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Abstract

This paper describes the information
extraction techniques developed in the
framework of the participation of IRISA-
TexMex to the following BioNLP-ST13
tasks: Bacterial Biotope subtasks 1 and
2, and Graph Regulation Network. The
approaches developed are general-purpose
ones and do not rely on specialized pre-
processing, nor specialized external data,
and they are expected to work indepen-
dently of the domain of the texts pro-
cessed. They are classically based on ma-
chine learning techniques, but we put the
emphasis on the use of similarity mea-
sures inherited from the information re-
trieval domain (Okapi-BM25 (Robertson
et al., 1998), language modeling (Hiem-
stra, 1998)). Through the good results ob-
tained for these tasks, we show that these
simple settings are competitive provided
that the representation and similarity cho-
sen are well suited for the task.

1 Introduction

This paper describes the information extraction
techniques developed in the framework of the
participation of IRISA-TexMex to BioNLP-ST13.
For this first participation, we submitted runs for
three tasks, concerning entity detection and cat-
egorization (Bacterial Biotope subtask 1, BB1),
and relation detection and categorization (Bacte-
rial Biotope subtask 2, BB2, and Graph Regula-
tion Network, GRN).

Our participation to the BioNLP shared tasks
takes place in the broader context of our work
in the Quaero research program1 in which we
aim at developing fine grained indexing tools for

1See www.quaero.org for a complete overview of this
large research project.

multimedia content. Text-mining and information
extraction problems are thus important issues to
reach this goal. In this context, the approaches that
we develop are general-purpose ones, that is, they
are not designed for a specific domain such as Bi-
ology, Medecine, Genetics or Proteomics. There-
fore, the approaches presented in this paper do not
rely on specialized pre-processing, nor specialized
external data, and they are expected to work inde-
pendently of the domain of the texts processed.

The remaining of this paper is structured as fol-
lows: the next section presents general insights
on the methodology used throughout our partici-
pation, whatever the task. Sections 3, 4 and 5 re-
spectively describe the techniques developed and
their results for BB1, BB2 and GRN. Last, some
conclusive remarks and perspectives are given in
Section 6.

2 Methodological corpus

From a methodological point of view, our ap-
proaches used for these tasks are machine learn-
ing ones. Indeed, since the first approaches of in-
formation extraction based on the definition of ex-
traction patterns (Riloff, 1996; Soderland, 1999),
using surface clues or syntactic and semantic in-
formation (Miller et al., 2000), machine learning
techniques have shown high performance and ver-
satility. Generally, the task is seen as a super-
vised classification one: the training data are used
to infer a classifier able to handle new, unlabeled
data. Most of the state-of-the-art techniques adopt
this framework, but differ in the kind of infor-
mation used and on the way to use it. For in-
stance, concerning the syntactic information, dif-
ferent representations were studied: sequences or
sub-sequences (Culotta et al., 2006; Bunescu and
Mooney, 2006), shallow parsing (Pustejovsky et
al., 2002; Zelenko et al., 2003), dependencies
(Manine et al., 2009), trees (Zhang et al., 2006;
Liu et al., 2007), graphs (Culotta and Sorensen,
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2004; Fundel et al., 2007), etc. Also, exploiting
semantic information, for instance through dis-
tributional analysis seems promising (Sun et al.,
2011).

The approaches also differ in the inference tech-
niques used. Many were explored, like neural net-
works (Barnickel et al., 2009) or logistic regres-
sion (Mintz et al., 2009), but those relying on a
metric space search, such as Support Vector Ma-
chines (SVM) or k-Nearest Neighbours (kNN) are
known to achieve state-of-the-art results (Zelenko
et al., 2003; Culotta and Sorensen, 2004). The
crux of the matter for these methods is to devise
a good metric between the objects, that is, a good
kernel. For instance, string kernels (Lodhi et al.,
2002) or graph kernels (Tikk et al., 2012) have
shown interesting performance.

Our approaches in these shared tasks also adopt
this general framework. In particular, they are
chiefly based on simple machine learning tech-
niques, such as kNN. In this classification tech-
nique, new instances whose classes are unknown
are compared with training ones (instances with
known classes). Among the latter, the closest ones
in the feature space are used to decide the class of
the new instance, usually by a majority vote. Be-
yond the apparent simplicity of this machine learn-
ing technique, the heart of the problem relies in the
two following points:

• using a relevant distance or similarity mea-
sure in the feature space to compare the in-
stances;

• finding the best voting process (number of
nearest neighbors, voting modalities...)

There is no real training step per se, but kNN is
truly a machine learning approach since the in-
ductive step is made when computing the simi-
larity and the vote for the classification of a new
instance, hence the qualification of ’lazy-learning’
method.

In our work, we explore the use of similarity
measures inherited from the information retrieval
(IR) domain. Indeed, IR has a long history when
it comes to comparing textual elements (Rao et
al., 2011) which may offer new similarity mea-
sures for information extraction either for kernel-
based methods or, in our case, for kNN. There-
fore, in the remaining of the article, we mainly de-
scribe the choice of this similarity measure, and
adopt the standard notation used in IR to denote a

similarity function: RSV (Retrieval Status Value,
higher score denotes higher similarity). In prac-
tice, all the algorithms and tools were developed
in Python, using NLTK (Loper and Bird, 2002) for
basic pre-processing.

3 Term extraction and categorization:
Bacteria Biotope sub-task 1

This section describes our participation to sub-
task 1 of the Bacteria Biotope track. The first
sub-section presents the task as we interpreted
it, which explains some conceptual choices of
our approach. The latter is then detailed (sub-
section 3.2) and its results are reported (sub-
section 3.3).

3.1 Task interpretation

This tasks aims at detecting and categorizing en-
tities based on an ontology. This task has some
important characteristics:

• it has an important number of categories;

• categories are hierarchically organized;

• few examples for each categories are given
through the ontology and the examples.

Moreover, some facts are observed in the training
data:

• entities are mostly noun phrase;

• most of the entities appear in a form very
close to their corresponding ontology entry.

Based on all these considerations and to our
point of view explained in the previous section,
this task is interpreted as an automatic categoriza-
tion one: a candidate (portion of the analyzed text)
is assigned an ontological category or a negative
class (stating) that the candidate does not belong
to any spotted category.

In the state-of-the-art, such problems are often
considered as labeling ones for which stochastic
techniques like HMM, MaxEnt models, or more
recently CRF (Lafferty et al., 2001), have shown
very good results in a large variety of tasks (Wang
et al., 2006; Pranjal et al., 2006, inter alia). Yet,
for this specific case, these techniques do not seem
to be fully suited for different reasons:

• a very high number of possible classes is
to be handled, which may cause complexity
problems;

• the size of the training set is relatively small
compared to the size of the label set;
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• embedding external knowledge (i.e. the on-
tology), for instance as features, cannot be
done easily.

On the contrary of these stochastic methods, our
approach does not rely on the sequential aspect of
the problem. It is based on lazy machine learn-
ing (kNN), detailed hereafter, with a description
allowing us to make the most of the ontology and
the annotated texts as training data.

3.2 Approach
In the approach developed for this task, the context
of a candidate is not taken into account. We only
rely on the internal components (word-forms) of
the candidate to decide whether it is an entity and
what is its category. That is why both the ontology
and the given annotated texts are equally consid-
ered as training data.

More precisely, this approach is implemented in
two steps. In the first step, the texts are searched
for almost exact occurrences of an ontology entry.
Slight variations are allowed, such as case, word
insertion and singular/plural forms. In practice,
this approach is implemented with simple regu-
lar expressions automatically constructed from the
ontology and the annotated texts.

In the second step, a more complex processing
is undergone in order to retrieve more entities (to
improve the recall rate). It relies on a 1-nearest
neighbor classification of the noun phrase (NP) ex-
tracted from the text. A NP chunker is built by
training a MaxEnt model from the CONLL 2000
shared task dataset (articles from the Wall Street
Journal corpus). This NP chunker is first applied
on the training data. All NP collected that do
not belong to any wanted ontological categories
are kept as examples of a negative class. The NP
chunker is then applied to the test data. Each ex-
tracted NP is considered as a candidate which is
compared with the ontological entries and the col-
lected negative noun phrases. This candidate fi-
nally receives the same class than the closest NP
(i.e. the ontological category identifier or the neg-
ative class).

As explained in the previous section, the key-
stone of such an approach is to devise an effi-
cient similarity measure. In order to retrieve the
closest known NP, we examine the word-forms
composing the candidate, considered as a bag-of-
words. An analogy is thus made with information
retrieval: ontological categories are considered as
documents, and the candidate is considered as a

query. A similarity measure inherited from infor-
mation retrieval, called Okapi-BM25 (Robertson
et al., 1998), is used. It can be seen as a modern
variant of TF-IDF/cosine similarity, as detailed in
Eqn. 1 where t is a term occurring qtf times in the
candidate q, c a category (in which the term t oc-
curs tf times), k1 = 2, k3 = 1000 and b = 0.75
are constants, df is the document frquency (num-
ber of categories in which t appears), dl is the doc-
ument length, that is, in our case the number of
words of the terms in that category, dlavg is the av-
erage length (number of words) of a category.

RSV (q, c) =
∑
t∈q

qTF (t) ∗ TF (t, c) ∗ IDF (t)

(1)
with:

qTF (t) =
(k3 + 1) ∗ qtf

k3 + qtf

TF (t, c) =
tf ∗ (k1 + 1)

tf + k1 ∗ (1− b + b ∗ dl(c)/dlavg)

IDF (t) = log
N − df(t) + 0.5

df(t) + 0.5

Finally, the category c∗ for the candidate q is
chosen among the set C of all the possible ones
(including the negative category), such that:

c∗ = arg max
c∈C

RSV (q, c)

The whole approach is illustrated in Fig. 1.
Still in order to improve recall, unknown words

(words that do not appear in any category) undergo
an additional process. The definition of the word
in WordNet, if present, is used to extend the candi-
date, in a very similar way to what would be query
expansion (Voorhees, 1998). In case of polyse-
mous words, the first definition is used.

3.3 Results
Figure 2 presents the official results of the partic-
ipating teams on the test dataset. Our approach
obtains good overall performance compared with
other team’s results and ranks first in terms of Slot
Error Rate (SER, combining the number of substi-
tution S, insertion I, deletion D and Matches M).
As it appears, this is mainly due to a better recall
rate. Of course, this improved recall has its draw-
back: the precision of our approach is a bit lower
than some of the other teams. This is confirmed
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Figure 1: k-NN based approach based on IR similarity measures

Figure 2: BB1 official results: global performance rates (left); error analysis (right)

by the general shape of our technique compared
with others’ (Figure 2, right) with more matches,
but also more insertions.

In order to analyze the performance of each
component, we also report results of step 1 (quasi-
exact matches with regular expression) alone, step
2 alone, and a study of the influence of using
WordNet to extend the candidate. The results
of these different settings, on the development
dataset, are given in Figure 3 From these results,
the first point worth noting is the difference of
overall performance between the development set
and the test set (SER on the latter is almost two
times higher than on the former). Yet, without ac-
cess to the test set, a thorough analysis of this phe-
nomenon cannot be undergone. Another striking
point is the very good performance of step 1, that

Figure 3: Influence of each extraction component
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is, the simple search for quasi identical ontology
phrases in the text. Compared to this, step 2 per-
forms worse, with many false negatives (deletions)
and misclassifications (substitutions). A close ex-
amination of the causes of these errors reveals that
the IR-based classification process is not at fault,
but it is misled by wrong candidates proposed by
the NP chunker. Besides the problem of perfor-
mance of our chunker, it also underlines the limit
of our hypothesis of using only noun phrases as
possible candidates. In spite of these problems,
step 2 provides complementary predictions to step
1, as their combination obtains better results than
each one. This is also the case with the WordNet-
based expansion, which brings slightly better re-
sults.

4 Extracting relation: Bacteria Biotope
sub-task 2

This section is dedicated to the presentation of our
participation to Bacteria Biotope sub-task 2. As
for the sub-task 1, we first present the task as we
interpreted it, then the approach, and last some re-
sults.

4.1 Task interpretation

This task aims at extracting and categorizing local-
ization and part-of relations that may be reported
in scientific abstracts between Bacteria, Habitat
and Geographical spots. For this particular sub-
task, the entities (boundaries in the text and type)
were provided.

As explained in Section 2, expert approaches
based on hand-coded patterns are outperformed by
state-of-the-art studies which consider this kind of
tasks as a classification one. Training data help
to infer a classifier able to decide, based on fea-
tures extracted from the text, whether two entities
share a relation, and able to label this relation if
needed. We also adopt this framework and ex-
ploit a system developed in-house (Ebadat, 2011)
which has shown very good performance on the
protein-protein-interaction task of the LLL dataset
(Nédellec, 2005). From a computational point of
view, two directed relations are to be considered
for this task, plus the ’negative’ relation stating
that no localization or part-of relation exists be-
tween the entities. Therefore, the classifier has to
handle five labels.

4.2 Approach
The extraction method used for this task only
exploits shallow linguistic information, which is
easy to obtain and ensures the necessary robust-
ness, while providing good results on previous
tasks (Ebadat, 2011). One of its main interests is to
take into account the sequential aspect of the task
with the help of n-gram language models. Thus, a
relation is represented by the sequence of lemmas
occurring between the agent and the target, if the
agent occurs before the target, or between the tar-
get and the agent otherwise. A language model is
built for each example Ex, that is, the probabili-
ties based on the occurrences of n-grams in Ex are
computed; this language model is written MEx.
The class (including the ’negative’ class) and di-
rection (left-to-right, LTR or right-to-left, RTL) of
each example is also memorized.

Given a relation candidate (that is, two proteins
or genes in a sentence), it is possible to evaluate
its proximity with any example, or more precisely
the probability that this example has generated the
candidate. Let us note C =< w1, w2, ..., wm >
the sequence of lemmas between the proteins. For
n-grams of n lemmas, this probability is classi-
cally computed as:

P (C|MEx) =

m∏
i=1

P (wi|wi−n..wi−1,MEx)

As for any language model in practice, probabil-
ities are smoothed in order to prevent unseen n-
grams to yield 0 for the whole sequence. In the
experiments reported below, we consider bigrams
of lemmas. Different strategies for smoothing are
used: as it is done in language modeling for IR
(Hiemstra, 1998), probabilities estimated from the
example are linearly combined with those com-
puted on the whole set of example for this class.
In case of unknown n-grams, an interpolation with
lower order n-grams (unigram in this case) com-
bined with an absolute discounting (Ney et al.,
1994) is performed.

In order to prevent examples with long se-
quences to be favored, the probability of generat-
ing the example from the candidate (P (Ex|MC))
is also taken into account. Finally, the similarity
between an example and a candidate is:

RSV (Ex,C) = min (P (Ex|MC), P (C|MEx))

The class is finally attributed to the candidate by
a k-nearest neighbor algorithm: the k most sim-
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Figure 4: BB2 official results in terms of recall,
precision and F-score

ilar examples (highest RSV ) are calculated and
a majority vote is performed. For this task, k
was set to 10 according to cross-validation experi-
ments. This lazy-learning technique is expected to
be more suited to this kind of tasks than the model-
based ones (such as SVM) proposed in the litera-
ture since it better takes into account the variety of
ways to express a relation.

4.3 Results

The official results are presented in Figure 4. In
terms of F-score, our team ranks close second, but
with a different recall/precision compromise than
TEES-2.1. The detailed results provided by the
organizers show that no Part-of relations are re-
trieved. From the analysis of errors on the devel-
opment set, it appears that the simplicity of our
representation is at fault in most cases of misclas-
sifications. Indeed, important keywords frequently
occur outside of the sub-sequence delimited by the
two entities. The use of syntactic information, as
proposed for the GRN task in the next section, is
expected to help overcome this problem.

5 Extracting relation: regulation
network

5.1 Task interpretation and approach

Despite the different application context and the
different evaluation framework, we consider this
relation extraction task in a similar way than in the
previous section. Therefore, we use the same ap-
proach already described in Section 4.2. Yet, in-
stead of using the sequence of lemmas between
the entities, we rely on the sequence built from the

Figure 5: Example of syntactic representation
used for the GRN task

Figure 6: GRN official results in terms of strict
Slot Error Rate (SER), recall, precision and F-
score

shortest syntactic path between the entities as it is
done in many studies (Manine et al., 2009, inter
alia). The text is thus parsed with MALT parser
(Nivre, 2008) and its pre-trained Penn Treebank
model (Marcus et al., 1993). The lemmas occur-
ring along the syntactic path between the entities,
from the source to the target, are collected as illus-
trated in Figure 5.

5.2 Results

The official results reported in Fig. 6 shows that al-
though our approach only ranks fourth in terms of
Slot Error Rate (SER), its general performance is
competitive in terms of Recall and F-score, but its
relatively lower precision impacts the global SER
score. It is also interesting to consider a relaxed
version of these evaluation measures in which sub-
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Figure 7: GRN official results in terms of re-
laxed Slot Error Rate (SER), recall, precision and
F-score

Figure 8: Analysis of errors of the GRN task

stitutions are not penalized. It therefore evalu-
ates the ability of the methods to build the regu-
lation network whatever the real relation between
entities. As it appears in Figure 7, in that case,
our approach brings the best results in terms of F-
score and SER. As for the BB2 task, it means that
the pro-eminent errors are between labels of valid
relations, but not on the validity of the relation.
This is also noticeable in Figure 8 in which the
global profile of our approach underlines its ca-
pacity to retrieve more relations, but also to gener-
ate more substitution and insertion errors than the
other approaches. The complete causes of these
misclassifications are still to be investigated, but a
close examination of the results shows two possi-
ble causes:
• the parser makes many mistakes on con-

junction and prepositional attachment, which
is especially harmful for the long sentences
used in the dataset;
• our representation omits to include negation

or important adverbs, which by definition are

not part of the shortest path, but are essential
to correctly characterize the relation.

The first cause is not specific to these data and is a
well-known problem of parsing, but hard to over-
come at our level. The second cause is specific to
our approach, and militate, to some extents, to de-
vise a more complex representation than the short-
est path one.

6 Conclusion and future work

For this first participation of IRISA to BioNLP
shared tasks, simple models were implemented,
using no domain-specific knowledge. According
to the task, these models obtained more or less
good rankings, but all have been shown to be com-
petitive with other teams’ results. Our approaches
put the emphasis on the similarity computing be-
tween known instances instead of complex ma-
chine learning techniques. By making analogies
with information retrieval, this similarity aims at
being the most relevant for the considered task and
at finding the closest known examples of any new
instance to be classified.

For instance, we made the most of the vector-
space measure Okapi-BM25 combined with a bag-
of-word representation for the first sub-task of
Bacterial Biotope, and of the language modeling
adapted from (Hiemstra, 1998) for the sequential
representation used in the second sub-task of Bac-
terial Biotope and for Gene Regulation Network.

Many parameters as well as other similarity
choices have not been explored due to the short de-
lay imposed by the challenge schedule. As a future
work, it would be interesting to automatically set
these parameters according to the data. In partic-
ular, a complex version of the BM-25 RSV func-
tion permits to include relevance feedback, which,
in our machine learning framework, corresponds
to using training data to adapt the BM-25 for-
mula. Another research avenue concerns the syn-
onymy/paraphrasing problem, which is not cor-
rectly handled by our word-based methods. Thus,
semantic analysis techniques used in IR (and other
NLP domains) such as Latent Semantic Indexing
(Deerwester et al., 1990) or Latent Dirichlet Allo-
cation (Blei et al., 2003) may also lead to interest-
ing results.
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