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Abstract 

Identification of complex clinical phenotypes 

among critically ill patients is a major chal-

lenge in clinical research. The overall research 

goal of our work is to develop automated ap-

proaches that accurately identify critical illness 

phenotypes to prevent the resource intensive 

manual abstraction approach. In this paper, we 

describe a text processing method that uses 

Natural Language Processing (NLP) and su-

pervised text classification methods to identify 

patients who are positive for Acute Lung Inju-

ry (ALI) based on the information available in 

free-text chest x-ray reports. To increase the 

classification performance we enhanced the 

baseline unigram representation with bigram 

and trigram features, enriched the n-gram fea-

tures with assertion analysis, and applied sta-

tistical feature selection. We used 10-fold 

cross validation for evaluation and our best 

performing classifier achieved 81.70% preci-

sion (positive predictive value), 75.59% recall 

(sensitivity), 78.53% f-score, 74.61% negative 

predictive value, 76.80% specificity in identi-

fying patients with ALI. 

1 Introduction 

Acute lung injury (ALI) is a critical illness con-

sisting of acute hypoxemic respiratory failure 

with bilateral pulmonary infiltrates that is associ-

ated with pulmonary and non-pulmonary risk 

factors. ALI and its more severe form, acute res-

piratory distress syndrome (ARDS), represent a 

major health problem with an estimated preva-

lence of 7% of intensive care unit admissions 

(Rubenfeld et al., 2005) for which the appropri-

ate treatment is often instituted too late or not at 

all (Ferguson et al., 2005; Rubenfeld et al., 

2004). Early detection of ALI syndrome is essen-

tial for appropriate application of the only thera-

peutic intervention demonstrated to improve 

mortality in ALI, lung protective ventilation 

(LPV).   

The identification of ALI requires recognition 

of a precipitating cause, either due to direct lung 

injury from trauma or pneumonia or secondary to 

another insult such as sepsis, transfusion, or pan-

creatitis. The consensus criteria for ALI include 

the presence of bilateral pulmonary infiltrates on 

chest radiograph, representing non-cardiac pul-

monary edema as evidenced by the absence of 

left atrial hypertension (Pulmonary Capillary 

Wedge Pressure < 18 mmHg (2.4 kPa)) or ab-

sence of clinical evidence of congestive heart 

failure, and oxygenation impairment as defined 

by an arterial vs. inspired oxygen level ratio 

(PaO2/FiO2) <300 mmHg (40 kPa))  (Argitas et 

al., 1998; Dushianthan et al., 2011; Ranieri et al., 

2012).  

In this paper, we describe a text processing 

approach to identify patients who are positive for 

ALI based only on the free-text chest x-ray re-

ports. 

2 Related Work 

Several studies demonstrated the value of Natu-

ral Language Processing (NLP) in a variety of 

health care applications including phenotype ex-

traction from electronic medical records (EMR) 

(Demner-Dushman et al., 2009). Within this do-

main, chest x-ray reports have been widely stud-

ied to extract different types of pneumonia (Tep-

per et al., 2013; Elkin et al., 2008; Aronsky et al., 

2001; Fiszman et al., 2000). Chest x-ray reports 

have also been studied for ALI surveillance by 

other researchers. Two of the prior studies relied 

on rule-based keyword search approaches. He-

rasevich et al. (2009) included a free text Boole-

an query containing trigger words bilateral, infil-

trate, and edema. Azzam et al. (2009) used a 

more extensive list of trigger words and phrases 

to identify the presence of bilateral infiltrates and 
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ALI. In another study, Solti et al. (2009) repre-

sented the content of chest x-ray reports using 

character n-grams and applied supervised classi-

fication to identify chest x-ray reports consistent 

with ALI. In our work, different from prior re-

search, we proposed a fully statistical approach 

where (1) the content of chest x-ray reports was 

represented by token n-grams, (2) statistical fea-

ture selection was applied to select the most in-

formative features, and (3) assertion analysis was 

used to enrich the n-gram features. We also im-

plemented Azzam et al.’s approach based on the 

information available in their paper and used it as 

a baseline to compare performance results of our 

approach to theirs. 

3 Methods  

The overall architecture of our text processing 

approach for ALI identification is illustrated in 

Figure 1. In the following sections, we will de-

scribe the main steps of the text processing ap-

proach as well as the annotated chest x-ray cor-

pus used in training and test. 

3.1 Chest X-ray Corpora 

To develop the ALI extractor, we created a cor-

pus composed of 1748 chest x-ray reports gener-

ated for 629 patients (avg number of re-

ports=2.78, min=1, max=3). Subjects for this 

corpus were derived from a cohort of intensive 

care unit (ICU) patients at Harborview Medical 

Center that has been described previously (Gla-

van et al., 2011). We selected 629 subjects who 

met the oxygenation criteria for ALI 

(PaO2/FiO2<300 mmHg) and then three con-

secutive chest radiographs were pulled from the 

radiology database. Three Critical Care Medicine 

specialists reviewed the chest radiograph images 

for each patient and annotated the radiographs as 

consistent (positive) or not-consistent (negative) 

with ALI. We assigned ALI status for each sub-

ject based on the number of physician raters call-

ing the chest radiographs consistent or not con-

sistent with ALI. Table 1 shows the number of 

physicians with agreement on the radiograph in-

terpretation. There were 254 patients in the posi-

tive set (2 or more physicians agreeing on ALI 

positive) and 375 patients in the negative set (2 

or more physicians agreeing on ALI negative). 

Table 1 includes the distribution of patients over 

the positive and negative classes at different 

agreement levels. We will refer to this annotated 

corpus as the development set in the remaining 

of the paper.  

For validation, we used a second dataset gen-

erated in a similar fashion to the development 

set.  We obtained chest radiographs for 55 sub-

jects that were admitted to ICU and who met ox-

ygenation criteria for ALI (1 radiograph and re-

port per patient). A specialized chest radiologist 

annotated each report for the presence of ALI. 

There were 21 patients in the positive set and 34 

in the negative set. We will refer to this corpus as 

the validation set in the remaining of the paper. 

The retrospective review of the reports in both 

corpora was approved by the University of 

Washington Human Subjects Committee of Insti-

tutional Review Board who waived the need for 

informed consent. 

3.2 Pre-processing – Section and Sentence 

Segmentation 

Although radiology reports are in free text for-

mat, they are somewhat structured in terms of 

sections. We used a statistical section segmenta-

tion approach we previously built to identify the 

boundaries of the sections and their types in our 

corpus of chest x-ray reports (Tepper et al., 

2012). The section segmenter was trained and 

tested with a corpus of 100 annotated radiology 

reports and produced 93% precision, 91% recall 

and 92% f-score (5-fold cross validation).  

Radiology

Reports
Data Processor

Sections,

Sentences

Ranked

n-grams

ALI Learner ALI Predictor

Training

instances

Test

instances

Yes No

Assertion Classifier

Feature Extractor

Assertion

classesTop n-grams

 
Figure 1 Overall system architecture of ALI ex-

tractor. 

Annotation Agreement Patient Count 

ALI positive 

patients 

3 147 

2 107 

ALI negative 

patients 

3 205 

2 170 
Table 1 Agreement levels 
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After identifying the report sections, we used the 

OpenNLP
1

 sentence chunker to identify the 

boundaries of sentences in the section bodies. 

This pre-processing step identified 8,659 sec-

tions and 15,890 sentences in 1,748 reports of the 

development set and 206 sections and 414 sen-

tences in 55 reports of the validation set. We 

used the section information to filter out the sec-

tions with clinician signatures (e.g., Interpreted 

By, Contributing Physicians, Signed By). We 

used the sentences to extract the assertion values 

associated with n-gram features as will be ex-

plained in a later section. 

3.3 Feature Selection 

Representing the information available in the 

free-text chest x-ray reports as features is critical 

in identifying patients with ALI. In our represen-

tation, we created one feature vector for each 

patient. We used unigrams as the baseline repre-

sentation. In addition, we used bigrams and tri-

grams as features. We observed that the chest x-

ray reports in our corpus are short and not rich in 

terms of medical vocabulary usage. Based on this 

observation, we decided not to include any medi-

cal knowledge-based features such as UMLS 

concepts or semantic types. Table 2 summarizes 

the number of distinct features for each feature 

type used to represent the 1,748 radiology reports 

for 629 patients. 

As can be seen from the table, for bigrams and 

trigrams, the feature set sizes is quite high. Fea-

ture selection algorithms have been successfully 

applied in text classification in order to improve 

the classification accuracy (Wenqian et al., 

2007). In previous work, we applied statistical 

feature selection to the problem of pneumonia 

detection from ICU reports (Bejan et al., 2012). 

By significantly reducing the dimensionality of 

the feature space, they improved the efficiency of 

the pneumonia classifiers and provided a better 

understanding of the data. 

We used statistical hypothesis testing to de-

termine whether there is an association between 

a given feature and the two categories of our 

problem (i.e, positive and negative ALI). Specif-

ically, we computed the χ
2 

statistics (Manning 

                                                 
1
 OpenNLP. Available at: http://opennlp.apache.org/ 

and Schutze, 1999) which generated an ordering 

of features in the training set. We used 10-fold 

cross validation (development set) in our overall 

performance evaluation. Table 3 lists the top 15 

unigrams, bigrams, and trigrams ranked by χ
2 

statistics in one of ten training sets we used in 

evaluation. As can be observed from the table, 

many of the features are closely linked to ALI. 

Once the features were ranked and their corre-

sponding threshold values (N) were established, 

we built a feature vector for each patient. Specif-

ically, given the subset of N relevant features 

extracted from the ranked list of features, we 

considered in the representation of a given pa-

tient’s feature vector only the features from the 

subset of relevant features that were also found 

in the chest x-ray reports of the patient. There-

fore, the size of the feature space is equal to the 

size of relevant features subset (N) whereas the 

length of each feature vector will be at most this 

value.  

3.4 Assertion Analysis 

We extended our n-gram representation with as-

sertion analysis. We built an assertion classifier 

(Bejan et al., 2013) based on the annotated cor-

pus of 2010 Integrating Biology and the Beside 

(i2b2) / Veteran’s Affairs (VA) NLP challenge 

(Uzuner et al., 2011). The 2010 i2b2/VA chal-

lenge introduced assertion classification as a 

Unigram Bigram Trigram 
Diffuse diffuse lung opacities con-

sistent with 

Atelectasis lung opacities diffuse lung opaci-

ties 

Pulmonary pulmonary edema change in diffuse 

Consistent consistent with lung opacities 

consistent 

Edema opacities consistent in diffuse lung 

Alveolar in diffuse with pulmonary 

edema 

Opacities diffuse bilateral consistent with 

pulmonary 

Damage with pulmonary low lung volumes 

Worsening alveolar damage or alveolar damage 

Disease edema or pulmonary edema 

pneumonia 

Bilateral low lung diffuse lung dis-

ease 

Clear edema pneumonia edema pneumonia 

no 

Severe or alveolar diffuse bilateral 

opacities 

Injury lung disease lungs are clear 

Bibasilar pulmonary opacities lung volumes with 

Table 3 Top 15 most informative unigrams, bigrams, 

and trigrams for ALI classification according to χ2 

statistics. 
Feature Type # of Distinct Features 

Unigram (baseline) 1,926 

Bigram 10,190 

Trigram 17,798 

Table 2 Feature set sizes of the development set. 
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shared task, formulated such that each medical 

concept mentioned in a clinical report (e.g., 

asthma) is associated with a specific assertion 

category (present, absent, conditional, hypothet-

ical, possible, and not associated with the pa-

tient). We defined a set of novel features that 

uses the syntactic information encoded in de-

pendency trees in relation to special cue words 

for these categories. We also defined features to 

capture the semantics of the assertion keywords 

found in the corpus and trained an SVM multi-

class classifier with default parameter settings. 

Our assertion classifier outperformed the state-

of-the-art results and achieved 79.96% macro-

averaged F-measure and 94.23% micro-averaged 

F-measure on the i2b2/VA challenge test data.  

For each n-gram feature (e.g., pneumonia), we 

used the assertion classifier to determine whether 

it is present or absent based on contextual infor-

mation available in the sentence the feature ap-

peared in (e.g., Feature: pneumonia, Sentence: 

There is no evidence of pneumonia, congestive 

heart failure, or other acute process., Assertion: 

absent). We added the identified assertion value 

to the feature (e.g., pneumonia_absent). The fre-

quencies of each assertion type in our corpus are 

presented in Table 4. Because chest x-rays do not 

include family history, there were no instances of 

not associated with the patient. We treated the 

three assertion categories that express hedging 

(conditional, hypothetical, possible) as the pre-

sent category. 

3.5 Classification  

For our task of classifying ALI patients, we 

picked the Maximum Entropy (MaxEnt) algo-

rithm due to its good performance in text classi-

fication tasks (Berger et al., 1996). In our exper-

iments, we used the MaxEnt implementation in a 

machine learning package called Mallet
2
.  

4 Results 

4.1 Metrics  

We evaluated the performance by using precision 

(positive predictive value), recall (sensitivity), 

negative predictive value, specificity, f-score, 

and accuracy. We used 10-fold cross validation 

to measure the performance of our classifiers on 

the development set. We evaluated the best per-

forming classifier on the validation set.  

4.2 Experiments with Development Set  

We designed three groups of experiments to ex-

plore the effects of (1) different n-gram features, 

(2) feature selection, (3) assertion analysis of 

features on the classification of ALI patients. We 

defined two baselines to compare the perfor-

mance of our approaches. In the first baseline, 

we implemented the Azzam et. al.’s rule-based 

approach (2009). In the second baseline, we only 

represented the content of chest x-ray reports 

with unigrams. 

4.3 N-gram Experiments  

Table 5 summarizes the performance of n-gram 

features. When compared to the baseline uni-

gram representation, gradually adding bigrams 

(uni+bigram) and trigrams (uni+bi+trigram) to 

the baseline increased the precision and specifici-

ty by 4%. Recall and NPV remained the same. 

Azzam et. al.’s rule-based baseline generated 

higher recall but lower precision when compared 

to n-gram features. The best f-score (64.45%) 

was achieved with the uni+bi+trigram represen-

tation. 

4.4 Feature Selection Experiments  

To understand the effect of large feature space on 

classification performance, we studied how the 

performance of our system evolves for various 

threshold values (N) on the different combina-

tions of χ
2 

ranked unigram, bigram, and trigram 

features. Table 6 includes a subset of the results 

we collected for different values of N. As listed 

                                                 
2
 Mallet. Available at: http://mallet.cs.umass.edu 

Assertion Class Frequency  

Present 206,863 

Absent 13,961 

Conditional 4 

Hypothetical 330 

Possible 3,980 

Table 4 Assertion class frequencies. 

System configuration TP TN FP FN 
Precision/ 

PPV 

Recall/ 

Sensitivity 
NPV Specificity F-Score Accuracy 

Baseline#1–Azzam et. al. (2009) 201 184 191 53 51.27 79.13 77.64 49.07 62.23 61.21 

Baseline#2–unigram 156 288 87 98 64.20 61.42 74.61 76.80 62.78 70.59 

Uni+bigram 156 296 79 98 66.38 61.42 75.13 78.93 63.80 71.86 

Uni+bi+trigram 155 303 72 99 68.28 61.02 75.37 80.80 64.45 72.81 

Table 5 Performance evaluation on development set with no feature selection. TP: True positive, TN: True nega-

tive, FP: False positive, FN: False negative, PPV: Positive predictive value, NPV: Negative predictive value. The 

row with the heighted F-Score is highlighted. 
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in this table, for N=100, the unigram represen-

tation performed better than uni+bigram, 

uni+bi+trigram feature combinations; however, 

as N increased, the performance of 

uni+bi+trigram performed better, reaching the 

best f-score (78.53%) at N=800. When compared 

to the two defined baselines, the performance 

results of uni+bi+trigram at N=800 were signifi-

cantly better than those of the baselines.  

4.5 Assertion Analysis Experiments  

We ran a series of experiments to understand the 

effect of assertion analysis on the classification 

performance. We used the best performing clas-

N Feature configuration TP TN FP FN 
Precision/ 

PPV 

Recall/  

Sensitivity 
NPV Specificity F-Score Accuracy 

100 

Unigram 191 316 59 63 76.40 75.20 83.38 84.27 75.79 80.60 

Uni+bigram 180 313 62 74 74.38 70.87 80.88 83.47 72.58 78.38 

Uni+bi+trigram 183 317 58 71 75.93 72.05 81.70 84.53 73.94 79.49 

200 

Unigram 189 312 63 65 75.00 74.41 82.76 83.20 74.70 79.65 

Uni+bigram 183 321 54 71 77.22 72.05 81.89 85.60 74.54 80.13 

Uni+bi+trigram 190 322 53 64 78.19 74.80 83.42 85.87 76.46 81.40 

300 

Unigram 185 311 64 69 74.30 72.83 81.84 82.93 73.56 78.86 

Uni+bigram 188 322 53 66 78.01 74.02 82.99 85.87 75.96 81.08 

Uni+bi+trigram 187 331 44 67 80.95 73.62 83.17 88.27 77.11 82.35 

400 

Unigram 179 315 60 75 74.90 70.47 80.77 84.00 72.62 78.54 

Uni+bigram 184 319 56 70 76.67 72.44 82.01 85.07 74.49 79.97 

Uni+bi+trigram 184 325 50 70 78.63 72.44 82.28 86.67 75.41 80.92 

500 

Unigram 177 310 65 77 73.14 69.69 80.10 82.67 71.37 77.42 

Uni+bigram 178 321 54 76 76.72 70.08 80.86 85.60 73.25 79.33 

Uni+bi+trigram 187 325 50 67 78.90 73.62 82.91 86.67 76.17 81.40 

600 

Unigram 179 305 70 75 71.89 70.47 80.26 81.33 71.17 76.95 

Uni+bigram 177 320 55 77 76.29 69.69 80.60 85.33 72.84 79.01 

Uni+bi+trigram 189 325 50 65 79.08 74.41 83.33 86.67 76.67 81.72 

700 

Unigram 176 308 67 78 72.43 69.29 79.79 82.13 70.82 76.95 

Uni+bigram 180 323 52 74 77.59 70.87 81.36 86.13 74.07 79.97 

Uni+bi+trigram 189 328 47 65 80.08 74.41 83.46 87.47 77.14 82.19 

800 

Unigram 172 311 64 82 72.88 67.72 79.13 82.93 70.20 76.79 

Uni+bigram 180 327 48 74 78.95 70.87 81.55 87.20 74.69 80.60 

Uni+bi+trigram 192 332 43 62 81.70 75.59 84.26 88.53 78.53 83.31 

900 

Unigram 174 311 64 80 73.11 68.50 79.54 82.93 70.73 77.11 

Uni+bigram 182 328 47 72 79.48 71.65 82.00 87.47 75.36 81.08 

Uni+bi+trigram 187 333 42 67 81.66 73.62 83.25 88.80 77.43 82.67 

1000 

Unigram 177 313 62 77 74.06 69.69 80.26 83.47 71.81 77.90 

Uni+bigram 185 326 49 69 79.06 72.83 82.53 86.93 75.82 81.24 

Uni+bi+trigram 190 327 48 64 79.83 74.80 83.63 87.20 77.24 82.19 

Table 6 Performance evaluation on development set with feature selection. TP: True positive, TN: True neg-

ative, FP: False positive, FN: False negative, PPV: Positive predictive value, NPV: Negative predictive value. 

The row with the heighted F-Score is highlighted. 

 

Assertion configuration TP TN FP FN 
Precision/ 

PPV 

Recall/ 

Sensitivity 
NPV Specificity F-Score Accuracy 

Assertion_none 192 332 43 62 81.70 75.59 84.26 88.53 78.53 83.31 

Assertion_all 188 328 47 66 80.00 74.02 83.25 87.47 76.89 82.03 

Assertion_top_10 191 328 47 63 80.25 75.20 83.89 87.47 77.64 82.51 

Assertion_top_20 190 329 46 64 80.51 74.80 83.72 87.73 77.55 82.51 

Assertion_top_30 190 331 44 64 81.20 74.80 83.80 88.27 77.87 82.83 

Assertion_top_40 190 328 47 64 80.17 74.80 83.67 87.47 77.39 82.35 

Assertion_top_50 190 330 45 65 80.85 74.51 83.54 88.00 77.55 82.54 

Table 7 Performance evaluation on development set with the assertion feature (uni+bi+trigram at N=800). 

TP: True positive, TN: True negative, FP: False positive, FN: False negative, PPV: Positive predictive value, 

NPV: Negative predictive value. The row with the heighted F-Score is highlighted. 

 

System configuration TP TN FP FN 
Precision/ 

PPV 

Recall/  

Sensitivity 
NPV Specificity F-Score Accuracy 

Baseline#1–Azzam et. al. (2009) 10 18 16 11 38.46 47.62 62.07 52.94 42.55 50.91 

Baseline#2–unigram 12 29 5 9 70.53 57.14 76.32 85.29 63.16 74.55 

Uni+bi+trigram at k=800 9 30 4 12 69.23 42.86 71.43 88.24 52.94 70.91 

Table 8 Performance evaluation on validation set. TP: True positive, TN: True negative, FP: False positive, 

FN: False negative, PPV: Positive predictive value, NPV: Negative predictive value. The row with the 

heighted F-Score is highlighted. 
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sifier with uni+bi+trigram at N=800 in our ex-

periments. We applied assertion analysis to all 

800 features as well as only a small set of top 

ranked 10×k (1≤k≤5) features which were ob-

served to be closely related to ALI (e.g., diffuse, 

opacities, pulmonary edema). We hypothesized 

applying assertion analysis would inform the 

classifier on the presence and absence of those 

terms which would potentially decrease the false 

positive and negative counts. 

Table 7 summarizes the results of our experi-

ments. When we applied assertion analysis to all 

800 features, the performance slightly dropped 

when compared to the performance with no as-

sertion analysis. When assertion analysis applied 

to only top ranked features, the best f-score per-

formance was achieved with assertion analysis 

with top 30 features; however, it was still slightly 

lower than the f-score with no assertion analysis.  

The differences are not statistically significant. 

4.6 Experiments with Validation Set  

We used the validation set to explore the general-

izability of the proposed approach. To accom-

plish this we run the best performing classifier 

(uni+bi+trigram at N=800) and two defined 

baselines on the validation set. We re-trained the 

uni+bi+trigram at N=800 classifier and unigram 

baseline on the complete development set. 

Table 8 includes the performance results. The 

second baseline with unigrams performed the 

best and Azzam et. al.’s baseline performed the 

worst in identifying the patients with ALI in the 

validation set. 

5 Discussion 

Our best system achieved an f-score of 78.53 

(precision=81.70, recall=75.59) on the develop-

ment set. While the result is encouraging and 

significantly better than the f-score of a previous-

ly published system (f-score=62.23, preci-

sion=51.27, recall=79.13), there is still room for 

improvement. 

There are several important limitations to our 

current development dataset. First, the annotators 

who are pulmonary care specialists used only the 

x-ray images to annotate the patients. However, 

the classifiers were trained based on the features 

extracted from the radiologists’ free-text inter-

pretation of the x-ray images. In one false posi-

tive case, the radiologist has written “Bilateral 

diffuse opacities, consistent with pulmonary 

edema. Bibasilar atelectasis.” in the chest x-ray 

report, however all three pulmonary care special-

ists annotated the case as negative based on their 

interpretation of images. Because the report con-

sisted of many very strong features indicative of 

ALI, our classifier falsely identified the patient 

as positive with a very high prediction probabil-

ity 0.96. Second, although three annotators anno-

tated the development set, there was full agree-

ment on 42.12% (107/254) of the positive pa-

tients and 45.33% (170/375) of the negative pa-

tients. Table 9 includes the false positive and 

negative statistics of the best performing classifi-

er (uni+bi+trigrams at N=800). As can be seen 

from the table, the classifier made more mistakes 

on patients where the annotator agreement was 

not perfect. The classifier predicted 13 of the 28 

false positives and 23 of the 39 false negatives 

with probabilities higher than 0.75. When we 

investigated the reports of those 13 false posi-

tives, we observed that the radiologists used 

many very strong ALI indicative features (e.g., 

diffuse lung opacities, low lung volumes) to de-

scribe the images. On the contrary, radiologists 

did not use as many ALI indicative features in 

the reports of 23 false negative cases. 

In our experiments on the development set, we 

demonstrated the positive impact of statistical 

feature selection on the overall classification per-

formance. We achieved the best f-score, when 

we used only 2.67% (800/29,914) of the com-

plete n-gram feature space. We enriched the 

highly ranked features with assertion analysis. 

However, unlike feature selection, assertion 

analysis did not improve the overall perfor-

mance. To explore the reasons, we analyzed re-

ports from our corpus and found out that the cur-

rent six assertion classes (present, absent, condi-

tional, hypothetical, possible) were not sufficient 

to capture true meaning in many cases. For ex-

ample, our assertion classifier assigned the class 

present to the bigram bibasilar opacities based 

on the sentence “There are bibasilar opacities 

that are unchanged”. Although present was the 

correct assignment for bibasilar opacities, the 

more important piece of information was the 

change of state in bibasilar opacities for ALI 

diagnosis. X-rays describe a single snapshot of 

time but the x-ray report narrative makes explicit 

Error Type Agreement Frequency Percentage 

False Positives 
3 15 10.20% (15/147) 

2 28 26.17% (28/107) 

False Negatives 
3 24 11.70% (24/205) 

2 39 22.94% (39/170) 

Table 9 False positive and false negative statistics at 

different agreement levels. 
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or, more often implicit references to a previous 

x-ray. In this way, the sequence of x-ray reports 

is used not only to assess a patient’s health at a 

moment in time but also to monitor the change. 

We recently defined a schema to annotate change 

of state for clinical events in chest x-ray reports 

(Vanderwende et al., 2013). We will use this an-

notation schema to create an annotated corpus 

for training models to enrich the assertion fea-

tures for ALI classification.  

The results on the validation set revealed that 

the classification performance degraded signifi-

cantly when training and test data do not come 

from the same dataset. There are multiple rea-

sons to this effect. First, the two datasets had dif-

ferent language characteristics. Although both 

development and validation sets included chest 

x-ray reports, only 2,488 of the 3,305 (75.28%) 

n-gram features extracted from the validation set 

overlapped with the 29,914 n-gram features ex-

tracted from the development set. We suspect 

that this is the main reason why our best per-

forming classifier with feature selection trained 

on the development set did not perform as well 

as the unigram baseline on the validation set. 

Second, the validation set included only 55 pa-

tients and each patient had only one chest x-ray 

report unlike the development set where each 

patient had 2.78 reports on the average. In other 

words, the classifiers trained on the development 

set with richer content made poor predictions on 

the validation set with more restricted content. 

Third, because the number of patients in the val-

idation set was too small, each false positive and 

negative case had a huge impact on the overall 

performance. 

6 Conclusion 

In this paper, we described a text processing ap-

proach to identify patients with ALI from the 

information available in their corresponding free-

text chest x-ray reports. To increase the classifi-

cation performance, we (1) enhanced the base-

line unigram representation with bigram and tri-

gram features, (2) enriched the n-gram features 

with assertion analysis, and (3) applied statistical 

feature selection. Our proposed methodology of 

ranking all the features using statistical hypothe-

sis testing and selecting only the most relevant 

ones for classification resulted in significantly 

improving the performance of a previous system 

for ALI identification. The best performing clas-

sifier achieved 81.70% precision (positive pre-

dictive value), 75.59% recall (sensitivity), 

78.53% f-score, 74.61% negative predictive val-

ue, 76.80% specificity in identifying patients 

with ALI when using the uni+bi+trigram repre-

sentation at N=800. Our experiments showed 

that assertion values did not improve the overall 

performance. For future work, we will work on 

defining new semantic features that will enhance 

the current assertion definition and capture the 

change of important events in radiology reports.  
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