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Abstract
In this work, we present a data-driven
method to enhance syntax trees with addi-
tional dependencies as defined in the well-
known Stanford Dependencies scheme, so
as to give more information about the
structure of the sentence. This hybrid
method utilizes both machine learning
and a rule-based approach, and achieves
a performance of 93.1% in F1-score, as
evaluated using an existing treebank of
Finnish. The resulting tool will be in-
tegrated into an existing Finnish parser
and made publicly available at the address
http://bionlp.utu.fi/.

1 Introduction

Dependency-based analysis of syntax has recently
become popular within natural language process-
ing. It has been argued to be preferable over con-
stituency analysis in both parser evaluation and
further applications (Lin, 1998; Clegg and Shep-
herd, 2007), and indeed both dependency tree-
banks and parsers have emerged in recent years.

Dependency formalisms usually require that all
valid analyses must be trees, meaning that each
token in a sentence must only have one governor,
and the whole sentence must have one head word.
Tree structures, however, do not necessarily allow
the explicit representation of a number of relevant
phenomena. This is demonstrated by the well-
known Stanford Dependencies (SD) scheme (de
Marneffe and Manning, 2008), which is defined
in multiple variants. The basic variant requires
sentence structures to be trees, and the other vari-
ants can then be used to add further dependencies
on top of the tree structure, making the resulting
structures graphs rather than trees. Phenomena
that are further analyzed in the non-basic variants
of SD include relative clauses, open clausal com-
plements, coordinations and prepositional phrases.

The dependencies present in non-basic variants
of SD can be useful for applications that build on
top of the syntactic analysis. For instance, the clin-
ical domain pilot study of Haverinen et al. (2010)
has shown that these dependencies can be used in
annotating argument structures of verbs using the
popular PropBank scheme (Palmer et al., 2005).
Also, Yuret et al. (2012) have used the propagated
and collapsed variant of the SD scheme to retrieve
as semantically meaningful dependencies as possi-
ble in the context of textual entailments. The non-
basic variants of SD are also extensively applied in
information extraction, as seen for example in the
BioNLP shared tasks on event extraction, where a
number of top-ranking systems relied on SD anal-
yses (Kim et al., 2011).

In this work, we are concerned with three phe-
nomena represented in the non-basic variants of
SD. Most importantly, we consider the dependen-
cies that are the result of conjunct propagation.
They resolve, at least partially, ambiguities known
as coordination scope ambiguities. These are am-
biguities where there are multiple ways to under-
stand the scope of a coordination; for instance, in
the phrase old men and women either both the men
and the women are old, or alternatively, only the
men. Additionally, we consider dependencies that
reveal the syntactic functions of relativizers and
external subjects of open clausal complements.

We present a method that, given the basic syn-
tactic tree of a sentence, predicts these additional
dependencies as defined in the SD scheme us-
ing machine learning. As training data, we use
morphological and syntactic information gathered
from an existing treebank of Finnish, which has
human annotated conjunct propagation and addi-
tional dependencies present. We begin with a dis-
cussion of related work and the treebank used as
training material. We then move on to the details
of the method itself and present a thorough evalu-
ation of the pipeline. We make comparisons with
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several baseline methods, and conclude that the
proposed method achieves a performance clearly
superior to each of these baselines. In particu-
lar, the method demonstrates performance clearly
superior to that achieved by the commonly used
Stanford tools.

2 Related work

The general problem of coordination scope am-
biguity is a widely studied, difficult problem. It
is frequently tackled by utilizing lexical paral-
lelism and selectional preferences, as for instance
in the works of Kawahara and Kurohashi (2011)
and Resnik (1999). In the domain of requirements
engineering, Chantree et al. (2005) disambiguate
coordinations using heuristics based on the distri-
butions of the words appearing in them. Gold-
berg (1999) has presented an unsupervised model
for a limited range of coordination phenomena,
and Agarwal and Boggess (1992) introduce a sim-
plified algorithm for recognizing the correct con-
juncts for coordinations. Kawahara and Kuro-
hashi (2007) and van Noord (2007) have incor-
porated disambiguation methods into parsers of
Japanese and Dutch, respectively.

In dependency representations, there are mul-
tiple ways to treat coordination structures, and
the chosen treatment also affects coordination
scope ambiguities. The Stanford Dependencies
scheme (de Marneffe and Manning, 2008) used in
this work considers the first coordinated element
the head of the coordination, and uses an addi-
tional layer of dependencies to represent the prop-
agation of conjunct dependencies (see Figures 1
and 2). As a point of comparison, for instance
the Link Grammar scheme (Sleator and Temper-
ley, 1993) makes the coordinating conjunction the
head word of the coordination, thus partially re-
solving the scope ambiguities using tree structures
only as will be shown in greater detail in Sec-
tion 5.2.

The Stanford tools1 are able to produce out-
put with the additional dependencies of the SD
scheme present, but according to de Marneffe
and Manning (2008), this part of the tools per-
forms imperfectly. While the English resource
PARC 700 (King et al., 2003), annotated in the
LFG-formalism (Bresnan, 2001), contains depen-
dencies similar to those considered in this work,

1http://nlp.stanford.edu/software/
lex-parser.shtml
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Figure 1: The basic variant of the Stanford Depen-
dencies scheme on a Finnish sentence. The exam-
ple can be translated as He called me and told me
about the situation.

to our knowledge the Turku Dependency Tree-
bank (Haverinen et al., 2011) is the only existing
manually annotated resource that contains con-
junct propagation as described in the SD scheme.

In addition to the post-processing approach im-
plemented in the Stanford tools, also methods to
directly parse dependency graphs involving tokens
with multiple governors have been studied. Mc-
Donald and Pereira (2006) introduce a modifica-
tion of the Maximum Spanning Tree algorithm to
infer secondary dependencies in the Danish De-
pendency Treebank, and Sagae and Tsujii (2008)
present a modification of the Shift-Reduce algo-
rithm, which can parse directed acyclic graphs.

3 Data

3.1 Turku Dependency Treebank

As both the training and testing data of this
study, we use the Turku Dependency Treebank
(TDT) (Haverinen et al., 2011), which is a pub-
licly available treebank for Finnish. TDT contains
15,126 sentences (204,399 tokens) from ten differ-
ent genres or text sources, including for instance
Wikipedia, EU-text and amateur fiction.

TDT has been annotated using the SD scheme,
which was originally developed to be used with
the English language. Thus it has been slightly
modified in order to be able to capture the spe-
cific features of Finnish. The Finnish-specific SD
scheme contains 53 different dependency types,
and has been thoroughly described in the annota-
tion manual of Haverinen (2012).

3.2 Conjunct propagation and additional
dependencies

TDT contains two annotation layers. The first
layer is based on the basic variant of the SD
scheme and represents the structure of a sentence
as a tree. Figure 1 illustrates the first annotation
layer. The second layer gives extra information
about specific phenomena: conjunct propagation,
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Figure 2: Conjunct propagation in the SD scheme. The base-layer dependencies are marked with solid
lines, and the propagated dependencies are dashed. The example sentence can be translated as The fast
and friendly service received praise and was noticed in the whole area. Note that the noun palvelu
(service) serves as the subject of the first clause and the object of the second, which causes the type of
the propagated dependency to change.

external subjects and syntactic functions of rela-
tivizers. Approximately 9% (18,926/208,417) of
all dependencies in the treebank are part of the sec-
ond layer. The second annotation layer adds de-
pendencies on top of the existing first layer, thus
making the resulting analyses directed graphs,
rather than trees.

Conjunct propagation is related to coordination
structures. In the SD scheme, the first coordinated
element is considered to be the head of the whole
coordination, and all other coordinated elements
depend on it. Therefore, if a sentence element
depends on the first element of a coordination,
it can alternatively modify only the first element,
some coordinated elements, or all of them. If a
sentence element modifies multiple conjuncts, it
should be propagated to them, as illustrated in Fig-
ure 2. Similarly, some or all conjuncts can modify
another sentence element. If a modifier serves a
different role for different conjuncts, or if coordi-
nated elements are of different parts-of-speech, the
type of the propagating dependency may change
during the propagation. This is also illustrated in
Figure 2.

External subjects occur with so called open
clausal complements, where two verbs share a
subject (also known as subject control). Due to
the treeness restriction, in the basic layer of anno-
tation it is not possible to convey the information
that the subject of the first verb is also the subject
of the second verb. Therefore, these subjects are
marked in the second annotation layer, using the
dependency types xsubj, for external subjects, and
xsubj-cop, for external copula-subjects.

Syntactic functions of relativizers give addi-
tional information about relative clauses. The
phrase containing the relative pronoun is marked
simply as a relativizer (rel) in the first layer of an-
notation. However, the relativizer also always has
a secondary syntactic function; for instance, it can
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Figure 3: Syntactic functions of relativizers and
external subjects. The relative pronoun joka (who)
also acts as the subject to the main verb of the
relative clause, as well as the subject of its open
clausal complement. The example sentence can
be translated as The man who started to speak was
my cousin.

be the subject of the relative clause. This is marked
in the second annotation layer with an additional
dependency, which takes one of the dependency
types defined in the first annotation layer. Due to
the fact that the governor of the relativizer depen-
dency is always the main predicate of the relative
clause, the second layer dependency does not nec-
essarily have the same governor. Both external
subjects and relativizers are illustrated in Figure 3.

External subjects and syntactic functions of rel-
ativizers also interact with conjunct propagation.
External subjects can propagate, and propagated
subjects can produce new external subjects. Rel-
ativizers can also propagate, but note that if the
relativizer dependency and the corresponding sec-
ond layer dependency are between the same to-
kens, they always propagate together. Finally, if a
relativizer acts as the subject of a predicate, it can
also act as the external subject of another predi-
cate.

4 Methods

We now proceed to describe the method that au-
tomatically infers the propagated and other addi-
tional dependencies based on the first layer of syn-
tax annotation in the treebank. We have divided
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the task into three different subproblems: con-
junct propagation, syntactic functions of relativiz-
ers, and external subjects. The first two are solved
using machine learning, whereas the third problem
is easily approached with a rule-based method.

4.1 Conjunct propagation

In conjunct propagation, as is the case of the other
two tasks as well, it is possible to exhaustively
enumerate all candidate governor–dependent pairs
between which may exist a dependency result-
ing from conjunct propagation. This is the case
also for recursive coordination structures, in which
the dependencies propagate along chains of two
or more conjunct dependencies. We can there-
fore cast the problem as a multi-class classifica-
tion task, whereby each of the candidate governor-
dependent pairs is assigned the type of the propa-
gated dependency, or alternatively classified as a
negative example in case the dependency does not
propagate. A simple binary classification into de-
pendencies that do or do not propagate does not
suffice, as this would not account for the 2.3% of
cases in which the type of the propagated depen-
dency differs from the original base-layer depen-
dency, as discussed earlier in Section 3.2. In pre-
liminary experiments, we have also tested a com-
bined approach of binary classification (propagate
or not) followed by a multiclass classification (as-
sign type to propagated dependencies), but found
that such a combined approach gives no additional
advantage.

The set of possible classes consists of 49 de-
pendency types from the SD scheme (for four SD
types, punct, conj, cc and ellipsis, propagation is
not allowed), plus the negative class and a number
of compound types for relativizers. As mentioned
in Section 3.2, the relativizer and its corresponding
second layer dependency propagate together. Due
to this, we have performed the propagation in two
steps. First, the two dependency types are merged
into one compound type, such as rel-nsubj, and af-
ter the propagation, they are separated again into
two distinct dependencies. This merging increases
the number of classes by ten, as only functions of
relativizers that actually occur in the training data
are allowed. Discounting dependency types that
in fact never propagate in the training data and are
thus never predicted to do so, the total number of
possible classes is 51.

A number of features, extracted from both the

tokens and the underlying dependency structure,
are used in the classification. Token features in-
clude the lemma of the token, its main POS, and
a separate feature for each its morphological tags
that belong to one of several relevant morpho-
logical categories. These are Subcategory, Case,
Number, Person, Voice and Infinitive, as selected
based on preliminary experiments. Token features
are extracted separately for the candidate governor
and dependent, as well as the head of the coordina-
tion. The lemma of the coordinating conjunction
itself, if such a conjunction is present, is also used
as a feature. Tree features include the type of the
dependency which is being propagated, whether
the dependency governs or modifies the head of
the conjunction, whether the target of the propa-
gation already has a dependent with the same type
(only relevant in cases where a dependent is prop-
agated, not the governor), the set of outgoing de-
pendency types for the candidate governor and de-
pendent, the dependency type governing the head
of the dependency being propagated, whether the
linear direction of the candidate propagated de-
pendency is the same as the linear direction of the
dependency being propagated (possible values be-
ing both-left, both-right, and differing-directions),
and finally the number of coordinated items in the
coordination expressed as a binary feature (i.e. one
binary feature for every discrete value).

Prior to classification, all possible feature pairs
are explicitly generated, simulating the use of
a second-degree polynomial kernel. For in-
stance, a feature vector (f1, f2, f3) is turned into
(f1f1, f1f2, f1f3, f2f2, f2f3, f3f3) prior to classi-
fication. As will be shown in the feature ablation
study in Section 5.1, this technique improves the
classification accuracy. Finally, prior to the classi-
fication the feature vectors are normalized to unit
length.

4.2 Syntactic functions of relativizers

As discussed in Section 3.2, every relativizer is as-
signed a syntactic function in the second annota-
tion layer of the treebank. This is expressed as
an additional dependency that governs the rela-
tivizer (see Figure 3) and in the majority of cases
(95.4%) has the same governor as the relativizer
dependency in the first annotation layer. As with
conjunct propagation, we approach the task as a
machine learning problem. For each relativizer
dependency, we predict an additional dependency
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type which represents the syntactic function of the
relativizer. A new dependency with this type is
then created governing the relativizer word.

To account for certain cases of object control
and raising, we identify cases where the governor
of the relativizer has an infinite clausal comple-
ment (i.e. governs an iccomp dependency) and the
head of the complement does not already have a
dependent of the predicted type. If so, we post-
process the new dependency to be governed by the
head of the complement. This is a heuristic to treat
the most common situation where the governor of
the relativizer dependency differs from the gover-
nor of the corresponding second layer dependency.
In all other cases, the second layer dependency is
predicted between the governor and dependent of
the base syntax relativizer dependency.

The feature representation in this task is com-
paratively simple. Separately for the governor and
dependent, we generate their token features (the
same features as in conjunct propagation) and the
set of types of dependencies they govern. As with
conjunct propagation, explicit feature pair genera-
tion as well as normalization of feature vectors to
unit length are employed.

4.3 External subject assignment
Unlike in the two previous tasks, we find that as-
signment of external subjects is best approached
by a simple rule-based method, since only clausal
complements governed by an xcomp dependency
have an external subject. As noted by Camp-
bell (2004), in some highly restricted linguis-
tic problems rule-based approaches are sufficient.
The rule assigning external subjects only needs to
account for whether the external subject depen-
dency type is the regular subject type xsubj or the
copular subject type xsubj-cop. Further, chains of
clausal complements with external subjects must
be correctly addressed, so that each open clausal
complement correctly receives an external subject.

4.4 Combining predictions
As mentioned earlier in Section 3.2, the three tasks
are not independent of each other: First, if the pre-
dicted syntactic function of the relativizer is a sub-
ject, the newly inserted subject dependency can
produce an external subject dependency as well.
Second, both external subjects and the dependen-
cies encoding relativizer functions may propagate
in coordinations. Third, propagated subject depen-
dencies may again produce new external subject

P R F
Conj. propagation 93.1 92.9 93.0
Relativizer prediction 94.5 92.4 93.5
External subjects 90.0 97.3 93.5
All tasks combined 93.0 93.2 93.1

Table 1: Performance of the combined second
layer prediction, as well as the individual tasks
measured in terms of precision, recall, and F1-
score on the gold-standard base syntax trees.

dependencies.
The combined prediction of the entire second

annotation layer is thus carried out in four sep-
arate steps. First, we predict the syntactic func-
tions of relativizers, then the external subjects. Af-
ter this, the conjuncts are propagated, and finally,
the external subjects are predicted again, in order
to cover external subjects produced by propagated
subject dependencies.

4.5 Machine learning method and parameter
selection

The underlying classifier for both the conjunct
propagation and the relativizer syntactic function
prediction is the multi-class support vector ma-
chine implemented in the SVM-multiclass pack-
age of Joachims (1999). The fast training al-
gorithm implemented for linear kernels in SVM-
multiclass is also the reason why we explicitly
generate feature pairs, instead of directly utiliz-
ing the quadratic kernel. The available data is
divided into training (80%), parameter optimiza-
tion (10%), and test (10%) sets, this division be-
ing constant in all reported results. Further, the
division is done on document level, i.e., all sen-
tences from a single document in the treebank are
assigned to the same set. This is to avoid any pos-
sibility of sharing information about the behavior
of rare lexical items between the training and test
sets. All reported results are obtained by optimiz-
ing the SVM regularization parameter C on the
parameter optimization set, and using the resulting
model on the test set. This optimization is done
separately for each task.

5 Evaluation

We evaluate the performance of the predictions in
terms of precision (P), recall (R), and F1-score (F)
of the predicted second layer dependencies. Pre-
cision is defined as the proportion of dependen-
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P R F
Full method 93.3 93.0 93.1
- feature pairs 92.5 92.1 92.3
- lemma 92.5 92.2 92.3
- lemma & morph 90.7 93.4 92.1
- lemma & morph & POS 87.9 91.9 89.9

Table 2: Feature ablation study. Feature pairs re-
fer to the second-degree polynomial expansion de-
scribed in Section 4.1, and morph refers to features
extracted from morphological tags other than the
main POS.

cies in the evaluated output also present in the gold
standard, and recall as the proportion of dependen-
cies in the gold standard also present in the eval-
uated output. Using these, F1-score is defined as
F = 2PR

P+R . In addition to evaluating the perfor-
mance using the gold-standard base layer annota-
tion in the treebank, we also perform an evaluation
with the base syntax layer produced by a depen-
dency parser, discussed further in Section 5.2.

5.1 Performance and baselines
The evaluation results of the combined second
layer prediction are shown in Table 1. The per-
formance on the gold standard base syntax is high,
with an overall F1-score of 93.1%.

For conjunct propagation, which is the largest
(71.4% of all second layer dependencies in the
treebank are propagated) and arguably most im-
portant subtask, we perform several further anal-
yses. Using the gold-standard syntactic informa-
tion, also including gold-standard relativizer func-
tions and external subjects, we estimate the con-
tribution of the various feature types to the clas-
sification performance of the conjunct propaga-
tion subtask in a feature ablation study. The re-
sults of this study are shown in Table 2. Interest-
ingly, an F1-score of 89.9%, only 3.2pp lower than
the full method, can be achieved only based on
the features extracted from the syntactic tree, with
no token-derived information whatsoever. Further,
we see that using explicit feature pair generation
improves the results by 0.8pp.

Next, we compare the performance of the ma-
chine learning conjunct propagation method to
several baselines. The trivial baseline is to al-
ways propagate. We also implement a propagate
type baseline, in which a dependency is propa-
gated only if its type is more likely to propagate
than not in the training data, regardless of whether

Method P R F
Always 48.5 97.4 64.8
Type 61.8 51.6 56.2
Type and direction 83.5 64.1 72.6
Stanford parser alg. 83.7 57.7 68.3
Proposed method 93.3 93.0 93.1

Table 3: Performance of the proposed machine
learning method in terms of precision, recall and
F1-score of propagated dependencies. The perfor-
mance is compared to the four baselines defined in
Section 5.1.

the propagated dependency governs the head of
the coordination, or depends on it. Taking into
account the fact that dependencies governing the
head of the coordination are considerably more
likely to propagate (96.5% propagate) compared
to those modifying it (32.9% propagate), in the
propagate type and direction baseline a depen-
dency is propagated only if dependencies with the
same type and direction (i.e. govern or depend on
the head of the coordination) are more likely to
propagate in the training data.

As the primary baseline, we implement a
close approximation of the conjunct propagation
method in the Stanford Parser,2 the “reference
standard” for the SD scheme. The Stanford Parser
conjunct propagation algorithm is relatively con-
servative, aiming at high precision at the cost of
recall. All dependencies governing the head of
the coordination are propagated, unless involved
in a complex coordination of two relative clauses.
Only subject dependencies governed by the head
of the coordination are propagated, unless the
propagation target already has a subject of its
own. The type of a propagated subject dependency
may change to/from the passive subject, depend-
ing whether the target of the propagation is active
or passive. Our implementation differs in the han-
dling of propagation in passive structures, since
Finnish does not have passive subjects but rather
direct objects.

The performance of the proposed method as
well as the four abovementioned baselines is sum-
marized in Table 3. In terms of F1-score, the pro-
posed method outperforms all baselines by a wide
margin. Of particular interest is the gain over the
algorithm used in the Stanford parser, the current

2http://nlp.stanford.edu/software/
lex-parser.shtml, version 2.0.4
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Figure 4: Left: the conjunction-as-head analysis, akin to the Link Grammar scheme. Modifiers of all
coordinated elements are attached to the conjunction, while modifiers of a single coordinated element
are attached to the element itself. In the top analysis, the adjective vanhat (old) modifies the whole
coordination, and in the bottom analysis, only the first conjunct. Right: the corresponding analyses in
the SD scheme. The example can be translated as the old cars and (the new) bikes.

widely-used reference implementation of conjunc-
tion propagation in the SD scheme.

5.2 Performance on parser output
Next, we discuss the performance of the proposed
method on input produced by a dependency parser,
as opposed to gold standard syntactic trees. This
will also allow us to test one additional baseline,
the conjunction-as-head analysis, discussed later
in this section.

The parser used in the evaluation is a com-
bination of the HunPOS tagger (Halácsy et al.,
2007) with the Mate-Tools statistical dependency
parser of Bohnet (2010), a second-order graph-
based parser that achieves a state-of-the-art per-
formance on a number of different languages; an
earlier version of this parser ranked first on En-
glish and German in the CoNLL shared task in
2009 (Hajič and others, 2009). With a labeled
attachment score of 81%, this combination repre-
sents the best dependency parser currently avail-
able for Finnish as tested on the Turku Depen-
dency Treebank, outperforming for instance the
popular MaltParser (Nivre et al., 2007) by several
percentage points.3

When parser output is considered, a drop in per-
formance is to be expected, seeing that coordina-
tion is one of the hardest phenomena to parse, and
the parser often fails to produce the dependencies
needed in order to generate the propagated depen-
dencies. The evaluation on top of the parser out-
put is presented in Table 4. The overall F1-score
is 61.8% (compared to 93.1% on gold standard
syntax), and on the coordination propagation task
only, the F1 score is 58.4% (compared to 93.0%
on gold standard syntax). This performance drop

3A detailed description of the parser pipeline is out-of-
scope for this paper. The parser is described in a manuscript
currently under review.

P R F
Conj. propagation 58.1 58.6 58.4
Relativizer prediction 85.5 83.3 84.4
External subjects 67.5 73.0 70.1
All tasks combined 61.3 62.2 61.8

Table 4: Performance of the combined second
layer prediction, as well as the individual tasks
measured in terms of precision, recall, and F1-
score on top of statistical parser output.

can be attributed to the accuracy of the underlying
parse trees, since the correct base syntax structure
is present only for 66.1% of the propagated depen-
dencies in the gold standard, thus imposing a se-
vere restriction on the recall of the conjunct prop-
agation method. This reflects the intrinsic diffi-
culty of syntactically parsing coordination struc-
tures. In contrast, 89.1% of relativizer dependen-
cies are correctly recovered by the base parser,
allowing a much higher recall on this task. Out
of all errors in all three subtasks, approximately
79.2% can be attributed to the parser output not
containing the required base structure, meaning
that in fact, the performance of the machine learn-
ing method itself does not degrade notably when
applied to parser output.

We also repeat the baseline experiments dis-
cussed above using parser output rather than gold
standard dependencies. Since reliable external
subject and relativizer function dependencies are
not available for the parser output, we disregard
these. The results are given in Table 5, demonstrat-
ing that the performance of the proposed method
is clearly superior to all of the baselines also on
parser output.

As a final point of comparison, we test a
joint approach to parsing and conjunct propaga-
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Method P R F
Always 30.5 62.3 40.9
Type 37.9 29.8 33.4
Type and direction 50.9 38.2 43.6
Stanford parser alg. 54.1 38.5 44.9
Proposed method 57.3 58.0 57.7

Table 5: Performance of the method as compared
to the baselines of Section 5.1 on top of parser out-
put.

tion, by adopting an analysis where the conjunc-
tion is the head of the coordination structure, as
has been done for instance in the Link Gram-
mar parser (Sleator and Temperley, 1993). In this
scheme, a dependent modifying a single coordi-
nated element is governed by this element whereas
a dependent modifying all of the coordinated el-
ements is governed by the coordinating conjunc-
tion. This approach is illustrated in Figure 4. The
most important property of this representation is
that in both cases, the resulting analysis is a tree,
which in turn can be used to train a dependency
parser, thus combining base syntax parsing with
conjunct propagation as a single joint task.

We have developed a forward and backward
conversion to the conjunction-as-head style. Note
that this conversion is not lossless, as there are sev-
eral structures which this analysis cannot express:
dependents modifying multiple but not all coordi-
nated elements, and cases where the governor to
the head of the coordination does not propagate.
Further, dependencies whose type changes as a re-
sult of the propagation cannot be represented ei-
ther. A difficulty is also presented by cases where
no explicit conjunction is stated in the text, nor
is there a punctuation symbol (such as a comma)
which would serve its role. These cases, how-
ever, only occur in 0.5% of all sentences, which
we subsequently discard. Applying the forward
and backward conversion to the gold-standard data
results in a precision of 92.6% and a recall of
92.3% in propagated dependencies, demonstrating
that the majority of cases are within scope for the
conjunction-as-head analysis. Finally, note that
this style cannot directly represent the other sec-
ond layer dependencies like external subjects.

Using again the Mate-Tools parser of
Bohnet (2010), trained on the treebank trans-
formed in the conjunction-as-head style, the
performance on propagated base layer depen-

P R F
Conj. as head 43.7 42.6 43.1
Proposed method 58.2 58.8 58.5

Table 6: Comparisons of results obtained by re-
verse converting to SD the output of a statistical
parser trained to produce the conjunction-as-head
style of analysis, with the proposed method.

dencies is shown in Table 6 and compared to the
proposed machine learning method, re-trained to
match the input data (i.e. no external subjects or
relativizer syntactic functions present). Here we
see that the joint parsing and propagation perform
notably worse in comparison with the proposed
method. This agrees with the results of Schwartz
et al. (2012), who show in their studies about
learnability of different syntactic schemes that
making the first conjunct of coordination as a
head improves parsing results significantly. It is
also important to remember that the conjunction-
as-head analysis incurs a notable penalty for not
being able to represent approximately 7% of
the conjunct propagation cases in the data, as
demonstrated by the recall of the forward and
backward conversion.

5.3 Discussion

When examining the results presented in this pa-
per, two issues should be noted. First, although
the conjunct propagation of the SD scheme is in-
deed closely related to the resolution of coordi-
nation scope ambiguity, it is not the entirety of
this difficult disambiguation problem. Consider,
for instance, the English phrase corn and peanut
butter. This phrase contains a coordination ambi-
guity: either it describes butter made of corn and
peanuts, or one of the items described is corn and
the other peanut butter. However, this ambiguity
lies deeper than the conjunct propagation layer of
the SD scheme, as illustrated in Figure 5. As a
result, when the method presented in this paper is
applied, this particular ambiguity has already been
resolved by the parser that has produced the base-
syntactic trees.

Second, a similar note applies to the specific
nature of the Finnish language, or the Finnish
compound nouns in particular. Unlike for in-
stance in English, in Finnish it is customary to
write compounds as one word. As a consequence,
this particular ambiguity is not very problem-
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corn and peanut butter

cc> <nn
conj>

<nn

corn and peanut butter

cc> <nn
conj>

Figure 5: The ambiguity of the phrase corn and
peanut butter is to be resolved in the basic variant
of the SD scheme, not in the conjunct propagation
layer. Top: the reading where the butter is made
of corn and peanuts. Bottom: the reading where
corn is combined with peanut butter. Note that
while there is a propagated dependency present in
the top reading, the decision whether this depen-
dency should be generated or not does not repre-
sent the ambiguity of the phrase, and in fact, there
is no valid reading where the propagated depen-
dency would be absent, that is, a reading where
the butter would be made of corn but not peanuts.

mänty
mänty−

ja
ja

kuusimetsä
kuusimetsä

cc>
conj

Figure 6: The difference between a simple noun
coordinated with a compound and a two-part com-
pound is surface-marked in Finnish using a dash.
The top phrase can be translated as a pine and fir
forest and the bottom phrase as a pine and a fir
forest.

atic in Finnish, since the difference is surface-
marked using a dash. For instance, the coordi-
nation mänty- ja kuusimetsä (a pine and fir for-
est) describes a forest growing both pines and firs,
whereas mänty ja kuusimetsä (a pine and a fir for-
est) is the coordination of a single pine combined
with a fir forest. Also, as breaking compound
words into their components during the syntax an-
notation is not allowed, the analyses of the two
Finnish phrases in TDT would in fact be identical,
as illustrated in Figure 6, and would not involve
propagation of dependencies.

6 Conclusion

In this paper, we have introduced a method for in-
ferring additional sentence structure information
from a dependency parse tree in the Stanford De-
pendencies scheme, most importantly propaga-
tion of conjunct dependencies, which is related to
resolving coordination scope ambiguities. This
machine learning based method uses the syntac-

tic trees and morphological information to predict
the additional dependencies, which can be highly
useful in for instance the construction of a Prop-
Bank, as previously demonstrated by Haverinen et
al. (2010).

On gold standard syntactic trees, the method
achieves 93.1% F1-score. When evaluated on
top of actual parser output rather than gold stan-
dard trees, the performance predictably suffers a
penalty, but an analysis of the errors reveals that
79.2% of all errors, when evaluated on parser out-
put, are due to the parser not producing the correct
base structure and thus disallowing the method
from retrieving the correct dependencies.

In addition, we have also separately evaluated
the largest and most important subtask, the con-
junct propagation by comparing it against several
baseline methods, including the method used in
the original Stanford tools. We find that the pro-
posed method clearly outperforms all baselines,
and in particular, it achieves improved results over
the method used in the original Stanford tools,
which are widely used for producing the addi-
tional dependencies in applications, and can thus
serve as its more accurate replacement in all ap-
plications that rely on syntactic analysis in the SD
scheme. Interestingly, we also find that when us-
ing no token-based information, an F1-score of
89.9% can be achieved for this subtask, only 3.2pp
lower than the full, lexicalized set of features. This
demonstrates that much of the necessary informa-
tion for the task is contained in the syntactic trees
themselves.

The software used in this work will be
integrated with the existing Finnish parser
and made publicly available at the address
http://bionlp.utu.fi/, under an open li-
cence. The training data will be available for the
public in the final version of the Turku Depen-
dency Treebank.
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