
Probabilistic induction for an incremental semantic grammar∗

Arash Eshghi Matthew Purver

Julian Hough

Cognitive Science Research Group

School of Electronic Engineering and Computer Science

Queen Mary University of London

{arash,mpurver,jhough}@eecs.qmul.ac.uk

Abstract

We describe a method for learning an incremental semantic grammar from a corpus in which

sentences are paired with logical forms as predicate-argument structure trees. Working in the frame-

work of Dynamic Syntax, and assuming a set of generally available compositional mechanisms, we

show how lexical entries can be learned as probabilistic procedures for the incremental projection of

semantic structure, providing a grammar suitable for use in an incremental probabilistic parser. By

inducing these from a corpus generated using an existing grammar, we demonstrate that this results

in both good coverage and compatibility with the original entries, without requiring annotation at the

word level. We show that this semantic approach to grammar induction has the novel ability to learn

the syntactic and semantic constraints on pronouns.

1 Introduction

Dynamic Syntax (DS) is an inherently incremental semantic grammar formalism (Kempson et al., 2001;

Cann et al., 2005) in which semantic representations are projected on a word-by-word basis. It recognises

no intermediate layer of syntax (see below), but instead reflects grammatical constraints via constraints

on the incremental construction of partial logical forms (LFs). Given this, and its definition of parsing

and generation in terms of the same incremental processes, it is in principle capable of modelling and

providing semantic interpretations for phenomena such as unfinished utterances, co-constructions and

interruptions, beyond the remit of standard grammar formalisms but important for dialogue systems.

However, its definition in terms of semantics (rather than the more familiar syntactic phrase struc-

ture) makes it hard to define or extend broad-coverage grammars: expert linguists are required. Here, we

present a method for automatically inducing DS grammars, by learning lexical entries from sentences

paired with complete, compositionally structured, propositional LFs. By assuming only the availabil-

ity of a small set of general compositional semantic operations, reflecting the properties of the lambda

calculus and semantic conjunction, we ensure that the lexical entries learnt include the grammatical con-

straints and corresponding compositional semantic structure of the language; by additionally assuming a

general semantic copying operation, we can also learn the syntactic and semantic properties of pronouns.

2 Previous work on grammar induction

Existing grammar induction methods can be divided into two major categories: supervised and unsuper-

vised. Fully supervised methods use a parsed corpus as the training data, pairing sentences with syntactic

trees and words with their syntactic categories, and generalise over the phrase structure rules to learn a

grammar which can be applied to a new set of data. By estimating probabilities for production rules that

∗We would like to thank Ruth Kempson and Yo Sato for helpful comments and discussion. This work was supported by the

EPSRC, RISER project (Ref: EP/J010383/1), and in part by the EU, FP7 project, SpaceBook (Grant agreement no: 270019).

1



share the same LHS category, this produces a grammar suitable for probabilistic parsing and disambigua-

tion (e.g. PCFGs, Charniak, 1996). Such methods have shown great success, but presuppose detailed

prior linguistic information (and are thus not adequate as human grammar learning models). Unsuper-

vised methods, on the other hand, proceed from unannotated raw data; they are thus closer to the human

language acquisition setting, but have seen less success. In its pure form —positive data only, without

bias— unsupervised learning has been demonstrated to be computationally too complex (‘unlearnable’)

in the worst case (Gold, 1967). Successful approaches involve some prior learning or bias, e.g. a fixed

set of known lexical categories, a probability distribution bias (Klein and Manning, 2005) or a hybrid,

semi-supervised method with shallower (e.g. POS-tagging) annotation (Pereira and Schabes, 1992).

More recently, another interesting line of work has emerged: lightly supervised learning guided by

semantic rather than syntactic annotation, using sentence-level propositional logical form rather than

detailed word-level annotation (more justifiably arguable to be ‘available’ to a human learner in a real-

world situation, with some idea of what a string in an unknown language could mean). This has been

successfully applied in Combinatorial Categorial Grammar (Steedman, 2000), as it tightly couples com-

positional semantics with syntax (Zettlemoyer and Collins, 2007; Kwiatkowski et al., 2010, 2012); as

CCG is a lexicalist framework, grammar learning involves inducing a lexicon assigning to each word

its syntactic and semantic contribution. Moreover, the grammar is learnt ground-up in an ‘incremental’

fashion, in the sense that the learner collects data over time and does the learning sentence by sentence.

Here we follow this spirit, inducing grammar from a propositional meaning representation and build-

ing a lexicon which specifies what each word contributes to the target semantics. However, taking ad-

vantage of the DS formalism, we make two novel contributions: first, we bring an added dimension

of incrementality: not only is learning sentence-by-sentence incremental, but the grammar learned is

word-by-word incremental, commensurate with psycholinguistic results showing incrementality to be a

fundamental feature of human parsing and production Lombardo and Sturt (1997); Ferreira and Swets

(2002). While incremental parsing algorithms for standard grammar formalisms have seen much re-

search (Hale, 2001; Collins and Roark, 2004; Clark and Curran, 2007), to the best of our knowledge, a

learning system for an explicitly incremental grammar is yet to be presented. Second, by using a gram-

mar in which syntax and parsing context are defined in terms of the growth of semantic structures, we

can learn lexical entries for items such as pronouns the constraints on which depend on semantic context.

?Ty(t)

?Ty(e),
♦

?Ty(e → t)

−→
“john”

?Ty(t)

Ty(e),
john

?Ty(e → t),
♦

−→
“upset”

?Ty(t)

Ty(e),
john

?Ty(e → t)

?Ty(e),
♦

Ty(e → (e → t)),
λyλx.upset′(x)(y)

−→
“mary”

Ty(t),♦,

upset′(john′)(mary′)

Ty(e),
john

Ty(e → t),
λx.upset′(x)(mary′)

Ty(e),
mary′

Ty(e → (e → t)),
λyλx.upset′(x)(y)

Figure 1: Incremental parsing in DS producing semantic trees: “John upset Mary”

3 Dynamic Syntax

Dynamic Syntax is a parsing-directed grammar formalism, which models the word-by-word incremen-

tal processing of linguistic input. Unlike many other formalisms, DS models the incremental build-

ing up of interpretations without presupposing or indeed recognising an independent level of syntactic

processing. Thus, the output for any given string of words is a purely semantic tree representing its

predicate-argument structure; tree nodes correspond to terms in the lambda calculus, decorated with la-



bels expressing their semantic type (e.g. Ty(e)) and formula, with beta-reduction determining the type

and formula at a mother node from those at its daughters (Figure 1).

These trees can be partial, containing unsatisfied requirements for node labels (e.g. ?Ty(e) is a

requirement for future development to Ty(e)), and contain a pointer ♦ labelling the node currently

under development. Grammaticality is defined as parsability: the successful incremental construction

of a tree with no outstanding requirements (a complete tree) using all information given by the words

in a sentence. The input to our induction task here is therefore sentences paired with such complete,

semantic trees, and what we learn are constrained lexical procedures for the incremental construction

of such trees. Note that in these trees, leaf nodes do not necessarily correspond to words, and may not

be in linear sentence order (see Figure 1); and syntactic structure is not explicitly represented, only the

structure of semantic predicate-argument combination.

3.1 Actions in DS

The parsing process is defined in terms of conditional actions: procedural specifications for monotonic

tree growth. These take the form both of general structure-building principles (computational actions),

putatively independent of any particular natural language, and of language-specific actions induced by

parsing particular lexical items (lexical actions). The latter are what we here try to learn from data.

Computational actions These form a small, fixed set, and we assume them as given here. Some merely

encode the properties of the lambda calculus and the logical tree formalism itself (LoFT Blackburn and

Meyer-Viol, 1994) – these we term inferential actions. Examples include THINNING (removal of satisfied

requirements) and ELIMINATION (beta-reduction of daughter nodes at the mother). These actions are

entirely language-general, cause no ambiguity, and add no new information to the tree; as such, they

apply non-optionally whenever their preconditions are met.

Other computational actions reflect the fundamental predictivity and dynamics of the DS framework.

For example, *ADJUNCTION introduces a single unfixed node with underspecified tree position (re-

placing feature-passing concepts for e.g. long-distance dependency); and LINK-ADJUNCTION builds a

paired (“linked”) tree corresponding to semantic conjunction (licensing relative clauses, apposition and

more). These actions represent possible parsing strategies and can apply optionally at any stage of a

parse if their preconditions are met. While largely language-independent, some are specific to language

type (e.g. INTRODUCTION-PREDICTION in the form used here applies only to SVO languages).

Lexical actions The lexicon associates words with lexical actions; like computational actions, these are

sequences of tree-update actions in an IF..THEN..ELSE format, and composed of explicitly procedural

atomic tree-building actions such as make, go, put. make creates a new daughter node, go moves the

pointer, and put decorates the pointed node with a label. Figure 2 shows an example for a proper noun,

John. The action checks whether the pointed node (marked as ♦) has a requirement for type e; if so, it

decorates it with type e (thus satisfying the requirement), formula John′ and the bottom restriction 〈↓〉⊥
(meaning that the node cannot have any daughters). Otherwise (if no requirement ?Ty(e)), the action

aborts, meaning that the word ‘John’ cannot be parsed in the context of the current tree.

Action Input tree Output tree

John

IF ?Ty(e)
THEN put(Ty(e))

put(Fo(John′)
put(〈↓〉⊥)

ELSE ABORT

?Ty(t)

?Ty(e),
♦

?Ty(e → t)

John
−→ ?Ty(t)

Ty(e), ?Ty(e)
John′, 〈↓〉⊥,♦

?Ty(e → t)

Figure 2: Lexical action for the word ‘John’



3.2 Graph Representation of DS Parsing

These actions define the parsing process. Given a sequence of words (w1, w2, ..., wn), the parser starts

from the axiom tree T0 (a requirement ?Ty(t) to construct a complete tree of propositional type), and ap-

plies the corresponding lexical actions (a1, a2, . . . , an), optionally interspersing computational actions –

see Figure 1. Sato (2011) shows how this parsing process can be modelled on a Directed Acyclic Graph

(DAG), rooted at T0, with partial trees as nodes, and computational and lexical actions as edges (i.e.

transitions between trees):

T0

T1intro T2

pred

T3

‘john’

T1′*Adj T2′

‘john’
T3′

intro
T4′

pred
T5′

In this DAG, intro, pred and *Adj correspond to the computational actions INTRODUCTION, PRE-

DICTION and *-ADJUNCTION respectively; and ‘john’ is a lexical action. Different paths through the

DAG represent different parsing strategies, which may succeed or fail depending on how the utterance is

continued. Here, the path T0 − T3 will succeed if ‘John’ is the subject of an upcoming verb (“John upset

Mary”); T0 − T4 will succeed if ‘John’ turns out to be a left-dislocated object (“John, Mary upset”).

This DAG makes up the parse state at any point, and contains all information available to the parser.

This includes semantic tree and tree-transition information taken to make up the linguistic context for

ellipsis and pronominal construal (Purver et al., 2011). It also provides us with a basis for probabilistic

parsing (see Sato, 2011): given a conditional probability distribution P (a|w, T ) over possible actions a

given a word w and (some set of features of) the current partial tree T , the DAG can then be incrementally

constructed and traversed in a best-first, breadth-first or beam parsing manner.

4 Learning lexical actions

4.1 Problem Statement

Our task here is data-driven, probabilistic learning of lexical actions for all the words occurring in the

corpus. Throughout, we will assume that the (language-independent) computational actions are known.

We also assume that the supervision information is structured: i.e. our dataset pairs sentences with

complete DS trees encoding their predicate-argument structures, rather than just a flat logical form (LF)

as in e.g. Zettlemoyer and Collins (2007). DS trees provide more information than LFs in that they

disambiguate between different possible predicate-argument decompositions of the corresponding LF;

note however that this provides no extra information on the mapping from words to meaning. The input

to the induction procedure is now as follows:

• the set of computational actions in Dynamic Syntax, G.

• a set of training examples of the form 〈Si, Ti〉, where Si = 〈w1 . . . wn〉 is a sentence of the lan-

guage and Ti – henceforth referred to as the target tree – is the complete semantic tree representing

the compositional structure of the meaning of Si.

The output is a grammar specifying the possible lexical actions for each word in the corpus. Given

our data-driven approach, we take a probabilistic view: we take this grammar as associating each word

w with a probability distribution θw over lexical actions. In principle, for use in parsing, this distribution

should specify the posterior probability p(a|w, T ) of using a particular action a to parse a word w in the

context of a particular partial tree T . However, here we make the simplifying assumption that actions

are conditioned solely on one feature of a tree, the semantic type Ty of the currently pointed node; and

that actions apply exclusively to one such type (i.e. ambiguity of type leads to multiple actions). This

effectively simplifies our problem to specifying the probability p(a|w).



In traditional DS terms, this is equivalent to assuming that all lexical actions have a simple IF clause

of the form IF ?Ty(X); this is true of most lexical actions in existing DS grammars (see examples above),

but not all. This assumption will lead to some over-generation – inducing actions which can parse some

ungrammatical strings – we must rely on the probabilities learned to make such parses unlikely, and

evalute this in Section 5. Given this, the focus of what we learn here is effectively the THEN clause of

lexical actions: a sequence of DS atomic actions such as go, make, and put (see Fig. 2), but now with

an attendant posterior probability. We will henceforth refer to these sequences as lexical hypotheses. We

first describe our method for constructing lexical hypotheses with a single training example (a sentence-

tree pair). We then discuss how to generalise over these outputs, while updating the corresponding

probability distributions incrementally as we process more training examples.

4.2 Hypothesis Construction

DS is strictly monotonic: actions can only extend the tree under construction, deleting nothing except

satisfied requirements. Thus, hypothesising lexical actions consists in an incremental search through the

space of all monotonic, and well-formed extensions of the current tree, Tcur, that subsume (i.e. can be

extended to) the target tree Tt. This gives a bounded space which can be described by a DAG equivalent

to the parsing DAG of section 3.2: nodes are trees, starting with Tcur and ending with Tt, and edges are

possible extensions. These extensions may be either DS’s basic computational actions (already known)

or new lexical hypotheses.

This space is further constrained by the fact that not all possible trees and tree extensions are well-

formed (meaningful) in DS, due to the properties of the lambda-calculus and those of the modal tree logic

LoFT. Mother nodes must be compatible with the semantic type and formula of their daughters, as would

be derived by beta-reduction; formula decorations cannot apply without type decorations; and so on. We

also prevent arbitrary type-raising by restricting the types allowed, taking the standard DS assumption

that noun phrases have semantic type e (rather than a higher type as in Generalized Quantifier theory)

and common nouns their own type cn (see Cann et al., 2005, chapter 3 for details).

We implement these constraints by packaging together permitted sequences of tree updates as macros

(sequences of DS atomic actions such as make, go, and put), and hypothesising possible DAG paths

based on these macros. We can divide these into two classes of lexical hypothesis macros: (1) tree-

building hypotheses, independent of the target tree, and in charge of building appropriately typed daugh-

ters for the current node; and (2) content decoration hypotheses in charge of the semantic decoration of

the leaves of the current tree (Tcur), with formulae taken from the leaves of the target tree (Tt).

?Ty(X),♦

?Ty(e) ?Ty(e → X)

IF ?Ty(X)
X 6= e

THEN make(〈↓0〉); go(〈↓0〉)
put(?Ty(e));go(〈↑〉)
make(〈↓1〉); go(〈↓1〉)
put(?Ty(e → X)); go(↑)

ELSE ABORT

?Ty(e),♦

?Ty(cn) ?Ty(cn → e)

IF ?Ty(e)
THEN make(〈↓0〉); go(〈↓0〉)

put(?Ty(cn)); go(〈↑〉)
make(〈↓1〉); go(〈↓1〉)
put(?Ty(cn → e)); go(↑)

ELSE ABORT

Figure 3: Target-independent tree-building hypotheses

Figure 3 shows example tree-building hypotheses which extend a mother node with a type require-

ment to have two daughter nodes which would (once themselves developed) combine to satisfy that

requirement. On the left, an general rule in which a currently pointed node of some type X can be hy-

pothesised to be formed of types e and e → X (e.g. if X = e → t, the daughters will have types e and

e → (e → t)). This reflects only the fact that DS trees correspond to lambda calculus terms, with e being

a possible type. The other is more specific, suitable only for a type e node, allowing it to be composed of

nodes of type cn and cn → e (where cn → e turns out to be the type of determiners), but again reflects

only general semantic properties which would apply in any language.

Content decoration hypotheses on the other hand depend on the target tree: they posit possible ad-

dition of semantic content, via sequences of put operations (e.g. content-dec: put(Ty(e));

put(Fo(john))which develop the pointed node on Tcur towards the corresponding leaf node on Tt.



They are constrained to apply only to leaf nodes (i.e. nodes in Tcur whose counterparts on Tt are leaf

nodes), other nodes being assumed to receive their content via beta-reduction of their daughters.

4.3 Hypothesis Splitting

Hypothesis construction therefore produces, for each training sentence 〈w1 . . . wn〉, all possible se-

quences of actions that lead from the axiom tree T0 to the target tree Tt (henceforth, the complete se-

quences); where these sequences contain both lexical hypotheses and general computational actions. To

form discrete lexical entries, we must split each such sequence into n sub-sequences, 〈cs1 . . . csn〉, with

each candidate subsequence csi, corresponding to a word wi, by hypothesising a set of word boundaries.

This splitting process is subject to two constraints. Firstly, each candidate sequence csi must contain

exactly one content decoration lexical hypothesis (see above); this ensures both that every word has some

contribution to the sentence’s semantic content, and that no word decorates the leaves of the tree with

semantic content more than once. Secondly, candidate subsequences csi are computationally maximal

on the left: csi may begin with (possibly multiple) computational actions, but must end with a lexical

hypothesis. This reduces the splitting hypothesis space, and aids lexical generalisation (see below).

Each such possible set of boundaries corresponds to a candidate sequence tuple 〈cs1 . . . csn〉. Impor-

tantly, this means that these csi are not independent, e.g. when processing “John arrives”, a hypothesis

for ‘John’ is only compatible with certain hypotheses for ‘arrives’. This is reflected below in how prob-

abilities are assigned to the word hypotheses.

4.4 Hypothesis Generalisation

DS’s general computational actions can apply at any point before the application of a lexical action, thus

providing strategies for adjusting the syntactic context in which a word is parsed. Removing computa-

tional actions on the left of a candidate sequence will leave a more general albeit equivalent hypothesis:

one which will apply successfully in more syntactic contexts. However, if a computational subsequence

seems to occur whenever a word is observed, we would like to lexicalise it, including it within the lexical

entry for a more efficient and constrained grammar. We therefore want to generalise over our candidate

sequence tuples to partition them into portions which seem to be achieved lexically, and portions which

are better achieved by computational actions alone.

First Training Example: ‘john’ in fixed object position;

Sequence intersected: 〈LH : content-dec : put(Ty(e));put(Fo(John′))〉:

S F
LH:content-dec:put(Ty(e));put(Fo(John’))

Second Training Example: ‘john’ in subject position;

Sequence intersected: 〈CA : intro, CA : predict, LH : content-dec : put(Ty(e));put(Fo(John′))〉

S F
LH:content-dec:put(Ty(e));put(Fo(John’))

invisible invisible

CA:intro CA:predict

Third Training Example: ‘john’ on unfixed node, i.e. left-dislocated object;

Sequence intersected: 〈CA : star-adj, LH : content-dec : put(Ty(e));put(Fo(John′))〉

S F
LH:content-dec:put(Ty(e));put(Fo(John’))

invisible invisible

CA:intro CA:predict

invisible

CA:star-adj

Figure 4: Incremental intersection of candidate sequences; CA=Computational Action, LH=Lexical Hypothesis

We therefore group the candidate sequence tuples produced by splitting, storing them as members of

equivalence classes which form our final word hypotheses. Two tuples belong to the same equivalence

class if they can be made identical by removing only computational actions from the beginning of either

one. We implement this via a single packed data-structure which is again a DAG, as shown in Fig. 4;

this represents the full set of candidate sequences by their intersection (the solid central common path)



and differences (the dotted diverging paths at beginning). Nodes here therefore no longer represent

single trees, but sets of trees. Figure 4 shows this process over three training examples containing the

unknown word ‘John’ in different syntactic positions. The ‘S’ and ‘F’ nodes mark the start and finish of

the intersection – initially the entire sequence. As new candidate sequences arrive, the intersection – the

maximal common path – is reduced as appropriate. Word hypotheses thus remain as general as possible.

In our probabilistic framework, these DAGs themselves are our lexical entries, with associated prob-

abilities (see below). If desired, we can form traditional DS lexical actions: the DAG intersection corre-

sponds to the THEN clause, with the IF clauses being a type requirement obtained from the pointed node

on all partial trees in the initial ‘S’ node. As lexical hypotheses within the intersection are identical, and

were constrained when formed to add type information before formula information (see Section 4.2),

any type information must be common across these partial trees. In Figure 4 for ‘john’, this is ?Ty(e),
i.e. a requirement for type e, common to all three training examples.

4.5 Probability Estimation

The set of possible word hypotheses induced as above can of course span a very large space: we must

therefore infer a probability distribution over this space to produce a useful grammar. This can be esti-

mated from the observed distribution of hypotheses, as these are constrained to be compatible with the

target tree for each sentence; and the estimates can be incrementally updated as we process each training

example. For this process of probability estimation, the input is the output of the splitting and general-

isation procedure above, i.e. for the current training sentence S = 〈w1 . . . wn〉 a set HT of Hypothesis

Tuples (sequences of word hypotheses), each of the form HTj = 〈hj
1
. . . h

j
n〉, where h

j
i is the word hy-

pothesis for wi in HTj . The desired output is a probability distribution θw over hypotheses for each word

w, where θw(h) is the posterior probability p(h|w) of a given word hypothesis h being used to parse w.

Re-estimation Given some prior estimate of θ′w, we can use a new training example to produce an

updated estimate θ′′w directly. We assign each hypothesis tuple HTj a probability based on θ′w; the

probability of a sequence 〈hj
1
. . . h

j
n〉 is the product of the probabilities of the hi’s within it (by the Bayes

chain rule):

p(HTj|S) =

n
∏

i=1

p(hji |wi) =

n
∏

i=1

θ′wi
(hji ) (1)

Now, for any word w and possible hypothesis h, we can re-estimate the probability p(h|w) as the

normalised sum of the probabilities of all observed tuples HTj which contain h, that is the set of tuples,

HT h = {HTj |h ∈ HTj}:

θ′′w(h) = p(h|w) =
1

Z

∑

HTj∈HTh

p(HTj |S) =
1

Z

∑

HTj∈HTh

n
∏

i=1

θ′wi
(hji ) (2)

where Z , the normalising constant, is the sum of the probabilities of all the HTj’s:

Z =
∑

HTj∈HT

n
∏

i=1

θ′wi
(hji )

Incremental update Our procedure is now to update our overall esimate θw incrementally: after the

N th example, our new estimate θNw is a weighted average of the previous estimate θN−1
w and the new

value from the current example θ′′w from equation (2), with weights reflecting the amount of evidence on

which these estimates are based:

θNw (h) =
N − 1

N
θN−1

w (h) +
1

N
θ′′w(h) (3)

Note that for training example 1, the first term’s numerator is zero, so θN−1
w is not required and the

new estimates are equal to θ′′w. However, to produce θ′′w we need some prior estimate θ′w; in the absence of



any information, we simply assume uniform distributions θ′w = θ0w over the lexical hypotheses observed

in the first training example.

In subsequent training examples, there will arise new hypotheses h not seen in previous examples,

and for which the prior estimate θ′w gives no information. We incorporate these hypotheses into θ′w by

discounting the probabilities assigned to known hypotheses, reserving some probability mass which we

then assume to be evenly distributed over the new unseen hypotheses. For this we use the same weight

as in equation (3):

θ′w(h) =







N−1

N
θN−1
w (h) if h in θN−1

w

1

Nu

∑

h∈θN−1
w

1

N
θN−1
w (h) otherwise

(4)

where Nu here is number of new unseen hypotheses in example N . Given (4), we can now more

accurately specify the update procedure in (3) to be:

θNw (h) = θ′w(h) +
1

N
θ′′w(h) (5)

Non-incremental estimation Using this incremental procedure, we use the estimates from previous

sentences to assign prior probabilities to each hypothesis tuple (i.e. each possible path through the

hypothesised parse DAG), and then derive updated posterior estimates given the observed distribu-

tions. Such a procedure could similarly be applied non-incrementally at each point, by repeatedly re-

estimating and using the new estimates to re-calculate tuple probabilities in a version of the Expectation-

Maximisation algorithm (Dempster et al., 1977). However, this would require us to keep all HT sets

from every training example; this would be not only computationally demanding but seems psycholin-

guistically implausible (requiring memory for all lexical and syntactic dependencies for each sentence).

Instead, we restrict ourselves here to assuming that this detailed information is only kept in memory for

one sentence; intermediate versions would be possible.

4.6 Pronouns

Standard approaches to grammar induction treat pronouns simply as entries of a particular syntactic

category. Here, as we learn from semantic annotations, we can learn not only their anaphoric nature, but

syntactic and semantic constraints on their resolution. To achieve this, we assume one further general

strategy for lexical hypothesis formation: a copying operation from context whereby the semantic content

(formula and type decorations) can be copied from any existing type-compatible and complete node on

Tcur (possibly more than one) accessible from the current pointed node via some finite tree modality.

This assumption therefore provides the general concept of anaphoricity, but nothing more: it can be used

in hypothesis formation for any word, and we rely on observed probabilities of its providing a successful

parse to rule it out for words other than pronouns. By requiring access via some tree modality (↑0, ↓∗
etc), we restrict it to intrasentential anaphora here, but the method could be applied to intersentential

cases where suitable LFs are available.

This modal relation describes the relative position of the antecedent; by storing this as part of the

hypothesis DAG, and subjecting it to a generalisation procedure similar to that used for computational

actions in Section 4.4, the system learns constraints on these modal relations. The lexical entries result-

ing can therefore express constraints on the possible antecedents, and grammatical constraints on their

presence, akin to Principles A and B of Government and Binding theory (see Cann et al. (2005), chapter

2); in this paper, we evaluate the case of relative pronouns only (see below).

5 Evaluation

5.1 Parse coverage

This induction method has been implemented and tested over a 200-sentence artificial corpus. The

corpus was generated using a manually defined DS grammar, with words randomly chosen to follow the



Word class Type Token Type% Token%

noun 119 362 76.3% 48.7%

verb 29 263 18.6% 35.4%

determiner 3 56 1.9% 7.5%

pronoun 5 62 3.2% 8.4%

Total 156 743 100.00% 100.00%

Total of 200 sentences

Min, Max and Mean sentence lengths : 2, 6, 3.7 words

Mean tokens per word = 4.01

Table 1: Training and test corpus distributions and means

Parsing Coverage Same Formula

Top one 26% 77%

Top two 77% 79%

Top three 100% 80%

Table 2: Test parse results: showing percentage parsability, and percentage of parses deriving the correct

semantic content for the whole sentence

distributions of the relevant POS types and tokens in the CHILDES maternal speech data (MacWhinney,

2000) - see Table 1. 90% of the sentences were used as training data to induce a grammar, and the

remaining 10% used to test it. We evaluate the results in terms of both parse coverage and semantic

accuracy, via comparison with the logical forms derived using the original, hand-crafted grammar.

The induced hypotheses for each word were ranked according to their probability; three separate

grammars were formed using the top one, top two and top three hypotheses and were then used inde-

pendently to parse the test set. Table 2 shows the results, discounting sentences containing words not

encountered in training at all (for which no parse is possible). We give the percentage of test sentences

for which a complete parse was obtained; and the percentage of those for which one of the top 3 parses

resulted in a logical form identical to the correct one.

As Table 2 shows, when the top three hypotheses are retained for each word, we obtain 80% formula

derivation accuracy. Manual inspection of the individual actions learned revealed that the words which

have incorrect lexical entries at rank one were those which were sparse in the corpus - we did not control

for the exact frequency of occurrence of each word. The required frequency of occurrence varied across

different categories; while transitive verbs require about four occurrences, intransitive verbs require just

one. Count nouns were particularly sparse (see type/token ratios in Table 1).

As we have not yet evaluated our method on a real corpus, the results obtained are difficult to com-

pare directly with other baselines such as that of Kwiatkowski et al. (2012) who achieve state-of-the-art

results; cross-validation of this method on the CHILDES corpus is work in progress, which will allow

direct comparison with Kwiatkowski et al. (2012).

5.2 Lexical Ambiguity

We introduced lexically ambiguous words into the corpus to test the ability of the system to learn and

distinguish between their different senses; 10% of word types were ambiguous between 2 or 3 different

senses with different syntactic category. Inspection of the induced actions for these words shows that,

given appropriately balanced frequencies of occurrence of each separate word sense in the corpus, the

system is able to learn and distinguish between them. 57% of the ambiguous words had lexical en-

tries with both senses among the top three hypotheses, although in only one case were the two senses

ranked one and two. This was the verb ‘tramped’ with transitive and intransitive readings, with 4 and 21

occurrences in the corpus respectively.



5.3 Pronouns

For pronouns, we wish to learn both their anaphoric nature (resolution from context) and appropriate

syntactic constraints. Here, we tested on relative pronouns such as ‘who’ in “John likes Mary, who

runs”: the most general lexical action hypothesis learned for these is identical to hand-crafted versions

of the action (see Cann et al. (2005), chapter 3):

who

IF ?Ty(e)
〈↑∗↑L〉Fo(X)

THEN put(Ty(e))
put(Fo(X))
put(〈↓〉⊥)

ELSE ABORT

This action instructs the parser to copy a semantic type and formula from a type Ty(e) node at the

modality 〈↑∗↑L〉, relative to the pointed node. The system has therefore learnt that pronouns involve

resolution from context (note that many other hypotheses are possible, as pronouns are paired with

different LFs in different sentences). It also expresses a syntactic constraint on relative pronouns, that is,

the relative position of their antecedents 〈↑∗↑L〉 (the first node above a dominating LINK tree relation –

i.e. the head of the containing NP).

Of course, relative pronouns are a special case: the modality from which their antecedents are copied

is relatively fixed. Equivalent constraints could be learned for other pronouns, given generalisation over

several modal relations; e.g. locality of antecedents for reflexives is specified in DS via a constraint

〈↑0↑
∗

1
↓0〉 requiring the antecedent to be in some local argument position. In learning reflexives, this

modal relation can come from generalisation over several different modalities obtained from different

training examples; this will require larger corpora.

6 Conclusions and Future work

In this paper we have outlined a novel method for the probabilistic induction of new lexical entries in an

inherently incremental and semantic grammar formalism, Dynamic Syntax, with no independent level of

syntactic phrase structure. Our method learns from sentences paired with semantic trees representing the

sentences’ predicate-argument structures, assuming only very general compositional mechanisms. While

the method still requires evaluation on real data, evaluation on an artificial but statistically representative

corpus demonstrates that the method achieves good coverage. A further bonus of using a semantic

grammar is that it has the potential to learn both semantic and syntactic constraints on pronouns: our

evaluation demonstrates this for relative pronouns, but this can be extended to other pronoun types.

Our research now focusses on evaluating this method on real data (the CHILDES corpus), and on

reducing the level of supervision by adapting the method to learn from sentences paired not with trees

but with less structured LFs, using Type Theory with Records Cooper (2005) and/or the lambda calculus.

Other work planned includes the integration of the actions learned into a probabilistic parser.

References

Blackburn, P. and W. Meyer-Viol (1994). Linguistics, logic and finite trees. Logic Journal of the Interest

Group of Pure and Applied Logics 2(1), 3–29.

Cann, R., R. Kempson, and L. Marten (2005). The Dynamics of Language. Oxford: Elsevier.

Charniak, E. (1996). Statistical Language Learning. MIT Press.

Clark, S. and J. Curran (2007). Wide-coverage efficient statistical parsing with CCG and log-linear

models. Computational Linguistics 33(4), 493–552.

Collins, M. and B. Roark (2004). Incremental parsing with the perceptron algorithm. In Proceedings of

the 42nd Meeting of the ACL, Barcelona, pp. 111–118.



Cooper, R. (2005). Records and record types in semantic theory. Journal of Logic and Computa-

tion 15(2), 99–112.

Dempster, A., N. Laird, and D. B. Rubin (1977). Maximum likelihood from incomplete data via the EM

algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 39(1), 1–38.

Ferreira, F. and B. Swets (2002). How incremental is language production? evidence from the production

of utterances requiring the computation of arithmetic sums. Journal of Memory and Language 46, 57–

84.

Gold, E. M. (1967). Language identification in the limit. Information and Control 10(5), 447–474.

Hale, J. (2001). A probabilistic Earley parser as a psycholinguistic model. In Proceedings of the 2nd

Conference of the North American Chapter of the Association for Computational Linguistics, Pitts-

burgh, PA.

Kempson, R., W. Meyer-Viol, and D. Gabbay (2001). Dynamic Syntax: The Flow of Language Under-

standing. Blackwell.

Klein, D. and C. D. Manning (2005). Natural language grammar induction with a generative constituent-

context mode. Pattern Recognition 38(9), 1407–1419.

Kwiatkowski, T., S. Goldwater, L. Zettlemoyer, and M. Steedman (2012). A probabilistic model of

syntactic and semantic acquisition from child-directed utterances and their meanings. In Proceedings

of the Conference of the European Chapter of the Association for Computational Linguistics (EACL).

Kwiatkowski, T., L. Zettlemoyer, S. Goldwater, and M. Steedman (2010, October). Inducing proba-

bilistic CCG grammars from logical form with higher-order unification. In Proceedings of the 2010

Conference on Empirical Methods in Natural Language Processing, Cambridge, MA, pp. 1223–1233.

Association for Computational Linguistics.

Lombardo, V. and P. Sturt (1997). Incremental processing and infinite local ambiguity. In Proceedings

of the 1997 Cognitive Science Conference.

MacWhinney, B. (2000). The CHILDES Project: Tools for Analyzing Talk (Third ed.). Mahwah, New

Jersey: Lawrence Erlbaum Associates.

Pereira, F. and Y. Schabes (1992, June). Inside-outside reestimation from partially bracketed corpora. In

Proceedings of the 30th Annual Meeting of the Association for Computational Linguistics, Newark,

Delaware, USA, pp. 128–135. Association for Computational Linguistics.

Purver, M., A. Eshghi, and J. Hough (2011, January). Incremental semantic construction in a dialogue

system. In J. Bos and S. Pulman (Eds.), Proceedings of the 9th International Conference on Compu-

tational Semantics, Oxford, UK, pp. 365–369.

Sato, Y. (2011). Local ambiguity, search strategies and parsing in Dynamic Syntax. In E. Gre-

goromichelaki, R. Kempson, and C. Howes (Eds.), The Dynamics of Lexical Interfaces. CSLI Pub-

lications.

Steedman, M. (2000). The Syntactic Process. Cambridge, MA: MIT Press.

Zettlemoyer, L. and M. Collins (2007). Online learning of relaxed CCG grammars for parsing to logical

form. In Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing

and Computational Natural Language Learning (EMNLP-CoNLL).


