 14.5 0.765
contrastive baseline 14.6 0.774

Table 7: Scores of the submitted systems.

7 Conclusion

We showed that CzEng 1.0 is of better overall qual-
ity than its predecessor. We described a technique
for reducing phrase-table OOV rate, but achieved no
improvement for WMT12. Similarly, tuning to mul-
tiple references did not prove very beneficial.

We introduced a couple of techniques that exploit
full-text search in large corpora. We showed that
adding selected sentences as an additional LM im-
proves translations. Adding a new phrase table ac-
quired via reverse self-training resulted only in small
gains. Tuning to selected sentences resulted in a
better system than tuning to a random set. How-
ever the Lucene-selected corpus fails to outperform
good-quality in-domain tuning data.

379



References

Amittai Axelrod, Xiaodong He, and Jianfeng Gao. 2011.
Domain adaptation via pseudo in-domain data selec-
tion. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, EMNLP
’11, pages 355–362, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Nicola Bertoldi and Marcello Federico. 2009. Do-
main adaptation for statistical machine translation with
monolingual resources. In Proceedings of the Fourth
Workshop on Statistical Machine Translation, StatMT
’09, pages 182–189, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.
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Abstract

We describe DFKI’s statistical based submis-
sion to the 2012 WMT evaluation. The sub-
mission is based on the freely available ma-
chine translation toolkit Jane, which supports
phrase-based and hierarchical phrase-based
translation models. Different setups have been
tested and combined using a sentence selec-
tion method.

1 Introduction

In this paper we present DFKI’s submission for
the 2012 MT shared task based on statistical ap-
proaches. We use a variety of phrase-based and hi-
erarchical phrase-based translation systems with dif-
ferent configurations and enhancements and com-
pare their performance. The output of the systems
are later combined using a sentence selection mech-
anism. Somewhat disappointingly the sentence se-
lection hardly improves over the best single system.

DFKI participated in the German to English and
English to German translation tasks. Technical
problems however hindered a more complete system
for this last translation direction.

This paper is organized as follows: Section 2 re-
ports on the different single systems that we built for
this shared task. Section 3 describes the sentence se-
lection mechanism used for combining the output of
the different systems. Section 4 concludes the paper.

2 Single Systems

For all our setups we used the Jane toolkit (Vi-
lar et al., 2010a), which in its current version sup-

ports both phrase-based and hierarchical phrase-
based translation models. In this Section we present
the different settings that we used for the task.

The bilingual training data used for training all
systems was the combination of the provided Eu-
roparl and News data. We also used two baseline 4-
gram language models trained on the same Europarl
training data and on the enhanced News Commen-
tary monolingual training data. The newstest2010
dataset was used for optimization of the systems.

2.1 Phrase-based System
The first system is a baseline phrase-based system
trained on the available bilingual training data. Word
alignments is trained using GIZA++ (Och and Ney,
2003), phrase extraction is performed with Jane us-
ing standard settings, i.e. maximum source phrase
length 6, maximum target phrase length 12, count
features, etc. Consult the Jane documentation for
more details. For reordering the standard distance-
based reordering model is computed. Scaling factors
are trained using MERT on n-best lists.

2.1.1 Verb reorderings
Following (Popović and Ney, 2006), for German

to English translation, we perform verb reordering
by first POS-tagging the source sentence and after-
wards applying hand-defined rules. This includes
rules for reordering verbs in subordinate clauses and
participles.

2.1.2 Moore LM
Moore and Lewis (2010) propose a method for

filtering large quantities of out-of-domain language-
model training data by comparing the cross-entropy
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of an in-domain language model and an out-of-
domain language model trained on a random sam-
pling of the data. We followed this approach to filter
the news-crawl corpora provided the organizers. By
experimenting on the development set we decided
to use a 4-gram language model trained on 15M fil-
tered sentences (the original data comprising over
30M sentences).

2.2 Hierarchical System
We also trained a hierarchical system on the same
data as the phrase-based system, and also tried the
additional language model trained according to Sec-
tion 2.1.2, as well as the verb reorderings described
in Section 2.1.1.

2.2.1 Poor Man’s Syntax
Vilar et al. (2010b) propose a “syntax-based” ap-

proach similar to (Venugopal et al., 2009), but us-
ing automatic clustering methods instead of linguis-
tic parsing for defining the non-terminals used in the
resulting grammar. The main idea of the method is
to cluster the words (mimicking the concept of Part-
of-Speech tagging), performing a phrase extraction
pass using the word classes instead of the actual
words and performing another clustering on the
phrase level (corresponding to the linguistic classes
in a parse tree).

2.2.2 Lightly-Supervised Training
Huck et al. (2011) propose to augment the mono-

lingual training data by translating available addi-
tional monolingual data with an existing translation
system. We adapt this approach by translating the
data selected according to Section 2.1.2 with the
phrase-based translation system described in Sec-
tion 2.1, and use this additional data to expand the
bilingual data available for training the hierarchical
phrase-based system.1

2.3 Experimental Results
Table 1 shows the results obtained for the German
to English translation direction on the newstest2011
dataset. The baseline phrase-based system obtains a

1The decision of which system to use to produce the addi-
tional training material follows mainly a practical reason. As
the hierarchical model is more costly to train and at decoding
time, we chose the phrase-based system as the generating sys-
tem.

BLEU score of 18.2%. The verb reorderings achieve
an improvement of 0.6% BLEU, and adding the ad-
ditional language model obtains an additional 1.6%
BLEU improvement.

The hierarchical system baseline achieves a bet-
ter BLEU score than the baseline PBT system, and
is comparable to the PBT system with additional re-
orderings. In fact, adding the verb reorderings to
the hierarchical system slightly degrades its perfor-
mance. This indicates that the hierarchical model is
able to reflect the verb reorderings necessary for this
translation direction. Adding the bigger language
model of Section 2.1.2 also obtains a nice improve-
ment of 1.4% BLEU for this system. On the other
hand and somewhat disappointingly, the lightly su-
pervised training and the poor man’s syntax ap-
proach are not able to improve translation quality.

For the English to German translation direction
we encountered some technical problems, and we
were not able to perform as many experiments as for
the opposite direction. The results are shown in Ta-
ble 2 and show similar trends as for the German to
English direction, except that the hierarchical sys-
tem in this case does not outperform the PBT base-
line.

3 Sentence Selection

In this section we will describe the system combi-
nation method based on sentence selection that we
used for combining the output of the systems de-
scribed in Section 2. This approach was tried suc-
cessfully in (Vilar et al., 2011).

We use a log-linear model for computing the
scores of the different translation hypotheses, gen-
erated by all the systems described in Section 2, i.e.
those listed in Tables 1 and 2. The model scaling
factors are computed using a standard MERT run
on the newstest2011 dataset, optimizing for BLEU.
This is comparable to the usual approach used for
rescoring n-best lists generated by a single system,
and has been used previously for sentence selection
purposes (see (Hildebrand and Vogel, 2008) which
uses a very similar approach to our own). Note that
no system dependent features like translation prob-
abilities were computed, as we wanted to keep the
system general.

We will list the features we compute for each of
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System BLEU[%]

PBT Baseline 18.2
PBT + Reordering 18.8
PBT + Reordering + Moore LM 20.4
Hierarchical Baseline 18.7
Hierarchical + Moore LM 20.1
Hierarchical + Moore LM + Lightly Supervised 19.8
Poor Man’s Syntax 18.6
Hierarchical + Reordering 18.5

Table 1: Translation results for the different single systems, German to English.

System BLEU[%]

PBT Baseline 12.4
Hierarchical Baseline 11.6
Hierarchical + Moore LM 13.1
Poor Man’s Syntax 11.6

Table 2: Translation results for the different single systems, English to German

the systems. We have used features that try to focus
on characteristics that humans may use to evaluate a
system.

3.1 Cross System BLEU

BLEU was introduced in (Papineni et al., 2002)
and it has been shown to have a high correlation
with human judgement. In spite of its shortcom-
ings (Callison-Burch et al., 2006), it has been con-
sidered the standard automatic measure in the devel-
opment of SMT systems (with new measures being
added to it, but not substituting it, see for e.g. (Cer
et al., 2010)).

Of course, the main problem of using the BLEU
score as a feature for sentence selection in a real-
life scenario is that we do not have the references
available. We overcame this issue by generating
a custom set of references for each system, using
the other systems as gold translations. This is of
course inexact, but n-grams that appear on the out-
put of different systems can be expected to be more
probable to be correct, and BLEU calculated this
way gives us a measure of this agreement. This ap-
proach can be considered related to n-gram poste-
riors (Zens and Ney, 2006) or minimum Bayes risk
decoding (e.g. (Ehling et al., 2007)) in the context of

n-best rescoring, but applied without prior weight-
ing (unavailable directly) and more focused on the
evaluation interpretation.

We generated two features based on this idea.
The first one is computed at the system level, i.e. it
is the same for each sentence produced by a sys-
tem and serves as a kind of prior weight similar
to the one used in other system combination meth-
ods (e.g. (Matusov et al., 2008)). The other feature
was computed at the sentence level. For this we used
the smoothed version of BLEU proposed in (Lin and
Och, 2004), again using the output of the rest of
the systems as pseudo-reference. As optimization
on BLEU often tends to generate short translations,
we also include a word penalty feature.

3.2 Error Analysis Features

It is safe to assume that a human judge will try
to choose those translations which contain the least
amount of errors, both in terms of content and gram-
maticality. A classification of errors for machine
translation systems has been proposed in (Vilar et
al., 2006), and (Popović and Ney, 2011) presents
how to compute a subset of these error categories au-
tomatically. The basic idea is to extend the familiar
Word Error Rate (WER) and Position independent
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word Error Rate (PER) measures on word and base-
form2 levels to identify the different kind of errors.
For our system we included following features:

Extra Word Errors (EXTer) Extra words in the
hypothesis not present in the references.

Inflection Errors (hINFer) Words with wrong in-
flection. Computed comparing word-level er-
rors and base-form-level errors.

Lexical Errors (hLEXer) Wrong lexical choices
in the hypothesis with respect to the references.

Reordering Errors (hRer) Wrong word order in
the hypothesis.

Missing Words (MISer) Words present in the ref-
erence that are missing in the hypothesis.

All these features are computed using the open
source Hjerson3 tool (Popović, 2011), which also
outputs the standard WER metric, which we added
as an additional feature.

As was the case in Section 3.1, for computing
these measures we do not have a reference available,
and thus we use the rest of the systems as pseudo-
references. This has the interesting effect that some
“errors” are actually beneficial for the performance
of the system. For example, it is known that sys-
tems optimised on the BLEU metric tend to produce
short hypotheses. In this sense, the extra words con-
sidered as errors by the EXTer measure may be ac-
tually beneficial for the overall performance of the
system.

3.3 IBM1 Scores

IBM1-like scores on the sentence level are known to
perform well for the rescoring of n-best lists from
a single system (see e.g. (Hasan et al., 2007)). Ad-
ditionally, they have been shown in (Popovic et al.,
2011) to correlate well with human judgement for
evaluation purposes. We thus include them as addi-
tional features.

2Computed using the TreeTagger tool (http://www.ims.uni-
stuttgart.de/projekte/corplex/TreeTagger/)

3The abbreviations for the features are taken over directly
from the output of the tool.

De-En En-De

Best System 20.4 13.1
Worst System 18.2 11.6
Sentence Selection 20.9 13.3

Table 3: Sentence selection results

3.4 Additional Language Model

We used a 5-gram language model trained on the
whole news-crawl corpus as an additional model for
rescoring. We used a different language model as the
one described in Section 2.1.2 as not to favor those
systems that already included it at decoding time.

3.5 Experimental Results

The sentence selection improved a little bit over the
best single system for German to English transla-
tion, but hardly so for English to German, as shown
in Table 3. For English to German this can be due to
the small amount of systems that were available for
the sentence selection system. Note also that these
results are measured on the same corpus the system
was trained on, so we expect the improvement on
unseen test data to be even smaller. Nevertheless the
sentence selection system constituted our final sub-
mission for the MT task.

4 Conclusions

For this year’s evaluation DFKI used a statistical
system based around the Jane machine translation
toolkit (Vilar et al., 2010a), working in its two
modalities: phrase-based and hierarchical phrase-
based models. Different enhancements were tried
in addition to the baseline configuration: POS-based
verb reordering, monolingual data selection, poor
man’s syntax and lightly supervised training, with
mixed results.

A sentence selection mechanism has later been
applied in order to combine the output of the dif-
ferent configurations. Although encouraging results
had been obtained in (Vilar et al., 2011), for this task
we found only a small improvement. This may be
due to the strong similarity of the systems, as they
are basically trained on the same data. In (Vilar et
al., 2011) the training data was varied across the sys-
tems, which may have produced a bigger variety in
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the translation outputs that can be of advantage for
the selection mechanism. This is an issue that should
be explored in more detail for further work.

We also plan to do a comparison with system
combination approaches where new hypotheses can
be generated (instead of selecting one from a pre-
defined set), and study under which conditions each
approach is more suited than the other.
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Abstract

We developed a string-to-tree system for
English–German, achieving competitive re-
sults against a hierarchical model baseline.
We provide details of our implementation of
GHKM rule extraction and scope-3 parsing
in the Moses toolkit. We compare systems
trained on the same data using different gram-
mar extraction methods.

1 Introduction

Over the last few years, syntax-based rule extraction
has largely developed along two lines, one originat-
ing in hierarchical phrase-based translation (Chiang,
2005; Chiang, 2007) and the other in GHKM (Gal-
ley et al., 2004; Galley et al., 2006).

Hierarchical rule extraction generalizes the estab-
lished phrase-based extraction method to produce
formally-syntactic synchronous context-free gram-
mar rules without any requirement for linguistic an-
notation of the training data. In subsequent work, the
approach has been extended to incorporate linguis-
tic annotation on the target side (as in SAMT (Zoll-
mann and Venugopal, 2006)) or on both sides (Chi-
ang, 2010).

In contrast, GHKM places target-side syntactic
structure at the heart of the rule extraction process,
producing extended tree transducer rules that map
between strings and tree fragments.

Ultimately, both methods define rules according
to a sentence pair’s word-alignments. Without any
restriction on rule size they will produce an expo-
nentially large set of rules and so in practice only

a subgrammar can be extracted. It is the differing
rule selection heuristics that distinguish these two
approaches, with hierarchical approaches being mo-
tivated by phrasal coverage and GHKM by target-
side tree coverage.

The Moses toolkit (Koehn et al., 2007) has in-
cluded support for hierarchical phrase-based rule ex-
traction since the decoder was first extended to sup-
port syntax-based translation (Hoang et al., 2009).
In this paper we provide some implementation de-
tails for the recently-added GHKM rule extractor
and for the related scope-3 decoding algorithm. We
then describe the University of Edinburgh’s GHKM-
based English-German submission to the WMT
translation task and present comparisons with hier-
archical systems trained on the same data. To our
knowledge, these are the first GHKM results pre-
sented for English-German, a language pair with a
high degree of reordering and rich target-side mor-
phology.

2 GHKM Rule Extraction in Moses

A basic GHKM rule extractor was first developed
for Moses during the fourth Machine Translation
Marathon1 in 2010. We have recently extended it
to support several key features that are described in
the literature, namely: composition of rules (Gal-
ley et al., 2006), attachment of unaligned source
words (Galley et al., 2004), and elimination of fully
non-lexical unary rules (Chung et al., 2011).

We provide some basic implementation details in
the remainder of this section. In section 4 we present

1http://www.mtmarathon2010.info
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Nikitin

PUNC.

.

it is the case of Alexander Nikitin .

Figure 1: Sentence pair from training data.

experimental results comparing performance against
Moses’ alternative rule extraction methods.

2.1 Composed Rules

Composition of minimal GHKM rules into larger,
contextually-richer rules has been found to signif-
icantly improve translation quality (Galley et al.,
2006). Allowing any combination of adjacent min-
imal rules without restriction is unfeasible and so
in practice various constraints are imposed on com-
position. Our implementation includes three con-
figurable parameters for this purpose, which we
describe with reference to the example alignment
graph shown in Figure 1. All three are defined in
terms of the target tree fragment.

Rule depth is defined as the maximum distance
from the composed rule’s root node to any other
node within the fragment, not counting preterminal
expansions (such asNE → Nikitin). By default, the
rule depth is limited to three. If we consider the
composition of rules rooted at theS-TOP node in
Figure 1 then, among many other possibilities, this
setting permits the formation of a rule with the target
side:

S-TOP→ das ist der Fall von PN-NK

since the maximum distance from the rule’s root
node to another node is three (toAPPRor to PN-NK).
However, a rule with the target side:

S-TOP→ das ist der Fall von NE Nikitin

is not permitted since it has a rule depth of four
(from S-TOP to either of theNE nodes).

Node count is defined as the number of target tree
nodes in the composed rule, excluding target words.
The default limit is 15, which for the example is
large enough to permit any possible composed rule
(the full tree has a node count of 13).

Rule size is the measure defined in De-
Neefe et al. (2007): the number of non-part-of-
speech, non-leaf constituent labels in the target tree.
The default rule size limit is three.

2.2 Unaligned Source Words

Unaligned source words are attached to the tree
using the following heuristic: if there are aligned
source words to both the left and the right of an un-
aligned source word then it is attached to the lowest
common ancestor of its nearest such left and right
neighbours. Otherwise, it is attached to the root of
the parse tree.

2.3 Unary Rule Elimination

Moses’ chart decoder does not currently support
the use of grammars containing fully non-lexical
unary rules (such asNP → X1 | NN1). Unless the
--AllowUnary option is given, the rule extractor
eliminates these rules using the method described in
Chung et al. (2011).

2.4 Scope Pruning

Unlike hierarchical phrase-based rule extraction,
GHKM places no restriction on the rank of the re-
sulting rules. In order that the grammar can be
parsed efficiently, one of two approaches is usually
taken: (i) synchronous binarization (Zhang et al.,
2006), which transforms the original grammar to a
weakly equivalent form in which no rule has rank
greater than two. This makes the grammar amenable
to decoding with a standard chart-parsing algorithm
such as CYK, and (ii)scope pruning (Hopkins and
Langmead, 2010), which eliminates rules in order to
produce a subgrammar that can be parsed in cubic
time.

Of these two approaches, Moses currently sup-
ports only the latter. Both rule extractors prune
the extracted grammar to remove rules with scope
greater than three. The next section describes the
parsing algorithm that is used for scope-3 grammars.
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3 Scope-3 Parsing in Moses

Hopkins and Langmead (2010) show that a sentence
of lengthn can be parsed using a scope-k grammar
in O(nk) chart updates. In this section, we describe
some details of Moses’ implementation of their chart
parsing method.

3.1 The Grammar Trie

The grammar is stored in a trie-based data structure.
Each edge is labelled with either a symbol from the
source terminal vocabulary or a generic gap sym-
bol, and the trie is constructed such that for any path
originating at the root vertex, the sequence of edge
labels represents the prefix of a rule’s source right-
hand-side (RHSs, also referred to as a rule pattern).
Wherever a path corresponds to a complete RHSs,
the vertex stores an associative array holding the set
of grammar rules that share that RHSs. The asso-
ciative array maps a rule’s sequence of target non-
terminal symbols to the subset of grammar rules that
share those symbols.

Figure 2 shows a sample of the grammar rules that
can be extracted from the example alignment graph
of Figure 1, and Figure 3 shows the corresponding
grammar trie.

3.2 Initialization

The first step is to construct a secondary trie that
records all possible applications of rule patterns
from the grammar to the sentence under consider-
ation. This trie is built during a single depth-first
traversal of the grammar trie in which the terminal
edge labels are searched for in the input sentence. If
a matching input word is found then the secondary
trie is extended by one vertex for each sentence posi-
tion at which the word occurs and trie traversal con-
tinues along that path. A search for a gap label al-
ways results in a match. Edges in the secondary trie
are labelled with the matching symbol and the posi-
tion of the word in the input sentence (or a null po-
sition for gap labels). Each vertex in the secondary
trie stores a pointer to the corresponding grammar
trie vertex.

Once the secondary trie has been built, it is easy
to determine the set of subspans to which each rule
pattern applies. A set of pairs is recorded against
each subspan, each pair holding a pointer to a gram-

mar trie vertex and a record of the sentence positions
covered by the symbols (which will be ambiguous if
the pattern contains a sequence ofk > 1 adjacent
gap symbols covering more thank sentence posi-
tions).

After this initialization step, the secondary trie is
discarded.

3.3 Subspan Processing

The parsing algorithm proceeds by processing chart
cells in order of increasing span width (i.e. bottom-
up). At each cell, astack lattice is constructed for
each rule pattern that was found during initialization.
The stack lattice compactly represents all possible
applications of that pattern over the span, together
with pointers to the underlying hypothesis stacks for
every gap. A full path through the lattice corre-
sponds to a single application context. By selecting
a derivation class (i.e. target-side non-terminal la-
bel) at each arc, the path can be bound to a set of
grammar rules that differ only in the choice of target
words or LHS label.

Recall that for every rule pattern found during
initialization, the corresponding grammar trie ver-
tex was recorded and that the vertex holds an as-
sociative array in which the keys are sequences of
target-side non-terminal labels and the mapped val-
ues are grammar rules (together with associated fea-
ture model scores). The algorithm now loops over
the associated array’s key sequences, searching the
lattice for matching paths. Where found, the gram-
mar rule is bound with a sequence of underlying
stack pointers. The cell’s stacks are then populated
by applying cube pruning (Chiang, 2007) to the set
of bound grammar rules.

4 Experiments

This section describes the GHKM-based English-
German system submitted by the University of Ed-
inburgh. Subsequent to submission, a further set of
comparative experiments were run using a hierarchi-
cal phrase-based system and a hierarchical system
with target side syntactic annotation.

4.1 Data

We made use of all available English-German Eu-
ropean and News Commentary data. For the hi-
erarchical phrase-based experiments, this totalled
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1. NP-PD→ the case of Alexander Nikitin | der Fall von Alexander Nikitin
2. NP-PD→ the case X1 | der Fall PP-MNR1

3. NP-PD→ X1 case X2 | ART1 Fall PP-MNR2

4. PP-MNR → of X1 | von PN-NK1

5. PP-MNR → of X1 X2 | von NE1 NE2

Figure 2: A sample of the rules extractable from the alignment graph in Figure 1. Rules are written in the form
LHS → RHSs | RHSt .

Nikitin

Alexander

of ✸

case

✸

✸

✸

case

the of ✸

Figure 3: Example grammar trie. The filled vertices hold
associative array values.

2,043,914 sentence pairs. For the target syntax ex-
periments, the German-side of the parallel corpus
was parsed using the BitPar2 parser. If a parse
failed then the sentence pair was discarded, leav-
ing a total of 2,028,556 pairs. The parallel corpus
was then word-aligned using MGIZA++ (Gao and
Vogel, 2008), a multi-threaded implementation of
GIZA++ (Och and Ney, 2003).

We used all available monolingual German data
to train seven 5-gram language models (one each
for Europarl, News Commentary, and the five News
data sets). These were interpolated using weights
optimised against the development set and the re-
sulting language model was used in experiments.
We used the SRILM toolkit (Stolcke, 2002) with
Kneser-Ney smoothing (Chen and Goodman, 1998).

The baseline system’s feature weights were tuned
on thenews-test2008 dev set (2,051 sentence pairs)
using Moses’ implementation of minimum error rate
training (Och, 2003).

2http://www.ims.uni-stuttgart.de/tcl/
SOFTWARE/BitPar.html

4.2 Rule Extraction

For the hierarchical phrase-based model we used
the default Moses rule extraction settings, which
are taken from Chiang (2007). For target-annotated
models, the syntactic constraints imposed by the
parse trees reduce the grammar size significantly.
This allows us to relax the rule extraction settings,
which we have previously found to benefit transla-
tion quality, without producing an unusably large
grammar. We use identical settings to those used in
WMT’s 2010 translation task (Koehn et al., 2010).
Specifically, we relax the hierarchical phrase-based
extraction settings in the following ways:

• Up to seven source-side symbols are allowed.

• Consecutive source non-terminals are permit-
ted.

• Single-word lexical phrases are allowed for hi-
erarchical subphrase subtraction.

• Initial phrases are limited to 15 source words
(instead of 10).

By using the scope-3 parser we can also relax the
restriction on grammar rank. For comparison, we
extract two target-annotated grammars, one with a
maximum rank of two, and one with an unlimited
rank but subject to scope-3 pruning.

GHKM rule extraction uses the default settings3

as described in section 2.
Table 1 shows the sizes of the extracted grammars

after filtering for thenewstest2011 test set. Fil-
tering removes any rule in which the source right-
hand-side contains a sequence of terminals and gaps
that does not appear in any test set sentence.

3GHKM rule extraction is now fully integrated into Moses’
Experiment Management System (EMS) and can be enabled for
string-to-tree pipelines using theTRAINING:use-ghkm pa-
rameter.
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Experiment Grammar Size
Hierarchical 118,649,771
Target Syntax 12,748,259
Target Syntax (scope-3) 40,661,639
GHKM 27,002,733

Table 1: Grammar sizes (distinct rule counts) after filter-
ing for thenewstest-2011 test set

4.3 Features

Our feature functions include then-gram language
model probability of the derivation’s target yield, its
word count, and various scores for the synchronous
derivation. We score grammar rules according to the
following functions:

• p(RHSs|RHSt,LHS), the noisy-channel trans-
lation probability.

• p(LHS,RHSt|RHSs), the direct translation
probability.

• plex (RHSt|RHSs) andplex (RHSs|RHSt), the
direct and indirect lexical weights (Koehn et al.,
2003).

• ppcfg(FRAGt), the monolingual PCFG proba-
bility of the tree fragment from which the rule
was extracted (GHKM and target-annotated
systems only). This is defined as

∏
n

i=1
p(ri),

wherer1 . . . rn are the constituent CFG rules
of the fragment. The PCFG parameters are es-
timated from the parse of the target-side train-
ing data. All lexical CFG rules are given the
probability 1. This is similar to thepcfg feature
used in Marcu et al. (2006) and is intended to
encourage the production of syntactically well-
formed derivations.

• exp(−1/count(r)), a rule rareness penalty.

• exp(1), a rule penalty. The main grammar and
glue grammars have distinct penalty features.

4.4 Decoder Settings

For the submitted GHKM system we used a max-
imum chart span setting of 25. For the other sys-
tems we used settings that matched the rule extrac-
tion spans: 10 for hierarchical phrase-based, 15 for
target syntax, and unlimited for GHKM.

We used the scope-3 parsing algorithm (enabled
using the option-parsing-algorithm 1) for
all systems except the hierarchical system, which
used the CYK+ algorithm (Chappelier and Rajman,
1998).

For all systems we set thettable-limit pa-
rameter to 50 (increased from the default value of
20). This setting controls the level of grammar prun-
ing that is performed after loading: only the top scor-
ing translations are retained for a given source RHS.

4.5 Results

Following the recommendation of
Clark et al. (2011), we ran the optimization
three times and repeated evaluation with each set
of feature weights. Table 2 presents the averaged
single-reference BLEU scores. To give a rough
indication of how much use the systems make of
syntactic information for reordering, we also report
glue rule statistics taken from the 1-best derivations.

There is a huge variation in decoding time be-
tween the systems, much of which can be at-
tributed to the differing chart span limits. To give
a comparison of system performance we selected an
80-sentence subset ofnewstest2011, randomly
choosing ten sentences of length 1-10, ten of length
11-20, and so on. We decoded the test set four times
for each system, discarding the first set of results (to
allow for filesystem cache priming) and then aver-
aging the remaining three. Table 3 shows the total
decoding times for each system and the peak virtual
memory usage4. Figure 4 shows a plot of sentence
length against decoding time for the two GHKM
systems.

5 Conclusion

We developed a GHKM-based string-to-tree system
for English to German, achieving competitive results
compared to a hierarchical model baseline. We ex-
tended the Moses toolkit to include a GHKM rule
extractor and scope-3 parsing algorithm and pro-
vided details of our implementation. We intend to
further improve this system in future work.

4The server has 142GB physical memory. The decoder was
run single-threaded in performance tests. For the hierarchical
system we used an on-disk rule table, which reduces memory
requirements at the cost of increased rule lookup time. For all
other systems we used in-memory rule tables.
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newstest2009 newstest2010 newstest2011 Glue Rule Apps
Experiment BLEU s.d. BLEU s.d. BLEU s.d. Mean s.d.
GHKM (max span 25) 15.2 0.1 16.7 0.1 15.4 0.1 3.1 0.3
Hierarchical 15.2 0.0 16.4 0.1 15.5 0.0 13.9 0.5
Target 14.6 0.1 16.0 0.1 14.9 0.1 8.4 5.0
Target (scope-3) 14.7 0.0 16.4 0.2 15.0 0.0 9.7 1.2
GHKM (no span limit) 15.0 0.3 16.6 0.1 15.2 0.2 1.9 1.3

Table 2: Average BLEU scores and standard deviations over three optimization runs. GHKM (max span 25) is the
submitted system. Also shown is the average number of rule applications per sentence for the 1-best output of the
three test sets, averaged over the three optimization runs.

System Max Time (s) VM (MB)
span

Hierarchical 10 122 5,345
Target 15 367 8,688
Target (scope-3) 15 1,539 19,761
GHKM 25 3,529 17,424
GHKM None 11,196 18,060

Table 3: Total decoding time and peak virtual memory
usage for the 80-sentence subset ofnewstest2011.
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Abstract

We describe our experiments with phrase-
based machine translation for the WMT
2012 Shared Task. We trained one sys-
tem for 14 translation directions between
English or Czech on one side and English,
Czech, German, Spanish or French on the
other side. We describe a set of results
with different training data sizes and sub-
sets.

1 Introduction
With so many official languages, Europe is a
paradise for machine translation research. One
of the largest bodies of electronically available
parallel texts is being nowadays generated by
the European Union and its institutions. At the
same time, the EU also provides motivation and
boosts potential market for machine translation
outcomes.

Most of the major European languages belong
to one of three branches of the Indo-European
language family: Germanic, Romance or Slavic.
Such relatedness is responsible for many struc-
tural similarities in European languages, al-
though significant differences still exist. Within
the language portfolio selected for the WMT
shared task, English, French and Spanish seem
to be closer to each other than to the rest.

German, despite being genetically related to
English, differs in many properties. Its word or-
der rules, shifting verbs from one end of the sen-
tence to the other, easily create long-distance de-
pendencies. Long German compound words are

notorious for increasing out-of-vocabulary rate,
which has led many researchers to devising unsu-
pervised compound-splitting techniques. Also,
uppercase/lowercase distinction is more impor-
tant because all German nouns start with an
uppercase letter by the rule.

Czech is a language with rich morphology
(both inflectional and derivational) and rela-
tively free word order. In fact, the predicate-
argument structure, often encoded by fixed word
order in English, is usually captured by inflec-
tion (especially the system of 7 grammatical
cases) in Czech. While the free word order of
Czech is a problem when translating to English
(the text should be parsed first in order to de-
termine the syntactic functions and the English
word order), generating correct inflectional af-
fixes is indeed a challenge for English-to-Czech
systems. Furthermore, the multitude of possible
Czech word forms (at least order of magnitude
higher than in English) makes the data sparse-
ness problem really severe, hindering both direc-
tions.

Our goal is to run one system under as similar
conditions as possible to all fourteen translation
directions, to compare their translation accura-
cies and see why some directions are easier than
others. Future work will benefit from knowing
what are the special processing needs for a given
language pair. The current version of the system
does not include really language-specific tech-
niques: we neither split German compounds,
nor do we address the peculiarities of Czech
mentioned above.
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2 The Translation System

Our translation system is built around Moses1

(Koehn et al., 2007). Two-way word align-
ment was computed using GIZA++2 (Och and
Ney, 2003), and alignment symmetrization us-
ing the grow-diag-final-and heuristic (Koehn et
al., 2003). Weights of the system were optimized
using MERT (Och, 2003). No lexical reordering
model was trained.

For language modeling we use the SRILM
toolkit3 (Stolcke, 2002) with modified Kneser-
Ney smoothing (Kneser and Ney, 1995; Chen
and Goodman, 1998).

3 Data and Pre-processing Pipeline

We applied our system to all the eight offi-
cial language pairs. In addition, we also ex-
perimented with translation between Czech on
one side and German, Spanish or French on
the other side. Training data for these addi-
tional language pairs were obtained by combin-
ing parallel corpora of the officially supported
pairs. For instance, to create the Czech-German
parallel corpus, we identified the intersection of
the English sides of Czech-English and English-
German corpora, respectively; then we com-
bined the corresponding Czech and German sen-
tences.

We took part in the constrained task. Un-
less explicitly stated otherwise, the translation
model in our experiments was trained on the
combined News-Commentary v7 and Europarl
v7 corpora.4 Table 1 shows the sizes of the train-
ing data.

The News Test 2010 data set5 (2489 sentences
in each language) was used as development data
for MERT. BLEU scores reported in this paper
were computed on the News Test 2012 set (3003
sentences each language). We do not use the
News Tests 2008, 2009 and 2011.

1http://www.statmt.org/moses/
2http://code.google.com/p/giza-pp/
3http://www-speech.sri.com/projects/srilm/
4http://www.statmt.org/wmt12/

translation-task.html\#download
5http://www.statmt.org/wmt12/

translation-task.html

Corpus SentPairs Tokens lng1 Tokens lng2
cs-en 782,756 17,997,673 20,964,639
de-en 2,079,049 55,143,719 57,741,141
es-en 2,123,036 61,784,972 59,217,471
fr-en 2,144,820 69,568,241 59,939,548
de-cs 652,193 17,422,620 15,383,601
es-cs 692,118 20,189,811 16,324,910
fr-cs 686,300 22,220,780 16,190,365

Table 1: Number of sentence pairs and tokens for
every language pair in the parallel training corpus.
Languages are identified by their ISO 639 codes: cs
= Czech, de = German, en = English, es = Spanish,
fr = French. Every line corresponds to the respective
version of EuroParl + News Commentary.

All parallel and monolingual corpora un-
derwent the same preprocessing. They were
tokenized and some characters normalized or
cleaned. A set of language-dependent heuris-
tics was applied in an attempt to restore and
normalize the directed (opening/closing) quota-
tion marks (i.e. "quoted" → “quoted”). The
motivation is twofold here: First, we hope that
paired quotation marks could occasionally work
as brackets and better denote parallel phrases
for Moses; second, if Moses learns to output di-
rected quotation marks, subsequent detokeniza-
tion will be easier.

The data are then tagged and lemmatized.
We used the Morče tagger for Czech and En-
glish lemmatization and TreeTagger for Ger-
man, Spanish and French lemmatization. All
these tools are embedded in the Treex analysis
framework (Žabokrtský et al., 2008).

The lemmas are used later to compute word
alignment. Besides, they are needed to apply
“supervised truecasing” to the data: we cast
the case of the lemma to the form, relying on
our morphological analyzers and taggers to iden-
tify proper names, all other words are lower-
cased. Note that guessing of the true case is
only needed for the sentence-initial token. Other
words can typically be left in their original form,
unless they are uppercased as a form of HIGH-
LIGHTING.
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3.1 Quotation Marks

A broad range of characters is used to represent
quotation marks in the training data: straight
ASCII quotation mark; Unicode directed quo-
tation marks (U+2018 to U+201F); acute and
grave accents; math symbols such as prime and
double prime (U+2032 to U+2037) etc. Spaces
around quotes in the original untokenized text
ought to provide hints as to the direction of the
quotes (no space between the opening quote and
the next word, and no space between the clos-
ing quote and the previous word) but unfortu-
nately there are numerous cases where superflu-
ous spaces are inserted or required spaces are
missing.

Nested quoting is also possible, such as in
As the Wise Men ’ s Report also says , and

I quote : ’ It is elementary ’ common sense ’
that the Commission should have supported the
Parliament ’ s decision - making process . ’

We want all possible quotation marks con-
verted to one pair of characters. We do not mind
the distinction between single and double quotes
but we want to keep (or restore) the distinction
between opening and closing quotes. In addi-
tion, we want to identify the apostrophe acting
as grapheme in some languages, and keep it (or
normalize it, as it could also be mis-typed as
acute accent or something else):

As the Wise Men ’ s Report also says , and
I quote : “ It is elementary “ common sense ”
that the Commission should have supported the
Parliament ’ s decision - making process . ”

We attempt at solving the problem by a set
of rules that consider mutual positions of quota-
tion marks, spaces and other punctuation, and
also some language-dependent rules (especially
on the lexical apostrophe, e.g. in French d’, l’).

Our rules applied to 1.84 % of Spanish sen-
tences, 2.47 % Czech, 2.77 % German, 4.33 %
English and 16.9 % French (measured on Eu-
roparl data).

Our approach is different from the normaliza-
tion script provided and applied by the organiz-
ers of the shared task, which merely converts all
quotes to the undirected ASCII characters. We
believe that such MT output is incorrect, so we

submitted two versions of each system run: the
primary version is intended for human evalua-
tion and does not apply the “official” normaliza-
tion of punctuation. In contrast, the secondary
version is normalized, which naturally leads to
higher scores in the automatic evaluation.

4 Experiments

In the following section we describe several dif-
ferent settings and corpora combinations we ex-
perimented with. BLEU scores have been com-
puted by our system, comparing truecased tok-
enized hypothesis with truecased tokenized ref-
erence translation.

Such scores must differ from the official evalu-
ation—see Section 4.4 for discussion of the final
results.

The confidence interval for most of the scores
lies between ±0.5 and ±0.6 BLEU % points.

4.1 Baseline Experiments
The set of baseline experiments were trained on
the supervised truecased combination of News
Commentary and Europarl. As we had lem-
matizers for the languages, word alignment was
computed on lemmas. (But our previous ex-
periments showed that there was little differ-
ence between using lemmas and lowercased 4-
character “stems”.) A hexagram language model
was trained on the monolingual version of the
News Commentary + Europarl corpus (typically
a slightly larger superset of the target side of the
parallel corpus).

4.2 Larger Monolingual Data
Besides the monolingual halves of the parallel
corpora, additional monolingual data were pro-
vided / permitted:

• The Crawled News corpus from the years
2007 to 2011, various sizes for each language
and year.

• The Gigaword corpora published by the
Linguistic Data Consortium, available only
for English (4th edition), Spanish (3rd) and
French (3rd).
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Due to bugs in the lemmatizers, we were not
able to process certain parts of the large corpora
in time. Table 2 gives the sizes of the subsets
available for our experiments and Table 3 com-
pares BLEU scores with large language models
against the baseline.

Corpus Segments Tokens
newsc+euro.cs 819,434 18,491,692
newsc+euro.de 2,360,811 58,683,607
newsc+euro.en 2,430,718 65,934,441
newsc+euro.es 2,307,429 66,072,443
newsc+euro.fr 2,361,764 74,083,166
news.all.cs 14,552,899 244,728,011
news.all.de 24,446,319 462,924,303
news.all.en 42,161,804 1,039,806,242
news.all.es 8,627,438 249,022,213
news.all.fr 16,708,622 438,489,352
gigaword.en 70,592,779 2,546,581,646
gigaword.es 31,304,148 1,064,660,498
gigaword.fr 21,674,453 963,571,174

Table 2: Number of segments (paragraphs in Giga-
word, sentences elsewhere) and tokens of additional
monolingual training corpora. “newsc+euro” are the
monolingual versions of the News Commentary and
Europarl parallel corpora. “news.all” denotes all
years of the Crawled News corpus for the given lan-
guage.

The Crawled News corpora, in-domain and
larger than the parallel corpora by an order of
magnitude, turned out to help significantly im-
prove the scores of all language pairs. On the
other hand, and to our surprise, we were not
able to achieve any further improvement by us-
ing the Gigaword corpora. Taking into account
the extra requirements on memory when build-
ing such big language models, this makes the
usefulness of Gigaword questionable. We have
no plausible explanation at the moment.

4.3 Larger Parallel Data
Even stranger behavior was observed when
adding the large UN parallel corpus (over 10
million sentence pairs). When used separately
(even for language model) it decreased BLEU
significantly, which could be explained by dif-
ferent domain. When used together with News

Direction Baseline news.all gigaword
en-cs 0.1196 0.1434
en-de 0.1426 0.1629
en-es 0.2778 0.3136 0.3136
en-fr 0.2599 0.2897 0.2874
cs-en 0.1796 0.2031 0.2013
de-en 0.1877 0.2136 0.2144
es-en 0.2219 0.2428 0.2390
fr-en 0.2459 0.2764 0.2756
cs-de 0.1365 0.1550
cs-es 0.1952 0.2211 0.2184
cs-fr 0.1953 0.2167 0.2147
de-cs 0.1212 0.1400
es-cs 0.1281 0.1489
fr-cs 0.1253 0.1442

Table 3: BLEU scores of the baseline experiments
(left column) on News Test 2012 data, computed by
the system on tokenized data, versus similar setup
with large monolingual corpus (news.all, middle col-
umn). Gigaword never brought significant improve-
ment.

Commentary and Europarl, and with a language
model trained on the Crawled News corpus, it
barely outperformed the same setting without
the UN corpus.6 However, the es-en direction is
a notable exception where the UN corpus alone
gave by far the best score. See Table 4 for de-
tails.

We failed to lemmatize the giga French-
English corpus in time, so we do not present
any results with that corpus.

4.4 Final Results
Table 5 compares our BLEU scores with those
computed at matrix.statmt.org.

BLEU (without flag) denotes BLEU score
computed by our system, comparing truecased
tokenized hypothesis with truecased tokenized
reference translation.

The official evaluation by matrix.statmt.
org gives typically lower numbers, reflecting the
loss caused by detokenization and new (differ-
ent) tokenization.

6One of the anonymous reviewers mentioned that the
quality of the UN corpus is relatively low. That could
explain our observations.
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Direction Parallel Mono BLEU

en-es news-euro-un news.all 0.3194
en-es news-euro news.all 0.3136
en-es un un 0.2694
en-fr news-euro news.all 0.2897
en-fr un un 0.2541
es-en un un 0.2688
es-en news-euro news.all 0.2428
fr-en news-euro news.all 0.2764
fr-en un un 0.2392

Table 4: BLEU scores with different parallel corpora.

4.5 Efficiency
The baseline experiments were conducted
mostly on 64bit AMD Opteron quad-core
2.8 GHz CPUs with 32 GB RAM (decoding
run on 15 machines in parallel) and the whole
pipeline typically required between a half and a
whole day.

However, we used machines with up to 500 GB
RAM to train the large language models and
translation models. Aligning the UN corpora
with Giza++ took around 5 days.

5 Conclusion
We have described the Moses-based SMT system
we used for the WMT 2012 shared task. We
discussed experiments with large data for many
language pairs from the point of view of both
the translation accuracy and efficiency. We were
unable to process all data that was available;
even the experiments where we did use larger
data did not outperform the smaller experiments
significantly. Nevertheless, using the Crawled
News monolingual corpus proved essential.
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Abstract

Recent work has established the efficacy of
Amazon’s Mechanical Turk for constructing
parallel corpora for machine translation re-
search. We apply this to building a collec-
tion of parallel corpora between English and
six languages from the Indian subcontinent:
Bengali, Hindi, Malayalam, Tamil, Telugu,
and Urdu. These languages are low-resource,
under-studied, and exhibit linguistic phenom-
ena that are difficult for machine translation.
We conduct a variety of baseline experiments
and analysis, and release the data to the com-
munity.

1 Introduction

The quality of statistical machine translation (MT)
systems is strongly related to the amount of paral-
lel text available for the language pairs. However,
most language pairs have little or no readily available
bilingual training data available. As a result, most
contemporary MT research tends to opportunisti-
cally focus on language pairs with large amounts of
parallel data.
A consequence of this bias is that language ex-

hibiting certain linguistic phenomena are underrep-
resented, including languages with complex mor-
phology and languages with divergent word order-
ings. In this paper, we describe our work gather-
ing and refining document-level parallel corpora be-
tween English and each of six verb-final languages
spoken on the Indian subcontinent: Bengali, Hindi,
Malayalam, Tamil, Telugu, and Urdu. This paper’s
contributions are as follows:

• We apply an established protocol for using
Amazon’s Mechanical Turk (MTurk) to collect
parallel data to train and evaluate translation
systems for six Indian languages.

• We investigate the relative performance of syn-
tactic translation models over hierarchical ones,
showing that syntax results in higher BLEU
scores in most cases.

• We explore the impact of training data quality
on the quality of the resulting model.

• We release the corpora to the research commu-
nity under the Creative Commons Attribution-
Sharealike 3.0 Unported License (CC BY-SA
3.0).1

2 Why Indian languages?

Indian languages are important objects of study for
a number of reasons. These languages are low-
resource languages in terms of the availability of
MT systems2 (and NLP tools in general) yet together
they represent nearly half a billion native speakers
(Table 1). Their speakers are well-educated, with
many of them speaking English either natively or as a
second language. Together with the degree of Inter-
net penetration in India, it is reasonably straightfor-
ward to find and hire non-expert translators through
crowdsourcing services like Amazon’s Mechanical
Turk.

1joshua-decoder.org/indian-parallel-corpora
2See sampark.iiit.ac.in/sampark/web/index.php/

content for a notable growing effort.
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ெனட்டர் அவளை கருத்துக்கள் தயார்
senator her remarks prepared

Figure 1: An example of SOV word ordering in Tamil.
Translation: The senator prepared her remarks.

হাত কি ল আম
walk CONT PAST 1p

Figure 2: An example of the morphology of the Bengali
word হাত্সিলাম, meaning [I] was walking. CONT denotes
the continuous aspect, while PAST denotes past tense.

In addition to a general desire to collect suitable
training corpora for low-resource languages, Indian
languages demonstrate a variety of linguistic phe-
nomena that are divergent from English and under-
studied. One example is head-finalness, exhibited
most obviously in a subject-object-verb (SOV) pat-
tern of sentence structure, in contrast to the gen-
eral SVO ordering of English sentences. One of
the motivations underlying linguistically-motivated
syntactic translation systems like GHKM (Galley et
al., 2004; Galley et al., 2006) or SAMT (Zollmann
and Venugopal, 2006) is to describe such transfor-
mations. This difference in word order has the po-
tential to serve as a better test bed for syntax-based
MT3 compared to translating between English and
European languages, most of which largely share its
word order. Figure 1 contains an example of SOV
reordering in Tamil.

A second important phenomenon present in these
languages is a high degree of morphological com-
plexity relative to English (Figure 2). Indian lan-
guages can be highly agglutinative, which means
that words are formed by concatenating morpholog-
ical affixes that convey information such as tense,
person, number, gender, mood, and voice. Mor-
phological complexity is a considerable hindrance at
all stages of the MT pipeline, but particularly align-
ment, where inflectional variations mask patterns
from alignment tools that treat words as atoms.

3Weuse hierarchical to denote translation grammars that use
only a single nonterminal (Chiang, 2007), in contrast to syntac-
tic systems, which make use of linguistic annotations (Zollmann
and Venugopal, 2006; Galley et al., 2006).

language script family L1
Bengali বাংলা Indo-Aryan 181M
Hindi मानक हिन्दी Indo-Aryan 180M
Malayalam മലയാളം Dravidian 35M
Tamil தமிழ் Dravidian 65M
Telugu తెలుగు Dravidian 69M
Urdu اردو Indo-Aryan 60M

Table 1: Languages. L1 is the worldwide number of na-
tive speakers according to Lewis (2009).

3 Data collection

The source of the documents for our translation task
for each of the languages in Table 1 was the set of
the top-100 most-viewed documents from each lan-
guage’s Wikipedia. These lists were obtained us-
ing page view statistics compiled from dammit.lt/
wikistats over a one year period. We did not apply
any filtering for topic or content. Table 2 contains
a manually categorized list of documents for Hindi,
with some minimal annotations indicating how the
documents relate to those in the other languages.
These documents constitute a diverse set of topics,
including culture, the internet, and sex.
We collected the parallel corpora using a three-

step process designed to ensure the integrity of the
non-professional translations. The first step was to
build a bilingual dictionary (§3.1). These dictionar-
ies were used to bootstrap the experimental controls
in the collection of four translations of each source
sentence (§3.2). Finally, as a measure of data qual-
ity, we independently collect votes on the which of
the four redundant translations is the best (§3.3).

3.1 Dictionaries

A key component of managing MTurk workers is to
ensure that they are competently and conscientiously
undertaking the tasks. As non-speakers of all of the
Indian languages, we had no simple and scalable way
to judge the quality of the workers’ translations. Our
solutionwas to bootstrap the process by first building
bilingual dictionaries for each of the datasets. The
dictionaries were then used to produce glosses of the
complete source sentences, which we compared to
the translations produced by the workers as a rough
means of manually gauging trust (§3.2).
The dictionaries were built in a separate MTurk
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PLACES PEOPLE PEOPLE TECHNOLOGY LANGUAGE AND RELIGION
Agra A. P. J. Abdul Kalam Premchand Blog CULTURE Bhagavad Gita
Bihar Aishwarya Rai Rabindranath Tagore Google Ayurveda Diwali
China Akbar Rani Lakshmibai Hindi Web Resources Constitution of India Hanuman
Delhi Amitabh Bachchan Sachin Tendulkar Internet Cricket Hinduism
Himalayas Barack Obama Sarojini Naidu Mobile phone English language Hinduism
India Bhagat Singh Subhas Chandra Bose News aggregator Hindi Cable News Holi
Mumbai Dainik Jagran Surdas RSS Hindi literature Islam
Nepal Gautama Buddha Swami Vivekananda Wikipedia Hindi-Urdu grammar Mahabharata
Pakistan Harivansh Rai Bachchan Tulsidas YouTube Horoscope Puranas
Rajasthan Indira Gandhi Indian cuisine Quran
Red Fort Jaishankar Prasad THINGS SEX Sanskrit Ramayana
Taj Mahal Jawaharlal Nehru Air pollution Anal sex Standard Hindi Shiva
United States Kabir Earth Kama Sutra Shiva
Uttar Pradesh Kalpana Chawla Essay Masturbation EVENTS Taj Majal: Shiva Temple?

Mahadevi Varma Ganges Penis History of India Vedas
Meera General knowledge Sex positions World War II Vishnu
Mohammed Rafi Global warming Sexual intercourse
Mohandas Karamchand Gandhi Pollution Vagina
Mother Teresa Solar energy
Navbharat Times Terrorism

Table 2: The 100 most viewed Hindi Wikipedia articles (titles translated to English using inter-language links and
Google translate and manually categorized). Entries in bold were present in the top 100 lists of at least four of the
Indian top 100 lists. Earth, India,World War II, and Wikipedia were in the top 100 lists of all six languages.

language entries translations
Bengali 4,075 6,011
Hindi - -
Malayalam 41,502 144,505
Tamil 11,592 69,128
Telugu 12,193 38,532
Urdu 26,363 113,911

Table 3: Dictionary statistics. Entries is the number of
source-language types, while translations lists the num-
ber of words or phrases they translated to (i.e., the num-
ber of pairs in the dictionary). Controls for Hindi were
obtained using Google translate, the only one of these lan-
guages that were available at the outset of this project.

task, in which workers were asked to translate sin-
gle words and short phrases from the complete set of
Wikipedia documents. For each word, MTurk work-
ers were presented with three sentences containing
that word, which provided context. The control for
this task was obtained from the Wikipedia article ti-
tles which are linked across languages, and can thus
be assumed to be translations of each other. Workers
who performed too poorly on these known transla-
tions had their work rejected.

Table 3 lists the size of the dictionaries we con-
structed.

3.2 Translations

With the dictionaries in hand, we moved on to trans-
late the entireWikipedia documents. Each human in-
telligence task (HIT) posted onMTurk contained ten
sequential source-language sentences from a doc-
ument, and asked the worker to enter a free-form
translation for each. We collected four translations
from different translators for each source sentence.
To discourage cheating through cutting-and-pasting
into automatic translation systems, sentences were
presented as images. Workers were paid $0.70 per
HIT. We then manually determined whether to ac-
cept or reject a worker’s HITs based on a review of
each worker’s submissions, which included a com-
parison of the translations to a monotonic gloss (pro-
duced with the dictionary), the percentage of empty
translations, the amount of time the worker took to
complete the HIT, geographic location (self-reported
and geolocated by way of the worker’s IP address),
and by comparing different translations of the same
source segments against one another.
We obtained translations of the source-language

documents in a relatively short amount of time. Fig-
ure 3 depicts the number of translations collected as
a function of the amount of time from the posting of
the task. Malayalam provided the highest through-
put, generating half a million words in just under a
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Figure 3: The total volume of translations (measured in
English words) as a function of elapsed days. For Malay-
alam, we collected half a million words of translations in
just under a week.

week. For comparison, the Europarl corpus (Koehn,
2005) has about 50million words of English for each
of the Spanish and French parallel corpora.
As has been previously reported (Zbib et al.,

2012), cost is another advantage of building train-
ing data on Mechanical Turk. Germann (2001) puts
the cost of professionally translated English at about
$0.30 perword for translation fromTamil. Our trans-
lations were obtained for less than $0.01 per word.
The rate of collection could likely be increased by
raising these payments, but it is unclear whether
quality would be affected by raising the base pay
(although it could be improved by paying for sub-
sequent quality control HITs, like editing).
The tradeoff for low-cost translations is increased

variance in translation quality when compared to the
more consistently-good professional translations.
Figure 4 contains some hand-picked examples of the
sorts of translations we obtained. Later, in the Exper-
iments section (§4), we will investigate the effects
this variance in translation quality has on the qual-
ity of the models that can be constructed. For now,
the variancemotivated the collection of an additional
dataset, described in the next section.

3.3 Votes

A prevailing issue with translations collected on
MTurk is the prevalence of low-quality translations.
Quality suffers for a variety of reasons: Turkers

lack formal training, often translate into a nonna-
tive tongue, may give insufficient attention to the
task, and likely desire to maximize their throughput
(and thus their wage). Unlike Zaidan and Callison-
Burch (2011), who embed controls containing source
language sentences with known professional trans-
lations, we had no professionally translated data.
Therefore, we could not measure the BLEU score of
the Turkers.

Motivated by desire to have some measure of the
relative quality and variance of the translations, we
designed another task in which we presented an in-
dependent set of Turkers with an original sentence
and its four translations, and asked them to vote on
which was best.4 Five independent workers voted
on the translations of each source sentence. Tallying
the resulting votes, we found that roughly 65% of
the sentences had five votes cast on just one or two
of the translations, and about 95% of the sentences
had all the votes cast on one, two, or three sentences.
This suggests both (1) that there was a difference in
the quality of the translations, and (2) the voters were
able to discern these differences, and took their task
seriously enough to report them.

3.4 Data sets

For each parallel corpus, we created a standardized
test set in the following manner. We first manu-
ally assigned each of the Wikipedia documents for
each language into one of the following nine cate-
gories: EVENTS, LANGUAGE AND CULTURE,
PEOPLE, PLACES, RELIGION, SEX, TECHNOL-
OGY, THINGS, or MISC. We then assigned doc-
uments to training, development, development test,
and test sets in round-robin fashion using a ratio of
roughly 7:1:1:1. For training data, each source sen-
tence was repeated four times in order to allow it
to be paired with each of its translations. For the
development and test sets, the multiple translations
served as alternate references. Table 4 lists sentence-
and word-level statistics for the datasets for each lan-
guage pair (these counts are prior to any tokeniza-
tion).

4We did not collect votes for Malayalam.
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மார்ச் 15,2007இல் ஆக்ஸ்ஃபோர்டு ஆங்கில அகராதி யில் விக்கி இடம்பெற்றது.
In March 15,2007 Wiki got a place in Oxford English dictionary.
On March 15, 2007 wiki was included in the Oxford English dictionary. (5)
ON MARCH 15, 2007, WIKI FOUND A PLACE IN THE OXFORD ENGLISH DICTIONARY
March 15, 2007 oxford english index of wiki’s place.

Figure 4: An example of the variance in translation quality for the human translations of a Tamil sentence; the format-
ting of the translations has been preserved exactly. The parenthesized number indicates the number of votes received
in the voting task (§3.3).

language dict train dev devtest test
Bengali 16k 539k 63k 61k 69k

6k 20k 914 907 1k
Hindi 0 1,249k 67k 98k 74k

0 37k 1k 993 1k
Malayalam 410k 664k 61k 68k 70k

144k 29k 1k 1k 1k
Tamil 189k 747k 62k 53k 54k

69k 35k 1k 1k 1k
Telugu 106k 951k 52k 45k 49k

38k 43k 1k 916 1k
Urdu 253k 1,198k 67k 49k 42k

113k 33k 736 777 605

Table 4: Data set sizes for each language pair: words in
the first row, parallel sentences in the second. (The dictio-
naries contains short phrases in addition to words, which
accounts for the difference in dictionary word and line
counts.)

4 Experiments

In this section, we present experiments on the col-
lected data sets in order to quantify their perfor-
mance. The experiments aim to address the follow-
ing questions:

1. How well can we translate the test sets?

2. Do linguistically motivated translation models
improve translation results?

3. What is the effect of data quality onmodel qual-
ity?

4.1 Setup
A principal point of comparison in this paper is be-
tween Hiero grammars (Chiang, 2007) and SAMT
grammars (Zollmann and Venugopal, 2006), the lat-
ter of which make use of linguistic annotations to

improve nonterminal reordering. These grammars
were trained with the Thrax grammar extractor us-
ing its default settings, and translated using Joshua
(Weese et al., 2011). We tuned with minimum error-
rate training (Och, 2003) using Z-MERT (Zaidan,
2009) and present the mean BLEU score on test
data over three separate runs (Clark et al., 2011).
MBR reranking (Kumar and Byrne, 2004) was ap-
plied to Joshua’s 300-best (unique) output, and eval-
uation was conducted with case-insensitive BLEU
with four references.
The training data was produced by pairing a

source sentence with each of its four translations.
We also added the dictionaries to the training data.
We built five-gram language models from the target
side of the training data using interpolated Kneser-
Ney smoothing. We also experimented with a larger-
scale language model built from English Gigaword,
but, notably, found a drop of over a point in BLEU
score. This points forward to some of the difficul-
ties encountered with the lack of text normalization,
discussed in §5.

4.2 Baseline translations

We begin by presenting BLEU scores for Hiero and
SAMT translations of each of the six Indian language
test sets (Table 5). For comparison purposes, we
also present BLEU scores from Google translations
of these languages (where available).
We observe that systems built with SAMT gram-

mars improve measurably above the Hiero models,
with the exception of Tamil and Telugu. As an ex-
ternal reference point, the Google baseline transla-
tion scores far surpass the results of any of our sys-
tems, but were likely constructed from much larger
datasets.
Table 6 lists some manually-selected examples of
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language Hiero SAMT diff Google
Bengali 12.72 13.53 +0.81 20.01
Hindi 15.53 17.29 +1.76 25.21
Malayalam 13.72 14.28 +0.56 -
Tamil 9.81 9.85 +0.04 13.51
Telugu 12.46 12.61 +0.15 16.03
Urdu 19.53 20.99 +1.46 23.09

Table 5: BLEU scores translating into English (four ref-
erences). BLEU scores are the mean of three MERT runs.

the sorts of translations we obtained from our sys-
tems. While anecdotal and not characteristic of over-
all quality, together with the generally good BLEU
scores, these examples provide a measure of the abil-
ity to obtain good translations from this dataset.

4.3 Voted training data
We noted above the high variance in the quality of
the translations obtained on MTurk. For data col-
lection efforts, there is a question of how much time
and effort to invest in quality control, since it comes
at the expense of simply collecting more data. We
can either collect additional redundant translations
(to increase quality) or translate more foreign sen-
tences (to increase coverage).
To test this, we constructed two smaller datasets,

each making use of only one of the four translations
of each source sentence:

• Selected randomly

• Selected by choosing the translation that re-
ceived a plurality of the votes (§3.3), breaking
ties randomly (best)

We again included the dictionaries in the training
data (where available). Table 7 contains results on
the same test sets as before. These results do not
clearly indicate that quality control through redun-
dant translations are worth the extra expense. Novot-
ney and Callison-Burch (2010) had a similar finding
for crowdsourced transcriptions.

5 Further Analysis

The previous section has shown that reasonable
BLEU scores can be obtained from baseline transla-
tion systems built from these corpora. While trans-
lation quality is an issue (for example, very lit-

இலங்கையில் சோழர் ஆட்சி
in srilanka solar government
chola rule in sri lanka
in srilanka chozhas ruled
chola reign in sri lanka

Figure 5: An example of inconsistent orthography. Words
in bold are translations of the second Tamil word.

eral translations, etc), the previous section’s voted
dataset experiments suggest this is not one of the
most important issues to address.
In this section, we undertake a manual analysis of

the collected datasets to inform future work. There
are a number of issues that arise due to non-Roman
scripts, high-variance translation quality, and the rel-
atively small amount of training data.

5.1 Orthographic issues

Manual analysis demonstrates that inconsistencies
with orthography are a serious problem. An exam-
ple of this can be found in Figure 5, which contains
a set of translations of a Tamil sentence. In particu-
lar, the spelling of the Tamil word சோழர் has three
different realizations among the sentence’s transla-
tions. The discrepancy between zha and la is due
to phonetic variants (phonetic similarity may also
account for the word solar). This discrepancy is
present throughout the training and test data, where
the -la variant is preferred to -zha by about 6:1 (the
counts are 848 and 142, respectively).
In addition to mistakes potentially caused by for-

eign scripts, there are many mistakes that are sim-
ply spelling errors. Table 8 contains examples of
misspellings (along with their counts) in the train-
ing portion of the Urdu-English dataset. As a point
of comparison, there are no misspellings of the word
in Europarl.
Such errors are present in many collections, of

course, but they are particularly harmful in small
datasets, and they appear to be especially prevalent
in datasets like these, translated as they were by non-
native speakers. Whether caused by Turker care-
lessness or difficulty in translation from non-Roman
scripts, these are common issues, solutions for which
could yield significant improvement in translation
performance.
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Bengali এই সময়ই ১৯২১ সালে ঢাকা বিশ্ববিদ্যালয় স্থাপিত হয় ।
Hiero in this time dhaka university was established on the year 1921 .
SAMT in this time dhaka university was established in 1921 .
Malayalam സൂര്യന്റെ ദൃശ്യമാകുന്ന ഉപരിതലത്തി ൽ താപനില 5 , 700 ◦k ലേക്ക് താഴ്ന്നിരിക്കും .
Hiero the surface temperature of sun 5 , 700 degree k to down to .
SAMT temperature in the surface of the sun 5 , 700 degree k to down to .

Table 6: Some example translations.

Hiero SAMT
language random best random best
Bengali 9.43 9.29 9.65 9.50
Hindi 11.74 12.18 12.61 12.69
Tamil 7.73 7.48 7.88 7.76
Telugu 10.49 10.61 10.75 10.72
Urdu 13.51 14.26 14.63 16.03

Table 7: BLEU scores translating into English on a quar-
ter of the training data (plus dictionary), selected in two
ways: best (result of vote), and random. There is little
difference, suggesting quality control may not be terribly
important. We did not collect votes for Malayalam.

misspelling count
japenese 91
japans 40
japenes 9
japenies 3
japeneses 3
japeneese 1
japense 1

Table 8: Misspellings of japanese (947) in the training
portion of the Urdu-English data, along with their counts.

5.2 Alignments

Inconsistent orthography fragments the training
data, exacerbating problems already present due to
morpohological richness. One place this is mani-
fested is during alignment, where different spellings
mask patterns from the standard alignment tech-
niques. We observe a large number of poor align-
ments, due to interactions among these problems,
as well as the small size of the training data, well-
documented alignment mistakes (such as garbage
collecting), and the divergent sentence structures. In
particular, it seems that the defacto alignment heuris-
tics may be particularly ill-suited to these language

pairs and data conditions. Figure 6 (top) contains an
example of a particularly poor alignment produced
by the default alignment heuristic, the grow-diag-
and method described in Koehn et al. (2003).
As a means of testing this, we varied the align-

ment combination heuristics using five alternatives
described in Koehn et al. (2003) and available in the
symal program distributed with Moses (Koehn et
al., 2007). Experiments on Tamil produce a range
of BLEU scores between 7.45 and 10.19 (each result
is the average of three MERT runs). If we plot gram-
mar size versus BLEU score, we observe a general
trend that larger grammars seem to positively cor-
relate with BLEU score. We tested this more gen-
erally across languages using the Berkeley aligner5
(Liang et al., 2006) instead of GIZA alignments, and
found a consistent increase in BLEU score for the
Hiero grammars, often putting them on par with the
original SAMT results (Table 9). Manual analysis
suggests that the Berkeley aligner produces fewer,
more reasonable-looking alignments than the Moses
heuristics (Figure 6). This suggest a fruitful ap-
proaches in revisiting assumptions underlying align-
ment heuristics.

6 Related Work

Crowdsourcing datasets has been found to be helpful
for many tasks in natural language processing. Ger-
mann (2001) showed that humans could perform sur-
prisingly well with very poor translations obtained
from non-expert translators, in part likely because
coarse-level translational adequacy is sufficient for
the tasks they evaluated. That work was also pitched
as a rapid resource acquisition task, meant to test our
ability to quickly build systems in emergency set-
tings. This work further demonstrates the ability to
quickly acquire training data for MT systems with

5code.google.com/p/berkeleyaligner/
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Figure 6: A bad Tamil alignment produced with the
grow-diag-and alignment combination heuristic (top); the
Berkeley aligner is better (bottom). A ✓ is a correct
guess, an X marks a false positive, and a • denotes a false
negative. Hiero’s extraction heuristics yield 4 rules for
the top alignment and 16 for the bottom.

reasonable translation accuracy.
Closely related to our work here is that of Novot-

ney and Callison-Burch (2010), who showed that
transcriptions for training speech recognition sys-
tems could be obtained from Mechanical Turk with
near baseline recognition performance and at a sig-
nificantly lower cost. They also showed that redun-
dant annotation was not worthwhile, and suggested
that money was better spent obtaining more data.
Separately, Ambati and Vogel (2010) probed the
MTurk worker pool for workers capable of translat-
ing a number of low-resource languages, including
Hindi, Telugu, and Urdu, demonstrating that such
workers could be found and quantifying acceptable

grammar size
pair GIZA++ Berkeley BLEU gain
Bengali 15m 27m 13.54 +0.82
Hindi 34m 60m 16.47 +0.94
Malayalam 12m 27m 12.70 -1.02
Tamil 19m 30m 10.10 +0.29
Telugu 28m 46m 13.36 +0.90
Urdu 38m 58m 20.41 +0.88

Table 9: Hiero translation results using Berkeley align-
ments instead of GIZA++ heuristics. The gain columns
denotes improvements relative to the Hiero systems in Ta-
ble 5. In many cases (bold gains), the BLEU scores are
at or above even the SAMT models from that table.

wages and collection rates.
The techniques described here are similar to those

described in Zaidan and Callison-Burch (2011), who
showed that crowdsourcing with appropriate quality
controls could be used to produce professional-level
translations for Urdu-English translation. This pa-
per extends that work by applying their techniques
to a larger set of Indian languages and scaling it to
training-data-set sizes.

7 Summary

We have described the collection of six parallel cor-
pora containing four-way redundant translations of
the source-language text. The Indian languages of
these corpora are low-resource and understudied,
and exhibit markedly different linguistic properties
compared to English. We performed baseline exper-
iments quantifying the translation performance of a
number of systems, investigated the effect of data
quality on model quality, and suggested a number of
approaches that could improve the quality of models
constructed from the datasets. The parallel corpora
provide a suite of SOV languages for translation re-
search and experiments.
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Montréal, Canada, June 7-8, 2012. c©2012 Association for Computational Linguistics

Twitter Translation using Translation-Based Cross-Lingual Retrieval

Laura Jehl and Felix Hieber and Stefan Riezler
Department of Computational Linguistics

Heidelberg University
69120 Heidelberg, Germany

{jehl,hieber,riezler}@cl.uni-heidelberg.de

Abstract

Microblogging services such as Twitter have
become popular media for real-time user-
created news reporting. Such communica-
tion often happens in parallel in different lan-
guages, e.g., microblog posts related to the
same events of the Arab spring were written
in Arabic and in English. The goal of this
paper is to exploit this parallelism in order
to eliminate the main bottleneck in automatic
Twitter translation, namely the lack of bilin-
gual sentence pairs for training SMT systems.
We show that translation-based cross-lingual
information retrieval can retrieve microblog
messages across languages that are similar
enough to be used to train a standard phrase-
based SMT pipeline. Our method outper-
forms other approaches to domain adaptation
for SMT such as language model adaptation,
meta-parameter tuning, or self-translation.

1 Introduction

Among the various social media platforms, mi-
croblogging services such as Twitter1 have become
popular communication tools. This is due to the easy
accessibility of microblogging platforms via inter-
net or mobile phones, and due to the need for a fast
mode of communication that microblogging satis-
fies: Twitter messages are short (limited to 140 char-
acters) and simultaneous (due to frequent updates by
prolific microbloggers). Twitter users form a social
network by “following” the updates of other users,
either reciprocal or one-way. The topics discussed
in Twitter messages range from private chatter to im-
portant real-time witness reports.

1http://twitter.com/

Events such as the Arab spring have shown the
power and also the shortcomings of this new mode
of communication. Microblogging services played a
crucial role in quickly spreading the news about im-
portant events, furthermore they were useful in help-
ing organizers plan their protest. The fact that news
on microblogging platforms is sometimes ahead of
newswire is one of the most interesting facets of
this new medium. However, while Twitter messag-
ing is happening in multiple languages, most net-
works of “friends” and “followers” are monolingual
and only about 40% of all messages are in English2.
One solution to sharing news quickly and interna-
tionally was crowdsourcing manual translations, for
example at Meedan3, a nonprofit organization built
to share news and opinion between the Arabic and
English speaking world, by translating articles and
blogs, using machine translation and human expert
corrections.

The goal of our research is to automate this trans-
lation process, with a further aim of providing rapid
crosslingual data access for downstream applica-
tions. The automated translation of microblogging
messages is facing two main problems. First, there
are no bilingual sentence pair data from microblog-
ging domains available. Second, the colloquial, non-
standard language of many microblogging messages
makes it very difficult to adapt a machine translation
system trained on any of the available bilingual re-
sources such as transcriptions from political organi-
zations or news text.

The approach presented in this paper aims to ex-
ploit the fact that microblogging often happens in

2http://semiocast.com/publications/2011_
11_24_Arabic_highest_growth_on_Twitter

3http://news.meedan.net
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parallel in different languages, e.g., microblog posts
related to the same events of the Arab spring were
published in parallel in Arabic and in English. The
central idea is to crawl a large set of topically related
Arabic and English microblogging messages, and
use Arabic microblog messages as search queries in
a cross-lingual information retrieval (CLIR) setup.
We use the probabilistic translation-based retrieval
technique of Xu et al. (2001) that naturally inte-
grates translation tables for cross-lingual retrieval.
The retrieval results are then used as input to a stan-
dard SMT pipeline to train translation models, start-
ing from unsupervised induction of word alignments
(Och and Ney, 2000) to phrase-extraction (Och and
Ney, 2004) and phrase-based decoding (Koehn et al.,
2007). We investigate several filtering techniques
for retrieval and phrase extraction (Munteanu and
Marcu, 2006; Snover et al., 2008) and find a straight-
forward application of phrase extraction from sym-
metrized alignments to be optimal. Furthermore, we
compare our approach to related domain adaptation
techniques for SMT and find our approach to yield
large improvements over all related techniques.

Finally, a side-product of our research is a cor-
pus of around 1,000 Arabic Twitter messages with
3 manual English translations each, which were cre-
ated using crowdsourcing techniques. This corpus
is used for development and testing in our experi-
ments.

2 Related Work

SMT for user-generated noisy data has been pio-
neered at the 2011 Workshop on Statistical Ma-
chine Translation that featured a translation task of
Haitian Creole emergency SMS messages4. This
task is very similar to the problem of Twitter transla-
tion since SMS contain noisy, abbreviated language.
The research papers related to the featured transla-
tion task deploy several approaches to domain adap-
tation, including crowdsourcing (Hu et al., 2011)
or extraction of parallel sentences from comparable
data (Hewavitharana et al., 2011).

The use of crowdsourcing to evaluate machine
translation and to build development sets was pi-
oneered by Callison-Burch (2009) and Zaidan and

4http://www.statmt.org/wmt11/
featured-translation-task.html

Callison-Burch (2009). Crowdsourcing has its lim-
its when it comes to generating parallel training data
on the scale of millions of parallel sentences. In
our work, we use crowdsourcing via Amazon Me-
chanical Turk5 to create a development and test cor-
pus that includes 3 English translations for each of
around 1,000 Arabic microblog messages.

There is a substantial amount of previous work on
extracting parallel sentences from comparable data
such as newswire text (Fung and Cheung, 2004;
Munteanu and Marcu, 2005; Tillmann and ming Xu,
2009) and on finding parallel phrases in non-parallel
sentences (Munteanu and Marcu, 2006; Quirk et al.,
2007; Cettolo et al., 2010; Vogel and Hewavitha-
rana, 2011). The approach that is closest to our
work is that of Munteanu and Marcu (2006): They
use standard information retrieval together with sim-
ple word-based translation for CLIR, and extract
phrases from the retrieval results using a clean bilin-
gual lexicon and an averaging filter. In this ap-
proach, filtering and cleaning techniques in align-
ment and phrase extraction have to compensate for
low-quality retrieval results. In our approach, the fo-
cus is on high-quality retrieval.

As our experimental results show, the main im-
provement of our technique is a decrease in out-of-
vocabulary (OOV) rate at an increase of the per-
centage of correctly translated unigrams and bi-
grams. Similar work on solving domain adaptation
for SMT by mining unseen words has been pre-
sented by Snover et al. (2008) and Daumé and Ja-
garlamudi (2011). Both approaches show improve-
ments by adding new phrase tables; however, both
approaches rely on techniques that require larger
comparable texts for mining unseen words. Since
in our case documents are very short (they consist
of 140 character sequences), these techniques are
not applicable. However, the advantage of the fact
that microblog messages resemble sentences is that
we can apply standard word- and phrase-alignment
techniques directly to the retrieval results.

Further approaches to domain adaptation for SMT
include adaptation using in-domain language mod-
els (Bertoldi and Federico, 2009), meta-parameter
tuning on in-domain development sets (Koehn and
Schroeder, 2007), or translation model adaptation

5http://www.turk.com
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using self-translations of in-domain source language
texts (Ueffing et al., 2007). In our experiments we
compare our approach to these domain adaptation
techniques.

3 Cross-Lingual Retrieval via Statistical
Translation

3.1 Retrieval Model

In our approach, comparable candidates for domain
adaptation are selected via cross-lingual retrieval.
In a probabilistic retrieval framework, we estimate
the probability of a relevant document microblog
messageD given a query microblog messageQ,
P (D|Q). Following Bayes rule, this can be sim-
plified to ranking documents according to the like-
lihood P (Q|D) if we assume a uniform prior over
documents.

score(Q,D) = P (D|Q) =
P (D)P (Q|D)

P (Q)
(1)

Our model is defined as follows:

score(Q,D) = P (Q|D) =
∏

q∈Q

P (q|D) (2)

P (q|D) = λPmix(q|D)
︸ ︷︷ ︸

mixture model

+(1− λ) PML(q|C)
︸ ︷︷ ︸

query collection backoff

(3)

Pmix(q|D) = β
∑

d∈D

T (q|d)PML(d|D)

︸ ︷︷ ︸

translation model

(4)

+(1− β)PML(q|D)
︸ ︷︷ ︸

self-translation

Our retrieval model is related to monolingual re-
trieval models such as the language-modeling ap-
proach of Ponte and Croft (1998) and the monolin-
gual statistical translation approach of Berger and
Lafferty (1999). Xu et al. (2001) extend the former
approaches to the cross-lingual setting by adding a
term translation table. They describe their model in
terms of a Hidden Markov Model with two states
that generate query terms: First, adocument state
generates termsd in the document language and then
translates them into a query termq. Second, aback-
off stategenerates query termsq directly in the query
language. In thedocument statethe probability of
emitting q depends on alld that translate toq, ac-
cording to a translation distributionT . This is esti-
mated by marginalizing outd as

∑
d
T (q|d)P (d|D).

In the backoff statethe probability PML(q|C) of

emitting a query term is estimated as the relative
frequency of this term within a corpus in the query
language. The probability of transitioning into the
document state or the backoff state is given byλ and
1− λ.

We view this model from a smoothing perspective
where the backoff state is linearly interpolated with
the translation probability using a mixture weight
λ to control the weighting between both terms.
Furthermore, we expand Xu et al. (2001)’s gen-
erative model to incorporate the concept of “self-
translation”, introduced by Xue et al. (2008) in a
monolingual question-answering context: Twitter
messages across languages usually share relevant
terms such as hashtags, named entities or user men-
tions. Therefore, we model the event of a query
term literally occurring in the document in a sepa-
rate model that is itself linearly interpolated with a
parameterβ with the translation model.

We implemented the model based on a Lucene6

index, which allows efficient storage of term-
document and document-term vectors. To mini-
mize retrieval time, we consider only those doc-
uments as retrieval candidates where at least one
term translates to a query term, according to the
translation tableT . Stopwords were removed for
both queries and documents. Compared to com-
mon inverted index retrieval implementations, our
model is quite slow since the document-term vectors
have to be loaded. However, multi-threading sup-
port and batch retrieval on a Hadoop cluster made
the model tractable. On the upside, the translation-
based model allows greater precision in finding
the candidates for comparable microblog messages
than simpler approaches that use a combination of
tfidf matching and n-best query term expansion:
The translation-based retrieval exploits all possi-
ble alignments between query and document terms
which is particularly important for short documents
such as microblog messages.

3.2 In-Domain Phrase Extraction

To prepare the extraction of phrases from retrieval
results, we conducted cross-lingual retrieval in both
directions: retrieving Arabic documents using En-
glish microblog messages as queries and vice versa.

6http://lucene.apache.org/core/
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For each run we kept the topN retrieved documents.
Each document was then paired with its query to
generate pseudo-parallel data.

We tried two approaches for using this data to
improve our translations. The first, more restric-
tive method makes use of the word alignments we
obtained from 5.8 million clean parallel training
data from the NIST evaluation campaign. The re-
trieval step generates word-alignments in the direc-
tion D → Q. After retrieval, the reverse alignment
for each query-document pair is also generated by
using a translation table in the directionQ → D. An
alignment point between a query termq and a docu-
ment termd is created, iffT (q|d) or T (d|q) exist in
the translation tablesD → Q or Q → D. Based on
these word-alignments, we extract phrases by apply-
ing thegrow-diag-final-andheuristic and using Och
and Ney (2004)’s phrase extraction algorithm as im-
plemented in Moses7 (Koehn et al., 2007). We con-
ducted experiments using different constraints on
the number of alignment points required for a pair
to be considered as well as the value ofN . Our first
technique resembles the technique of Munteanu and
Marcu (2006) who also perform phrase extraction
by combining clean alignment lexica for initial sig-
nals with heuristics to smooth alignments for final
fragment extraction.

While we obtained some gains using our heuris-
tics, we are aware that our method is severely re-
stricted in that it only learns new words which are
in the vicinity of known words. We therefore also
tried the bolder approach of treating our data as
parallel and running unsupervised word alignment8

(Och and Ney, 2000) directly on the query-document
pairs to obtain new world alignments and build a
phrase table. In contrast to previous work (Snover
et al., 2008; Daumé and Jagarlamudi, 2011), we can
take advantage of the sentence-like character of mi-
croblog messages and treat queries and retrieval re-
sults similar to sentence aligned data.

For both extraction methods, the standard five
translation features from the new phrase table
(phrase translation probability and lexical weight-
ing in both directions, phrase penalty) were added to
the translation features in Moses. We tried different

7http://statmt.org/moses/
8http://code.google.com/p/giza-pp/

al-Gaddafi, al-Qaddhafi, assad, babrain, bahrain,
egypt, gadaffi, gaddaffi, gaddafi, Gheddafi, homs,
human rights, human-rights, humanrights, libia, li-
bian, libya, libyan, lybia, lybian, lybya, lybyan,
manama, Misrata, nabeelrajab, nato, oman, Pos-
itiveLibyaTweets, Qaddhafi, sirte, syria, tripoli,
tripolis, yemen;

Table 1: Keywords used for Twitter crawl.

modes of combining new and original phrase table,
namely using either one or using the new phrase ta-
ble as backoff in case no phrase translation is found
in the original phrase table.

4 Data

4.1 Twitter Crawl

We crawled Twitter messages from September 20,
2011 until January 23, 2012 via the Streaming API9

in keyword-tracking mode, obtaining 25.5M Twit-
ter messages (tweets) in various languages. Table 1
shows the list of keywords that were chosen to re-
trieve microblog messages related to the events of
the Arab spring.10

In order to separate the microblog message cor-
pus by languages, we applied a Naive Bayes lan-
guage identifier11. This yielded a distribution with
the six most common languages (of 52) being Ara-
bic (57%), English (33%), Somali (2%), Spanish
(2%), Indonesian (1.5%), German (0.7%). We kept
only microblog messages classified as English or
Arabic with confidence greater 0.9. Keyword-based
crawling creates a strong bias towards the domain
of the keywords and it does not guarantee that all
microblog messages regarding a certain topic or re-
gion are retrieved or that all retrieved messages are
related to the Arab Spring and human righs in the
middle east. Additionally, retweets artificially in-

9https://dev.twitter.com/docs/
streaming-api/

10The Twitter Streaming API allows up to 400 tracking key-
words that are matched to uppercase, lowercase and quoted
variations of the keywords. Partial matching such as “tripolis”
matching “tripoli” as well as Arabic Unicode characters arenot
supported. We extended our keywords over time by analyzing
the crawl, e.g., by introducing spelling variants and hashtags.

11Language Detection Library for Java, by
Shuyo Nakatani (http://code.google.com/p/
language-detection/).
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Arabic English

tweets + retweets 14,565,513 8,501,788
tweets 6,614,126 5,129,829
avg. retweet/tweet 11.62 7.27
unique users 180,271 865,202
avg. tweets/user 36.6 5.9

Table 2: Twitter corpus statistics

flate the size of the data, although there are no new
terms added. Therefore, we removed all duplicate
retweets that did not introduce additional terms to
the original tweet. Table 2 explains the shrinkage
of the dataset after removing retweets - compared
to English users, a smaller number of Arabic users
produced a much larger number of retweets. Inter-
estingly, 56,087 users tweet a substantial amount in
both languages. This suggests that users spread mes-
sages simultaneously in Arabic and English.

4.2 Creating a Small Parallel Twitter Corpus
using Crowdsourcing

For the evaluation of our method, a small amount
of parallel in-domain data was required. Since there
are no corpora of translated microblog messages, we
decided to use Amazon Mechanical Turk12 to cre-
ate our own evaluation set, following the exploratory
work of Zaidan and Callison-Burch (2011b). We
randomly selected 2,000 Arabic microblog mes-
sages. Hashtags, user mentions and URLs were re-
moved from each microblog message beforehand,
because they do not need to be translated and would
just artificially inflate scores at test time. The mi-
croblog messages were then manually cleaned and
pruned. We discarded messages which contained
almost no text or large portions of other languages
and removed remaining Twitter markup. In the end,
1,022 microblog messages were used in the Me-
chanical Turk task. We split the data into batches
of ten sentences which comprised one HIT (human
intelligence task). Each HIT had to be completed by
three workers. In order to have some control over
translation quality, we inserted one control sentence
per HIT, taken from the LDC-GALE Phase 1 Arabic
Blog Parallel Text. Turkers were rewarded 10 cents
per translation. Following Zaidan and Callison-
Burch (2011b), all Arabic sentences were converted

12http://www.turk.com

into images in order to prevent turkers from past-
ing them into online machine translation engines.
Our final corpus consists of 1,022 translated mi-
croblog messages with three translations each. An
example containing translations for one of the sen-
tences which we inserted for quality checking pur-
poses, along with the reference translation, is given
in table 3. It can be seen that translators sometimes
made grammar mistakes or odd word choices. They
also tended to omit punctuation marks. However,
translations also contained reasonable translation al-
ternatives (such as “gathered” or “collected”). We
also asked translators to insert an “unknown” token
whenever they were unable to translate a word. Our
HIT setup did not allow workers to skip a sentence,
forcing them to complete an entire batch. In order to
account for translation variants we decided to use all
three translations obtained via Mechanical Turk as
multiple references instead of just keeping the top
translation. We randomly split our small parallel
corpus, using half of the microblog messages for de-
velopment and half for testing.

4.3 Preprocessing

Besides removal of Twitter markup, several addi-
tional preprocessing steps such as digit normaliza-
tion were applied to the data. We also decided to ap-
ply the Buckwalter Arabic transliteration scheme13

to avoid encoding difficulties. Habash and Sadat
(2006) have shown that tokenization is helpful for
translating Arabic. We therefore decided to ap-
ply a more involved tokenization scheme than sim-
ple whitespace splitting to our data. As the re-
trieval relies on translation tables, all data need
to be tokenized the same way. We are aware
of the MADA+TOKAN Arabic morphological an-
alyzer and tokenizer (Habash and Rambow, 2005),
however, this toolkit produces very in-depth analy-
ses of the data and thus led to difficulties when we
tried to scale it to millions of sentences/microblog
messages. That is why we only used MADA for
transliteration and chose to implement the simpler
approach by Lee et al. (2003) for tokenization. This
approach only requires a small set of annotated data
to obtain a list of prefixes and suffixes and uses n-

13http://www.qamus.org/transliteration.
htm
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REFERENCE breaking the silence, a campaign group made up of israeli soldiers, gathered anonymous accounts from 26 soldiers.
TRANSLATION1 and breaking silence is a group of israeli soldiers that hadunknown statistics from 26 soldiers israeli
TRANSLATION2 breaking the silence by a group of israeli soldiers who gathered unidentified statistics from 26 israeli soldier.
TRANSLATION3 breaking the silence is a group of israeli soldiers that collected unknown statistics of 26 israeli soldiers

Table 3: Example turker translations.

gram-models to determine the most likelyprefix∗-
stem-suffix∗ split of a word.14

5 Twitter Translation Experiments

We conducted a series of experiments to evaluate
our strategy of using CLIR and phrase-extraction to
extract comparable data in the Twitter domain. We
also explored more standard ways of domain adap-
tation such as using English microblog messages to
build an in-domain language model, or generating
synthetic bilingual corpora from monolingual data.

All experiments were conducted using the Moses
machine translation system15 (Koehn et al., 2007)
with standard settings. Language models were
built using the SRILM toolkit16 (Stolcke, 2002).
For all experiments, we report lowercased BLEU-
4 scores (Papineni et al., 2001) as calculated by
Moses’multi-bleu script. For assessing signifi-
cance, we apply the approximate randomization test
(Noreen, 1989; Riezler and Maxwell, 2005). We
consider pairwise differing results scoring a p-value
< 0.05 as significant.

Our baseline model was trained using 5,823,363
million parallel sentences in Modern Standard
Arabic (MSA) (198,500,436 tokens) and English
(193,671,201 tokens) from the NIST evaluation
campaign. This data contains parallel text from dif-
ferent domains, including UN reports, newsgroups,
newswire, broadcast news and weblogs.

5.1 Domain Adaption using Monolingual
Resources

As a first step, we used the available in-domain
data for a combination of domain adaptation tech-

14The n-gram-model required for tokenization was trained on
5.8 million Modern Standard Arabic sentences from the NIST
evaluation campaign. This data had previously been tokenized
with the same method, trained to match the Penn Arabic Tree-
bank, v3.

15http://statmt.org/moses/
16http://www.speech.sri.com/projects/

srilm/

niques similar to Bertoldi and Federico (2009).
There were three different adaptation measures:
First, the turker-generated development set was used
for optimizing the weights of the decoding meta-
parameters, as introduced by Koehn and Schroeder
(2007). Second, the English microblog messages in
our crawl were used to build an in-domain language
model. This adaptation technique was first proposed
by Zhao et al. (2004). Third, the Arabic portion of
our crawl was used to synthetically generate addi-
tional parallel training data. This was accomplished
by machine-translating the Arabic microblog mes-
sages with the best system after performing the first
two adaptation steps. Since decoding is very time-
intensive, only 1 million randomly selected Ara-
bic microblog messages were used to generate syn-
thetic parallel data. This new data was then used
to train another phrase table. Such self-translation
techniques have been introduced by Ueffing et al.
(2007). All results were evaluated against a base-
line of using only NIST data for translation model,
language model and weight optimization.

Our results are shown in table 4. Using an in-
domain development set while leaving everything
else untouched led to an improvement of approxi-
mately 1 BLEU point. Three experiments involv-
ing the Twitter language model confirm Bertoldi
and Federico (2009)’s findings that the language
model was most helpful. The BLEU-score could
be improved by 1.5 to 2 points in all experiments.
When using an in-domain language model, there
was no significant difference between deploying an
in-domain or out-of-domain development set. We
also compared the effect of using only the in-domain
language model to that of adding the in-domain
language model as an extra feature while keeping
the NIST language model.17 There was no signif-

17The weights for both language models were optimized
along with all other translation feature weights, rather than run-
ning an extra optimization step to interpolate between bothlan-
guage models, since Koehn and Schroeder (2007) showed that
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Run Translation Model Language Model Dev Set BLEU %

1 NIST NIST NIST 13.90
2 NIST NIST Twitter 14.83∗

3 NIST Twitter NIST 15.98∗

4 NIST Twitter Twitter 15.68∗

5 NIST Twitter & NIST Twitter 16.04∗

6 self-train Twitter & NIST Twitter 15.79∗

7 self-train & NIST Twitter & NIST Twitter 15.94∗

Table 4: Domain adaptation experiments. Asterisks indicate significant improvements over baseline (1).

Run Twitter Phrases extraction method # sentence pairs # extracted phrases BLEU %

8 top 3 retrieval results heuristics 14,855,985 6,508,141 17.04∗

9 top 1 retrieval results GIZA++ 5,141,065 54,260,537 18.73∗∗

10 retrieval intersection GIZA++ 3,452,566 29,091,009 18.85∗∗

11 retrieval intersection as backoff GIZA++ 3,452,566 29,091,009 18.93∗∗

Table 5: CLIR domain adaptation experiments. All weights were optimized on the Twitter dev set and used
the Twitter and NIST language models. One Asterisk indicates a significant improvement over baseline run
(5) from table 4. Two Asterisks indicate a significant improvement over run (8).

icant difference between both runs. However, for
further adaptation experiments we used the system
with the highest absolute BLEU score. In our case,
using synthetically generated data was not help-
ful, yielding similar results as the language model
experiments above. As has been observed before
by Bertoldi and Federico (2009), it did not matter
whether the synthetic data were used on their own
or in addition to the original training data.

5.2 Domain Adaptation using
Translation-based CLIR

Meta-parametersλ, β ∈ [0, 1] of the retrieval model
were tuned in a mate-finding experiment: Mate-
finding refers to the task of retrieving the single rel-
evant document for a query. In our case, each source
tweet in the crowdsourced development set had ex-
actly one “mate”, namely the crowdsourced transla-
tion that was ranked best in a further crowdsourced
ranking task. Using the retrieval model described
in section 3 we achieved precision@1 scores above
95% in finding the translations of a tweet whenλ

andβ were set to 0.9. We fixed these parameter set-
tings for all following experiments. The translation
table was taken from the baseline experiments in ta-
ble 4. During retrieval, we kept up to 10 highest
scoring documents per query.

both strategies yielded the same results.

We first employed heuristic phrase extraction
based on the word alignments generated from the
NIST data as described above. To avoid learning
too much noise, maximum phrase length was re-
stricted to 3 (the default is 7). To evaluate the effects
of choosing more restrictive or more lax settings,
we ran experiments varying the following configu-
rations:

1. Constraints on alignment points:

• no constraints,
• 3+ alignment points in each direction,
• 3+ alignment points in both directions,
• 5+ alignment points in both directions.

2. Constraints on retrieval ranking:

• top 10 results,
• top 3 results,
• top 1 results,
• retrieval intersection (results found in both

retrieval directions)

We obtained improvements for all combinations
of these configurations. However, we observed that
requiring 5 common alignment points was too strict,
since few pairs met this constraint. We also noticed
that using only the top 3 retrieval results was benefi-
cial to performance, suggesting that more compara-
ble microblog messages were indeed ranked higher.
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Using extraction heuristics we gained maximally 1.0
BLEU using the top 3 retrieval results and requiring
at least 3 alignment points in both alignment direc-
tions (see first line in table 5). However, other con-
figurations produced very similar results.

While heuristics led to small incremental im-
provements, we achieved a much larger improve-
ment by training a new phrase table from scratch us-
ing GIZA++. Again, we restricted maximum phrase
length to 3 words. In order to keep phrase table
size manageable, we had to restrict retrieval to top-
1 results or only use retrieval results in the inter-
section of retrieval directions. Best results are ob-
tained when combining phrase tables extracted from
GIZA++ alignments in the intersection of retrieval
results with NIST phrase tables in backoff mode (see
last line in table 5).

6 Error Analysis

Our cross-lingual retrieval approach succeeded in
finding nearly parallel tweets, confirming our hy-
pothesis that such data actually exists. Examples are
given in table 6.

Table 7 shows a more detailed breakdown of our
translation scores. First, standard adaptation meth-
ods increased n-gram precision, suggesting that us-
ing in-domain adaptation data caused the system to
choose more suitable words. As expected, there was
no reduction in OOVs, since using an in-domain
language model and development set does not in-
troduce new vocabulary. Heuristic phrase extrac-
tion again produced small improvements in n-gram
precision while reducing the number of unknown
words. Learning a new phrase table with GIZA++
produced substantial improvements both in OOV-
rate and in n-gram precision.

Nevertheless, even the scores of the adapted sys-
tem are still fairly low and translation quality as
judged by inspection of the output can be very poor.
This suggests that the language used on Twitter still
poses a great challenge, due to its variety of styles
as well as the users’ tendency to use non-standard
spelling and colloquial or dialectal expressions. Our
development set contained many different genres,
from Qu’ran verses over news headlines to personal
chatter. Another difficulty was posed by dialectal
Arabic content. To gain an impression of the amount

of dialectal content in our data, we used the Arabic
Online Commentary Dataset created by Zaidan and
Callison-Burch (2011a) to classify our test set. Ta-
ble 8 shows the distribution of dialects in our test
data according to language model probability. This
distribution should be viewed with a grain of salt,
since the shortness of tweets might cause unreliable
results when using a model based on word frequen-
cies for classification. Still, the results suggest that
there is a high proportion of dialectal content and
spelling variation in our data, causing a large num-
ber of OOVs. For example, the preposition ,في
meaning “in” is often written as .فى Our phrase
table trained only on standard Arabic data as well as
our extraction heuristic failed to translate this fre-
quently occurring word. Only when retraining a
phrase table with GIZA++ did we translate it cor-
rectly.

Dialect # Sentences

Egyptian 141
Levantine 147
Gulf 78
Modern Standard Arabic 145

Table 8: Dialectal content in our test set as classified
by the AOC dataset.

Table 9 gives examples of translations generated
using different adaptation methods in comparison to
the references and the Google translation service to
illustrate strengths and weaknesses of our approach.
Example 1shows a case where unknown words were
learned through translation model adaptation. Note
that even the Google translator did not recognize
the word مسيلات which was transliterated as
“Msellat”. Zaidan and Callison-Burch (2011a) point
out that dialectal variants are often transliterated
by Google. Note also, that the unadapted transla-
tion erroneously translated the place name “sitra” as
“jacket”, a mistake which was also made in two of
the references and by Google. The same happened
to the place name “wadyan”, which could also be
taken as meaning “and religions”. This error was
enforced by our preprocessing step incorrectly split-
ting off the prefix “w” which often carries the mean-
ing “and”. In addition to that, the two runs which
used translation model adaptation each dropped a
part of the input sentence (“in sitra”, “firing”). We
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ARABIC TWEET الصفح الى الليبيين ويدعوا سيحاكم القذافي ان يؤكد الفرنسي الرئيس ب ف ا
GOOGLE TRANSLATION AFP confirms that the French President Gaddafi Libyans tried to call and forgiveness

ENGLISH TWEET french president assures that will be taken to court and tells the libyans to forgive each other

ARABIC TWEET الخميس من ا دء مصر فى المحمول شركات جميع رقم زيادة يقرر الاتصالات تنظيم جهاز
GOOGLE TRANSLATION NTRA decide to increase the number of all mobile operators inEgypt a commencement from Thursday

ENGLISH TWEET ntra decide to increase the number of all mobile operators instarting from thursday

ARABIC TWEET ناري طلق طريق عن يناير يوم احمد على امين الشهيد
GOOGLE TRANSLATION Shahid Amin AA Day January through gunshot

ENGLISH TWEET martyr amin ali ahmed on jan by gunshot

Table 6: Examples of nearly parallel tweets found by our retrieval method.

Adaptation method OOV-rate %/absolute unigram precision %/absolute bigram precision %/absolute output length (words)

None 22.56/2216 51.1/5020 20.2/1882 9832
LM and Dev 20.05/2220 51.4/5442 22.1/2227 10595
Retrieval (heuristic) 17.47/1790 53.5/5484 23.6/2299 10246
Retrieval (GIZA++) 4.22/439 56.1/5834 26.1/2575 10395

Table 7: OOV-rate and precision for different adaptation methods.

attribute this to that fact that the phrase table extrac-
tion often produced one-to-many alignments when
only one alignment point was known. InExample 2
GIZA++ extraction clearly outperformed heuristic
phrase extraction. This example also shows that our
method is good at learning proper names. While
the first two examples resemble news text,Exam-
ple 3 is a more informal message. It is particularly
interesting to note that with GIZA++ extraction the
term “shabiha” is learned, which is commonly used
in Syria to mean “thugs” and specifically refers to
armed civilians who assault protesters against Bashir
Al-Assad’s regime.Example 4also shows substan-
tial OOV reduction. However, the term بسنترال
الأوبرا (“in Opera Central”, the location of Telecom
Egypt) is incorrectly translated as “really opera”.

7 Conclusion

We presented an approach to translation of mi-
croblog messages from the Twitter domain. The
main obstacle to state-of-the-art SMT of such data
is the complete lack of sentence-parallel training
data. We presented a technique that uses translation-
based CLIR to find relevant Arabic Twitter messages
given English Twitter queries, and applies a standard
pipeline for unsupervised training of phrase-based
SMT to retrieval results. We found this straight-
forward technique to outperform more conservative

techniques to extract phrases from comparable data
and also to outperform techniques using monolin-
gual resources for language model adaptation, meta-
parameter tuning, or self-translation.

The greatest benefit of our approach is a signifi-
cant reduction of OOV terms at a simultaneous im-
provement of correct unigram and bigram transla-
tions. Despite this positive net effect, we still find
a considerable amount of noise in the automati-
cally extracted phrase tables. Noise reduction by
improved pre-processing and by more sophisticated
training will be subject to future work. Furthermore,
we would like to investigate a tighter integration of
CLIR and SMT training by using forced decoding
techniques for CLIR and by a integrating a feedback
loop into retrieval and training.

Acknowledgments

We would like to thank Julia Ostertag for several it-
erations of manual error analysis of Arabic transla-
tion output.

418



EXAMPLE 1
SRC الدموع مسيلات وتطلق مترجلة واديان تقتحم الشغب قوات سترة

GOOGLE Riot troops stormed the jacket and religions foot and launches Msellat tears

NO ADAPTATION jacket riot forces storm and religions foot مسيلات وتطلق tears
LM AND DEV sitra and religions of the foot of the riot forces stormمسيلات وتطلق tears

RETRIEVAL (HEURISTIC) in sitra riot police storming and religions of tear gas on foot
RETRIEVAL (GIZA++) the riot police stormed and religions of the foot firing tear gas

REF0 vest riot forces break into wadyan by foot and trough gas tear
REF1 sotra the riot forces enter on foot and shoot tear bombs
REF2 the cover for riot police enters wadian walking and shoot tear bombs

EXAMPLE 2
SRC العولقى مقتل عن اليوم سيتحدث أوباما

GOOGLE Obama will speak today the death of al-Awlaki

NO ADAPTATION سيتحدث أوباما today killed العولقى
LM AND DEV سيتحدث أوباما friday for the killing of العولقى

RETRIEVAL (HEURISTIC) أوباما today on the killing of
RETRIEVAL (GIZA++) obama today on the al awlaki killing

REF0 obama will talk today about the killing of al - awlaki
REF1 obama is talking today about el awlaqi death
REF2 obama will speak today about the killing of al - awlaqi

EXAMPLE 3
SRC (: يستغيثون حماة في الشبيحة

GOOGLE Cbihh in Hama are crying :)

NO ADAPTATION الشبيحة mired in calling for help : )
LM AND DEV الشبيحة in hama calling for help : )

RETRIEVAL (HEURISTIC) inside the protectors of the calling for help : )
RETRIEVAL (GIZA++) shabiha in hama calling for help : )

REF0 the gangsters in hama are asking for help
REF1 the gangs in hamah are peading :)
REF2 the thugs in hama are calling for help :)

EXAMPLE 4
SRC الأوبرا بسنترال غرفة فى الشركة رئيس يحتجزون للاتصالات بالمصرية عاملون :: حـريـه

GOOGLE Freedom :: Telecom Egypt workers holding company’s president in a room Psontral Opera

NO ADAPTATION : : free workers للاتصالات بالمصرية holding company chairman الأوبرا بسنترال فى chamber
LM AND DEV : : workers free للاتصالات بالمصرية holding company chairman الأوبرافى بسنترال room

RETRIEVAL (HEURISTIC) free : : afcd بالمصرية hold ceo hostage ppl is the president of the chamber ofالأوبرا بسنترال
RETRIEVAL (GIZA++) egypt : : workers telecom workers are holding the head of the company in the chamber of really opera

REF0 freedom :: workers in the egyptian for communication are holding the company president in a room in the opera central
REF1 freedom , workers in egypt for calls detain the head of the company in a room in opera central
REF2 hurriya :: workers in telecom egypt detaining the president of the company in a room in the opera central

Table 9: Example output using different adaptation methods.
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Montréal, Canada, June 7-8, 2012. c©2012 Association for Computational Linguistics

Analysing the Effect of Out-of-Domain Data on SMT Systems

Barry Haddow and Philipp Koehn
School of Informatics

University of Edinburgh
Edinburgh, EH8 9AB, Scotland

{bhaddow,pkoehn}@inf.ed.ac.uk

Abstract

In statistical machine translation (SMT), it is
known that performance declines when the
training data is in a different domain from the
test data. Nevertheless, it is frequently nec-
essary to supplement scarce in-domain train-
ing data with out-of-domain data. In this pa-
per, we first try to relate the effect of the out-
of-domain data on translation performance to
measures of corpus similarity, then we sep-
arately analyse the effect of adding the out-
of-domain data at different parts of the train-
ing pipeline (alignment, phrase extraction, and
phrase scoring). Through experiments in 2 do-
mains and 8 language pairs it is shown that
the out-of-domain data improves coverage and
translation of rare words, but may degrade the
translation quality for more common words.

1 Introduction

In statistical machine translation (SMT), domain
adaptation can be thought of as the problem of train-
ing a system on data mainly drawn from one do-
main (e.g. parliamentary proceedings) and trying
to maximise its performance on a different domain
(e.g. news). There is likely to be some parallel data
similar to the test data, but as such data is expen-
sive to create, it tends to be scarce. The concept of
“domain” is rarely given a precise definition, but it is
normally understood that data from the same domain
is in some sense similar (for example in the words
and grammatical constructions used) and data from
different domains shows less similarities. Data from
the same domain as the test set is usually referred
to as in-domain and data from a different domain is
referred to as out-of-domain.

The aim of this paper is to shed some light on
what domain actually is, and why it matters. The
fact that a mismatch between training and test data
domains reduces translation performance has been
observed in previous studies, and will be confirmed
here for multiple data sets and languages, but the
question of why domain matters for performance has
not been fully addressed in the literature. Exper-
iments in this paper will be conducted on phrase-
based machine translation (PBMT) systems, but
similar conclusions are likely to apply to other types
of SMT systems. Furthermore, we will mainly be
concerned with the effect of domain on the transla-
tion model, since it depends on parallel data which
is more likely to be in short supply than monolingual
data, and domain adaptation for language modelling
has been more thoroughly studied.

The effect of a shift of domain in the parallel data
is complicated by the fact that training a translation
model is a multi-stage process. First the parallel
data is word-aligned, normally using the IBM mod-
els (Brown et al., 1994), then phrases are extracted
using some heuristics (Och et al., 1999) and scored
using a maximum likelihood estimate. Since the ef-
fect of domain may be felt at the alignment stage, the
extraction stage, or the scoring stage, we have de-
signed experiments to try to tease these apart. Exper-
iments comparing the effect of domain at the align-
ment stage with the extraction and scoring stages
have already been presented by (Duh et al., 2010), so
we focus more on the differences between extraction
and scoring. In other words, we examine whether
adding more data (in or out-of domain) helps im-
prove coverage of the phrase table, or helps improve
the scoring of phrases.

A further question that we wish to address is
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whether adding out-of-domain parallel data affects
words with different frequencies to different de-
grees. For example, a large out-of-domain data set
may improve the translation of rare words by pro-
viding better coverage, but degrade translation of
more common words by providing erroneous out-of-
domain translations. In fact, the evidence presented
in Section 3.5 will show a much clearer effect on low
frequency words than on medium or high frequency
words, but the total token count of these low fre-
quency words is still small, so they don’t necessarily
have much effect on overall measures of translation
quality.

In summary, the main contributions of this paper
are:
• It presents experiments on 8 language pairs

and 2 domains showing the effect on BLEU of
adding out-of-domain data.
• It provides evidence that the difference be-

tween in and out-of domain translation perfor-
mance is correlated with differences in word
distribution and out-of-vocabulary rates.
• It develops a method for separating the effects

of phrase extraction and scoring, showing that
good coverage is nearly always more important
than good scoring, and that out-of-domain data
can adversely affect phrase scores.
• It shows that adding out-of-domain data clearly

improves translation of rare words, but may
have a small negative effect on more common
words.

2 Related Work

The most closely related work to the current one is
that of (Duh et al., 2010). In this paper they consider
the domain adaptation problem for PBMT, and in-
vestigate whether the out-of-domain data helps more
at the word alignment stage, or at the phrase extrac-
tion and scoring stages. Extensive experiments on
4 different data sets, and 10 different language pairs
show mixed results, with the overall conclusion be-
ing that it is difficult to predict how best to include
out-of-domain data in the PBMT training pipeline.
Unlike in the current work, Duh et al. do not sepa-
rate phrase extraction and scoring in order to anal-
yse the effect of domain on them separately. They
make the point that adding extra out-of-domain data

may degrade translation by introducing unwanted
lexical ambiguity, showing anecdotal evidence for
this. Similar arguments were presented in (Sennrich,
2012).

A recent paper which does attempt to tease apart
phrase extraction and scoring is (Bisazza et al.,
2011). In this work, the authors try to improve a
system trained on in-domain data by including extra
entries (termed “fill-up”) from out-of-domain data –
this is similar to the nc+epE and st+epE systems
in Section 3.4. It is shown by Bisazza et al. that this
fill-up technique has a similar effect to using MERT
to weight the in and out-of domain phrase tables. In
the experiments in Section 3.4 we confirm that fill-
up techniques mostly provide better results than us-
ing a concatenation of in and out-of domain data.

There has been quite a lot of work on finding ways
of weighting in and out-of domain data for SMT
(as opposed to simply concatenating the data sets),
both for language and translation modelling. Inter-
polating language models using perplexity is fairly
well-established (e.g. Koehn and Schroeder (2007)),
but for phrase-tables it is unclear whether perplexity
minimisation (Foster et al., 2010; Sennrich, 2012) or
linear or log-linear interpolation (Foster and Kuhn,
2007; Civera and Juan, 2007; Koehn and Schroeder,
2007) is the best approach. Also, other authors (Fos-
ter et al., 2010; Niehues and Waibel, 2010; Shah et
al., 2010) have tried to weight the input sentences or
extracted phrases before the phrase tables are built.
In this type of approach, the main problem is how
to train the weights of the sentences or phrases, and
each of the papers has followed a different approach.

Instead of weighting the out-of-domain data,
some authors have investigated data selection meth-
ods for domain adaptation (Yasuda et al., 2008;
Mansour et al., 2011; Schwenk et al., 2011; Axelrod
et al., 2011). This is effectively the same as using
a 1-0 weighting for input sentences, but has the ad-
vantage that it is usually easier to tune a threshold
than it is to train weights for all input sentences or
phrases. The other advantage of doing data selection
is that it can potentially remove noisy (e.g. incor-
rectly aligned) data. However it will be seen later in
this paper that out-of-domain data can usually con-
tribute something useful to the translation system,
so the 1-0 weighting of data-selection may be some-
what heavy-handed.
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3 Experiments

3.1 Corpora and Baselines

The experiments in this paper used data from
the WMT09 and WMT11 shared tasks (Callison-
Burch et al., 2009; Callison-Burch et al., 2011), as
well as OpenSubtitles data1 released by the OPUS
project (Tiedemann, 2009).

From the WMT data, both news-commentary-
v6 (nc) and europarl-v6 (ep) were used for
training translation models and language mod-
els, with nc-devtest2007 used for tuning and
nc-test2007 for testing. The experiments were
run on all language pairs used in the WMT shared
tasks, i.e. English (en) into and out of Spanish (es),
German (de), French (fr) and Czech (cs).

From the OpenSubtitles (st) data, we chose
8 language pairs – English to and from Span-
ish, French, Czech and Dutch (nl) – selected be-
cause they have at least 200k sentences of parallel
data available. 2000 sentence tuning and test sets
(st-dev and st-devtest) were selected from
the parallel data by extracting every nth sentence,
and a 200k sentence training corpus was selected
from the remaining data.

Using test sets from both news-commentary and
OpenSubtitles gives two domain adaptation tasks,
where in both cases the out-of-domain data is eu-
roparl, a significantly larger training set than the in-
domain data. The three data sets in use in this paper
are summarised in Table 1.

The translation systems consisted of phrase ta-
bles and lexicalised reordering tables estimated us-
ing the standard Moses (Koehn et al., 2007) train-
ing pipeline, and 5-gram Kneser-Ney smoothed lan-
guage models estimated using the SRILM toolkit
(Stolcke, 2002), with KenLM (Heafield, 2011) used
at runtime. Separate language models were built
on the target side of the in-domain and out-of-
domain training data, then linearly interpolated us-
ing SRILM to minimise perplexity on the tuning
set (e.g. Koehn and Schroeder (2007)). Tuning
of models used minimum error rate training (Och,
2003), repeated 3 times and averaged (Clark et
al., 2011). Performance is evaluated using case-
insensitive BLEU (Papineni et al., 2002), as imple-

1www.opensubtitles.org

mented using the Moses multi-bleu.pl script.

Name Language
pairs

train tune test

Europarl en↔fr 1.8M n/a n/a
(ep) en↔es 1.8M n/a n/a

en↔de 1.7M n/a n/a
en↔cs 460k n/a n/a
en↔nl 1.8M n/a n/a

News en↔fr 114k 1000 2000
Commentary en↔es 130k 1000 2000
(nc) en↔de 135k 1000 2000

en↔cs 122k 1000 2000
Subtitles en↔fr 200k 2000 2000
(st) en↔es 200k 2000 2000

en↔nl 200k 2000 2000
en↔cs 200k 2000 2000

Table 1: Summary of the data sets used, with ap-
proximate sentence counts

3.2 Comparing In-domain and Out-of-domain
Data

The aim of this section is to provide both a quali-
tative and quantitative comparison of the three data
sets used in this paper.

Firstly, consider the extracts from the English sec-
tions of the three training sets shown in Figure 1.
The first extract, from the Europarl corpus, shows a
formal style with long sentences. However this is
still spoken text so contains a preponderance of first
and second person forms. In terms of subject mat-
ter, the corpus covers a broad range of topics, but all
from the angle of European legislation, institutions
and policies. Where languages (e.g. English, French
and Spanish) have new world and old world variants,
Europarl sticks to the old world variants.

The extract from the News Commentary corpus
again shows a formal tone, but because this is news
analysis, it tends to favour the third person. It is writ-
ten text, and covers a wider range of subjects than
Europarl, and also encompasses both new and old
world versions of the European languages.

The Subtitles text shown in the last example ap-
pears qualitatively more different from the other
two. It is spoken text, like Europarl, but consists of
short, informal sentences with many colloquialisms,
as well as possible optical character recognition er-
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Although, as you will have seen, the dreaded ’millennium bug’ failed to materialise, still the people in a
number of countries suffered a series of natural disasters that truly were dreadful.
You have requested a debate on this subject in the course of the next few days, during this part-session.
In the meantime, I should like to observe a minute’ s silence, as a number of Members have requested, on
behalf of all the victims concerned, particularly those of the terrible storms, in the various countries of the
European Union.

(a) Europarl

Desperate to hold onto power, Pervez Musharraf has discarded Pakistan’s constitutional framework and
declared a state of emergency.
His goal?
To stifle the independent judiciary and free media.
Artfully, though shamelessly, he has tried to sell this action as an effort to bring about stability and help
fight the war on terror more effectively.

(b) News commentary

I’il call in 30 minutes to check
Is your mother here, too?
Why are you outside?
It’s no fun listening to women’s talk
Well, why don’t we go in together

(c) OpenSubtitles

Figure 1: Extracts from the English portion of the training corpora

rors. It is likely to contain a mixture of regional vari-
ations of the languages, reflecting the diversity of the
film sources.

In order to obtain a quantitative measure of do-
main differences, we used both language model
(LM) perplexity, and out-of-vocabulary (OOV) rate,
in the two test domains. For the nc domain, per-
plexity was compared by training trigram LMs (with
SRILM and Kneser-Ney smoothing) on each of the
ep, nc and ep+nc training sets, taking the inter-
section of the ep and nc vocabularies as the LM
vocabulary. The perplexities of the nc test set wer
calculated using each of the LMs. A correspond-
ing set of LMs was trained to compare perplexities
on the st test set, and all perplexity comparisons
were performed on all five languages. The SRILM
toolkit was also used to calculate OOV rates on the
test set, by training language models with an open
vocabulary, and using no unknown word probability
estimation.

The perplexities and OOV rates on each test cor-
pora are shown in Figure 2. The pattern of perplexi-
ties is quite distinct across the two test domains, with

the perplexity from out-of-domain data relatively
much higher for the st test set. The in-domain data
LM also shows the lowest perplexity consistently on
this test set, whilst for nc, the in-domain LM has
a similar perplexity to the ep+nc LM. In fact for
3/5 languages (fr,cs and de) the ep+nc LM has the
lowest perplexity.

With regard to the OOV rates, it is notable that
for nc the rate is actually higher for the in-domain
LM than the out-of-domain LM in three of the lan-
guages: French, German and Spanish. The most
likely reason for this is that these languages have
a relatively rich morphology, so the larger out-
of-domain corpus (Table 1) gives greater cover-
age of the different grammatical suffixes. Czech
shows a different pattern because in this case the
out-of-domain corpus is not much bigger than the
in-domain corpus, and English is morphologically
much simpler so the increase in corpus size does not
help the OOV rate so much.
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Figure 2: Comparison of perplexities and OOV rates on in-domain test data

3.3 Comparing Translation Performance of In
and Out-of-domain Systems

Translation performance was measured on each of
the test sets (nc and st) using systems built from
just the in-domain parallel data, from just the out-of-
domain parallel data, and on a concatenation of the
in and out-of domain data. In other words, systems
built from the ep, nc and ep+nc parallel texts were
evaluated on the nc test data, and systems built from
ep, st and ep+st were evaluated on the st test
data. In all cases, the parallel training set was used
to build both the phrase table and the lexicalised re-
ordering models, the language model was the inter-
polated one described in Section 3.1, and the system
was tuned on data from the same domain as the test
set.

From Figure 3 it is clear that the difference be-
tween the in and out-of domain training sets is much
bigger for st than for nc. The BLEU scores on nc
for the nc trained systems are on average 1.3 BLEU

points higher than those for the ep trained systems,
whilst the scores on st gain an average of 6.0 BLEU

points when the training data is switched from ep
to st. The patterns are quite consistent across lan-
guages for the st tested systems, with the gains
varying just from 5.2 to 7.2. However for the nc

tested systems there are some language pairs which
show a gain of more than 2 BLEU points when mov-
ing from out-of to in-domain training data (cs-en,
en-es and es-en), whereas en-fr shows no change.
The main link between the perplexity and OOV re-
sults in Figure 2 and the BLEU score variations in
Figure 3 is that the larger in/out differences between
the two domains is reflected in larger BLEU differ-
ences. However it is also notable that the two lan-
guages which display a rise in perplexity between
nc and ep+nc are es and en, and for both es-en and
en-es the ep+nc translation system performs worse
than the nc trained system.

The BLEU gain from concatenating the in and out-
of domain data, over just using the in-domain data
can be quite small. For the nc domain this averages
at 0.5 BLEU (with 3/8 language pairs showing a de-
crease), whilst for the st domain the average gain is
only 0.2 BLEU (with again 3/8 language pairs show-
ing a decrease). So even though adding the out-of-
domain data increases the training set size by a fac-
tor of 10 in most cases, its effect on BLEU score is
small.
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Figure 3: Comparison of translation performance using models from in-domain, out-of-domain and joint
data.

3.4 Why Does Adding Parallel Data Help?

In the previous section it was found that, across all
language pairs and both data sets, adding in-domain
data to an out-of-domain training set nearly always
has a positive impact on performance, whilst adding
out-of-domain data to an in-domain training set can
sometimes have a small positive effect. In this sec-
tion several experiments are performed with “inter-
mediate” phrase tables (built from a single parallel
corpus, augmented with some elements of the other
parallel corpus) in order to determine how different
aspects of the extra data affect performance. In par-
ticular, the experiments are designed to show the ef-
fect of the extra data on the alignments, the phrase
scoring and the phrase coverage, whether adding in-
domain data to an existing out-of-domain trained
system, or vice-versa.

For each of the language pairs used in this paper,
and each of the two domains, two series of experi-
ments were run comparing systems built from a sin-
gle parallel training set, intermediate systems, and
systems built from a concatenation of the in and out-
of-domain parallel data sets. Only the parallel data
was varied, the language models were as described

in Section 3.1, and the lexicalised reordering mod-
els were built from both training sets in all cases,
except for the systems built from a single parallel
data set2. This gives a total of four series of experi-
ments, where the ordered pair of data sets (x,y) was
set to one of (ep,nc), (nc,ep), (ep,st), (st,ep).
In each of these series, the following translation sys-
tems were trained:
x The translation table and lexicalised reordering

model were estimated from the x corpus alone.
x+y The translation system built from the x and y

parallel corpora concatenated.
x+yAAs x but using the additional y corpus to cre-

ate the alignments. This means that GIZA++
was run across the entire x+y corpus, but only
the x section of it was used to extract and score
phrases.

x+yW As x+yA but using the phrase scores from
the x+y phrase table. This is effectively the
x+y system, with any entries in the phrase table
that are just found in the y corpus removed.

2Further experiments were run using the parallel data from a
single data set to build the translation model, and both data sets
to build the lexicalised reordering model, but the difference in
score compared to the x system was small (< 0.1 BLEU)
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x+yE As x+yA but adding the extra entries from
the x+y phrase table. This is effectively the
x+y system, but with the scores on all phrases
that are found in x phrase table set to their val-
ues from that table.

All systems were tuned and tested on the appro-
priate in-domain data set (either nc or st). Note
that in the intermediate systems, the phrase table
scores may no longer correspond to valid probability
distributions, but this is not important as the proba-
bilistic interpretation is never used in decoding any-
way.

The graphs in Figure 4 show the performance
comparison between the single corpus systems, the
intermediate systems, and the concatenated corpus
systems, averaged across all 8 language pairs. Table
2 shows the full results broken down by language
pair, for completeness, but the patterns are reason-
ably consistent across language pair.

Firstly, compare the x+yW and x+yE systems, i.e.
the systems where we add just the weights from the
second parallel data set versus those where we add
just the entries. When x is the out-of-domain (ep)
data, then it is clearly more profitable to update the
phrase-table entries than the weights from the in-
domain data. In fact for the systems tested on st,
the difference is quite striking with a +5.7 BLEU

gain for the ep+stE system over the baseline ep
system, but only a +1.5 gain for the ep+stW sys-
tem. For the systems tested on the nc, adding the
entries from nc gives a larger gain in BLEU than
adding the weights (+1.3 versus +0.8), but both
improve the BLEU scores over the ep+ncA system.
The conclusion is that the extra entries from the in-
domain data (the “fill-up” of Bisazza et al. (2011))
are more important than the improvements in phrase
scoring that in-domain data may provide.

Looking at the other two sets of x+yW and x+yE
systems, i.e. those where x is the in-domain data,
tells another story. In this case, the results on both
the nc and st test sets (Figure 4(b)) suggest that it is
generally more useful to use the out-of-domain data
as only a source of extra phrase-table entries. This is
because the x+epE systems are the highest scoring
in both cases, scoring higher than systems built from
all the data concatenated by margins of 0.5 (for nc)
and 0.4 (for st). This pattern is consistent across
all the language pairs for nc, and across 5 of the 8

language pairs for st. Using the out-of-domain data
set to update only the weights (the x+epW systems)
generally degrades performance when compared to
the systems that only use the ep data at alignment
time (the x+epA systems).

The size of the effect of adding extra data to the
alignment stage only is mixed (as observed by (Duh
et al., 2010)), but in general all the x+yA systems
show an improvement over the x systems. In fact,
for the st domain, adding ep at the alignment stage
is the only consistent way to improve BLEU. Adding
the weights, entries, or the complete out-of-domain
data set does not always help.

3.5 Word Precision Versus Frequency
The final set of experiments addresses the question
of whether the change of translation quality when
adding out-of-domain has a different effect depend-
ing on word frequency. To do this, the systems
trained on in-domain only are compared with the
systems trained on all data concatenated, using a
technique for measuring the precision of the trans-
lation for each word type.

To calculate the precision of a word type, it is
necessary to examine each translated sentence to
see which source words were translated correctly.
This is done by recording the word alignment in the
phrase mappings and tracking it through the transla-
tion process. If a word is produced multiple times in
the translation, but occurs a fewer number of times
in the reference, then it is assigned partial credit.
Many-to-many word alignments are treated simi-
larly. Precision for each word type is then calculated
in the usual way, as the number of times that word
appears correctly in the output, divided by the to-
tal number of appearances. The word types are then
binned according to the log2 of their frequency in
the in-domain corpus and the average precision for
each bin calculated, then these are in turn averaged
across language pairs.

The graphs in Figure 5 compare the in-domain
source frequency versus precision relationship for
systems built using just the in-domain data, and sys-
tems built using both in and out-of domain data.
There is a consistent increase in precision for lower
frequency words (occurring less than 30 times in
training), but the total number of occurrences of
these words is low, so they contribute less to over-
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Figure 4: Showing the performance change when starting with either in or out-of domain data, and adding
elements of the other data set. The “A” indicates that the second data set is only used for alignments, the “W”
indicates that it contributes alignments and phrase scores, and the “E” indicates that it contributes alignments
and phrase entries. The figures above each bar shows the performance change relative to the single corpus
system.

System cs-en en-cs de-en en-de fr-en en-fr es-en en-es
ep 23.3 13.4 25.5 17.5 28.9 29.2 35.4 34.5
ep+ncA 23.5 (+0.2) 13.8 (+0.4) 25.9 (+0.4) 17.9 (+0.4) 29.3 (+0.4) 29.6 (+0.4) 35.7 (+0.3) 34.9 (+0.5)
ep+ncW 24.0 (+0.7) 14.2 (+0.8) 26.3 (+0.8) 18.2 (+0.7) 29.4 (+0.5) 29.8 (+0.6) 36.3 (+0.9) 35.6 (+1.1)
ep+ncE 26.2 (+2.9) 14.0 (+0.6) 27.0 (+1.5) 18.5 (+1.0) 29.7 (+0.9) 30.0 (+0.8) 37.0 (+1.7) 35.7 (+1.3)
nc 26.1 (+2.9) 14.3 (+0.9) 26.7 (+1.2) 18.0 (+0.6) 29.3 (+0.4) 29.1 (-0.1) 37.6 (+2.2) 36.5 (+2.1)
nc+epA 26.8 (+3.5) 14.6 (+1.2) 27.5 (+2.0) 18.5 (+1.0) 30.4 (+1.5) 29.9 (+0.7) 37.7 (+2.3) 36.4 (+2.0)
nc+epW 26.6 (+3.3) 14.4 (+1.0) 27.4 (+1.9) 18.4 (+1.0) 29.5 (+0.6) 29.8 (+0.6) 37.2 (+1.8) 36.5 (+2.0)
nc+epE 27.4 (+4.1) 14.7 (+1.3) 28.1 (+2.6) 19.0 (+1.5) 30.9 (+2.0) 30.2 (+1.0) 38.4 (+3.0) 36.9 (+2.4)
ep+nc 26.9 (+3.6) 14.2 (+0.8) 27.4 (+1.9) 18.8 (+1.3) 30.4 (+1.5) 30.0 (+0.8) 37.4 (+2.0) 36.4 (+2.0)
System cs-en en-cs nl-en en-nl fr-en en-fr es-en en-es
ep 10.9 6.9 18.2 15.7 14.5 13.8 19.1 17.1
ep+stA 11.9 (+1.0) 7.5 (+0.6) 19.0 (+0.8) 16.3 (+0.5) 15.0 (+0.5) 14.1 (+0.3) 19.8 (+0.7) 17.8 (+0.7)
ep+stW 12.2 (+1.3) 8.1 (+1.2) 20.0 (+1.7) 17.4 (+1.7) 15.8 (+1.3) 14.9 (+1.1) 20.8 (+1.7) 18.8 (+1.8)
ep+stE 18.0 (+7.1) 12.4 (+5.5) 22.5 (+4.2) 20.6 (+4.9) 19.6 (+5.1) 19.9 (+6.1) 25.6 (+6.5) 23.3 (+6.3)
st 18.0 (+7.2) 12.2 (+5.3) 23.4 (+5.1) 21.3 (+5.6) 19.7 (+5.2) 19.8 (+6.0) 26.3 (+7.2) 23.2 (+6.1)
st+epA 18.4 (+7.6) 12.4 (+5.5) 23.6 (+5.4) 21.3 (+5.6) 20.2 (+5.7) 20.1 (+6.3) 26.4 (+7.3) 23.5 (+6.5)
st+epW 18.2 (+7.3) 12.2 (+5.3) 22.4 (+4.2) 21.0 (+5.3) 19.9 (+5.4) 19.8 (+6.0) 25.8 (+6.7) 23.2 (+6.1)
st+epE 19.1 (+8.3) 12.5 (+5.6) 24.0 (+5.8) 21.7 (+6.0) 20.6 (+6.1) 20.9 (+7.1) 26.0 (+6.9) 23.7 (+6.6)
ep+st 18.5 (+7.6) 12.5 (+5.6) 23.0 (+4.8) 21.2 (+5.5) 20.4 (+5.9) 20.2 (+6.5) 26.0 (+6.9) 23.8 (+6.8)

Table 2: Complete scores for the experiments described in Section 3.4 and summarised in Figure 4. Naming
of the systems is explained in the text, and in the caption for Figure 4
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Figure 5: Performance comparison of in-domain systems versus systems built from in and out-of domain
data concatenated. Precision is plotted against log2 of in-domain training frequency, and averaged across all
8 language pairs. The width of the bars indicates the average total number of occurrences in the test set.

all measures of translation quality. For the words
with moderate training set frequencies, the precision
is actually slightly higher for the systems built with
just in-domain data, an effect that is more marked
for the st domain.

4 Conclusions

In this paper we have attempted to give an in-
depth analysis of the domain adaptation problem for
two different domain adaptation problems in phrase-
based MT. The differences between the two prob-
lems are clearly illustrated by the results in Fig-
ures 2 and 3, where we see that the difference be-
tween the in-domain and out-of-domain data are
larger for the OpenSubtitles domain than for the
News-Commentary domain. This can be detected
by the differences in word distribution and out-of-

vocabulary rates observed in Figure 2, and is re-
flected by the differing translation results in Figure
3.

However, the experiments of Sections 3.4 and 3.5
show some common themes emerging in the two do-
mains. In both cases, the out-of-domain data helps
most when it is just allowed to add entries (i.e. “fill
in”) the phrase-table, and using the scores provided
by out-of-domain data has a tendency to be harmful
to translation quality. The precision results of Sec-
tion 3.5 show out-of-domain data (when it is sim-
ply added to the training set) mainly helping with
the low frequency words, and having a neutral or
harmful effect for higher frequency words. This ex-
plains why approaches which try to weight the out-
of-domain data in some way (e.g. corpus weighting
or instance weighting) can be more successful than
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simply concatenating data sets. It also suggests that
the way forward is to look for methods that use the
out-of-domain data mainly for rarer words, and not
to change translations which have a lot of evidence
in the in-domain data.
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Abstract

The new frontier of computer assisted transla-
tion technology is the effective integration of
statistical MT within the translation workflow.
In this respect, the SMT ability of incremen-
tally learning from the translations produced
by users plays a central role. A still open
problem is the evaluation of SMT systems that
evolve over time. In this paper, we propose
a new metric for assessing the quality of an
adaptive MT component that is derived from
the theory of learning curves: the percentage
slope.

1 Introduction

Translation memories and computer assisted trans-
lation (CAT) tools are currently the dominant tech-
nologies in the translation and localization market,
but recent achievements in statistical MT have raised
new expectations in the translation industry. So far,
statistical MT has focused on providing ready-to-use
translations, rather than outputs that minimize the
effort of a human translator. The MateCAT project1

aims at pushing what can be considered the new
frontier of CAT technology: how to effectively inte-
grate statistical MT within the translation workflow.

One pursued research direction is developing do-
main adaptive SMT models, i.e. models that dynam-
ically adapt to the translations that are continuously
added to the translation memory by the user dur-
ing her/his work. The ideal goal is to progressively
reduce the mismatch between training and testing

1http://www.matecat.com/

data, in such a way that the adapted SMT engine will
be able to provide the user with useful suggestions
– i.e. perfect or worth being post-edited – when the
translation memory fails to retrieve perfect or almost
perfect matches. Among the well known machine
learning paradigms that fit with this scenario are on-
line learning and incremental learning, which basi-
cally differ in the amount of data that is employed
to dynamically adapt the system: a single piece of
data in the first case and a batch of data in the lat-
ter. Notice that in both cases one assumes that do-
main adaptation is performed efficiently, i.e. by only
processing the newly received data. Moreover, al-
though the quantity of acquired in-domain data is
generally limited, their high quality and relevance to
the translation task justify their exploitation by all
means possible.

Domain adaptive SMT embeds two challenges:
(1) the design of effective adaptation algorithms, and
(2) the evaluation of MT systems evolving over time.
Since the ultimate goal of our efforts is to increase
the productivity of human translators, the most ac-
curate assessment methodology would be of course
to run a field test. This way, we could compare pro-
ductivity of human translators receiving suggestions
from an MT engine featuring dynamic domain adap-
tation against the productivity of human translators
working with a static MT engine. As this evaluation
is infeasible during daily MT development, we can
resort to the several automatic MT metrics, which
however, as we will see later, are unsuitable to track
the dynamic behaviors we are interested to inves-
tigate. Metrics for measuring performance in the
case of interactive MT, see for example (Khadivi,
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2008), like Key-Stroke Ratio (KSR), Mouse-Action
Ratio (MAR), Key-Stroke and Mouse-Action Ratio
(KSMR) are known to correlate well with the pro-
ductivity of human translators, but their computation
requires the actual use of an interactive MT system,
i.e. a field test.

In the SMART project,2 the evaluation of adap-
tive interactive MT is explored (Cesa-Bianchi et al.,
2008). While no specific metric is proposed, the
analysis is based on a plot of cumulative differences
of BLEU scores between a baseline and an adaptive
system. These differences are computed sentence by
sentence and present an interesting view of the dy-
namic change of the MT system. We are going to
further elaborate on this idea.

Other metrics like Character Error Rate (CER)
and Translation Edit Rate (TER) would accurately
predict the translators’ productivity if references
were generated by using the CAT system; on the
contrary, references are usually, as in this paper, gen-
erated from scratch based only on the source text
and can thus be quite far from CAT-based transla-
tions, both lexically and syntactically. The Human-
targeted variant of TER, HTER (Snover et al., 2006),
needs human intervention and is therefore unfit to
meet our requirements.

The main goal of this paper is to design an objec-
tive automatic evaluation methodology for an MT
system adapting over time. We propose to use the
percentage slope from the theory on learning curves
to measure the learning ability of adaptive MT sys-
tems.

To assess the proposed metric, we have imple-
mented a simple but effective adaptation strategy
suitable for an MT system integrated in a CAT tool.
We show that the percentage slope is able to expose
different dynamic behaviors, such as learning, no
learning, and forgetting.

2 Dynamic Adaptation Framework

In the MateCAT project scenario, the MT system,
which is embedded in the CAT tool to increase the
translators’ productivity, adapts over time by ex-
ploiting translations generated by the user. The
adapted system is then used to provide the user
with translation suggestions for the next sentences.

2http://www.smart-project.eu

We refer to this process as dynamic (or incremen-
tal) adaptation to emphasize that adaptation hap-
pens continuously based on a stream of data.

2.1 Abstract View of the Adaptation Process

From an abstract point of view, the framework of in-
cremental adaptation can be summarized as follows:

i) before the process starts, an initial system is
built on available data including a parallel cor-
pus;

ii) a stream of parallel data becomes available that
is split into blocks of (not necessarily) similar
size;

iii) the first/next block is considered, but only the
source is available yet;

iv) the latest instance of the adapting system trans-
lates the source text of the current block;

v) the target part of the current block becomes
available for use;3

vi) the system is adapted using the current parallel
block and possibly all the previous ones;

vii) the loop continues from step iii) until all blocks
are processed.

In each adaptation step, all of the data available
so far can be used, but no look ahead is possible.
Note that, in principle, each block is translated with
a different instance of the adapting system; hence,
the same text occurring in two different blocks can
be translated differently.

2.2 Evaluation Goals and Requirements

Although dynamic adaptation is closely related to
static domain adaptation (Foster and Kuhn, 2007),
in this scenario we are not interested in the quality
of the final model. In fact, this model is only avail-
able once the stream is depleted and therefore is not
used anymore.

What we are interested in, and what we want to
compare among different approaches, is the systems
evolvement over time.

Consider a translator who uses such an incremen-
tally adapting system and performs post-editing on
its suggested translations. The highest productivity

3In the CAT framework, the target part of a block is the
translation post-edited by the user.
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gain is achieved when the adaptation is quick and
persistent.

Even though in this paper we are concerned with
an automatic metric, it is important to keep the use
case of CAT in mind, in particular the presence of
a human translator. The TransType2 project4 has
found that repeated correction of the same error is
strongly disliked by editors (Macklovitch, 2006) and
may lead to rejection of the entire system. Similarly,
segments that were translated correctly by previous,
less adapted systems, should not be negatively af-
fected by updates. We will refer to these particular
aspects of adaptation as backward reliability.

Automatic measures, which are aimed at static
MT modules, can not take the evolution of the sys-
tem into account and are therefore unable to pinpoint
such problems. Thus, they are not suitable for the
dynamic adaptation scenario.

A new evaluation methodology should satisfy the
following requirements:

• ability to compare different strategies
• show behavior over time and reward early im-

provements and consistent adaptation
• expose possible overfitting, i.e. check whether

generalization is lost due to overly aggressive
adaptation

• strong correlation to human productivity
• estimate benefit over a static baseline model

without adaptation
• check backward reliability.

2.3 Evaluation Protocol
The performance of adaptive systems as sketched
in Section 2.1 is evaluated on different parts of the
stream as opposed to the global evaluation used for
static systems. We distinguish between two proto-
cols which differ in their use of historic data.

For block-wise evaluation only the translations of
the most recent block are evaluated with respect to
the correct translations once these become available.
Any static automatic MT score, e.g. TER (Snover
et al., 2006), BLEU (Papineni et al., 2001), can be
used, provided that it is reliable on a block of usually
relatively small size.

In contrast, in incremental evaluation the scores
are computed on all blocks available so far. The

4http://tt2.atosorigin.es

translations of previous blocks are kept fixed, i.e.
blocks are not translated again once a newly adapted
system becomes available as this new system has al-
ready seen this data.

Both the block-wise and incremental protocols
yield a sequence of scores that reflects the adaptation
behavior over time. The former is useful to expose
potential weaknesses as discussed above: we expect
to see improvement at first and after a while, when
enough adaptation data is available, a level curve. If
this is not the case, this indicates a problem:

i) should the scores deteriorate over time we
might be facing overfitting, possibly due to un-
expected heterogeneity in our corpus;

ii) if the scores continue to improve, then the adap-
tation method is not aggressive enough and the
system underfits.

The incremental evaluation on the other hand allows
for easy comparison of different adaptation strate-
gies. While the performance on the most recent
block becomes less important over time, the perfor-
mance on all the blocks processed so far nicely re-
flects the utility of the system in the application set-
ting.

The metric we are going to propose in the next
section processes such sequences of partial scores.
It accumulates the trend into a single number and
offers an interpretation that relates adaptive behavior
to productivity gains.

3 The Percentage Slope

Learning curves (see (Stump P.E., 2002) for a de-
tailed introduction) are mathematical models used
to estimate the efficiency gain when an activity is
repeated. The learning effect was noted in indus-
trial environment: the underlying notion is that when
people repeat an activity, there tends to be a gain in
efficiency. That is exactly the expected behavior of
our dynamically adapting MT system: it should im-
prove its performance on texts including terms and
expressions whose proper translation has been pre-
viously provided. Thus we decided to exploit ele-
ments from learning theory to measure the evolution
of translation capability.

Several learning curve models have been pro-
posed, but only two are in widespread use, the unit
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(U) model due to Crawford and the cumulative av-
erage (CA) model due to Wright. Both models are
based on a common mathematical form:

y = axb (1)

where:

a represents the theoretical labor hours required
to build the first unit produced (a positive num-
ber)

b represents the rate of learning (negative value,
except for “forgetting”)

x represents the number of an item in the produc-
tion sequence (unit #1, #2, #3, . . .)

The models differ in the interpretation of y:

U: y is the labor hours required to build unit #x

CA: y is the average labor hours per unit required
to build the first x units

Since b is a mathematically appropriate but
counter-intuitive number for describing the slope,
the percentage slope S is typically used:

S = 10b log10(2)+2 (2)

S provides the rate of learning on a scale of 0 to 100,
as a percentage. A 100% slope represents no learn-
ing at all, zero percentage reflects a theoretically in-
finite rate of learning. In practice, human operations
hardly ever achieve a rate of learning faster than 70%
as measured on this scale.

The correspondence between our block-wise eval-
uation (Section 2.3) with the U model, and the incre-
mental evaluation with the CA model is straightfor-
ward. In the first case, y is the number of errors
done in the translation of the block #x; in the sec-
ond case, y is the average number of errors (that is
the TER score or the 100-BLEU score) made on the
first x blocks.

From a practical point of view, the sequence of
scores can be provided while the adapting system is
being used; the learning curve which best matches
the sequence is then found5 and eventually the per-
centage slope S is computed.

5Notice that the best fitting learning curve can be estimated
in the log scale with a simple linear regression analysis.

set #sent. #src words #tgt words
train 1.2M 18.9M 19.4M
test 3.4k 57.0k 61.4k

Table 1: Overall statistics on parallel data of the IT
domain used for training and testing the SMT system.
Counts of (English) source words and (Italian) target
words refer to tokenized texts.

4 Experiments

In order to test-drive the evaluation metric intro-
duced in Section 3, several SMT systems showing
effective, weak, poor or absent adaptation capabil-
ity have been developed. Moreover, a preliminary
investigation on backward reliability has been car-
ried out. The next paragraphs detail and discuss the
experiments performed.

4.1 Data

The task considered in this work involves the trans-
lation from English into Italian of documents in the
Information Technology (IT) domain.

The training set consists of a large Translation
Memory in the IT domain and several OPUS6 sub-
corpora, namely KDE4, KDEdoc and PHP. The test
set includes the human generated translation of 6
documents, disjoint from the training set. Although
in the same domain, the test set is quite different
from the training data as shown by comparing val-
ues of perplexity (650 vs. 40) and OOV rate (2.4%
vs. 0.4%) computed on the source side.7 Further-
more, the 6 documents significantly differ among
each other: perplexity and OOV rate range from 465
to 880 and from 0.8 to 3.3, respectively. Table 1 col-
lects overall statistics on training and test sets.

To simulate the stream of fresh data, the IT test
set has been split into blocks of about a thousand8

words each. Before splitting, sentences have been
scrambled, with the rationale of generating a large
number of homogeneous blocks, simulating a test
set consisting of a single document.

6http://opus.lingfil.uu.se
7Figures for the training data were measured through a

cross-validation technique.
8Different sizes have been also considered (three and five

thousands) to test different adaptation rates, but results were
qualitatively similar to those on shorter blocks and then are not
reported.
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4.2 Baseline System

The SMT baseline system is built upon the open-
source MT toolkit Moses9 (Koehn et al., 2007).
The translation and the lexicalized reordering mod-
els are estimated on parallel training data with the
default setting; a 5-gram LM smoothed through the
improved Kneser-Ney technique (Chen and Good-
man, 1999) is estimated on monolingual texts via
the IRSTLM toolkit (Federico et al., 2008). Here-
inafter, these models are referred to as background
(BG) models. The log-linear interpolation weights
are optimized by means of the standard MERT pro-
cedure provided within the Moses toolkit.

4.3 Adaptive System

The adapting SMT system is built on Moses as well.
Besides the BG models of the baseline system, trans-
lation, reordering and language models estimated on
the stream of fresh data are employed as additional
features. Hereinafter, these models are referred to
as foreground (FG) models. Unless differently spec-
ified, the FG models employed to translate a given
block are trained on all preceding blocks. Note that
the first instance of the adapting system (i.e. that
translating the first block) is exactly the baseline sys-
tem, because no adaptation data is available to train
FG models yet. FG translation and reordering mod-
els are trained in the same way as the BG models.
Due to the limited amount of adaptation data, the FG
LM is a 3-gram LM smoothed through the more ro-
bust Witten-Bell technique (Witten and Bell, 1991).

The interpolation weights are inherited from a
companion system trained and tuned on a different
domain – official documents of the European Union
organization – and are kept fixed.

4.4 Experiments on Adaptive SMT

First of all, the baseline and adapting systems were
run on the scrambled test set and compared at both
block-wise and incremental mode (see Section 2.3).

Figure 1 plots block-wise TER and BLEU scores
of the baseline and adapting systems as functions of
the amount (number of words) of adaptation data.
On one hand, it can be guessed that the adapting
system performs gradually better and better than the
baseline; on the other hand, it is evident that such

9http://www.statmt.org/moses

plots are not the most effective way to show the evo-
lution of the adapting system. In fact, the transla-
tion difficulty of contiguous blocks can differ a lot.
Hence, scores computed on them are not comparable
and the corresponding curves are jagged.

The block-wise differences of TER and BLEU
scores between the adapting and the baseline sys-
tems are plotted in Figure 2: the plots are now
cleaner and more readable and vaguely suggest a
positive trend, but still remain too jagged and do not
provide any information about the absolute perfor-
mance of the systems.

Figure 3 plots the incremental TER and BLEU
scores of the baseline and adapting systems as func-
tions of the amount of adaptation data. First of all,
it is worth noting that the right-most values are the
scores computed on the whole test set. In standard
evaluation, those would be the only scores provided
to show how the adapting system outperforms the
baseline system; in particular, the relative improve-
ment is larger for TER (9.3%) than for BLEU (3.9%)
supposedly because tuning was performed to opti-
mize BLEU score which thus is harder to improve.
However, the overall scores obscure the way they
are reached, that is the evolution over time of the
systems, which is especially important for adaptive
systems.

Secondly, the incremental evaluation yields much
smoother plots clearly showing that after initial fluc-
tuations: (i) performance of the baseline stabilizes
around an average which does not change over time;
(ii) scores of the adapting system tend to get increas-
ingly better as more adaptation data is available for
updating FG models.

The evaluation metric we are proposing, the per-
centage slope introduced in Section 3, is indeed able
to spot such kind of paradigmatic behaviors as we
will see in the next section. But before going on
with the assessment of the metric, some further com-
ments on Figure 3:

• in early stages, the adaptation is not effective,
likely because of the scarcity of data. This
raises two issues: design of more effective
adaptation strategies and, in the CAT frame-
work, identifying the appropriate time to re-
place the baseline with the adapting system;

• the adaptive system outperforms the baseline in
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Figure 1: Block-wise TER (on the left) and BLEU (right) scores of the baseline and the dynamically adapting systems.
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Figure 2: Block-wise TER (left) and BLEU (right) differences between the baseline and the dynamically adapting
systems.

terms of TER very soon, while the overtaking
with regard to BLEU is observed much later.
This is because the baseline SMT system was
tuned with respect to the BLEU score on in-
domain data, differently to the adapting system.

Both these issues are out of the scope of this paper
and will be subject of future investigations.

4.5 Assessment of the Percentage Slope
To assess its effectiveness, the percentage slope has
been computed on errors committed by the baseline
system, the adapting system and an adapting system
featuring only FG models (that is without BG mod-
els). The FG-only system was used to translate each
block either fairly and unfairly: the former mode fits
the adaptation process sketched in Section 2.1; in the
latter mode, the FG model is adapted on the block

before its translation starts.
Figure 4 shows the TER and BLEU scores of such

systems in the incremental evaluation. The four dif-
ferent behaviors are expected to correspond to dif-
ferent percentage slopes. In fact, the S values col-
lected in Table 2 confirm the expectations:

• the baseline, completely unable to learn, has in
fact an S of 100%

• the adapting system, that learns through a dy-
namic adaptation of FG models and generalizes
thanks to BG models, has an S of 96-98%

• the FG-only adapting system tested in unfair
mode worsens its performance as the models
become larger, i.e. less focused on the block to
be translated: this is evidenced by an S greater
than 100%
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Figure 3: Incremental TER (left) and BLEU (right) scores of the baseline and the dynamically adapting systems.

model
system

baseline adapting
FG-only adapting
fair unfair

U 100.4 96.9 96.2 107.2
CA 100.3 97.7 96.5 107.4

Table 2: S values of 4 SMT systems (see text) for
the block-wise TER evaluation, corresponding to the U
model, and the incremental evaluation, corresponding to
the CA model.

• the FG-only adapting system tested in fair
mode increases its performance as the models
become larger, i.e. more general, as evidenced
by an S similar to that of our original adapting
system (96%).

Therefore, we can state that S exposes common
behaviors of evolving SMT systems; however, stan-
dard metrics like TER and BLEU are still in charge
of providing absolute performance measures.

In order to give a hint for properly interpret-
ing the values reported, we summarize the discus-
sion in (Stump P.E., 2002) about “typical learning
slopes”. Operations that are fully automated tend
to have slopes of 100%, 70% if entirely manual, an
intermediate value if mixed. In real industrial envi-
ronments, the average slope depends on the type of
manufacturing activity: for example, in aircraft in-
dustry it is about 85%, it ranges in 90-95% in elec-
tronics and in machining. Hence, a 96-98% slope
as we measured in our experiments must be con-
sidered a significant learning ability of a fully au-

tomated system.

4.6 Experiments on Backward Reliability
A proper assessment of the backward reliability of
an evolving system as defined in Section 2.2 would
require the identification of patterns translated dif-
ferently by the system during its life. We will inves-
tigate this issue in the future. For the moment, we
try to attack the problem from a global point of view:
we simply check that the adaptive system does ”re-
member” its previous translation capabilities “on av-
erage”, while it learns to better translate novel texts.

To this end, a cross-validation policy was fol-
lowed: the first two thirds of each test set document
are used for dynamically training the FG models,
while the remaining portions are used as held-out
test sets.

Figure 5 reports the TER and BLEU scores on
the 6 test sets of three systems: the baseline sys-
tem (bsln), the adapting system (ada) fed by in-
crementally merging the available reduced adapta-
tion sets, and the system adapted on all adaptation
data sets (final).

The final system achieves performance close
to ada system on each held-out set; this reveals that
our adaptation process is effective both in learning
and in remembering.

We think that the monitoring of the backward re-
liability of adapting systems is a good practice. A
cross validation scheme like ours allows not only to
reveal the backward reliability as shown before, but
also to discover the forgetting trend of, for example,
an MT system featuring an overly aggressive learn-
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Figure 4: Incremental TER (left) and BLEU (right) of 4 systems showing different learning slopes.

ing method. On the other hand, it only provides cues
about the average behavior and it is not as quickly
informative as a single score could be. Hence, the
design of a proper metric for measuring the back-
ward reliability of MT systems is a challenging task
that should be faced by the research community.

5 Summary and Future Work

The evaluation of a dynamically adapting system is
an open issue. Metrics used in interactive MT such
as HTER or field tests, are infeasible in the daily de-
velopment as they involve human translators/judges.
On the other hand, standard MT evaluation met-
rics either do not expose changes over time (BLEU,
TER) or cannot be applied (CER).

The main contribution of this paper is to propose
the use of the percentage slope for the evaluation of
adapting MT systems, a metric borrowed from the
theory on learning curves. For assessing its effec-
tiveness, we have developed a simple but effective
adapting SMT system suitable to work in the context
of a CAT tool supported by MT. We have compared
several ways to plot the change in error rate over
time for different systems and identified the most
suitable for computing the percentage slope. Finally,
we have shown that the percentage slope well ex-
poses the paradigmatic behaviors of evolving SMT
systems.

The MateCAT project has scheduled field tests
for the near future which will allow for inclusion
of human productivity in the assessment of the per-
centage slope. Moreover, efforts will be devoted to
the design of adaptation techniques which are more

sophisticated than the simple approach used in this
work.

We have also identified the issue of backward re-
liability of an adapting system, that is the ability to
learn without forgetting the past, and the importance
of monitoring it. A best practice based on a cross
validation scheme has been proposed. Future inves-
tigations will concern finding an effective metric to
measure backward reliability.
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Abstract

SMT typically models translation at the sen-
tence level, ignoring wider document context.
Does this hurt the consistency of translated
documents? Using a phrase-based SMT sys-
tem in various data conditions, we show that
SMT translates documents remarkably con-
sistently, even without document knowledge.
Nevertheless, translation inconsistencies often
indicate translation errors. However, unlike in
human translation, these errors are rarely due
to terminology inconsistency. They are more
often symptoms of deeper issues with SMT
models instead.

1 Introduction

While Statistical Machine Translation (SMT) mod-
els translation at the sentence level (Brown et al.,
1993), human translators work on larger translation
units. This is partly motivated by the importance
of producing consistent translations at the document
level. Consistency checking is part of the quality as-
surance process, and complying with the terminol-
ogy requirements of each task or client is crucial.
In fact, many automatic tools have been proposed to
assist humans in this important task (Itagaki et al.,
2007; Dagan and Church, 1994, among others).

This suggests that wider document-level context
information might benefit SMT models. However,
we do not have a clear picture of the impact of
sentence-based SMT on the translation of full doc-
uments. From a quality standpoint, it seems safe to
assume that translation consistency is as desirable

for SMT as for human translations. However, con-
sistency needs to be balanced with other quality re-
quirements. For instance, strict consistency might
result in awkward repetitions that make translations
less fluent. From a translation modeling standpoint,
while typical SMT systems do not explicitly enforce
translation consistency, they can learn lexical choice
preferences from training data in the right domain.

In this paper, we attempt to get a better under-
standing of SMT consistency. We conduct an em-
pirical analysis using a phrase-based SMT system in
a variety of experimental settings, focusing on two
simple, yet understudied, questions. Is SMT output
consistent at the document level? Do inconsistencies
indicate translation errors?

We will see that SMT consistency issues are quite
different from consistency issues in human transla-
tions. In fact, while inconsistency errors in SMT
output might be particularly obvious to the human
eye, SMT is globally about as consistent as human
translations. Furthermore, high translation consis-
tency does not guarantee quality: weaker SMT sys-
tems trained on less data translate more consistently
than stronger larger systems. Yet, inconsistent trans-
lations often indicate translation errors, possibly be-
cause words and phrases that translate inconsistently
are the hardest to translate.

After discussing related work on consistency and
document modeling for SMT (Section 2), we de-
scribe our corpora in Section 3 and our general
methodology in Section 4. In Section 5, we dis-
cuss the results of an automatic analysis of transla-
tion consistency, before turning to manual analysis
in Section 6.
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2 Related work

While most SMT systems operate at the sentence
level, there is increased interest in modeling docu-
ment context and consistency in translation.

In earlier work (Carpuat, 2009), we investigate
whether the “one sense per discourse” heuristic
commonly used in word sense disambiguation (Gale
et al., 1992) can be useful in translation. We show
that “one translation per discourse” largely holds
in automatically word-aligned French-English news
stories, and that enforcing translation consistency as
a simple post-processing constraint can fix some of
the translation errors in a phrase-based SMT sys-
tem. Ture et al. (2012) provide further empirical
support by studying the consistency of translation
rules used by a hierarchical phrase-based system to
force-decode Arabic-English news documents from
the NIST evaluation.

Several recent contributions integrate translation
consistency models in SMT using a two-pass de-
coding approach. In phrase-based SMT, Xiao et
al. (2011) show that enforcing translation consis-
tency using post-processing and redecoding tech-
niques similar to those introduced in Carpuat (2009)
can improve the BLEU score of a Chinese-English
system. Ture et al. (2012) also show signifi-
cant BLEU improvements on Arabic-English and
Chinese-English hierarchical SMT systems. Dur-
ing the second decoding pass, Xiao et al. (2011)
use only translation frequencies from the first pass
to encourage consistency, while Ture et al. (2012)
also model word rareness by adapting term weight-
ing techniques from information retrieval.

Another line of work focuses on cache-based
adaptive models (Tiedemann, 2010a; Gong et al.,
2011), which lets lexical choice in a sentence be in-
formed by translations of previous sentences. How-
ever, cache-based models are sensitive to error prop-
agation and can have a negative impact on some data
sets (Tiedemann, 2010b). Moreover, this approach
blurs the line between consistency and domain mod-
eling. In fact, Gong et al. (2011) reports statistically
significant improvements in BLEU only when com-
bining pure consistency caches with topic and simi-
larity caches, which do not enforce consistency but
essentially perform domain or topic adaptation.

There is also work that indirectly addresses con-

sistency, by encouraging the re-use of translation
memory matches (Ma et al., 2011), or by using a
graph-based representation of the test set to promote
similar translations for similar sentences (Alexan-
drescu and Kirchhoff, 2009).

All these results suggest that consistency can be
a useful learning bias to improve overall translation
quality, as measured by BLEU score. However, they
do not yet give a clear picture of the translation con-
sistency issues faced by SMT systems. In this paper,
we directly check assumptions on SMT consistency
in a systematic analysis of a strong phrase-based
system in several large data conditions.

3 Translation Tasks

We use PORTAGE, the NRC’s state-of-the-art
phrase-based SMT system (Foster et al., 2009), in a
number of settings. We consider different language
pairs, translation directions, training sets of differ-
ent nature, domain and sizes. Dataset statistics are
summarized in Table 1, and a description follows.

Parliament condition These conditions are de-
signed to illustrate an ideal situation: a SMT system
trained on large high-quality in-domain data.

The training set consists of Canadian parliamen-
tary text, approximately 160 million words in each
language (Foster et al., 2010). The test set also
consists of documents from the Canadian parlia-
ment: 807 English and 476 French documents. Each
document contains transcript of speech by a single
person, typically focusing on a single topic. The
source-language documents are relatively short: the
largest has 1079 words, the average being 116 words
for English documents, 124 for French. For each
document, we have two translations in the other lan-
guage: the first is our SMT output; the second is a
postedited version of that output, produced by trans-
lators of the Canadian Parliamentary Translation and
Interpretation services.

Web condition This condition illustrates a per-
haps more realistic situation: a “generic” SMT sys-
tem, trained on large quantities of heterogeneous
data, used to translate slightly out-of-domain text.

The SMT system is trained on a massive corpus
of documents harvested from the Canadian federal
government’s Web domain “gc.ca”: close to 40M
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lang train data # tgt words test data #tgt words #docs BLEU WER
en-fr parl 167M parl 104k 807 45.2 47.1
fr-en parl 149M parl 51k 446 58.0 31.9
en-fr gov web 641M gov doc 336k 3419 29.4 60.4
zh-en small (fbis) 10.5M nist08 41k 109 23.6 68.9
zh-en large (nist09) 62.6M nist08 41k 109 27.2 66.1

Table 1: Experimental data

unique English-French sentence pairs. The test set
comes from a different source to guarantee that there
is no overlap with the training data. It consists of
more than 3000 English documents from a Canadian
provincial government organization, totalling 336k
words. Reference translations into French were pro-
duced by professional translators (not postedited).
Documents are quite small, each typically focus-
ing on a specific topic over a varied range of do-
mains: agriculture, environment, finance, human re-
sources, public services, education, social develop-
ment, health, tourism, etc.

NIST conditions These conditions illustrate the
situation with a very different language pair,
Chinese-to-English, under two different scenarios:
a system built using small in-domain data and one
using large more heterogeneous data.

Following Chen et al. (2012), in the Small data
condition, the SMT system is trained using the FBIS
Chinese-English corpus (10.5M target words); the
Large data condition uses all the allowed bilingual
corpora from NIST Open Machine Translation Eval-
uation 2009 (MT09), except the UN, Hong Kong
Laws and Hong Kong Hansard datasets, for a total
of 62.6M target words. Each system is then used
to translate 109 Chinese documents from the 2008
NIST evaluations (MT08) test set. For this dataset,
we have access to four different reference transla-
tions. The documents are longer on average than
for the previous conditions, with approximately 470
words per document.

4 Consistency Analysis Method

We study repeated phrases, which we define as a
pair 〈p, d〉 where d is a document and p a phrase
type that occurs more than once in d.

Since this study focuses on SMT lexical choice

consistency, we base our analysis on the actual trans-
lation lexicon used by our phrase-based translation
system (i.e., its phrase-table.) For each document
d in a given collection of documents, we identify
all source phrases p from the SMT phrase-table that
occur more than once. We only consider source
phrases that contain at least one content word.

We then collect the set of translations T for each
occurrence of the repeated phrase in d. Using the
word-alignment between source and translation, for
each occurrence of p in d, we check whether p is
aligned to one of its translation candidates in the
phrase-table. A repeated phrase is translated consis-
tently if all the strings in T are identical — ignoring
differences due to punctuation and stopwords.

The word-alignment is given by the SMT decoder
in SMT output, and is automatically infered from
standard IBM models for the reference1.

Note that, by design, this approach introduces a
bias toward components of the SMT system. A hu-
man annotator asked to identify translation incon-
sistencies in the same data would not tag the exact
same set of instances. Our approach might detect
translation inconsistencies that a human would not
annotate, because of alignment noise or negligible
variation in translations for instance. We address
these limitations in Section 6. Conversely, a human
annotator would be able to identify inconsistencies
for phrases that are not in the phrase-table vocabu-
lary. Our approach is not designed to detect these in-
consistencies, since we focus on understanding lex-
ical choice inconsistencies based on the knowledge
available to our SMT system at translation time.

1We considered using forced decoding to align the reference
to the source, but lack of coverage led us to use IBM-style word
alignment instead.
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en-fr parl parl SMT 4186 73.03 2.627 2.414 529 70.82 34.37 10.12
en-fr parl parl reference 3250 75.94 2.542 2.427 468
fr-en parl parl SMT 2048 85.35 2.453 2.351 303 82.72 52.67 3.52
fr-en parl parl reference 1373 82.08 2.455 2.315 283
en-fr gov web gov doc SMT 79248 88.92 6.262 3.226 2982 60.71 13.05 15.53
en-fr gov web gov doc reference 25300 82.73 4.071 2.889 2166
zh-en small nist08 SMT 2300 63.61 2.983 2.725 109 56.25 18.40 9.81
zh-en small nist08 reference 1431 71.49 2.904 2.695 109
zh-en large nist08 SMT 2417 60.20 3.055 2.717 109 60.00 17.88 10.89
zh-en large nist08 reference 1919 68.94 2.851 2.675 109

Table 2: Statistics on the translation consistency of repeated phrases for SMT and references in five translation tasks.
See Section 5 for details

5 Automatic Analysis

Table 2 reports various statistics for the translations
of repeated phrases in SMT and human references,
for all tasks described in Section 3.

5.1 Global SMT consistency

First, we observe that SMT is remarkably consis-
tent. This suggests that consistency in the source-
side local context is sufficient to constrain the SMT
phrase-table and language model to produce consis-
tent translations for most of the phrases considered
in our experiments.

The column “consistent (%)” in Table 2 shows
that the majority of repeated phrases are translated
consistently for all translation tasks considered. For
French-English tasks, the percentage of repeated
phrases ranges from 73 to 89% . The consistency
percentages are lower for Chinese-English, a more
distant language pair. The Parliament task shows
that translating into the morphologically richer lan-
guage yields slightly lower consistency, all other di-
mensions being identical. However, morphological
variations only explain part of the difference: trans-
lating into French under the Web condition yields the
highest consistency percentage of all tasks, which
might be explained by the very short and repetitive

nature of the documents. As can be expected, incon-
sistently translated phrases are repeated in a docu-
ment more often than average for all tasks (columns
“avg within doc freq”).

Interestingly, the smaller and weaker Chinese-
English translation system (23.6 BLEU) is more
consistent than its stronger counterpart (27.2
BLEU) according to the consistency percent-
ages.The smaller training condition yields a smaller
phrase-table with a lower coverage of the nist08
source, fewer translation alternatives and there-
fore more consistent translations. Clearly consis-
tency does not correlate with translation quality, and
global consistency rates are not indicators of the
translation quality of particular system.

5.2 Consistency of reference translations

Surprisingly, the percentage of consistently trans-
lated phrases are very close in SMT output and hu-
man references, and even higher in SMT for 2 out of
5 tasks (Table 2).

Note that there are fewer instances of repeated
phrases for human references than for SMT, because
the phrase-table used as a translation lexicon natu-
rally covers SMT output better than independently
produced human translations. Word alignment is
also noisier between source and reference.
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zh-en small nist08 human1 1496 71.59 2.974 2.725 109 68.91 34.59 9.71
human2 1356 69.40 2.913 2.687 109 73.22 36.63 7.60
human2 1296 71.60 2.870 2.671 109 71.88 36.68 8.15

zh-en large nist08 human1 2017 70.25 2.943 2.692 109 66.13 30.83 9.64
human2 1855 67.17 2.854 2.667 109 69.42 31.86 9.16
human3 1739 69.70 2.854 2.660 109 68.23 33.78 8.31

Table 3: Statistics on the translation consistency of repeated phrases in the multiple human references available on the
Chinese-English NIST08 test set. See Section 5 for details

There is a much wider gap in coherence per-
centages between references and SMT for Chinese-
English than French-English tasks, as can be ex-
pected for the harder language pair. In addition,
the same nist08 reference translations are more con-
sistent according to the phrase-table learned in the
small training condition than according to the larger
phrase-table. This confirms that consistency can sig-
nal a lack of coverage for new contexts.

5.3 Consistency and correctness

While translation consistency is generally assumed
to be desirable, it does not guarantee correctness:
SMT translations of repeated phrases can be consis-
tent and incorrect, or inconsistent and correct. In or-
der to evaluate correctness automatically, we check
whether translations of repeated phrases are found
in the corresponding reference sentences. This is
an approximation since the translation of a source
phrase can be correct even if it is not found in the
reference, and a target phrase found in the refer-
ence sentence is not necessarily a correct translation
of the source phrase considered. Post-edited refer-
ences alleviate some approximation errors for the
Parliament tasks: if the translated phrase matches
the references, it means that it was considered cor-
rect by the human post-editor who left it in. How-
ever, phrases modified during post-edition are not
necessarily incorrect. We will address this approxi-
mation in Section 6.

The columns “% consistent that match reference”

and “% inconsistent that match reference” in Ta-
ble 2 show that consistently translated phrases match
the references more often than the inconsistent ones.
With the post-edited references in the Parliament
condition, a non-negligible percentage of consis-
tently translated phrases are wrong: 17% when
translating into English, and 30% when translating
into French. In contrast, inconsistently translated
phrases are more likely to be incorrect: more than
65% into French and 47% into English. For all other
tasks, fewer translations match the references since
the references are not produced by post-edition, but
we still observe the same trend as in the Parliament
condition: inconsistent translations are more likely
to be incorrect than consistent translations overall.

Four reference translations are available for the
Chinese-English nist08 test set. We only use the first
one as a reference translation (in order to minimize
setting variations with French-English conditions.)
The three remaining human translations are used dif-
ferently. We compare them against the reference, ex-
actly as we do for SMT output. The resulting statis-
tics are given in Table 3. Since we know that the
human translations are correct, this shows that many
correct translations are not identified when using our
simple match technique to check correctness. How-
ever, it is interesting to note that (1) consistent hu-
man translations tend to match the human references
more often than the inconsistent ones, and (2) incon-
sistent MT translations match references much less
often than inconsistent human references.
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Language Examples False Inconsistencies
〈p, d〉 Same lemma Misaligned

en→fr 79 15 (19%) 8 (10%)
fr→en 92 12 (13%) 24 (26%)
Total 171 27 (16%) 32 (19%)

Table 4: False positives in the automatic identification of
translation inconsistencies.

What goes wrong when inconsistent translations
are incorrect? This question is hard to answer with
automatic analysis only. As a first approximation,
we check whether we could correct translations by
replacing them with machine translations produced
elsewhere in the document. In Table 2, we refer to
this as “easy fixes” and show that only very few in-
consistency errors can be corrected this way. These
errors are therefore unlikely to be fixed by post-
processing approaches that enforce hard consistency
constraints (Carpuat, 2009).

6 Manual Analysis

In order to better understand what goes wrong with
inconsistent translations, we conduct a manual anal-
ysis of these errors in the Parliament test condition
(see Table 1). We randomly sample inconsistently
translated phrases, and examine a total of 174 re-
peated phrases (〈p, d〉 pairs, as defined in Section 4.)

6.1 Methodological Issues

We first try to quantify the limitations of our ap-
proach, and verify whether the inconsistencies de-
tected automatically are indeed real inconsistencies.
The results of this analysis are presented in Table 4.
Given the set of translations for a repeated phrase,
we ask questions relating to morphology and auto-
matic word-level alignment:

Morphology Are some of the alternate transla-
tions for phrase p only different inflections of the
same lemma? Assuming that inflectional morphol-
ogy is governed by language-internal considerations
more often than translational constraints, it is prob-
ably inaccurate to label morphological variations of
the same word as inconsistencies. The annotations
reveal that this only happens for 16% of our sam-
ple (column “Same lemma” in Table 4). Work is
under way to build an accurate French lemmatizer

to automatically abstract away from morphological
variations.

Alignment Are some of the alternate translations
only a by-product of word alignment errors? This
happens for instance when the French word partis
is identified as being translated in English some-
times as parties and sometimes as political in the
same document: the apparent inconsistency is ac-
tually due to an incorrect alignment within the fre-
quent phrase political parties. We identify 19% of
word alignment issues in our manually annotated
sample (column “Misaligned” in Table 4). While
it is clear that alignment errors should be avoided,
it is worth noting that such errors are sometimes in-
dicative of translation problems: this happens, for
instance, when a key content word is left untrans-
lated by the SMT system.

Overall, this analysis confirms that, despite the
approximations used, a majority of the examples de-
tected by our method are real inconsistencies.

6.2 Analysis of Translation Errors
We then directly evaluate translation accuracy in our
sample by checking whether the system translation
match the post-edited references. Here we focus our
attention on those 112 examples from our sample of
inconsistently translated phrases that do not suffer
from lemmatization or misalignment problems. For
comparison, we also analyze 200 randomly sampled
examples of consistently translated phrases. Note
that the identification of consistent phrases is not
subject to alignment and lemmatization problems,
which we therefore ignore in this case. Details of
this analysis can be found in Table 5.

We first note that 40% of all inconsistently trans-
lated phrase types were not postedited at all: their
translation can therefore be considered correct. In
the case of consistently translated phrases, the rate
of unedited translations rises to 75%.

Focusing now on those phrases whose translation
was postedited, we classify each in one of three
broad categories of MT errors: meaning, terminol-
ogy, and style/syntax errors (columns labeled “Type
of Correction” in Table 5).

Terminology Errors Surprisingly, among the in-
consistently translated phrases, we find only 13%
of true terminological consistency errors, where
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Language Examples Unedited (%) Type of Correction (% of edited examples)
〈p, d〉 Meaning Terminology Style/Syntax

Inconsistent en→fr 56 20 (36%) 8 (22%) 4 (11%) 27 (75%)
Translations fr→en 56 25 (45%) 10 (32%) 5 (16%) 20 (65%)

Total 112 45 (40%) 16 (24%) 9 (13%) 47 (70%)
Consistent en→fr 100 70 (70%) 3 (10%) 0 (0%) 27 (90%)
Translations fr→en 100 79 (79%) 5 (24%) 0 (0%) 16 (76%)

Total 200 149 (75%) 8 (16%) 0 (0%) 43 (84%)

Table 5: Manual Classification of Posteditor Corrections on the Parliament Task

the SMT output is acceptable but different from
standard terminology in the test domain. For in-
stance, the French term personnes handicapées can
be translated as either persons with disabilities or
people with disabilities, but the former is prefered
in the Parliament domain. In the case of consis-
tently translated phrases, no such errors were de-
tected. This contrasts with human translation, where
enforcing term consistency is a major concern. In
the large-data in-domain condition considered here,
SMT mostly translates terminology consistently and
correctly. It remains to be seen whether this still
holds when translating out-of-domain, or for differ-
ent genres of documents.

Meaning Errors Meaning errors occur when the
SMT output fails to convey the meaning of the
source phrase. For example, in a medical con-
text, our MT system sometimes translates the French
word examen into English as review instead of the
correct test or investigation. Such errors make up
24% of all corrections on inconsistently translated
phrases, 16% in the case of consistent translations.

Style/Syntax Errors By far the most frequent cat-
egory turns out to be style/syntax errors (70% of cor-
rections on inconsistently translated phrases, 84%
on consistently translated phrases): these are situ-
ations where the SMT output preserves the mean-
ing of the source phrase, but is still post-edited for
syntactic or stylistic preference. This category actu-
ally covers a wide range of corrections. The more
benign cases are more cosmetic in nature, for ex-
ample when the posteditor changes the MT output
“In terms of the cost associated with...” into “With
regard to spending related to...”. In the more se-
vere cases, the posteditor completely rewrites a seri-
ously disfluent machine translation. However, errors
to which we have assigned this label have a com-

mon denominator: the inconsistent phrase that is the
focus of our attention is not the source of the er-
ror, but rather “collateral damage” in the war against
mediocre translations.

Taken together, these results show that transla-
tion inconsistencies in SMT tend to be symptoms of
generic SMT problems such as meaning and fluency
or syntax errors. Only a minority of observed in-
consistencies turn out to be the type of terminology
inconsistencies that are a concern in human transla-
tions.

7 Conclusion

We have presented an in-depth study of machine
translation consistency, using state-of-the-art SMT
systems trained and evaluated under various realis-
tic conditions. Our analysis highlights a number of
important, and perhaps overlooked, issues regarding
SMT consistency.

First, SMT systems translate documents remark-
ably consistently, even without explicit knowledge
of extra-sentential context. They even exhibit global
consistency levels comparable to that of professional
human translators.

Second, high translation consistency does not cor-
relate with better quality: as can be expected in
phrase-based SMT, weaker systems trained on less
data produce translations that are more consistent
than higher-quality systems trained on larger more
heterogeneous data sets.

However, this does not imply that inconsistencies
are good either: inconsistently translated phrases co-
incide with translation errors much more often than
consistent ones. In practice, translation inconsis-
tency could therefore be used to detect words and
phrases that are hard to translate for a given system.

Finally, manual inspection of inconsistent transla-

448



tions shows that only a small minority of errors are
the kind of terminology problems that are the main
concern in human translations. Instead, the major-
ity of errors highlighted by inconsistent translations
are symptoms of other problems, notably incorrect
meaning translation, and syntactic or stylistic issues.
These problems are just as prevalent with consistent
as with inconsistent translations.

While directly enforcing translation consistency
in MT may prove useful in some situations, our
analysis suggests that the phrase-based SMT sys-
tems considered here would benefit more from di-
rectly tackling the underlying —- and admittedly
more complex — problems of meaning and syntac-
tic errors.

In future work, we plan to improve our analysis by
extending our diagnosis methods, and consider ad-
ditional data conditions and genres. We also plan to
explore the potential of consistency for confidence
estimation and error detection.
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Abstract

In statistical machine translation, word lattices
are used to represent the ambiguities in the
preprocessing of the source sentence, such as
word segmentation for Chinese or morpholog-
ical analysis for German. Several approaches
have been proposed to define the probability
of different paths through the lattice with ex-
ternal tools like word segmenters, or by apply-
ing indicator features. We introduce a novel
lattice design, which explicitly distinguishes
between different preprocessing alternatives
for the source sentence. It allows us to make
use of specific features for each preprocess-
ing type and to lexicalize the choice of lattice
path directly in the phrase translation model.
We argue that forced alignment training can
be used to learn lattice path and phrase trans-
lation model simultaneously. On the news-
commentary portion of the German→English
WMT 2011 task we can show moderate im-
provements of up to 0.6% BLEU over a state-
of-the-art baseline system.

1 Introduction

The application of statistical machine translation
(SMT) to word lattice input was first introduced for
the translation of speech recognition output. Rather
than translating the single-best transcription, the
speech recognition system encodes all possible tran-
scriptions and their probabilities within a word lat-
tice, which is then used as input for the machine
translation system (Ney, 1999; Matusov et al., 2005;
Bertoldi et al., 2007).

Since then, several groups have adapted this ap-
proach to model ambiguities in representing the
source language with lattices and were able to re-
port improvements over their respective baselines.
The probabilities for different paths through the lat-
tice are usually modeled by assigning probabilities
to arcs as a byproduct of the lattice generation or
by defining binary indicator features. Applying the
first method only makes sense if the lattice construc-
tion is based on a single, comprehensive probabilis-
tic method, like a Chinese word segmentation model
as is used by Xu et al. (2005). In applications like
the one described by Dyer et al. (2008), where sev-
eral different segmenters for Chinese are combined
to create the lattice, this is not possible. Also, our
intuition suggests that simply defining indicator fea-
tures for each of the segmenters may not be ideal, if
we assume that there is not a single best segmenter,
but rather that for different data instances a different
one works best.

In this paper, we propose to model the lattice
path implicitly within the phrase translation model.
We introduce a novel lattice design, which explic-
itly distinguishes between different ways of prepro-
cessing the source sentence. It enables us to define
specific binary features for each preprocessing type
and to learn lexicalized lattice path probabilities and
the phrase translation model simultaneously with a
forced alignment training procedure.

To train the phrase translation model, most state-
of-the-art SMT systems rely on heuristic phrase ex-
traction from a word-aligned training corpus. Us-
ing a modified version of the translation decoder to
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force-align the training data provides a more consis-
tent way of training. Wuebker et al. (2010) intro-
duce a leave-one-out method which can overcome
the over-fitting effects inherent to this training pro-
cedure (DeNero et al., 2006). The authors report this
to yield both a significantly smaller phrase table and
higher translation quality than the heuristic phrase
extraction.

We argue that applying forced alignment train-
ing helps to exploit the full potential of word lattice
translation. The effects of the training on lattice in-
put are analyzed on the news-commentary portion of
the German→English WMT 2011 task. Our results
show moderate improvements of up to 0.6% BLEU

over the baseline.

This paper is organized as follows: We will re-
view related work in Section 2, describe the decoder
in Section 3 and present our novel lattice design in
Section 4. The phrase training algorithm is intro-
duced in Section 5, and Section 6 gives a detailed
account of the experimental setup and discusses the
results. Finally, our findings are summarized in Sec-
tion 7.

2 Related work

Word lattices have been used for machine transla-
tion of text in a variety of ways. Dyer et al. (2008)
use it to encode different Chinese word segmenta-
tions or Arabic morphological analyses. For the
phrase-based model, they report improvements of
up to 0.9% BLEU for Chinese→English and 1.6%
BLEU for Arabic→English over the respective sin-
gle best word segmented and morphologically ana-
lyzed source. These results are achieved without an
explicit way of modeling probabilities for different
paths within the lattice. The training of the phrase
model is done by generating one version of the train-
ing data for each segmentation method or morpho-
logical analysis. The word alignments are trained
separately, and are then concatenated for phrase ex-
traction. Our work differs from (Dyer et al., 2008) in
that we explicitly distinguish the various preprocess-
ing types in the lattice so that we can define specific
path features and lexicalize the lattice path probabil-
ities within the phrase model.

In (Xu et al., 2005) the probability of a segmen-

tation, as given by the Chinese word segmentation
model, and the translation model are combined into
a global decision rule. This is done by weighting
the lattice edges with a source language model. The
authors report an improvement of 1.5% BLEU over
translation of the single best segmentation with a
phrase-based SMT system.

Dyer (2009) introduces a maximum entropy
model for compound word splitting, which he
uses to create word lattices for translation in-
put. He shows improvements in German-English,
Hungarian-English and Turkish-English over state-
of-the-art baselines.

For the German→English WMT 2010 task, Hard-
meier et al. (2010) encode the morphological re-
duction and decompounding of the German surface
form as alternative paths in a word lattice. They
show improvements of roughly 0.5% BLEU over the
baseline. A binary indicator feature is added to the
log-linear framework for the alternative edges. Ad-
ditionally, they integrate long-range reorderings of
the source sentence into the lattice, in order to match
the word order of the English language, which yields
another improvement of up to 0.5% BLEU.

Niehues and Kolss (2009) also use lattices to en-
code different alternative reorderings of the source
sentence which results in an improvement of
2.0% BLEU over the baseline on the WMT 2008
German→English task.

Onishi et al. (2010) propose a method of modeling
paraphrases in a lattice. They perform experiments
on the English→Japanese and English→Chinese
IWSLT 2007 tasks, and report improvements of
1.1% and 0.9% BLEU over a paraphrase-augmented
baseline.

Schroeder et al. (2009) generalize usage of lattices
to combine input from multiple source languages.

Factored translation models (Koehn and Hoang,
2007) approach the idea of integrating annotation
into translation from the opposite direction. Where
lattices allow the decoder to choose a single level of
annotation as translation source, factored models are
designed to jointly translate several annotation lev-
els (factors). Thus, they are more suited to integrate
low-level annotation that by itself does not provide
sufficient information for accurate translation, like
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part-of-speech tags, gender, etc. On the other hand,
they require a one-to-one correspondence between
the factors, which makes them unsuitable to model
word segmentation or decompounding.

The problem of performing real training for the
phrase translation model has been approached in a
number of different ways in the past. The first one,
to the best of our knowledge, was the joint proba-
bility phrase model presented by Marcu and Wong
(2002). It is shown to perform slightly inferior to
the standard heuristic phrase extraction from word
alignments by Koehn et al. (2003).

A detailed analysis of the inherent over-fitting
problems when training a generative phrase model
with the EM algorithm is given in (DeNero et al.,
2006). These findings are in principle confirmed by
Moore and Quirk (2007) who, however, can show
that their model is less sensitive to reducing compu-
tational resources than the state-of-the-art heuristic.

Birch et al. (2006) and DeNero et al. (2008)
present alternative training procedures for the joint
model introduced by Marcu and Wong (2002),
which are shown to improve its performance.

In (Mylonakis and Sima’an, 2008) a phrase model
is described, whose training procedure is designed
to counteract the inherent over-fitting problem by in-
cluding prior probabilities based on Inversion Trans-
duction Grammar and smoothing as learning objec-
tive. It yields a small improvement over a standard
phrase-based baseline.

Ferrer and Juan (2009) present an approach,
where the phrase model is trained by a semi-hidden
Markov model.

In this work we apply the phrase training method
introduced by Wuebker et al. (2010), where the
phrase translation model of a fully competitive SMT
system is trained in a generative way. The key to
avoiding the over-fitting effects described by DeN-
ero et al. (2006) is their novel leave-one-out proce-
dure.

3 Decoding

3.1 Phrase-based translation

We use a standard phrase-based decoder which
searches for the best translation êÎ1 for a given input

sentence fJ
1 by maximizing the posterior probability

êÎ1 = arg max
I,eI

1

Pr(eI1|fJ
1 ). (1)

Generalizing the noisy channel approach (Brown
et al., 1990) and making use of the maximum ap-
proximation (Viterbi), the decoder directly mod-
els the posterior probability by a log-linear combi-
nation of several feature functions hm(eI1, s

K
1 , f

J
1 )

weighted with scaling factors λm, which results in
the decision rule (Och and Ney, 2004)

êÎ1 = arg max
I,eI

1,K,sK
1

{
M∑

m=1

λmhm(eI1, s
K
1 , f

J
1 )

}
. (2)

Here, sK
1 denotes the segmentation of eI1 and fJ

1

into K phrase-pairs and their alignment. The fea-
tures used are the language model, phrase translation
and lexical smoothing models in both directions,
word and phrase penalty and a simple distance-
based reordering penalty.

3.2 Lattice translation

For lattice input we generalize Equation 2 to also
maximize over the set of sentences F(L) encoded
by a given source word lattice L:

êÎ1 =

arg max
I,eI

1,K,sK
1 ,fJ

1 ∈F(L)

{
M∑

m=1

λmhm(eI1, s
K
1 , f

J
1 )

}
(3)

Note that in this formulation there are no prob-
abilities assigned to the arcs of L. We define ad-
ditional binary indicator features hm and lexical-
ize path probabilities by encoding the path into the
word identities. To translate lattice input, we adapt
the standard phrase-based decoding algorithm as de-
scribed in (Matusov et al., 2008). The decoder keeps
track of the covered slots, which represent the topo-
logical order of the nodes, rather than the covered
words. When expanding a hypothesis, it has to be
verified that there is no overlap between the covered
nodes and that a path exists from start to goal node,
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Figure 1: Top: Slim lattice. Bottom: Full lattice. The sentence is taken from the training data. The three layers
Surface, Compound and Lemma are separated with dashed lines. Nodes are labeled with slot information. Slots are
ordered horizontally, layers vertically.

which passes through all covered nodes. In prac-
tice, when considering a possible expansion cover-
ing slots j′, ..., j′′ with start and end states n′ and
n′′, we make sure that the following two conditions
hold:

• n′ is reachable from the lattice node that cor-
responds to the nearest already covered slot to
the left of j′.

• The node that corresponds to the nearest al-
ready covered slot to the right of j′′ is reachable
from n′′.

It was noted by Dyer et al. (2008) that the stan-
dard distance-based reordering model needs to be
redefined for lattice input. We define the distortion
penalty as the difference in slot number. Using the
shortest path within the lattice is reported to have
better performance in (Dyer et al., 2008), however
we did not implement it due to time constraints.

4 Lattice design

We construct lattices from three different prepro-
cessing variants of the German source side of the
data. The surface form is the standard tokenization
of the source sentence. The word compounds are
produced by the frequency-based compound split-
ting method described in (Koehn and Knight, 2003),
applied to the tokenized sentence. From the com-
pound split sentence we produce the lemma of the

German words by applying the TreeTagger toolkit
(Schmid, 1995). Each of the different preprocess-
ing variants is assigned a separate layer within the
lattice. For the phrase model, word identities are de-
fined by both the word and its layer. In this way, the
phrase model can assign different scores to phrases
in different layers, allowing it to guide the search to-
wards a specific layer for each word. In practice, this
is done by annotating words with a unique identifier
for each layer. For example, the word sein from the
lemmatized layer will be written as LEM.sein within
both the data and the phrase table. If sein appears in
the surface form layer, it will be written as SUR.sein
and is treated as a different word. SUR is the identi-
fier for the compound layer.

We experiment with two different lattice designs.
In the full lattice, all three layers are included for
each source word in surface form. The slim lattice
only includes arcs for the lemma layer if it differs
from the surface form, and only includes arcs for the
compound layer if it differs from both surface form
and lemma. Figure 1 shows a slim and a full lattice
for the same training data sentence.

For each layer, we add two indicator features to
the phrase table: One binary feature which is set
to 1 if the phrase is taken from this layer, and one
feature which is equal to the number of words from
this layer. This results in six additional feature func-
tions, whose weights are optimized jointly with the
standard features described in Section 3.1. We will
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denote them as layer features.

5 Phrase translation model training

To train the phrase model, we use a modified version
of the translation decoder to force-align the training
data. We apply the method described in (Wuebker et
al., 2010), but with word lattices on the source side.
To avoid over-fitting, we use their cross-validation
technique, which is described as a low-cost alterna-
tive to leave-one-out. For cross-validation we seg-
ment the training data into batches containing 5000
sentences. For each batch, the phrase table is up-
dated by reducing the phrase counts by the local
counts produced by the current batch in the previ-
ous training iteration. For the first iteration, we per-
form the standard phrase extraction separately for
each batch to produce the local counts. Singleton
phrases are assigned the probability β(|f̃ |+|ẽ|) with
the source and target phrase lengths |f̃ | and |ẽ| and
fixed β = e−5 (length-based leave-one-out). Sen-
tences for which the decoder is not able to find an
alignment are discarded (about 4% for our experi-
ments). To estimate the probabilities of the phrase
model, we count all phrase pairs used in training
within an n-best list (equally weighted). The trans-
lation probability for a phrase pair (f̃ , ẽ) is estimated
as

pFA(ẽ|f̃) =
CFA(f̃ , ẽ)

Cmon(f̃)
, (4)

where CFA(f̃ , ẽ) is the count of the phrase pair
(f̃ , ẽ) in the force-aligned training data. In order to
learn the lattice path along with the phrase transla-
tion probabilities, we make the following modifica-
tion to the original formulation in (Wuebker et al.,
2010). The denominator Cmon(f̃) is the count of
f̃ in the target side of the training data, rather than
using the real marginal counts. This means that it
is independent of the training procedure, and can be
computed by ignoring one side of the training data
and performing a simple n-gram count on the other.
In this way the model learns to prefer lattice paths
which are taken more often in training. For exam-
ple, if the phrase (LEM.Streit LEM.Kraft) is used
to align the sentence from Figure 1, Cmon(f̃) will

be increased for f̃ = (SUR.Streitkräfte) and f̃ =
(SPL.Streit SPL.Kräfte) without affecting their joint
counts. This leads to a lower probability for these
phrases, which is not the case if marginal counts
are used. Note that on the source side we have one
training corpus for each lattice layer, which are con-
catenated to compute Cmon(f̃). The size of the n-
best lists used in this work is fixed to 20000. Using
smaller n-best lists was tested, but seems to have dis-
advantages for the application to lattices. After re-
estimation of the phrase model, the feature weights
are optimized again.

In order to achieve a good coverage of the train-
ing data, we allow the decoder to generate backoff
phrases. If a source phrase consisting of a single
word does not have any translation candidates left
after the bilingual phrase matching, one phrase pair
is added to the translation candidates for each word
in the target sentence. The backoff phrases are as-
signed a fixed probability γ = e−12. Note that this
is smaller than the probability the phrase would be
assigned according to the length-based leave-one-
out heuristic, leading to a preference of singleton
phrases over backoff phrases. The lexical smooth-
ing models are applied in the usual way to both sin-
gleton and backoff phrases. After each sentence, the
backoff phrases are discarded. However, in the ex-
periments for this work, introducing backoff phrases
only increases the coverage from 95.8% to 96.2% of
the sentences.

6 Experimental evaluation

6.1 Experimental setup

Our experiments are carried out on the news-
commentary portion of the German→English data
provided for the EMNLP 2011 Sixth Workshop
on Statistical Machine Translation (WMT 2011).∗

We use newstest2008 as development set and
newstest2009 and newstest2010 as unseen
test sets. The word alignments are produced with
GIZA++ (Och and Ney, 2003). To optimize the log-
linear parameters, the Downhill-Simplex algorithm
(Nelder and Mead, 1965) is applied with BLEU (Pa-
pineni et al., 2002) as optimization criterion. The

∗http://www.statmt.org/wmt11
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German English
Surface Compound Lemma

Train Sentences 136K
Running Words 3.4M 3.5M 3.3M
Vocabulary Size 118K 81K 52K 57K

newstest2008 Sentences 2051
Running Words 48K 50K 50K
Vocabulary Size 10.3K 9.7K 7.3K 8.1K

OOVs (Running Words) 3041 2092 1742 2070
newstest2009 Sentences 2525

Running Words 63K 66K 66K
Vocabulary Size 12.2K 11.4K 8.4K 9.4K

OOVs (Running Words) 4058 2885 2400 2729
newstest2010 Sentences 2489

Running Words 62K 65K 62K
Vocabulary Size 12.3K 11.4K 8.5K 9.2K

OOVs (Running Words) 4357 2952 2565 2742

Table 1: Corpus Statistics for the WMT 2011 news-commentary data, the development set (newstest2008) and
the two test sets (newstest2009, newstest2010). For the source side, three different preprocessing alternatives
are included: Surface, Compound and Lemma.

language model is a standard 4-gram LM with mod-
ified Kneser-Ney smoothing (Chen and Goodman,
1998) produced with the SRILM toolkit (Stolcke,
2002). It is trained on the full bilingual data and
parts of the monolingual News crawl corpus pro-
vided for WMT 2011. Numbers are replaced with
a single category symbol in a separate preprocess-
ing step and we apply the long-range part-of-speech
based reordering rules proposed by (Popović and
Ney, 2006).

Table 1 shows statistics for the bilingual training
data and the development and test corpora for the
three different German preprocessing alternatives.
It can be seen that both compound splitting and
lemmatization reduce the vocabulary size and num-
ber of out-of-vocabulary (OOV) words. Results are
measured in BLEU and TER (Snover et al., 2006),
which are computed case-insensitively with a single
reference.

6.2 Baseline experiments

To get an overview over the effects of the different
preprocessing alternatives for the German source,
we built three baseline systems, one for each prepro-

cessing type. The phrase tables are extracted heuris-
tically in the standard way from the word-aligned
training data. Additionally, we performed phrase
training for the compound split version of the data.
The results are shown in Table 2. When moving
from the Surface to the Compound layer, we observe
improvements of up to 1.0% in BLEU and 1.1% in
TER. Reducing the morphological richness further
(Lemma) leads to a clear performance drop. Appli-
cation of phrase training on the compound split data
yields a small degradation in TER on all data sets and
in BLEU on newstest2010. We assume that this
is due to the small size of the training data and its
heterogeneity, which makes it hard for the decoder
to find good phrase alignments.

6.3 Lattice experiments: Heuristic extraction

We generated both slim and full lattices for all data
sets. Similar to (Dyer et al., 2008), we concate-
nate the three training data sets and their word align-
ments to extract the phrases. Note that this only pro-
duces single-layer phrases. It can be seen in Table
2 that without the application of layer features the
slim lattice slightly outperforms the full lattice. In-
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newstest2008 newstest2009 newstest2010
BLEU

[%]
TER

[%]
BLEU

[%]
TER

[%]
BLEU

[%]
TER

[%]

Baseline Surface 19.5 64.6 18.6 64.4 20.6 62.8
Compounds 20.5 63.5 19.1 63.5 21.1 61.9

FA Compounds 20.5 63.9 19.1 63.8 20.9 62.3
Lemma 19.2 65.4 18.2 65.2 19.9 63.9

Slim Lattice without layer feat. 19.9 64.4 18.9 64.1 20.8 62.6
(heuristic) with layer feat. 20.5 63.8 19.4 63.9 21.0 62.4
Full Lattice without layer feat. 19.8 64.6 18.7 64.2 20.6 62.8
(heuristic) with layer feat. 20.4 64.0 19.5 63.8 21.3 62.3
Full Lattice without layer feat. 20.0 64.3 19.3 64.1 20.8 62.6
(FA w/o layer feat.) with layer feat. 20.2 64.3 19.1 64.2 20.7 62.8
Full Lattice without layer feat. 20.5 63.7 19.5 63.6 21.3 62.1
(FA w/ layer feat.) with layer feat. 20.7 63.6 19.7 63.4 21.4 61.8

Table 2: Results on the German-English WMT 2011 data. Scores are computed case-insensitively for BLEU [%]
and TER [%]. We evaluate performance of the baseline systems, one for each of the three different encodings, with
both slim and full lattices using heuristic phrase extraction and with full lattices using forced alignment phrase model
training (FA). All lattice systems are evaluated with and without layer features. The best scores in each column are in
boldface, statistically significant improvement over the Compounds baseline is marked with blue color.

troducing layer features boosts the performance for
both lattice types. However, the performance in-
crease is considerably larger for the full lattice sys-
tems, which now outperform the slim lattice systems
on newstest2009 and newstest2010. Com-
pared to the Compounds baseline, the full lattice
system with layer features shows a small improve-
ment of up to 0.4% BLEU on newstest2009 and
newstest2010, but a degradation in TER.

6.4 Lattice experiments: Phrase training

The experiments on phrase training are setup as fol-
lows. The phrase table is initialized with the stan-
dard extraction and is identical to the one used for
the experiments in Section 6.3. The log-linear scal-
ing factors used in training are the optimized param-
eters on the corresponding lattice, also taken from
the experiments described in Section 6.3. The forced
alignment procedure was run for one iteration. Fur-
ther iterations were tested, but did not give any im-
provements.

The phrase training was performed on the full lat-
tice design. The reason for this is that we want the
system to learn all possible phrases. Even if there is
no difference in wording between the layers in train-

ing, the additional phrases could be useful for un-
seen test data. The training was performed both with
and without layer features. The resulting systems
were also optimized with and without layer features,
resulting in four different setups.

From the results in Table 2 it is clear that phrase
training without layer features does not have the
desired effect. Even if we apply layer features to
the system trained without them, we do not reach
the performance of the best standard lattice system.
We conclude that, without these indicator features,
the standard lattice system does not produce good
phrase alignments.

When the layer features are applied for both train-
ing and translation, we observe improvements of up
to 0.2% in BLEU and 0.5% in TER over the corre-
sponding standard lattice system. The gap between
the systems with and without layer features is much
smaller than for the heuristically trained lattices.
This indicates that our goal of encoding the best lat-
tice path directly in the phrase model was at least
partially achieved. However, in order to exceed the
performance of our state-of-the-art baseline on both
measures, the layer features are still needed within
the phrase training procedure and for translation. Al-
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source Das Warten hat gedauert mehr als NUM Minuten, was im Fall einer Straße, wo
werden erwartet NUM Menschen, ist unverständlich.

reference The wait lasted more than NUM minutes, something incomprehensible for a race
where you expect more than NUM people.

lattice (heuristic) The wait has taken more than NUM minutes, which in the case of a street, where
NUM people are expected to be, can’t understand it.

lattice (FA) The wait has taken more than NUM minutes, which in the case of a street, where
expected NUM people, is incomprehensible.

Figure 2: Example sentence from the newstest2009 data set. The faulty phrase in the heuristic lattice translation
is marked in boldface.

together, our phrase trained lattice approach outper-
forms the state-of-the-art baseline on all three data
sets by up to 0.6% BLEU. On newstest2009,
this result is statistically significant with 95% confi-
dence according to the bootstrap resampling method
described by Koehn (2004).

For a direct comparison between the heuristic and
phrase-trained full lattice systems, we manually in-
spected the optimized log-linear parameter values
for the layer features. We observe that for the stan-
dard lattices, paths through the lemmatized layer are
heavily penalized. In the phrase trained lattice setup,
the penalty is much smaller. As a result, the num-
ber of words from the Lemma layer used for transla-
tion of the newstest2009 data set is increased by
49% from 1828 to 2715 words. However, a manual
inspection of the translations reveals that the main
improvement seems to come from a better choice
of phrases from the Compound layer. More specif-
ically, the used phrases tend to be shorter – the av-
erage phrase length of Compound layer phrases is
1.5 words for both the baseline and the heuristic lat-
tice system. In the phrase trained lattice system, it
is 1.3 words. An example is given in Figure 2. We
focus on the end of the sentence, where the heuris-
tic system uses the rather disfluent phrase (ist unver-
ständlich. # can’t understand it.), whereas the forced
alignment trained system applies the three phrases
(ist # is), (unverständlich # incomprehensible) and
(. # .).

This effect can be explained by the leave-one-out
procedure. As lemmatized phrases usually map to
several phrases in the other layers, their count is gen-
erally higher. Application of leave-one-out, which
reduces the counts of all phrases extracted from the

current sentence by a fixed value, therefore has a
stronger penalizing effect on Surface and Compound
layer phrases. In the extreme case, phrases which are
singletons in the Compound layer are unlikely to be
used at all in training, if the corresponding phrase
in the Lemma layer has a higher count. While this
rarely leads to the competing lemmatized phrases
being used in free translation, it allows for shorter,
more general phrases from the more expressive lay-
ers to be applied. Indeed, the ’bad’ phrase (ist unver-
ständlich. # can’t understand it.) from the example
in Figure 2 is a singleton.

7 Conclusion and future work

In this work we apply a forced alignment phrase
training technique to input word lattices in SMT for
the first time. The goal of encoding better lattice
path probabilities directly into the phrase model was
at least partially successful. The proposed method
outperforms our baseline by up to 0.6% BLEU. To
achieve this, we presented a novel lattice design,
which distinguishes between different layers, for
which we can define separate indicator features. Al-
though these layer features are still necessary for the
final system to improve over state-of-the-art perfor-
mance, they are less important than in the heuristi-
cally trained setup.

One advantage of our approach is its adaptability
to a variety of scenarios. In future work, we plan
to apply it to additional language pairs. Arabic and
Chinese on the source side, where the layers could
represent different word segmentations, seem a nat-
ural choice. We also hope to be able to leverage
larger training data sets. As a natural extension we
plan to allow learning of cross-layer phrases. Fur-
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ther, applying this framework to lattices modeling
different reorderings could be an interesting direc-
tion.
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Abstract

Training the phrase table by force-aligning
(FA) the training data with the reference trans-
lation has been shown to improve the phrasal
translation quality while significantly reduc-
ing the phrase table size on medium sized
tasks. We apply this procedure to several
large-scale tasks, with the primary goal of re-
ducing model sizes without sacrificing transla-
tion quality. To deal with the noise in the auto-
matically crawled parallel training data, we in-
troduce on-demand word deletions, insertions,
and backoffs to achieve over 99% successful
alignment rate. We also add heuristics to avoid
any increase in OOV rates. We are able to re-
duce already heavily pruned baseline phrase
tables by more than 50% with little to no
degradation in quality and occasionally slight
improvement, without any increase in OOVs.
We further introduce two global scaling fac-
tors for re-estimation of the phrase table via
posterior phrase alignment probabilities and
a modified absolute discounting method that
can be applied to fractional counts.

Index Terms: phrasal machine translation, phrase
training, phrase table pruning

1 Introduction

Extracting phrases from large amounts of noisy
word-aligned training data for statistical machine
translation (SMT) generally has the disadvantage of
producing many unnecessary phrases (Johnson et
al., 2007). These can include poor quality phrases,
composite phrases that are concatenations of shorter

ones, or phrases that are assigned very low proba-
bilities, so that they have no realistic chance when
competing against higher scoring phrase pairs. The
goal of this work is two-fold: (i) investigating forced
alignment training as a phrase table pruning method
for large-scale commercial SMT systems and (ii)
proposing several extensions to the training proce-
dure to deal with practical issues and stimulate fur-
ther research.

Generative phrase translation models have the in-
herent problem of over-fitting to the training data
(Koehn et al., 2003; DeNero et al., 2006). (Wue-
bker et al., 2010) introduce a leave-one-out proce-
dure which is shown to counteract over-fitting ef-
fects. The authors report significant improvements
on the German-English Europarl data with the ad-
ditional benefit of a severely reduced phrase table
size. This paper investigates its impact on a num-
ber of commercial large-scale systems and presents
several extensions.

The first extension is to deal with the highly noisy
training data, which is automatically crawled and
sentence aligned. The noise and the baseline prun-
ing of the phrase table lead to low success rates
when aligning the source sentence with the target
sentence. We introduce on-demand word deletions,
insertions, and backoff phrases to increase the suc-
cess rate so that we can cover essentially the en-
tire training data. Secondly, phrase table pruning
makes out-of-vocabulary (OOV) issues even more
pronounced. To avoid an increased OOV rate, we
retrieve single-word translations from the baseline
phrase table. Lastly, we propose two global scaling

460



factors to allow fine-tuning of the phrase counts in
an attempt to re-estimate the translation probabili-
ties and a modification of absolute discounting that
can be applied to fractional counts.

Our main contribution is applying forced-
alignment on the training data to prune the phrase
table. The rationale behind this is that by decoding
the training data, we can identify the phrases that are
actually used by the decoder. Further, we present
preliminary experiments on re-estimating the chan-
nel models in the phrase table based on counts ex-
tracted from the force-aligned data.

This work is organized as follows. We discuss re-
lated work in Section 2, describe our decoder and
training procedure in Section 3 and the experiments
in Section 4. A conclusion and discussion of future
work is given in Section 5.

2 Related Work

Force-aligning bilingual data has been explored as
a means of model training in previous work. Liang
et al. (2006) use it for their bold updating strategy
to update discriminative feature weights. Utilizing
force-aligned data to train a unigram phrase segmen-
tation model is proposed by Shen et al. (2008). Wue-
bker et al. (2010) apply forced alignment to train the
phrase table in an EM-like fashion. They report a
significant reduction in phrase table size.

In this work we apply forced alignment training
as a pure phrase table pruning technique. Johnson
et al. (2007) successfully investigate a number of
pruning methods for the phrase inventory based on
significance testing. While their approach is more
straightforward and less elaborate, we argue that our
method is directly tailored to the decoding process
and works on top of an already heavily pruned base-
line phrase table.

We further experiment with applying the (scaled)
phrase alignment posteriors to train the phrase ta-
ble. A similar idea has been addressed in previous
work, e.g. (Venugopal et al., 2003; de Gispert et al.,
2010), where word alignment posterior probabilities
are leveraged for grammar extraction.

Finally, a number of papers describe extending
real phrase training to the hierarchical machine

translation paradigm (Blunsom et al., 2008; Cme-
jrek et al., 2009; Mylonakis and Sima’an, 2010).

3 Phrase Training

3.1 Decoder

Our translation decoder is similar to the open-source
toolkit Moses (Koehn et al., 2007). It models trans-
lation as a log-linear combination of two phrasal
and two lexical channel models, an n-gram language
model (LM), phrase, word and distortion penalties
and a lexicalized reordering model. The decoding
can be summarized as finding the best scoring target
sentence T ∗ given a source sentence S:

T ∗ = argmax
T

∑
i

λi log gi(S,T ) (1)

where each gi represents one feature (the channel
models, n-gram, phrase count, etc.). The model
weights λi are usually discriminatively learned on a
development data set via minimum error rate train-
ing (MERT) (Och, 2003).

Constraining the decoder to a fixed target sentence
is straightforward. Each partial hypothesis is com-
pared to the reference and discarded if it does not
match. The language model feature can be dropped
since all hypotheses lead to the same target sentence.
The training data is divided into subsets for parallel
alignment. A bilingual phrase matching is applied to
the phrase table to extract only the subset of entries
that are pertinent to each subset of training data, for
memory efficiency. For forced alignment training,
we set the distortion limit ∆ to be larger than in reg-
ular translation decoding. As unlimited distortion
leads to very long training times, we compromise on
the following heuristic. The distortion limit is set
to be the maximum of 10, twice that of the baseline
setting, and 1.5 times the maximum phrase length:

∆ = max{10,

2∗ (baseline distortion),

1.5∗ (max phrase length)} (2)

To avoid over-fitting, we employ the same leave-
one-out procedure as (Wuebker et al., 2010) for
training. Here, it is applied on top of the Good-
Turing (GT) smoothed phrase table (Foster et al.,
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2006). Our phrase table stores the channel proba-
bilites and marginal counts for each phrase pair, but
not the discounts applied. Therefore, for each sen-
tence, if the phrase pair (s, t) has a joint count c(s, t)
computed from the entire training data, and occurs
c1(s, t) times in the current sentence, the leave-one-
out probability p′(t|s) for the current sentence will
be:

p′(t|s) =
c′(s, t)−d

c′(s)

=
c(s, t)− c1(s, t)−d

c(s)− c1(s)

=
p(t|s)c(s)− c1(s, t)

c(s)− c1(s)
(3)

since p(t|s)c(s) = c(s, t)−d, where d is the GT dis-
count value. In the case where c(s, t) = c1(s, t) (i.e.
(s, t) occurs exclusively in one sentence pair), we
use a very low probability as the floor value. We
apply leave-one-out discounting to the forward and
backward translation models only, not to the lexical
channel models.

Our baseline phrase extraction applies some
heuristic-based pruning strategies. For example,
it prunes offensive translations and many-words to
many-words singletons (i.e. a joint count of 1 and
both source phrase and target phrase contain mul-
tiple words)∗. Finally the forward and backward
translation probabilities are smoothed with Good-
Turing discounting.

3.2 Weak Lambda Training with High
Distortion

Our leave-one-out training flowchart can be illus-
trated in Figure 1. To force-align the training data
with good quality, we need a set of trained lambda
weights, as shown in Equation 1. We can use the
lambda weights learned from the baseline system for
that purpose. However, ideally we want the lambda
values to be learned under a similar configuration as
the forced alignment. Therefore, for this purpose we
run MERT with the larger distortion limit given in
Equation 2.

∗The pruned entries are nevertheless used in computing joint
counts and marginal counts.

 Parallel training data 

with word-level alignments 

Phrase extraction with 

heuristic pruning 

Weak lambda training 

Phrase table 

Leave-one-out 

forced alignment 

 1 = {} 

Normal lambda training 

Intersection + 

OOV Recovery 

Selected phrases 

Selected phrases+ 

Large  

2-grams 

5-grams 

Small  

 2 = {} 

 {uniform } 

 {baseline } 

Figure 1: Flowchart of forced-alignment phrase training.

Additionally, since forced alignment does not use
the language model, we propose to use a weaker lan-
guage model for training the lambdas (Λ1) to be used
in the forced alignment decoding.

Using a weaker language model also speeds up the
lambda training process, especially when we are us-
ing a distortion limit ∆ at least twice as high as in
the baseline system. In our experiments, the base-
line system uses an English 5-gram language model
trained on a large amount of monolingual data. The
lambda values used for forced alignment are learned
using the bigram LM trained on the target side of the
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parallel corpus for each system.

We compared a number of systems using differ-
ent degrees of weak models and found out the im-
pact on the final system was minimal. However, us-
ing a small bigram LM with large distortion yielded
a stable performance in terms of BLEU, and was
25% faster than using a large 5-gram with the base-
line distortion. Because of the speed improvement
and its stability, this paper adopts the weak bigram
lambda training.

3.3 On-demand Word Insertions and Deletions

For many training sentences the translation decoder
is not able to find a phrasal alignment. We identified
the following main reasons for failed alignments:

• Incorrect sentence alignment or sentence seg-
mentation by the data crawler,

• OOVs due to initial pruning in the phrase ex-
traction phase,

• Faulty word alignments,

• Strongly reordered sentence structure. That is,
the distortion limit during forced alignment is
too restrictive.

For some of these cases, discarding the sentence
pairs can be seen as implicit data cleaning. For
others, there do exist valid sub-sentences that are
aligned properly. We would like to be able to lever-
age those sub-sentences, effectively allowing us to
do partial sentence removal. Therefore, we in-
troduce on-demand word insertions and deletions.
Whenever a partial hypothesis can not be expanded
to the next target word t j, with the given phrase ta-
ble, we allow the decoder to artificially introduce a
phrase pair (null, t j) to insert the target word into
the hypothesis without consuming any source word.
These artificial phrase pairs are introduced with a
high penalty and are ignored when creating the out-
put phrase table. We can also introduce backoff
phrase pairs (si, t j) for all source words si that are
not covered so far, also with a fixed penalty.

After we reach the end of the target sentence, if
there are any uncovered source words si, we arti-
ficially add the deletion phrase pairs (si,null) with

a high penalty. Introducing on-demand word inser-
tions and deletions increases the data coverage to
at least 99% of the training sentences on all tasks
we have worked on. Due to the success of inser-
tion/deletion phrases, we have not conducted exper-
iments using backoff phrases within the scope of this
work, but leave this to future work.

3.4 Phrase Training as Pruning

This work concentrates on practical issues with large
and noisy training data. Our main goal is to ap-
ply phrase training to reduce phrase table size with-
out sacrificing quality. We do this by dumping n-
best alignments of the training data, where n ranges
from 100-200. We prune the baseline phrase table to
only contain phrases that appear in any of the n-best
phrase alignments, leaving the channel probabilities
unchanged. That is, the model scores are still esti-
mated from the original counts. We can control the
size of the final phrase table by adjusting the size
of the n-best list. Based on the amount of memory
we can afford, we can thus keep the most important
entries in the phrase table.

3.5 OOV retrieval

When performing phrase table pruning as de-
scribed in Section 3.4, OOV rates tend to increase.
This effect is even more pronounced when dele-
tion/insertion phrases are not used, due to the low
alignment success rate. For commercial applica-
tions, untranslated words are a major concern for
end users, although it rarely has any impact on BLEU

scores. Therefore, for the final phrase table after
forced alignment training, we check the translations
for single words in the baseline phrase table. If any
single word has no translation in the new table, we
recover the top x translations from the baseline table.
In practice, we set x = 3.

3.6 Fractional Counts and Model
Re-estimation

As mentioned in Section 3.4, for each training sen-
tence pair we produce the n-best phrasal alignments.
If we interpret the model score of an alignment as
its log likelihood, we can weight the count for each
phrase by its posterior probability. However, as the
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log-linear model weights are trained in a discrim-
inative fashion, they do not directly correspond to
probabilities. In order to leverage the model scores,
we introduce two scaling factors ϑ and ρ that al-
low us to shape the count distribution according to
our needs. For one sentence pair, the count for the
phrase pair (s, t) is defined as

c(s, t) =

 n

∑
i=1

c(s, t|hi) ·
exp(ϑ ·φ(hi))

n

∑
j=1

exp(ϑ ·φ(h j))


ρ

, (4)

where hi is the i-th hypothesis of the n-best list,
φ(hi) the log-linear model score of the alignment
hypothesis hi and c(s, t|hi) the count of (s, t) within
hi. If ϑ = 0, all alignments within the n-best list
are weighted equally. Setting ρ = 0 means that all
phrases that are used anywhere in the n-best list re-
ceive a count of 1.

Absolute discounting is a popular smoothing
method for relative frequencies (Foster et al., 2006).
Its application, however, is somewhat difficult, if
counts are not required to be integer numbers and
can in fact reach arbitrarily small values. We pro-
pose a minor modification, where the discount pa-
rameter d is added to the denominator, rather than
subtracting it from the numerator. The discounted
relative frequency for a phrase pair (s, t) is computed
as

p(s|t) =
c(s, t)

d +∑
s′

c(s′, t)
(5)

3.7 Round-Two Lambda Training

After the phrase table is pruned with forced align-
ment (either re-estimating the channel probabilities
or not), we recommend a few more iterations of
lambda training to ensure our lambda values are ro-
bust with respect to the new phrase table. In our
experiments, we start from the baseline lambdas and
train at most 5 more iterations using the baseline dis-
tortion and the 5-gram English language model. The
settings have to be consistent with the final decod-
ing; therefore we are not using weak lambda training
here.

system parallel corpus Dev Test1 WMT
(sent. pairs)

it-en 13.0M 2000 5000 3027
pt-en 16.9M 2448 5000 1000
nl-en 15.0M 499 4996 1000
et-en 3.5M 1317 1500 995

Table 1: Data sizes of the four systems Italian, Por-
tuguese, Dutch and Estonian to English. All numbers
refer to sentence pairs.

Empirically we found the final lambdas (Λ2) made
a very small improvement over the baseline lamb-
das. However, we decided to keep this second round
of lambda training to guarantee its stability across
all language pairs.

4 Experiments

In this section, we describe our experiments on
large-scale training data. First, we prune the orig-
inal phrase table without re-estimation of the mod-
els. We conducted experiments on many language
pairs. But due to the limited space here, we chose to
present two high traffic systems and the two worst
systems so that readers can set the correct expecta-
tion with the worst-case scenario. The four systems
are: Italian (it), Portuguese (pt), Dutch (nl) and Es-
tonian (et), all translating to English (en).

4.1 Corpora

The amount of data for the four systems is shown in
Table 1. There are two test sets: Test1 and WMT.
Test1 is our internal data set, containing web page
translations among others. WMT is sampled from
the English side of the benchmark test sets of the
Workshop on Statistical Machine Translation†. The
sampled English sentences are then manually trans-
lated into other languages, as the input to test X-to-
English translation. WMT tends to contain news-
like and longer sentences. The development set (for
learning lambdas) is from our internal data set. We
make sure that there is no overlap among the devel-
opment set, test sets, and the training set.

†www.statmt.org/wmt09
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baseline FA w/ del. FA w/o del.
it-en

suc.rate – 99.5% 61.2%
Test1 42.27 42.05 42.31
WMT 30.16 30.19 30.19

pt-en
suc.rate – 99.5% 66.9%
Test1 47.55 47.47 47.24
WMT 40.74 41.36 41.01

nl-en
suc.rate – 99.6% 79.9%
Test1 32.39 31.87 31.18
WMT 43.37 43.06 43.38

et-en
suc.rate – 99.1% 73.1%
Test1 46.14 46.35 45.77
WMT 20.08 19.60 19.83

Table 2: BLEU scores of forced-alignment-based phrase-
table pruning using weak lambda training. n-best size is
100 except for nl-en, where it is 160. We contrast forced
alignment with and without on-demand insertion/deletion
phrases. With the on-demand artificial phrases, FA suc-
cess rate is over 99%.

4.2 Insertion/Deletion Phrases

Unless explicitly stated, all experiments here used
the weak bigram LMs to obtain the lambdas used for
forced alignment, and on-demand insertion/deletion
phrases are applied. For the size of n-best, we use
n = 100. The only exception is the nl-en language
pair, for which we set n = 160 because its phrase
distortion setting is higher than the others and for its
higher number of morphological variations. Table 2
shows the BLEU performance of the four systems, in
the baseline setting and in the forced-alignment set-
ting with insertion/deletion phrases and without in-
sertion/deletion phrases. Whether partial sentences
should be kept or not (via insertion/deletion phrases)
depends on the quality of the training data. One
would have to run both settings to decide which is
better for each system. In all cases, there is little
or no degradation in quality after the table is suffi-
ciently pruned.

Table 3 shows that our main goal of reducing the
phrase table size is achieved. On all four language
pairs, we are able to prune over 50% of the phrase

PT size reduction
w/o del. w/ del.

it-en 65.4% 54.0%
pt-en 68.5% 61.3%
nl-en 64.1% 56.9%
et-en 63.6% 58.5%

Table 3: % Phrase table size reduction compared with the
baseline phrase table

table. Without on-demand insertions/deletions, the
size reduction is even stronger. Notice the size re-
duction here is relative to the already heavily pruned
baseline phrase table.

With such a successful size cut, we expected a
significant increase in decoding speed in the final
system. In practice we experienced 3% to 12% of
speedup across all the systems we tested. Both our
baseline and the reduced systems use a tight beam
width of 20 hypotheses per stack. We assume that
with a wider beam, the speed improvement would
be more pronounced.

We also did human evaluation on all 8 system out-
puts (four language pairs, with two test sets per lan-
guage pair) and all came back positive (more im-
provements than regressions), even on those that had
minor BLEU degradation. We conclude that the size
cut in the phrase table is indeed harmless, and there-
fore we declare our initial goal of phrase table prun-
ing without sacrificing quality is achieved.

In (Wuebker et al., 2010) it was observed, that
phrase training reduces the average phrase length.
The longer phrases, which are unlikely to gener-
alize, are dropped. We can confirm this obersva-
tion for the it-en and pt-en language pairs in Ta-
ble 4. However, for nl-en and et-en the aver-
age source phrase length is not significantly af-
fected by phrase training, especially with the inser-
tion/deletion phrases. When these artificial phrases
are added during forced alignment, they tend to en-
courage long target phrases as uncovered single tar-
get words can be consumed by the insertion phrases.
However, these insertion phrases are not dumped
into the final phrase table and hence cannot help
in reducing the average phrase length of the final
phrase table.

465



avg. src phrase length
baseline w/o del. w/ del.

it-en 3.1 2.4 2.4
pt-en 3.7 3.0 3.0
nl-en 3.1 3.0 3.0
et-en 2.9 2.8 3.0

Table 4: Comparison of average source phrase length in
the phrase table.

nl-en Test1 WMT PT size reduction
baseline 32.29 43.37 –
n=100 31.45 42.90 66.0%
n=160 31.87 43.06 64.1%

et-en Test1 WMT PT size reduction
baseline 46.14 20.08 –
n=100 46.35 19.60 63.6%
n=200 46.34 19.88 58.4%

Table 5: BLEU scores of different n-best sizes for the
highly inflected Dutch system and the noisy Estonian sys-
tem.

Table 5 illustrates how the n-best size affects
BLEU scores and model sizes for the nl-en and et-
en systems.

4.3 Phrase Model Re-estimation

This section conducts a preliminary evaluation of
the techniques introduced in Section 3.6. For fast
turnaround, these experiments were conducted on
approximately 1/3 of the Italian-English training
data. Training is performed with and without inser-
tion/deletion phrases and both with (FaTrain) and
without (FaPrune) re-training of the forward and
backward phrase translation probabilities. Table 6
shows the BLEU scores with different settings of the
global scaling factor ρ and the inverse discount d.
The second global scaling factor is fixed to ϑ = 0.
The preliminary results seem to be invariant of the
settings. We conclude that using forced alignment
posteriors as a feature training method seems to be
less effective than using competing hypotheses from
free decoding as in (He and Deng, 2012).

BLEU
ins/del ρ d Test1 WMT

baseline - - - 40.6 28.9
FaPrune no - - 40.7 29.1
FaTrain no 0 0 40.4 28.9

0.5 0 40.2 28.9
FaPrune yes - - 40.6 28.9
FaTrain yes 0 0 40.1 28.6

0.5 0 40.5 29.1
0.5 0.2 40.5 29.0
0.5 0.4 40.5 29.0

Table 6: Phrase pruning (FaPrune) vs. further model
re-estimation after pruning (FaTrain) on 1/3 it-en train-
ing data, both with and without on-demand inser-
tions/deletions.

5 Conclusion and Outlook

We applied forced alignment on parallel training
data with leave-one-out on four large-scale commer-
cial systems. In this way, we were able to reduce the
size of our already heavily pruned phrase tables by
at least 54%, with almost no loss in translation qual-
ity, and with a small improvement in speed perfor-
mance. We show that for language pairs with strong
reordering, the n-best list size needs to be increased
to account for the larger search space.

We introduced several extensions to the training
procedure. On-demand word insertions and dele-
tions can increase the data coverage to nearly 100%.
We plan to extend our work to use backoff transla-
tions (the target word that can not be extended given
the input phrase table will be aligned to any uncov-
ered single source word) to provide more alignment
varieties, and hence hopefully to be able to keep
more good phrase pairs. To avoid higher OOV rates
after pruning, we retrieved single-word translations
from the baseline phrase table.

We would like to emphasize that this leave-one-
out pruning technique is not restricted to phrasal
translators, even though all experiments presented
in this paper are on phrasal translators. It is possible
to extend the principle of forced alignment guided
pruning to hierarchical decoders, treelet decoders, or
syntax-based decoders, to prune redundant or use-
less phrase mappings or translation rules.
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Re-estimating phrase translation probabilities us-
ing forced alignment posterior scores did not yield
any noticable BLEU improvement so far. Instead, we
propose to apply discriminative training similar to
(He and Deng, 2012) after forced-alignment-based
pruning as future work.

References

[Blunsom et al.2008] Phil Blunsom, Trevor Cohn, and
Miles Osborne. 2008. A discriminative latent vari-
able model for statistical machine translation. In Pro-
ceedings of the 46th Annual Conference of the Associa-
tion for Computational Linguistics: Human Language
Technologies (ACL-08:HLT), pages 200–208, Colum-
bus, Ohio, June. Association for Computational Lin-
guistics.

[Cmejrek et al.2009] Martin Cmejrek, Bowen Zhou, and
Bing Xiang. 2009. Enriching SCFG Rules Directly
From Efficient Bilingual Chart Parsing. In Proc. of the
International Workshop on Spoken Language Transla-
tion, pages 136–143, Tokyo, Japan.

[de Gispert et al.2010] Adriá de Gispert, Juan Pino, and
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Abstract

Minimum error rate training is often the pre-
ferred method for optimizing parameters of
statistical machine translation systems. MERT
minimizes error rate by using a surrogate rep-
resentation of the search space, such asN -
best lists or hypergraphs, which only offer
an incomplete view of the search space. In
our work, we instead minimize error rate di-
rectly by integrating the decoder into the min-
imizer. This approach yields two benefits.
First, the function being optimized is the true
error rate. Second, it lets us optimize param-
eters of translations systems other than stan-
dard linear model features, such as distortion
limit. Since integrating the decoder into the
minimizer is often too slow to be practical, we
also exploit statistical significance tests to ac-
celerate the search by quickly discarding un-
promising models. Experiments with a phrase-
based system show that our approach is scal-
able, and that optimizing the parameters that
MERT cannot handle brings improvements to
translation results.

1 Introduction

Minimum error rate training (Och, 2003) is a com-
mon method for optimizing linear model parame-
ters, which is an important part of building good ma-
chine translation systems. MERT minimizes an arbi-
trary loss function, usually an evaluation metric such
as BLEU (Papineni et al., 2002) or TER (Snover
et al., 2006) from a surrogate representation of the
search space, such as theN -best candidate transla-
tions of a development set. Much of the recent work

∗ This research was conducted during the author’s intern-
ship at Microsoft Research.

on minimum error rate training focused on improv-
ing the method by Och (2003). Recent efforts ex-
tended MERT to work on lattices (Macherey et al.,
2008) and hypergraphs (Kumar et al., 2009). Ran-
dom restarts and random walks (Moore and Quirk,
2008) are commonly used to combat the fact the
search space is highly non-convex, often with mul-
tiple minima.

Several problems still remain with MERT, three
of which are addressed by this work. First, theN -
best error surface explored by MERT is generally
not the same as the true error surface, which means
that the error rate at an optimum1 of theN -best er-
ror surface is not guaranteed to be any close to an
optimum of the true error surface. Second, most
SMT decoders make search errors, yet MERT ig-
nores the fact that the error surface of an error-prone
decoder differs from the one of an exact decoder
(Chang and Collins, 2011). MERT calculates an en-
velope from candidate translations and assumes all
translations on the envelope are reachable by the de-
coder, but these translations may become unreach-
able due to search errors. Third, MERT is only used
to tune linear model parameters, yet SMT systems
have many free decoder parameters—such as distor-
tion limit and beam size—that are not handled by
MERT. MERT does not provide a principled way to
set these parameters.

In order to overcome these issues, we explore the
application of direct search methods (Wright, 1995)
to SMT. To do this, we integrate the decoder and
the evaluation metric inside the objective function,

1The optimum found by MERT (Och, 2003) is generally not
globally optimal. An alternative that optimizesN -best lists ex-
actly is presented by Galley and Quirk (2011), and we do not
discuss it further here.
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which takes source sentences and a set of weights as
inputs, and outputs the evaluation score (e.g., BLEU
score) computed on the decoded sentences. Since it
is impractical to calculate derivatives of this func-
tion, we use derivative-free optimization methods
such as the downhill simplex method (Nelder and
Mead, 1965) and Powell’s method (Powell, 1964),
which generally handle such difficult search condi-
tions relatively well. This approach confers several
benefits over MERT. First, the function being opti-
mized is the true error rate. Second, integrating the
decoder inside the objective function forces the op-
timizer to account for possible search errors. Third,
contrary to MERT, our approach does not require in-
put parameters to be those of a linear model, so our
approach can tune a broader range of features, in-
cluding non-linear and hidden-state parameters (e.g.,
distortion limit, beam size, and weight vector ap-
plied to future cost estimates).

In this paper, we make direct search reasonably
fast thanks to two speedup techniques. First, we
use a model selection acceleration technique called
racing (Moore and Lee, 1994) in conjunction with
randomization tests (Riezler and Maxwell, 2005) to
avoid decoding the entire development set at each
function evaluation. This approach discards the
current model whenever performance on the trans-
lated subset of the development data is deemed sig-
nificantly worse in comparison to the current best
model. Second, we store and re-use search graphs
across function evaluations, which eliminates some
of the redundancy of regenerating the same transla-
tions in different optimization steps.

Our experiments with a strong phrase-based trans-
lation system show that the direct search approach is
an effective alternative to MERT. The speed of direct
search is generally comparable to MERT, and trans-
lation accuracy is generally superior. The non-linear
and hidden-state features tuned in this work bring
gains on three language pairs, with improvements
ranging between 0.27 and 0.35 BLEU points.

2 Direct error rate minimization

Most current machine translation systems use a log-
linear model:

p(e|f) ∝ exp
(

∑

i

λihi(e, f)
)

wheref is a source sentence,e is a target sentence,
hi is a feature function, andλi is the weight of this
feature. Given a source sentencef , finding the best
target sentencêe according to the model is a search
problem, which is called decoding:

ê = argmax
e

exp
(

∑

i

λihi(e, f)
)

The target sentencêe is automatically evaluated
against a reference translationr using any metric
that is known to be relatively well correlated with
human judgment, such as BLEU or TER. Let us re-
fer to such error function as E

(

·
)

. Then, the process
of finding the best set of weightŝλ according to an
error function E is another search:

λ̂ = argmin
λ

E

(

r; argmax
e

exp
(

∑

i

λihi(e, f)
)

)

The typical MERT process solves the problem in an
iterative fashion. At each stepi, it producesN -best
lists by decoding witĥλi, then uses these lists to
find λ̂i+1. Och (2003) presents an efficient multi-
directional line search algorithm, which is based on
the fact that the error count along each line is piece-
wise constant and thus easy to optimize exactly. The
process is repeated until a certain convergence crite-
rion is met, or until no new candidate sentences are
added to the pool. The left side of Figure 1 summa-
rizes this process.

Though simple and effective, there are several lim-
itations to this approach. The primary reason is that
it can only tune parameters that are part of the log-
linear model. Aside from having parameters from
the log-linear model, decoders generally have free
parametersθ that needs to be set manually, such
as beam size and distortion limit. These decoder-
related parameters have complex interactions with
linear model parameters, thus, ideally, we would
want to tune them jointly with decoder parameters
such as distortion limit.

Direct search addresses these problems by includ-
ing all feature parameters and all decoder-related pa-
rameters within the optimization framework. Fig-
ure 1 contrasts MERT with direct search. Rather
than optimizing candidate pools of translations, di-
rect search treats the decoder and the evaluation tool
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Figure 1: Comparison of MERT (left) and direct search (right).

as a single function:

Φ(f, r; λ, θ) = E
(

r; argmax
e

exp
(

∑

i

λihi(e, f)
)

)

Then, it uses an optimization method to minimize
the function:

argmin
λ,θ

Φ(f, r; λ, θ)

This formulation solves the problem mentioned pre-
viously, since we jointly optimizeλ and θ, thus
accounting for the dependencies between the two.
However, there are two problems to address with di-
rect error minimization. First, this approach requires
the entire development set to be re-decoded every
time the function is evaluated, which can be pro-
hibitively expensive. To address this problem, we
present several methods to speed up the search pro-
cess in Section 5. Second, since the gradient of stan-
dard evaluation metrics such as BLEU is not known
and since methods for estimating the gradient numer-
ically require too many function evaluations, we can-
not use common search methods that use derivatives
of a function. Therefore, we need robust derivative-
free optimization methods. We discuss such opti-
mization methods in Section 3.

3 Derivative-free optimization

As discussed in the previous sections, we need to
rely on derivative-free optimization methods for di-
rect search. We consider two such optimization
methods:

Powell’s method For each iteration, Powell’s
method tries to find a good direction along which the
function can be minimized. This direction is deter-
mined by searching along each standard base vector.
Then, a line search is performed along the direction
by using line search methods such as golden section
search or Fibonacci search. The process is repeated
until convergence. We implement the golden sec-
tion search as presented by Press et al. (1992) in our
experiments. Although the golden section search is
only exact when the function is unimodal, we found
that it works quite well in practice. More details are
presented by Powell (1964).

Nelder-Mead method This approach sets up a
simplex on the search space, which is a polytope
with D + 1 vertices when there areD dimensions,
and successively moves the simplex to a lower point
to find a minimum of the function. The simplex is
moved using different actions, which are taken when
certain conditions are met. The basic idea behind
these actions is to replace the worst point in the sim-
plex with a new and better point, thereby moving the
simplex towards a minimum. This method has the
advantage of being able to deal with “bumpy” func-
tions and depending on the configuration of the sim-
plex at the time, it is possible to escape some local
minima. This is often refer to as downhill simplex
method and more details are presented by Nelder
and Mead (1965).

4 Parameters

In this section, we discuss the parameters that we
optimize with direct search, in addition to standard
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linear model parameters:

4.1 Distortion limit

Distortion limit is one of decoder parameters that
sets a limit on the number of words the decoder
is allowed to skip when deciding which source
phrase to translate in order to allow reordering. Fig-
ure 2 shows a translation example from English to
Japanese. Every word jumped over incurs a dis-
tortion cost, which is usually one of the transla-
tion model parameters, which thereby discourages
reordering of words unless language model supports
the reordering.

Since having a large distortion limit leads to
slower decoding, having the smallest possible dis-
tortion limit that still facilitates correct reordering
would be ideal. Not only this speeds up translation,
but this also leads to better translation quality by
minimizing search errors. Since a larger distortion
limit means there are more possible re-orderings of
translations, it is prone to more search errors. In fact,
there are evidences that tuning the distortion limit
is beneficial in improving quality of translation by
limiting search errors. Galley and Manning (2008)
conduct a line search along increments of distor-
tion limit and separately tune the translation model
parameters for each increment of distortion limit.
The result shows significant difference in translation
quality when distortion limit is tuned along with the
model parameters. Separately tuning model param-
eters for different distortion limit is necessary be-
cause model parameters are coupled with distortion
limit. A representative example: when distortion
limit is zero, the distortion penalty feature can have
any weight and not affect BLEU scores, but this is
not the case when distortion limit is larger than zero.
Tuning distortion limit in direct search in conjunc-
tion with related features such linear distortion elim-
inates the need for a line search for distortion limit.

4.2 Polynomial features

Most phrase-based decoders typically use a dis-
tortion penalty feature to discourage (or maybe
sometimes encourage) reordering. Whereas distor-
tion limit is a hard constraint—since the decoder
never considers jumps larger than the given limit—
distortion penalty is a soft constraint, since it penal-
izes reordering proportionally to the length of the

I did not see the book you borrowed

私は あなたが 借りた 本を なかった

+5
-3

-3

Figure 2: Reordering in phrase-based translation. A min-
imum distortion limit of five is needed to correctly trans-
late this example. The source sentence is relatively sim-
ple but a relatively large distortion limit is needed to ac-
commodate the correct reordering due to typological dif-
ference between two languages.

jump. The total distortion penalty is calculated as
follows:

D(e, f) = λd

∑

j

|dj |
pd

whereλd is the weight for distortion penalty feature,
and dj is the size of the jump needed to translate
the j-th phrase pair. For example, in Figure 2, the
total distortion penalty feature value is 11, which is
multiplied with λd to get the total distortion cost of
translating the example sentence. Althoughpd is typ-
ically set to one (linear), one may consider polyno-
mial distortion penalty (Green et al., 2010). Green et
al. (2010) show that settingpd to a higher value than
one improves the translation quality, but uses a pre-
determined value forpd. Instead of manually setting
the value ofpd, it can be given a value tuned with di-
rect search. Although we only discussed distortion
penalty here, it is straightforward to tunepi for each
featurehi(e, f)pi using direct error rate minimiza-
tion, wherehi(e, f) is any linear model feature of
the decoder.

4.3 Future cost estimates

Since beam search involves pruning, it is crucial to
have good future cost estimation in order to min-
imize the number of search errors (Koehn et al.,
2003). The concept of future cost estimation is re-
lated to heuristic functions in the A* search algo-
rithm. The total costf(x) of a partial translation
hypothesis is estimated by combiningg(x), which is
the actual current cost from the beginning of a sen-
tence to pointx andh(x), which is the future cost
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estimate from pointx to the end of the sentence:

f(x) = g(x) + h(x)

In SMT decoding, the same feature weight vec-
tor is generally used when computingg(x) andh(x).
However, this may not be ideal since future cost esti-
mators use different heuristics depending on the fea-
tures. For example, the future cost estimator (Green
et al., 2010) for linear distortion always underesti-
mates completion cost, which is generally deemed
a good property. Unfortunately, some features have
estimators that tend to overestimate completion cost,
as it is the case with the language model. This prob-
lem is illustrated in Figure 3. The Figure shows
that the ratio between the estimated total cost and
the actual total cost converges to1.0. However,
in earlier stages of translations, the estimated fu-
ture cost for language model is larger than it should
be, which leads to higher total estimated cost. In
the A* search parlance, we are using an inadmissi-
ble heuristic since the future cost is overestimated,
which leads to suboptimal search. This suggests that
separately tuning parameters that are involved in the
future cost estimation will lead to better pruning de-
cisions. This essentially doubles the number of lin-
ear model parameters, since for every feature used in
future cost estimation, we create a counterpart and
tune its weight independently.

4.4 Search parameters

In addition to the parameters listed above, we also
tune general decoder parameters that affect the
search quality: beam size and parameters controlling
histogram pruning and threshold pruning. While it
makes sense to set these parameters automatically
instead of manually, the methods we have presented
thus far are not particularly fit for this type of pa-
rameters. Indeed, if the sole goal is to maximize
translation quality (e.g., as measured by standard
BLEU), a larger beam size and less pruning is usu-
ally preferable. To address this problem, we opti-
mize these three parameters using a slightly different
objective function. When tuning any of these three
features, the goal of translation is to get the most ac-
curate translation given a pre-defined time limit, so
we change the objective to be a time-sensitive objec-
tive function. Much akin to brevity penalty in BLEU,

0 0.2 0.4 0.6 0.8 1
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Figure 3: y axis is ratio between estimated total cost vs.
actual total cost of language model for thousands of trans-
lations.1.0 means the estimated total cost and the actual
total cost are exactly the same, and anything higher than
1.0 means the future cost has been overestimated thereby
inflating the estimated total cost. Thex-axis represents
how much translation has been completed.0.1 means
10% of a sentence has been translated.

we define time penalty as:

TP
(

·
)

=

{

1.0 ti ≤ td

exp
(

1− ti
td

)

ti > td

whereTP
(

·
)

is a time penalty that is multiplied
to BLEU, ti is the time it takes to translate devel-
opment set under current parameters, andtd is the
desired time limit for translating the development
set. With this error metric, we still optimize for
the translation quality as long as the translation hap-
pens within desired timetd. With the modified time-
sensitive BLEU score as error metric, direct search
may tune the parameters that have the speed and ac-
curacy trade-off that we want.2

5 Speeding up direct search

Optimizing the true error surface is generally more
computationally expensive than with any surrogate
error surface, since each function evaluation usually
requires decoding or re-decoding the entire devel-
opment set. Since SMT tuning sets used for error

2A disadvantage of using time in the definition ofTP
`

·
´

is that it adds non-determinism that can make optimization un-
stable. Our solution is to replace time with pseudo-time, a de-
terministic substitute expressed as a linear combination of the
number of n-gram lookups and hypothesis expansions (these
two quantities correlate quite well with decoding time).
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rate minimization often comprise one thousand sen-
tences or more, each function evaluation can take
minutes or more. However, this problem is some-
what mitigated by the fact that translating in batches
is highly parallelizable. Since MERT (Och, 2003) is
also easily parallelizable, we need to resort to other
speedup techniques to make direct search a practi-
cal alternative to MERT. We now present two tech-
niques that make optimization of the true error sur-
face more efficient.

5.1 A racing algorithm for speeding up SMT
model selection

Error rate minimization as presented in this paper
can be seen as a form of model selection, which
has been the focus of a lot of work in the learn-
ing literature. The most popular approaches to
model selection—such as minimizing cross valida-
tion error—tend to be very slow in practice; there-
fore, researchers have addressed the problem of ac-
celerating model selection using statistical tests.

Prior to considering the SMT case, we review one
of these methods in the case of leave-one-out cross
validation (LOOCV). Racing for model selection
(Maron and Moore, 1994; Moore and Lee, 1994)
works as follows: we are given a collection ofNm

models andNd data points, and we must find the
model that minimizes the meane∗j = 1

Nd

∑

i ej(i),
whereej(i) is the classification error of modelMj

on theith datapoint when trained on all datapoints
except theith point. The models are evaluated con-
currently, and at any given stepk ∈ [1, Nd], each
modelMj is associated with two pieces of informa-
tion: the current estimate of its mean error rate, and
the estimate of its variance. As evaluations progress,
we eliminate any model that is significantly worse
than any other model.3 We also note that the Rac-
ing technique first randomizes the order of the data
points to ensure that prefixes of the dataset are gen-

3The details of these statistical tests are not so important
here since we use different ones in the case of SMT, but we
briefly summarize them as follows: Maron and Moore (1994)
use a non-parametric method (Hoeffding bounds (Hoeffding,
1963)) for confidence estimation, and places confidence inter-
vals on the mean value of the random variable representing
ej(i). A model is discarded if its confidence interval no longer
overlaps with the confidence interval of the current best model.
Moore and Lee (1994) use a similar technique, but relies on
Bayesian statistics instead of Hoeffding bounds.

erally representative of the entire set.

In this work, we use Racing to speed up direct
search for SMT, but this requires two main adjust-
ments compared to the LOOCV case. First, our
models have real-valued parameters, so we cannot
exhaustively evaluate the set of all models since it is
infinite. Instead, we use direct search to select which
models compete against each other during Racing.
In the case of Powell’s method, all points of a grid
along the current search direction are evaluated in
parallel using Racing, before we turn to the next
line search. In the case of the downhill simplex op-
timizer and in the case of line searches other than
grid search (e.g., golden section search), the use of
Racing is more difficult because the function eval-
uations requested by these optimizers have depen-
dencies that generally prevent concurrent function
evaluations. Since functions in downhill simplex are
evaluated in sequence and not in parallel, our solu-
tion is to race the current model against our current
best model.4 When the evaluation of a modelM is
interrupted because it is deemed significantly worse
than the current best model̂M , the error rate ofM
on the entire development set is extrapolated from
its relative performance on the decoded subset.5

The second main difference with the LOOCV
case is that we do not use confidence intervals to de-
termine which of two or models are best. In SMT, it
is common to use either bootstrap resampling (Efron
and Tibshirani, 1993; Och, 2003) or randomization
tests (Noreen, 1989). In this paper, we use the ran-
domization test for discarding unpromising models,
since this statistical test was shown to be less likely
to cause type-I errors6 than bootstrap methods (Rie-
zler and Maxwell, 2005). Since both kinds of statisti-
cal tests involve a time-consuming sampling step, it

4Since Racing only discards suboptimal models, the current
best modelM∗ is one for which we have decoded the entire de-
velopment set. Once a new modelM is evaluated, we perform
at stepj a significance test to determine whetherM ’s transla-
tion of sentences1 . . . j is better or worse thanM∗ translation
for the same range of sentences. IfM is significantly worse, we
discard it. IfM∗ is worse, we continue evaluating the perfor-
mance ofM , since we needM ’s output for the full development
set ifM eventually becomes the new best model.

5For example, if error rates of̂M andM are respectively
10% and 11% on the subset decoded by both models andM̂ ’s
error on the entire set is 20%,M ’s extrapolated error is 22%.

6A type I error rejects a null hypothesis that is true.
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is somewhat wasteful to perform a new test after the
decoding of each sentence, so we translate sentences
in small batches ofK sentences before performing
each randomization test.7

We finally note that Racing no longer guarantees
that the error function observed by the optimizer is
the true error function. Racing causes some approx-
imations of the error function, but the degree of ap-
proximation is designed to be small in regions with
low error rates, and Racing ensures that the most
promising function evaluations in our progression to-
wards an optimum are unaffected. In contrast, the
approximation of the error function computed from
N -best lists or lattice does not share this property.8

To further speed up function evaluations in direct
search, we employ a method meant to deal with mod-
els that are nearly identical, a situation in which Rac-
ing usually does not help much. Indeed, when two
models produce very similar outputs, we often need
to run the race through every sentence of the devel-
opment set since none of the two models end up be-
ing significantly better. A solution to this problem
consists of discarding models that are nearly identi-
cal to other models, where similarity between mod-
els is solely measured from their outputs.9 To do
this, we resort again to a randomization test: Given
two modelsMa andMb, this test performs random
permutations between outputs ofMa andMb, that is,
it determines for each sentence of indexi whether or
not to permute the two model outputs, with proba-
bility p = 0.5. WhenMa andMb are very similar,
these permutations have little effect, even when we
repeat this sampling process many times. To cope
with this problem, we slightly modify the random-

7In our experiments, we setK = 50. Some other practi-
cal considerations: the significance level used for discarding
unpromising models isp ≤ .05. The randomization test is a
sampling-based technique, for which we must specify a sample
sizeR. In this paper, we useR = 5000.

8In the case ofN -best MERT, it is not even guaranteed that
we find the true error rate of our current best modelM while
searching theN -best error surface. In fact, if we take the pa-
rameters of our best modelM and re-decode the development
set, we may get an error rate that is different from what was pre-
dicted from theN -best list. With direct search and Racing, no
such approximation affects our current best model.

9Measuring model similarity only based on parameter val-
ues is less effective, since features and other parameters are
sometimes redundant, and two models may behave similarly
while having fairly distinct parameter values.

ization test to discard one of the two nearly iden-
tical models. Specifically, we compute the gap—
measured in error rate—between the best random-
ized output and the worst randomized output. If this
gap is lower than a pre-defined threshold, we only
keep the best model.10 This adjustment to the sig-
nificance test makes direct search reasonably fast,
since Racing is effective during the initial steps of
search (when steps tend to be relatively big, and
when differences in error rate are pretty significant),
and our modification to randomization tests helps
while search converges towards an optimum using
increasingly smaller steps.

5.2 Lattice-based decoding

We use another technique to speed up direct search
by storing and re-using search graphs, which con-
sist of lattices in the case of phrase-based decod-
ing (Och et al., 1999) and hypergraphs in the case
of hierarchical decoding (Chiang, 2005). The suc-
cessive expansion of translation options in order to
construct the search graph is generally done from
scratch, but this can be wasteful when the same
sentences are translated multiple times, as it is the
case with direct search. Even when the parame-
ters of the decoder change across function evalua-
tions, some partial translation are likely to be con-
structed multiple times, and this is more likely to
happen when changes in parameters are relatively
small. To overcome this inefficiency, we memoize
hypotheses expansions made in all function evalu-
ations, which then allows us to reuse some edges
(or hyperedges) from previous iterations to construct
the current graph (or hypergraph). Since feature
values—including expensive features like language
model score—are stored into each edge, the speedup
is roughly proportional to the percentage of edges
we can reuse.

A more radical way of exploiting search graphs
of previous iterations is to use them as constraints in
a forced decoding approach. In this framework, the
decoder takes as input not only an input sentence,
but also a constraining search graph. During decod-
ing, it is forced to discard any translation hypothe-

10In the case where we compare our current best model and
a model that is currently being evaluated, we discard the latter.
In our experiments with BLEU, we discard if the gap is smaller
than 0.1 BLEU point.
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Figure 4: Lattice-constrained decoding for direct search.

ses that violate the constraining search graph. This
makes the memoization method presented in the pre-
vious paragraph maximally efficient, since lattice-
constrained decoding has all linear model feature
values already pre-computed. While this approach
is similar in spirit to lattice-based MERT (Macherey
et al., 2008), there is a crucial difference. The opti-
mization steps in lattice MERT bypass the decoder,
but the lattice-based approach presented here does
not. The distinction is important when it comes to
tuning non-linear and hidden state parameters of the
decoder. For instance, the initial lattice may have
been constructed with a distortion limit of 4, while
the current model specifies a distortion limit of 2.
At that stage, optimization via lattice-constrained de-
coding instead of lattice-based MERT ensures that
we will never select a path of the input lattice that
corresponds to a distortion limit of more than 2. This
is important since the error rate must reflect the fact
that jumps of two or more words are not allowed.

Figure 4 shows how direct search with lattice-
constrained decoding is structured. Similarly to
MERT and as opposed to straight direct search, opti-
mization is repeated multiple times. Since each opti-
mization in the lattice-constrained case does not re-
quire recomputing any features, it usually turns into
very significant gains in terms of translation speed,
though it also causes a small loss of translation ac-
curacy in general. The overall approach depicted in
Figure 4 works as follows: a first set of lattices is
generated using an initialλ0 andθ0. We then run
direct search with a decoder constrained on this set
of lattices. After optimization has converged, the op-

Train MERT dev. Test
Korean-English 7.9M 1000 6000
Arabic-English 11.1M 1000 6000
Farsi-English 739K 1000 2000

Table 1: Size of bitexts in number of sentence pairs.

timal λ̂ and θ̂ are provided as inputλ1 andθ1 to
start a new iteration of this process. Note that the
constraining lattices built at each iteration are always
merged with those of the previous ones, so constrain-
ing lattices grow over time. The two stopping crite-
ria are similar to MERT: if the norm of the difference
between the previous parameter vector—including
λ andθ—and the current vector falls below a pre-
defined tolerance value, we do not continue to the
next iteration. Alternatively, if a new pass of un-
constrained decoding generates lattices that are sub-
sumed by lattices constructed at previous iteration,
we stop and do not run the next optimization step.

6 Experiments

6.1 Setup

For our experiments, we use a phrase-based transla-
tion system similar to Moses (Koehn et al., 2007).
Our decoder uses many of the same features as
Moses, including four phrasal and lexicalized trans-
lation scores, phrase penalty, word penalty, a lan-
guage model score, linear distortion, and six lexical-
ized reordering scores. Unless specified otherwise,
the decoder’s stack size is 50, and the number of
translation options per input phrase is 25.

Table 1 summarizes the amount of training data
used to train translation systems from Korean, Ara-
bic, and Farsi into English. These data sets are
drawn from various sources, which include news,
web, and technical data, as well as United Nations
data in the case of Arabic. In order to get the sense
of how presented techniques generalize, we evalu-
ate our systems on a fairly broad domain. We use
development and test sets are a mix of news, web,
and technical data. All systems translate into En-
glish, for which we built a 5-gram language model
with cutoff counts 1, 1, 1, 2, 3 for unigrams to 5-
grams, using a corpus of roughly seven billion En-
glish words. This includes the target side of the par-
allel training data, plus a significant amount of data
gathered from the web.
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# Minimizer Optimized parameters Arabic Korean Farsi
1 MERT with grid search lin, DL 29.12 (14.6) 23.30 (20.8) 32.16 (11.7)
2 Direct search (simplex) lin, DL 29.07 (1.2) 23.42 (4.4) 32.22 (1.3)
3 Direct search (Powell) lin, DL 29.20 (2.3) 23.39 (5.6) 32.28 (2.1)
4 Direct search (Powell) lin, extended, DL 29.39 (4.4) 23.61 (8.9) 32.51 (4.9)
5 Lattice-constrained (Powell) lin, extended, DL 29.27 (0.7) 23.43 (1.3) 32.42 (1.1)
6 Direct search (Powell) lin, extended, DL, search 29.31 (6.5) 23.46 (9.7) 32.62 (6.2)

Table 2: BLEU-4 scores (%) with one reference, translating into English; the numbers in parentheses are times in
hours to run parameter optimization end-to-end. ‘Lin’ refers to Moses linear model features; ‘extended’ refers to non-
linear and hidden state features (polynomial features, future cost); ‘DL’ refers to distortion limit; ‘search’ is the set of
parameters controlling search quality (parameters controlling beam size, histogram pruning, and threshold pruning).

Our baseline system is trained for each language
pair by running minimum error rate training (Och,
2003) on 1000 sentences. Each iteration of MERT
utilizes 19 random starting points, plus the points of
convergence at all previous iterations of MERT, and
a uniform weight vector. That is, the first iteration
of MERT uses 20 starting points, the second uses 21
points, etc. Since MERT is not able to directly opti-
mize search parameters such as distortion limit and
beam size, our baseline system uses grid search to
optimize them. To make this search more tractable,
we only perform the grid search for a single param-
eter: the distortion limit. For each language pair,
the grid search consists of repeating MERT for eight
distinct distortion limits ranging from 3 to 10. The
optimal distortion limits found for Korean, Arabic,
and Farsi, are 8, 5, and 6, respectively.11 To ensure
that the comparison with our approach is consistent,
this grid search is made on the MERT dev set itself.

The next subsection contrasts the different direct
search methods presented in this paper. Note that
all these experiments use the speedup techniques
based on statistical significance test presented in Sec-
tion 5. Indeed, we found that using these techniques
resulted in faster speeds without affecting the search
in any significant way. Models tuned with or without
significance tests often ended up identical.

6.2 Results

The main results are shown in Table 2, and are com-
puted using standard BLEU-4 (Papineni et al., 2002)

11We rerun MERT for each different distortion limit because
of the dependencies between this parameter and linear model
features, particularly linear distortion and lexicalized reordering
scores. A linear model that is effective with a distortion limit of
4 can be suboptimal for a limit of 8.

using one reference translation, and ignoring case.
Row 1 displays results of the MERT baseline, with
a distortion limit that was found optimal using a
grid search on the development set. Rows 2 and 3
show results of direct error rate minimization with
downhill simplex and Powell’s method, where di-
rect search optimizes both linear model parameters
and the distortion limit. We see here that the per-
formance of direct search is comparable and some-
times better than MERT, but the benefit of direct
search here is that it does not require an external grid
search to find an effective distortion limit (each di-
rect search is initialized with a distortion limit of 10).
Row 4 shows the performance of Powell’s method
using the extended parameter set (Section 4), which
includes model weights for future costs and polyno-
mial features. We lack space to present an exten-
sive analysis of the relative impact of the different
non-linear features and parameters discussed in this
paper, but we generally find that the following pa-
rameters work best: distortion limit, polynomial dis-
tortion penalty, and weight of future cost estimate of
the language model. The fact that Moses-style future
cost estimation for language models often overesti-
mates probably explains why the latter feature helps.

In the last row of Table 2, optimization is done
using the time-sensitive variant of BLEU presented
in Section 4.4, and the set of parameters tuned here
includes all the previous ones, in addition to beam
size, and the two parameters controlling histogram
and threshold pruning in beam search. Clearly, run-
ning direct search to directly optimize BLEU would
yield a very large beam size and would set pruning
parameters that are so permissive that they would al-
most completely disable pruning. The benefit of us-
ing the time-sensitive variant of BLEU is that direct
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search is forced to find parameter weights that of-
fer a good balance between accuracy and speed. To
make our results in row 6 as comparable as possible
to row 4, we use the running time (on the develop-
ment set) of row 4 as a time constraint for the model
of row 6, which is to decode the entire development
set at least as fast. In other words, the system of
row 6 is optimized to be no slower than the system
of row 4, and is otherwise penalized due to the time
penalty. The effect of this is that translation speed at
tuning time is almost the same, and speed of systems
4 and 6 is roughly the same at test time. A com-
parison between rows 4 and 6 suggests that tuning
search parameters such as beam size and without af-
fecting time does not provide much gain in terms of
translation quality, but the method nevertheless has
one advantage: one can target a specific translation
speed without having to manually tune any param-
eter such as beam size, and without even having to
decide which parameter to manually tune.

Times to run optimizations end-to-end are re-
ported in parentheses in Table 2 and they take into
account the time to run the grid search in the case
of MERT. Times to decode test sets are not reported
here since they are roughly the same across all mod-
els. While translation accuracy with MERT and di-
rect search is roughly the same when the underly-
ing parameter set is the same, direct search wins in
running time when it comes to optimizing search pa-
rameters like distortion limit. Since each grid search
runs MERT eight times, MERT is generally faster
than direct search, but the difference of speed re-
mains reasonable if the number of tuned parameters
is the same, and direct search is rarely twice as slow.

We finally discuss the case of lattice-constrained
decoding, which is shown in row 5 of Table 2. This
method is not applicable when tuning parameters
that affect search thoroughness (row 6), such as
beam size. The reason is that lattice-constrained
decoding is a form of forced decoding that con-
siderably narrows the search space. Under a con-
strained decoding setting, it appears that a large
beam size seldom affects translation speed, but this
is misleading and largely due to constraints cre-
ated by the lattice. We thus evaluate the lattice-
constrained case without tuning ‘search’ features,
and find that direct search is significantly faster us-
ing lattice-constrained, with only a slight degrada-

tion of translation quality. Lattice constraints are
augmented 2-5 times before it converges.

7 Related work

The use of derivative-free optimization methods to
tune machine translation parameters has been tried
before. Bender et al. (2004) used the Nelder-Mead
method to tune model parameters for a phrase-based
translation system. However, their way of making
direct search fast and practical is to set distortion
limit to zero, which results in poor translation qual-
ity for many language pairs. Zens et al. (2007) also
use the Nelder-Mead method to tune parameters in a
log-linear model to maximize expected BLEU. Zhao
and Chen (2009) proposes changes to Nelder-Mead
method to better fit parameter tuning in their ma-
chine translation setting. They show the modifica-
tion brings better search of parameters over the regu-
lar Nelder-Mead method. Our work is related to the
search-based structured prediction (SEARN) model
of Dauḿe (2006), in the sense that direct search also
accounts for what happens during search (including
search errors) to try to find parameters that are not
only good for prediction, but for search as well.

8 Conclusion

This paper addressed the problem of minimizing er-
ror rate at a corpus level. We show that a technique
to directly minimize the true error rate, rather than
one estimated from a surrogate representation such
as anN -best list, is in fact feasible. We present two
techniques that make this minimization significantly
faster, to the point where this technique is a viable
alternative to MERT. In the case where free param-
eters of the decoder (such as distortion limit) also
need to be optimized, our technique is in fact much
faster. We also optimize non-linear and hidden state
features that cannot be tuned using MERT, which
yield improvements in translation accuracy. Experi-
ments on large test sets yield gains on three language
pairs, and our best configuration outperforms MERT
by 0.27 to 0.35 BLEU points using a baseline system
trained on large amounts of data.
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Abstract

The introduction of large-margin based dis-
criminative methods for optimizing statistical
machine translation systems in recent years
has allowed exploration into many new types
of features for the translation process. By
removing the limitation on the number of
parameters which can be optimized, these
methods have allowed integrating millions of
sparse features. However, these methods have
not yet met with wide-spread adoption. This
may be partly due to the perceived complex-
ity of implementation, and partly due to the
lack of standard methodology for applying
these methods to MT. This papers aims to shed
light on large-margin learning for MT, explic-
itly presenting the simple passive-aggressive
algorithm which underlies many previous ap-
proaches, with direct application to MT, and
empirically comparing several widespread op-
timization strategies.

1 Introduction

Statistical machine translation (SMT) systems rep-
resent knowledge sources in the form of features,
and rely on parameters, or weights, on each feature,
to score alternative translations. As in all statistical
models, these parameters need to be learned from
the data. In recent years, there has been a growing
trend of moving away from discriminative training
using batch log-linear optimization, with Minimum-
Error Rate Training (MERT) (Och, 2003) being the
principle method, to online linear optimization (Chi-
ang et al., 2008; Watanabe et al., 2007; Arun and
Koehn, 2007). The major motivation for this has
been that while MERT is able to efficiently optimize

a small number of parameters directly toward an ex-
ternal evaluation metric, such as BLEU (Papineni et
al., 2002), it has been shown that its performance
can be erratic, and it is unable to scale to a large
set of features (Foster and Kuhn, 2009; Hopkins and
May, 2011). Furthermore, it is designed for batch
learning, which may be prohibitive or undesirable
in certain scenarios, for instance if we have a large
tuning set. One or both of these limitations have
led to recent introduction of alternative optimization
strategies, such as minimum-risk (Smith and Eis-
ner, 2006), PRO (Hopkins and May, 2011), Struc-
tured SVM (Cherry and Foster, 2012), and RAM-
PION (Gimpel and Smith, 2012), which are batch
learners, and online large-margin structured learn-
ing (Chiang et al., 2009; Watanabe et al., 2007;
Watanabe, 2012).

A popular method of large-margin optimiza-
tion is the margin-infused relaxed algorithm
(MIRA) (Crammer et al., 2006), which has been
shown to perform well for machine translation, as
well as other structured prediction tasks, such as
parsing. (McDonald et al., 2005). This is an at-
tractive method because we have a simple analytical
solution for the optimization problem at each step,
which reduces to dual coordinate descent when us-
ing 1-best MIRA. It is also quite easy to implement,
as will be shown below.

Despite the proven success of MIRA-based large-
margin optimization for both small and large num-
bers of features, these methods have not yielded
wide adoption in the community. Part of the rea-
son for this is a perception that these methods are
complicated to implement, which has been cited as
motivation for other work (Hopkins and May, 2011;
Gimpel and Smith, 2012). Furthermore, there is a di-
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vergence between the standard application of these
methods in machine learning, and our application
in machine translation (Gimpel and Smith, 2012),
where in machine learning there are usually clear
correct outputs and no latent structures. As a con-
sequence of the above, there is a lack of standard
practices for large-margin learning for MT, which
has resulted in numerous different implementations
of MIRA-based optimizers, which further add to the
confusion.

This paper aims to shed light on practical con-
cerns with online large margin training. Specif-
ically, our contribution is first, to present the
MIRA passive-aggressive update, which underlies
all MIRA-based training, with an eye to applica-
tion in MT. Then, we empirically compare several
widespread as well as novel optimization strategies
for large-margin training on Czech-to-English (cs-
en) and French-to-English (fr-en) translation. Ana-
lyzing the findings, we recommend an optimization
strategy which should ensure convergence and sta-
bility.

2 Large-Margin Learning

2.1 Description

MIRA is an online large-margin learner, and be-
longs to a class of passive-aggressive (PA) algo-
rithms (Crammer et al., 2006). Although the exact
procedure it employs is different from other subgra-
dient optimizers, in essence it is performing a sub-
gradient descent step, where the step size is adjusted
based on each example. The underlying objective
of MIRA is the same as that of the margin rescaled
Structural SVM (Tsochantaridis et al., 2004; Mar-
tins et al., 2010), where we want to predict the cor-
rect output over the incorrect one by a margin at least
as large as the cost incurred by predicting the in-
correct output. However, the norm constraint from
SVM is replaced with a proximity constraint, indi-
cating we want to update our parameters, but keep
them as close as possible to the previous parame-
ter estimates. In the original formulation for sepa-
rable classification (Crammer and Singer, 2003), if
no constraints are violated, no update occurs. How-
ever, when there is a loss, the algorithm updates the
parameters to satisfy the constraints. To allow for
noise in the data, i.e. nonseparable instances, a slack

variable ξi is introduced for each example, and we
optimize a soft-margin. The usual presentation of
MIRA is then given as:

wt+1 = arg min
w

1
2
||w −wt||2 + Cξi

s.t. w>f(xi, yi)−w>f(xi, y
′) ≥ cost(yi, y

′)− ξi

(1)
where f(xi, yi) is a vector of feature functions1, w
is a vector of corresponding parameters, y′ ∈ Y(xi),
where Y(xi) is the space of possible translations we
are able to produce from x,2 and cost(yi, ·) is com-
puted using an external measure of quality, such as
BLEU.

The underlying structured hinge loss objective
function can be rewritten as:

`h = −w>f(xi, yi)+

max
y′∈Y(xi)

(
w>f(xi, y

′) + cost(yi, y
′)
) (2)

2.2 Hypothesis Selection
Our training corpus T = (xi, yi)

T
i=1 for selecting the

parameters w that optimize this objective consists of
input sentences xi in the source language paired with
reference translations yi in the target language. No-
tice that `h depends on computing the margin be-
tween y′ ∈ Y(xi) and the correct output, yi. How-
ever, there is no guarantee that yi ∈ Y(xi) since
our decoder is often incapable of producing the ref-
erence translation yi. Since we need to have some
notion of the correct output in order to compute its
feature vector for the margin, in practice we revert to
using surrogate references in place of yi. These are
often referred to as oracles, y+, which are selected
from the hypothesis space Y(xi) of the decoder.

We are also faced with the problem of how best
to select the most appropriate y′ to shy away from,
which we will refer to as y−. Since optimization will
proceed by setting parameters to increase the score
of y+, and decrease the score of y−, the selection
of these two hypotheses is crucial to success. The
range of possibilities is presented in Eq. 3 below.

1More appropriately, since we only observe translations
yi, which may have many possible derivations dj , we model
the derivations as a latent variable, and our feature functions
are actually computed over derivation and translation pairs
f(xi, yi, dj). We omit dj for clarity.

2The entire hypergraph in hierarchical translation or lattice
in phrase based translation.
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`r = − max
y+∈Y(xi)

(
γ+w>f(xi, y

+)− β+cost(yi, y
+)

)
+ max

y−∈Y(xi)

(
γ−w>f(xi, y

−) + β−cost(yi, y
−)

)
(3)

Although this formulation has commonly been
referred to as the hinge loss in previous litera-
ture, Gimpel and Smith (2012) have recently pointed
out that we are in fact optimizing losses that are
closer to different variants of the structured ramp
loss. The difference in definition between the two is
subtle, in that for the ramp loss, yi is replaced with
y+. Each setting of γ± and β± corresponds to opti-
mizing a different loss function. Several definitions
of `r have been explored in the literature, and we
discuss them below with corresponding settings of
γ± and β±.

In selecting y+, we vary the settings of γ+ and
β+. Assuming our cost function is based on BLEU,
in setting β+ → 1 and γ+ → 0, if Y(xi) is taken
to be the entire space of possible translations, we
are selecting the hypothesis with the highest BLEU

overall. This is referred to in past work as max-
BLEU (Tillmann and Zhang, 2006) (MB). If we ap-
proximate the search space by restricting Y(xi) to
a k-best list, we have the local-update (Liang et
al., 2006), where we select the highest BLEU can-
didate from those hypotheses that the model consid-
ers good (LU). With increasing k-best size, the max-
BLEU and local-update strategies begin to converge.

Setting both β+ → 1 and γ+ → 1, we ob-
tain the cost-diminished hypothesis, which consid-
ers both the model and the cost, and corresponds to
the “hope” hypothesis in Chiang et al. (2008) (M-
C). This can be computed over the entire space of
hypotheses or a k-best list. In a sense, this is the
intuition that local-updating is after, but expressed
more directly.

The alternatives for selecting y− are quite sim-
ilar. Setting β− → 1 and γ− → 0, we select
the hypothesis with the highest cost (MC). Setting
β− → 0 and γ− → 1, we have the highest scor-
ing hypothesis according to the model, which cor-
responds to prediction-based selection (Crammer et
al., 2006) (PB). Setting both to 1, we have the cost-
augmented hypothesis, which is referred to as the
“fear” (Chiang et al., 2008), and max-loss (Cram-

mer et al., 2006) (M+C). This hypothesis is consid-
ered the most dangerous because it has a high model
score along with a high cost.

Considering the settings for both parts of Eq. 3,
γ+, β+ and γ−, β−, assigning all γ± and β± to 1
corresponds to the most commonly used loss func-
tion in MT (Gimpel and Smith, 2012; Chiang et
al., 2009). This is the “hope”/“fear” pairing, where
we use the cost-diminished hypothesis y+ and cost-
augmented hypothesis y−. Other loss functions have
also been explored, such as γ± → 1, β+ → 1,
β− → 0 (Liang et al., 2006), and something ap-
proximating γ± → 1, β+ → 0, β− → 1 (Cherry
and Foster, 2012), which is closer to the usual loss
used for max-margin in machine learing. To our best
knowledge, other loss functions explored below are
novel to this work.

Since our external metric, BLEU, is a gain, we can
think of the first term in Eq. 3 as the model score plus
the BLEU score, and the second term as the model
minus the BLEU score. That is, with all γ± and β±

set to 1, we want y+ to be the hypothesis with a
high model score, as well as being close to the refer-
ence translation, as indicated by a high BLEU score.
While for y−, we want a high model score, but it
should be far away from the reference, as indicated
by a low BLEU score. The motivation for choosing
y− in this fashion is grounded in the fact that since
we are penalized by this term in the ramp loss ob-
jective, we should try to optimize on it directly. In
practice, we can compute the cost for both terms as
(1-BLEU(y,yi)), or use that as the cost of the first
term, and after selecting y+, compute the cost of y−

by taking the difference between BLEU(y+,yi) and
BLEU(y,yi).

The ramp loss objectives are non-convex, and by
separately computing the max for both y+ and y−,
we are theoretically prohibited from online learning
since we are no longer guaranteed to be optimizing
the desired loss. This is one motivation for the batch
learner, RAMPION (Gimpel and Smith, 2012). How-
ever, as with many non-convex optimization prob-
lems in NLP, such as those involving latent vari-
ables, in practice online learning in this setting be-
haves quite well.
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2.3 Parameter Update

The major practical concern with these methods for
SMT is that oftentimes the implementation aspect
is unclear, a problem which is further exacerbated
by the apparent difficulty of implementation. This
is further compounded with a lack of standard prac-
tices; both theoretical, such as the objective to op-
timize, and practical, such as efficient paralleliza-
tion. The former is a result of the disconnect be-
tween the standard machine learning setting, which
posits reachable references and lack of latent vari-
ables, and our own application. The latter is an
active engineering problem. Both of these aspects
have been receiving recent attention (McAllester et
al., 2010; Mcallester and Keshet, 2011; Gimpel and
Smith, 2012; McDonald et al., 2010), and although
certain questions remain as to the exact loss being
optimized, we now have a better understanding of
the theoretical underpinnings of this method of opti-
mization.

The first adaptations of MIRA-based learning for
structured prediction in NLP utilized a set of k con-
straints, either for y+, y−, or both. This complicated
the optimization by creating a QP problem with a set
of linear constraints which needed to be solved with
either Hildreth’s algorithm or SMO style optimiza-
tion, thereby precluding the possibility of a sim-
ple analytical solution. Later, Chiang (2012) intro-
duced a cutting-plane algorithm, like that of Struc-
tural SVM’s (Tsochantaridis et al., 2004), which op-
timizes on a small set of active constraints.

While these methods of dealing with structured
prediction may perform better empirically, they
come with a higher computational cost. Crammer
et al. (2006) shows that satisfying the single most
violated margin constraint, commonly referred to
as 1-best MIRA, is amenable to a simple analyt-
ical solution for the optimization problem at each
step. Furthermore, the 1-best MIRA update is con-
ceptually and practically much simpler, while retain-
ing most of the optimization power of the more ad-
vanced methods. Thus, this is the method we present
below.

Since the MIRA optimization problem is an in-
stance of a general structured problem with an `2

norm, the update at each step reduces to dual co-
ordinate descent (Smith, 2011). In our soft-margin

Algorithm 1 MIRA Training

Require: : Training set T = (xi, yi)
T
i=1, w, C

1: for j ← 1 to N do
2: for i← 1 to T do
3: Y(xi)←Decode(xi,w)
4: y+ ← FindOracle(Y(xi))
5: y− ← FindPrediction(Y(xi))
6: margin← w>f(xi, y

−)−w>f(xi, y
+)

7: cost← BLEU(yi, y
+)− BLEU(yi, y

−)
8: loss = margin + cost
9: if loss > 0 then

10: δ ← min
(
C, loss

‖f(xi,y+)−f(xi,y−)‖2

)
11: w← w+ δ (f(xi, y

+)− f(xi, y
−))

12: end if
13: end for
14: end for
15: return w

Algorithm 2 FindOracle
Require: : Y(xi)

1: if γ+=0 and β+=1 then
2: y+ ← arg maxy∈Y(xi)−cost(yi, y)
3: else if γ+ = β+ = 1 then
4: y+ ← arg maxy∈Y(xi) w

>f(xi, y) −
cost(yi, y)

5: end if
6: return y+

setting, this is analogous to the PA-I update of Cram-
mer et al. (2006). In fact, this update remains largely
intact as the inner core within k-best constraint or
cutting plane optimization. Algorithm 1 presents the
entire training regime necessary for 1-best MIRA
training of a machine translation system. As can be
seen, the parameter update at step 11 depends on the
difference between the features of y+ and y−, where
δ is the step size, which is controlled by the regular-
ization parameter C; indicating how far we are will-
ing to move at each step. Y(xi) may be a k-best list
or the entire space of hypotheses.3

3For a more in depth examination and derivation of large-
margin learning in MT, see (Chiang, 2012).
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Algorithm 3 FindPrediction
Require: : Y(xi)

1: if γ−=0 and β−=1 then
2: y− ← arg maxy∈Y(xi) cost(yi, y)
3: else if γ−=1 and β−=0 then
4: y− ← arg maxy∈Y(xi) w

>f(xi, y)
5: else if γ− = β− = 1 then
6: y− ← arg maxy∈Y(xi) w

>f(xi, y) +
cost(yi, y)

7: end if
8: return y−

3 Experiments

3.1 Setup
To empirically analyze which loss, and thereby
which strategy, for selecting y+ and y− is most
appropriate for machine translation, we conducted
a series of experiments on Czech-to-English and
French-to-English translation. The parallel corpora
are taken from the WMT2012 shared translation
task, and consist of Europarl data along with the
News Commentary corpus. All data were tokenized
and lowercased, then filtered for length and aligned
using the GIZA++ implementation of IBM Model
4 (Och and Ney, 2003) to obtain bidirectional align-
ments, which were symmetrized using the grow-
diag-final-and method (Koehn et al., 2003). Gram-
mars were extracted from the resulting parallel text
and used in our hierarchical phrase-based system us-
ing cdec (Dyer et al., 2010) as the decoder. We con-
structed a 5-gram language model from the provided
English News monolingual training data as well as
the English side of the parallel corpus using the SRI
language modeling toolkit with modified Kneser-
Ney smoothing (Chen and Goodman, 1996). This
was used to create a KenLM (Heafield, 2011).

As the tuning set for both language pairs, we used
the 2051 sentences in news-test2008 (NT08), and re-
port results on the 2525 sentences of news-test2009
(NT09) and 2489 of news-test2010 (NT10).

Corpus Sentences Tokens
en *

cs-en 764K 20.5M 17.5M
fr-en 2M 57M 63M

Table 1: Corpus statistics

pair 1 500 50k 100k
cs-en 17.9 24.9 29.4 29.7
fr-en 20.25 29.9 33.8 34.1

Table 2: Oracle score for model 1-best (baseline) and for
k-best of size 500, 50k, and 100k on NT08

We approximate cost-augmented decoding by ob-
taining a k-best list with k=500 unique best from our
decoder at each iteration, and selecting the respec-
tive hypotheses for optimization from it. To approx-
imate max-BLEU decoding using a k-best list, we set
k=50k unique best hypotheses.4 As can be seen in
Table 2, we found this size was sufficient for our pur-
poses as increasing size led to small improvements
in oracle BLEU score. C is set to 0.01.

For comparison with MERT, we create a base-
line model which uses a small standard set of fea-
tures found in translation systems: language model
probability, phrase translation probabilities, lexi-
cal weighting probabilities, and source word, pass-
through, and word penalties.

While BLEU is usually calculated at the corpus
level, we need to approximate the metric at the sen-
tence level. In this, we mostly follow previous ap-
proaches, where in the first iteration through the cor-
pus we use a smoothed sentence level BLEU approx-
imation, similar to Lin and Och (2004), and in sub-
sequently iterations, the BLEU score is calculated in
the context of the previous set of 1-best translations
of the entire tuning set.

To make parameter estimation more efficient,
some form of parallelization is preferred. While ear-
lier versions of MIRA training had complex paral-
lelization procedures which necessitated passing in-
formation between learners, performing iterative pa-
rameter mixing (McDonald et al., 2010) has been
shown to be just as effective (Chiang, 2012). We
use a simple implementation of this regime, where
we divide the tuning set into n shards and distribute
them amongst n learners, along with the parameter
vector w. Each learner decodes and updates parame-

4We are able to theoretically extract more constraints from
a large list, in the spirit of k-constraints or a cutting plane,
but Chiang (2012) showed that cutting plane performance is
approximately 0.2-0.4 BLEU better than a single constraint, so
although there is a trade off between the simplicity of a single
constraint and performance, it is not substantial.
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cs-en NT09 NT10
LU M-C LU M-C

PB 16.4 18.3 17 19.3
MC 18.5 16 19.1 17.5

M+C 17.8 18.7 18.4 19.6

Table 3: Results with different strategies on cs-en transla-
tion. MERT baseline is 18.4 for NT09 and 19.7 for NT10

ters on its shard of the tuning set, and once all learn-
ers are finished, these n parameter vectors are aver-
aged to form the initial parameter vector for the next
iteration. In our experiments, n=20.

3.2 Results

The results of using different optimization strategies
for cs-en and fr-en are presented in Tables 3 and 4
below. For all experiments, all settings are kept ex-
actly the same, with the only variation being the se-
lection of the oracle y+ and prediction y−. The first
column in each table indicates the method for se-
lecting the prediction, y−. PB indicates prediction-
based, MC is the hypothesis with the highest cost,
and M+C is cost-augmented selection. Analogously,
the headings across the table indicate oracle selec-
tion strategies, with LU indicating local updating,
and M-C being cost-diminished selection.

From the cs-en results in Table 3, we can see that
two settings fair the best: LU oracle selection paired
with MC prediction selection (LU/MC), and M-C
oracle selection paired with M+C prediction selec-
tion (M±C). On both sets, (M±C) performs better,
but the results are comparable. Pairing M-C with
PB is also a viable strategy, while no other pairing is
successful for LU.

When comparing with MERT, note that we use
a hypergraph based MERT (Kumar et al., 2009),
while the MIRA updates are computed from a k-best
list. For max-BLEU oracle selection paired with MC,
the performance decreases substantially, to 15.4 and
16.6 BLEU on NT09 and NT10, respectively. Using
the augmented k-best list did not significantly affect
performance for M-C oracle selection.

For fr-en, we see much the same behavior as in
cs-en. However, here LU/MC slightly outperforms
M±C. From both tasks, we can see that LU is more
sensitive to prediction selection, and can only op-

fr-en NT09 NT10
LU M-C LU M-C

PB 20.5 23.1 22.2 25
MC 23.9 23 25.8 24.8

M+C 22.2 23.6 24 25.4

Table 4: Results with different strategies on fr-en transla-
tion. MERT baseline is 24.2 for NT09 and 26 for NT10

timize effectively when paired with MC. M-C on
the other hand, is more forgiving, and can make
progress with PB and MC, albeit not as effectively
as with M+C.

3.3 Large Feature Set

Since one of the primary motivations for large-
margin learning is the ability to effectively handle
large quantities of features, we further evaluate the
ability of the strategies by introducing a large num-
ber of sparse features into our model. We introduce
sparse binary indicator features of the form com-
monly found in MT research (Chiang et al., 2009;
Watanabe et al., 2007). Specifically, we introduce
two types of features based on word alignment from
hierarchical phrase pairs and a target bigram fea-
ture. The first type, a word pair feature, fires for
every word pair (ei, fj) observed in the phrase pair.
The second, insertion features, account for spurious
words on the target side of a phrase pair by firing for
unaligned target words, associating them with ev-
ery source word, i.e. (ei, fj), (ei, fj+1), etc.. The
target bigram feature fires for every pair of consec-
utive words on the target side (ei, ei+1). In all, we
introduce 650k features for cs-en, and 1.1M for fr-
en. Taking the two best performing strategies from
the baseline model, LU/MC and M±C, we compare
their performance with the larger feature set in Ta-
ble 5.

Although integrating these features does not sig-
nificantly alter the performance on either task, our
purpose was to establish once again that the large-
margin learning framework is capable of effectively
optimizing parameters for a large number of sparse
features in the MT setting.
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Figure 1: Comparison of performance on development set
for cs-en when using LU/MC and M±C selection.
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Figure 2: Comparison of performance on development set
for fr-en when using LU/MC and M±C selection.

fr-en cs-en
NT09 NT10 NT09 NT10

LU/MC 23.9 25.7 18.5 19.6
M±C 23.8 25.4 18.6 19.6

Table 5: Results on cs-en and fr-en with extended feature
set.

4 Discussion

Although the performance of the two strategies is
competitive on the evaluation sets, this does not re-
lay the entire story. For a more complete view of
the differences between optimization strategies, we
turn to Figures 1-6. Figure 1 and 2 present the
comparison of performance on the NT08 develop-
ment set for cs-en and fr-en, respectively, when us-
ing LU/MC to select the oracle and prediction ver-
sus M±C selection. M±C is indicated with a solid
black line, while LU/MC is a dotted red line. The
corpus-level oracle and prediction BLEU scores at
each iteration are indicated with error bars around
each point, using solid lines for M±C and dotted
lines for LU/MC. As can be seen in Figure 1, while
optimizing with M±C is stable and smooth, where
we converge on our optimum after several iterations,
optimizing with LU/MC is highly unstable. This is
at least in part due to the wide range in BLEU scores
for the oracle and prediction, which are in the range
of 10 BLEU points higher or lower than the current
model best. On the contrary, the range of BLEU

scores for the M±C optimizer is on the order of 2
BLEU points, leading to more gradual changes.

We see a similar, albeit slightly less pronounced

behavior on fr-en in Figure 2. M±C optimization
is once again smooth, and converges quickly, with
a small range for the oracle and prediction scores
around the model best. LU/MC remains unstable,
oscillating up to 2 BLEU points between iterations.

Figures 3-6 compare the different optimization
strategies further. In Figures 3 and 5, we use M-C
as the oracle, and show performance on the develop-
ment set while using the three prediction selection
strategies, M+C with a solid blue line, PB with a
dotted green line, and MC with a dashed red line.
Error bars indicate the oracle and prediction BLEU

scores for each pairing as before. In all three cases,
the oracle BLEU score is in about the same range,
as expected, since all are using the same oracle se-
lection strategy. We can immediately observe that
PB has no error bars going down, indicating that the
PB method for selecting the prediction keeps pace
with the model best at each iteration. On the other
hand, MC selection also stands out, since it is the
only one with a large drop in prediction BLEU score.
Crucially, all learners are stable, and move toward
convergence smoothly, which serves to validate our
earlier observation that M-C oracle selection can be
paired with any prediction selection strategy and op-
timize effectively. In both cs-en and fr-en, we can
observe that M±C performs the best.

In Figures 4 and 6, we use LU as the oracle, and
show performance using the three prediction selec-
tion strategies, with each line representing the same
strategy as described above. The major difference,
which is immediately evident, is that the optimizers
are highly unstable. The only pairing which shows
some stability is LU/MC, with both the other predic-
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Figure 3: Comparison of performance on development set
for cs-en of the three prediction selection strategies when
using M-C selection as oracle.
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Figure 4: Comparison of performance on development set
for cs-en of the three prediction selection strategies when
using LU selection as oracle.
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Figure 5: Comparison of performance on development set
for fr-en of the three prediction selection strategies when
using M-C selection as oracle.

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

1 2 3 4 5 6 7 8 9 10 

B
LE

U
 

Iteration 

Figure 6: Comparison of performance on development set
for fr-en of the three prediction selection strategies when
using LU selection as oracle.

tion selection methods, PB and M+C significantly
underperforming it.

Given that the translation performance of optimiz-
ing the loss functions represented by LU/MC and
M±C selection is comparable on the evaluation sets
for fr-en and cs-en, it may be premature to make
a general recommendation for one over the other.
However, taking the unstable nature of LU/MC into
account, the extent of which may depend on the tun-
ing set, as well as other factors which need to be
further examined, the current more prudent alterna-
tive is selecting the oracle and prediction pair based
on M±C.

5 Conclusion

In this paper, we strove to elucidate aspects of large-
margin structured learning with concrete application
to the MT setting. Towards this goal, we presented
the MIRA passive-aggressive algorithm, which can

be used directly to effectively tune a statistical MT
system with millions of parameters, in the hope that
some confusion surrounding MIRA-based methods
may be cleared, and more MT researchers can adopt
it for their own use. We then used the presented al-
gorithm to empirically compare several widespread
loss functions and strategies for selecting hypothe-
ses for optimization. We showed that although there
are two competing strategies with comparable per-
formance, one is an unstable learner, and before we
understand more regarding the nature of the insta-
bility, the preferred alternative is to use M±C as the
hypothesis pair in optimization.
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