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ABSTRACT
We describe the methods and resources used to build FinnTreeBank-3, a 76.4 million token
corpus of Finnish with automatically produced morphological and dependency syntax analyses.
Starting from a definition of the target dependency scheme, we show how existing resources are
transformed to conform to this definition and subsequently used to develop a parsing pipeline
capable of processing a large-scale corpus. An independent formal evaluation demonstrates
high accuracy of both morphological and syntactic annotation layers. The parsed corpus is
freely available within the FIN-CLARIN infrastructure project.
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1 Introduction

In this paper, we describe the methods and resources used to build the FinnTreeBank-3 (FTB-3)
parsebank, a 76.4 million token corpus of Finnish with automatically produced morphological
and dependency syntax analyses. The corpus is a resource developed within the FIN-CLARIN
consortium, the Finnish member of the CLARIN infrastructure project1 and aims at supporting
research and language technology development requiring large-scale parsed corpora. Further, as
the underlying texts consist of the multilingual parallel corpora EuroParl (Koehn, 2005) and JRC-
Acquis (Steinberger et al., 2006), corresponding parsebanks can be constructed for a number
of other languages into which these two corpora have been translated as well. The larger
context of the FTB-3 parsebank is described by Voutilainen et al. (2012b); our involvement
in its development was through a public request for quotation issued by FIN-CLARIN, seeking
the development of a sufficiently accurate Finnish syntactic parser and its application to the
EuroParl and JRC-Acquis corpora. Our starting point for the development was thus untypical as
the corpus text, morphological tagset, as well as the dependency scheme were all defined by
FIN-CLARIN and not negotiable. Our sole task was to develop a parsing pipeline with sufficient
accuracy and produce the actual parsebank data, in a contract research setting. Therefore,
rather than being used as-is, all tools and resources at our disposal had to be adjusted so as to
conform to the specifications of the project.

In the following sections, we will summarize the tools and resources used when developing
FTB-3 as well as their adaptation to the target scheme and text corpus. Then, we will present
the parsing pipeline and the evaluation of the resulting parsebank.

2 Available tools and resources

The parsing process consists of two major steps: morphological tagging and dependency
parsing. Morphological tagging is carried out using an adapted version of FinCG, a commercial
morphological tagger by Lingsoft, Inc.2 The adaptations of FinCG specific to FTB-3 development
are described in Section 4.1. Unlike for tagging, no pre-existing tools were at our disposal for
dependency parsing. It was thus necessary to train a statistical dependency parser which, in
turn, requires a suitable treebank that is annotated in the target dependency scheme.

For Finnish, there are two manually annotated treebanks available: the Turku Dependency
Treebank (TDT) (Haverinen et al., 2010, 2011) and FinnTreeBank (FTB), in its first version
FTB-1 (Voutilainen et al., 2011) when this work was carried out. The treebanks are developed
for different purposes and are in many respects complementary. TDT has been specifically
developed to support statistical parser training and consists of texts from various genres and
text sources, aiming to serve as a representative selection of general Finnish. FTB-1, on the
other hand, was developed within FIN-CLARIN as a grammar definition treebank. Its underlying
corpus comprises all grammar examples from the Finnish grammar reference book of Hakulinen
et al. (2004), in total 162,312 tokens in 19,140 examples. Together with its accompanying
annotation manual (Voutilainen et al., 2012a), FTB-1 serves as the definition of the target
dependency scheme for FTB-3. While, by its nature, it exhibits a wide variety of grammatical
phenomena, this corpus of carefully selected grammar examples is not intended for statistical
parser training as it does not have the same distributional properties as general Finnish text.

We based the statistical parser used in this work on TDT, as the treebank is more suitable

1http://www.clarin.eu
2http://www.lingsoft.fi/
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Dependency type Description
main main predicate of the sentence
aux auxiliary
subj subject
obj object
scomp predicative
advl adverbial
attr attribute
phrm phrase marker (conjunctions, adpositions etc.)
modal the nominal part of a verb chain
phrv phrasal verb
comp comparison structure
idiom idiom
conjunct conjunct, coordination
voc vocative
mod post-modifier

Table 1: Dependency types of the FTB scheme.

for statistical parser training. To further improve the applicability of the treebank to the
development of FTB-3, we manually annotated additional data from the EuroParl (19,964
tokens in 1,082 sentences) and JRC Acquis (24,909 tokens in 1,141 sentences) corpora, resulting
in the final training data size of 190,271 tokens in 13,997 sentences.

3 Dependency scheme transformation

TDT is annotated in a slightly modified version of the widely used Stanford Dependencies (SD)
scheme (de Marneffe and Manning, 2008b,a; Haverinen, 2012) which differs notably from
the target scheme of FTB-3. The annotation of the treebank thus needs to be transformed to
conform to the target scheme.

The two schemes differ both in the dependency types they define, as well as in the structure of
the dependency trees for a number of important phenomena. While the SD scheme, as used in
TDT, defines a total of 46 dependency types, the FTB scheme defines a considerably smaller
set of 15 types, listed in Table 1. The tree structures notably differ as well, with 19.8% of the
tokens in the target (FTB) trees being governed by a different token than in the source (SD)
trees. The transformation therefore involves both dependency type mapping and modification
of the governor–dependent relation. The transformation is carried out using a hybrid system
consisting of hand-written rules, followed by a machine learning component that finalizes the
trees by connecting islands resulting from incomplete rule coverage.

3.1 Transformation rules

Each transformation rule matches an arbitrarily complex pattern in the source tree and produces
a single dependency in the target tree. The rule definition syntax allows restrictions on token
text, lemmas and morphological tags, as well as dependency types and directions. Further, any
restriction can also be negated, requiring that it must not be met for the pattern to match.

A typical rule transforms one SD dependency into the FTB scheme. Multiple additional con-
straints limiting the rule application to the correct context are typical as the two schemes treat
differently several important structures. For instance, while in the SD scheme the subject in a
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Figure 1: Example trees in the SD and FTB scheme for copula constructs.
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Figure 2: Example trees in the SD and FTB scheme for coordination.

copula construct is governed by the predicative, in the FTB scheme the subject is governed by
the copular verb or, if present, the auxiliary (see Figure 1). Similarly, if a noun is preceded by
several modifiers, the SD scheme attaches them all to the noun whereas the FTB chains them
and only attaches the closest modifier to the noun. In addition, as the schemes often differ
in parts of speech assignment in borderline cases, every rule possibly concerning for instance
auxiliaries or adpositions must take into account the differences between the definitions of
these groups of words.

As an example, the rule

dep(amod,T1, T2) and not dep(amod|poss|num,T1, Tx)→ dep(attr,T1, T2)

describes the transformation of an adjectival modifier dependency (amod) to an attribute
dependency (attr), with the token T1 governing the token T2. The negated restriction indicates
that the rule should not be applied if T1 also has another dependent with the dependency type
amod, poss or num. This is because in such a case, the FTB scheme chains the modifiers and
only attaches the closest one to the noun.

As a second example, the rule

dep(xcomp,T1, T2) and is-ftb-aux(T2) and not dep(cop,T1, Tx)→ dep(aux,T2, T1)

describes the transformation of a clausal complement dependency xcomp between T1 and T2
to an aux dependency between T2 and T1, for a verb that is defined as an auxiliary in the FTB
scheme. For this, the rule is delimited to apply only when the T2 token belongs to a group of
lemmas including all the auxiliaries in the FTB scheme. The negation declares that the rule
should not be applied if T1 governs a cop dependency, meaning that it actually is a predicative.
In this case the FTB scheme assigns the copular verb as the head (see Figure 1).

A specific challenge is posed by the transformation of coordination structures, shown in Figure 2,
which can consist of arbitrarily many coordinated elements and are thus not easily addressed
by the rules. Coordination structures are therefore transformed separately, by a dedicated
program. A second case transformed by a dedicated program rather than by the rules are the
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null tokens which in TDT represent the missing head token in gapping structures and fragments.
The target FTB scheme, on the other hand, does not allow null tokens. As the last step of the
transformation, we thus remove these tokens from TDT, selecting one of their dependents to
act as the new governor using a priority list of dependency types and re-attaching all other
dependents to the new governor.

3.2 Development of the transformation rules

To facilitate the development of the transformation rules, we have manually annotated the SD
scheme trees for 17,061 tokens (1,992 sentences) from FinnTreeBank-1. These nearly 2,000
sentences thus have their syntax available in both schemes and can serve as test data in rule
development.

The rules were developed iteratively in a GUI application designed for the purpose. The
application presents the source and target trees, using color-coding to distinguish correct,
missing, and extraneous dependencies in the transformation output. Further, the application
allows to search among all sentences for arbitrary patterns, with the same expressive power as
the rule pattern matching, both on the source and target side.

In total, the transformation ruleset consists of 305 rules. The rules are applied independently of
each other, that is, all rules are tested and applied to all matching positions in the tree. Out
of all trees, 83.3% are transformed in their entirety, resulting in a tree in the target scheme.
Further 10.0% are transformed partially, resulting in several disconnected islands which are
themselves trees. Such partial transformation results from the inevitable incomplete coverage
of the transformation rules. Finally, the transformation output for the remaining 6.8% of
trees contains a structure violating treeness: either a token with two governors or a cycle.
These erroneous structures can be attributed to rule conflicts. We therefore post-process the
transformation output using a machine learning component which connects the islands into
complete trees as well as corrects erroneous structures by removing extra dependencies. This
component is described in the following section.

3.3 Transformation post-processing using machine learning

The post-processing involves two distinct operations: removal of extraneous dependencies and
insertion of new dependencies so as to connect islands in the analysis. We approach both of
these subtasks using a classifier which, given any two tokens T1 and T2, returns the score of the
most likely dependency type for the hypothetical T1→ T2 dependency, and the score of there
being no dependency with T1 governing T2. As the underlying machine learning algorithm
for the classifier, we apply the regularized least squares ranker implemented in the RLScore
package of Pahikkala et al. (2007).

We use several distinct types of features in the classification. Token features are generated
separately for T1 and T2 and include the token itself, its lemma, and a binary feature for each of
its morphological tags. Target tree features are extracted separately for T1 and T2 from the target,
i.e. transformed, tree and consist of the governor type and all dependent types of the token in
question. If there is no governor, or there are no dependents, a binary feature encoding this
information is issued instead. Further, a binary feature encodes whether the token in question
is a left or right dependent in the linear order of the sentence. A final group of features are
the source tree features which capture the syntactic relationship between the two tokens in the
source (SD) tree. If there is a source-tree dependency between T1 and T2, concatenation of its
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type and direction (i.e. whether the dependency is T1→ T2 or T2→ T1 regardless of the linear
order of the tokens in the sentence) are given as a feature. If there is no such direct dependency,
a “middle man” token Tx is searched such that it links T1 and T2, regardless of dependency
directions. If found, features encoding the type and direction of the connection between Tx and
T1 and Tx and T2 are generated, as well as a feature encoding the entire path from T1 to T2 via
Tx . If no such interconnecting token is found, a feature is generated encoding this fact.

The classifier is trained on the treebank transformed using the 305 rules described previously. A
positive example is generated from every dependency in the target tree. We cannot, however,
assume that any dependency not present in the target tree constitutes a valid negative example.
First, these include dependencies that should have been generated by the rules and the ranker
thus should specifically not be given these cases among the negative examples. Second,
producing a negative example from any pair of tokens unconnected in the target tree would
result in a large number of irrelevant negative examples of tokens that are in no way related
to each other. Therefore, for every dependency T1 → T2 in the tree, we produce a negative
example from g(T1)→ T2 and every d(T1)→ T2 where g(T1) and d(T1) refer to the governor
and dependents of T1. In this way, more plausible negative examples are generated, between
tokens that are more closely, even though not directly, related.

The first step in the post-processing is the removal of extraneous dependencies. Whenever
a token has several governors, only the dependency with the highest score as given by the
classifier is preserved, all others are removed. Directed cycles are broken by removing the
dependency with the lowest score in the cycle.

In the second step, we connect islands in the analysis using a simple greedy algorithm. Note
that the first post-processing step guarantees that each of the islands is itself a tree. First, we
generate the set of all token pairs (T1, T2) such that T1 and T2 belong to different islands and T2
is the root of the island to which it belongs. These pairs represent all hypothetical dependencies
T1→ T2 that can be, individually, inserted into the analysis without violating its treeness. Then
we use the classifier to obtain the most likely dependency type and its score for each of these
token pairs, even in cases where the prediction of there being no dependency had a higher
score. Finally, progressing through the list of candidate dependencies ranked by their score, we
insert each dependency if and only if it would not violate the treeness constraints, taking into
account also the dependencies inserted so far.

This completes the description of the transformation of TDT into the target FTB dependency
scheme. We now turn to describe the dependency parsing pipeline, trained on the transformed
treebank.

4 Parsing pipeline

The dependency parsing pipeline comprises of a sentence splitter, tokenizer, morphological
tagger, and statistical dependency parser.

4.1 Morphological tagging

Tokenization, sentence splitting, and morphological tagging were carried out using the commer-
cial FinCG tagger and associated tools developed by Lingsoft, Inc.3 The target morphological
tagset was given as part of the FTB-3 specification, however, unlike for dependency syntax

3http://www.lingsoft.fi
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no specification was given regarding the preferred analysis of borderline wordforms which
can be analyzed in several equally plausible ways (Voutilainen et al., 2012b). Therefore,
adapting FinCG to the target scheme could be implemented via a mapping table from FinCG’s
morphological tagset to the target tagset and did not require adjustments to the lexicon.

The underlying text of the FTB-3 corpus is comprised of European Union legal and parliamentary
texts, and contains a number of domain-specific words not included in the general-purpose
FinCG lexicon. Such unrecognized words are not given any lexical analysis by FinCG and
their proportion in text must be kept to a minimum. The general-purpose FinCG lexicon was
therefore augmented with Lingsoft’s proprietary EU style checker lexicon and with a special
domain lexicon for commercial vocabulary. The lexicon was thereafter further extended with
a number of additional frequent unrecognized words found in the FTB-3 corpus. We also
created heuristic components to handle unrecognized proper names and abbreviations together
with their inflected forms, giving them an appropriate morphological analysis. Finally, a
transformation component was implemented to expand common contracted forms such as jollei
(if_not). An illustrative English example of this component would be the expansion of don’t to
do not. After the application of these techniques, only 2.2% of all tokens were left without a
morphological analysis.

4.2 Dependency parsing

Dependency parsing of the morphologically tagged input is carried out using the Mate-Tools4

parser of Bohnet (2010), a state-of-the-art graph-based statistical dependency parser. The
parser is trained on the entire Turku Dependency Treebank transformed to the FTB scheme,
as described in Section 3. The Mate-Tools parser was selected after a careful parsing accuracy
comparison with the transition-based MaltParser of Nivre et al. (2007).

An issue particularly apparent in the legal text of the JRC-Acquis corpus is the O(n2) complexity
of the dependency parser which makes parsing of long sentences exceeding 100 tokens im-
practical. In a large parsebank even a small proportion of such sentences becomes an issue
as, ultimately, every parallel parsing process will be stuck parsing a long sentence, impairing
the whole pipeline. Adopting a practical solution to the problem, we automatically split each
sentence longer than 120 tokens to approximately evenly sized sections of roughly 100 tokens
or less, and parse these sections separately. Candidate points to split the sentence are, in
order of preference, after a semicolon, between items of numbered lists and, finally, after a
comma or a colon. To reconstruct a full parse tree from the sections, we connect them using
the classifier discussed in Section 3.3, only this time for performance reasons we connect the
islands sequentially from left to right and only insert dependencies between the roots of the
islands. This step affects 0.37% of all sentences in the parsebank. The possibility of parsing
the long sentences with a transition-based parser was considered, however, we decided on
the abovementioned procedure as it allows the re-use of the classifier as well as simplifies the
software distribution of the final parsing pipeline.

Upon initial feedback from the FIN-CLARIN representatives, we have also implemented a
separate post-processing step to address the cases where the parser produces two subject
dependents of a verb (5.0% of all subjects). This is not a syntactically possible structure,
however the purely statistical parser has no hard constraint preventing its generation. Further,
double subject is an easily noticeable parsing error which we thus were specifically required to

4http://code.google.com/p/mate-tools/

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 297 of 474]



address. Again relying on the classifier, in all multiple subject cases we preserve the subject
with the highest score and replace all other subject dependencies with the highest-scoring
non-subject dependency type.

4.3 Corpus text and parsing speed

The corpus to be parsed consists of 44.1M tokens from the JRC-Acquis corpus and 32.2M
tokens from the EuroParl corpus. Parsing the total 76.4M tokens in 4.37M sentences (for an
average sentence length of over 17 tokens) required approximately 900 CPU hours, using 4-core
CPUs. This corresponds to processing speed of roughly 0.7 seconds per sentence, or, 24 tokens
per second. The processing was split to 850 batches and parallelized on a cluster computer,
resulting in actual parsing time of approximately 10 hours.

5 Evaluation

Since the parsebank was developed in a contract research setting, a formal evaluation, fully
independent of us, was carried out by FIN-CLARIN and compared against pre-agreed acceptance
thresholds. We did not carry out a separate evaluation ourselves since we do not have at our
disposal the necessary gold-standard reference trees in the FTB scheme, and since there was
no need for such an evaluation, the FIN-CLARIN results being the sole acceptance criterion
of the output. The results of the evaluation are reported by Voutilainen et al. (2012b) and
summarized here in Table 2. The accuracy of morphological information is in the 97-98% range
while the dependency type accuracy (proportion of tokens whose dependency type is correct)
and dependency relation accuracy (proportion of tokens whose governor is correct, usually
referred to as unlabeled attachment score) are both in the 88-90% range. The commonly used
labeled attachment score (i.e. the proportion of tokens which have both their governor and
dependency type correctly assigned) is, unfortunately, not reported by Voutilainen et al. Overall,
we can conclude that the accuracy of the parsebank is high, and above the acceptance threshold
which was set to 95% for morphology accuracy, 85% for dependency type accuracy, and 87%
for dependency relation accuracy.

Metric Accuracy
Lemma 98%
Morphological analysis 97%
Dependency type 89–90%
Dependency relation 88–89%

Table 2: Official external evaluation results of the parsebank. The dependency type and
dependency relation accuracies are reported as two values by Voutilainen et al. (2012b), the
first value is obtained by directly inspecting the parsebank, while the second is obtained by
comparison with an independently annotated gold standard.
The accuracy of the dependency scheme transformation procedure can be estimated directly
on the 1,992 grammar examples from FTB-1 which we have annotated in the SD scheme and
used when developing the transformation rules. The first, rule-based step of the transformation
results in incomplete trees which we evaluate in terms of precision and recall of individual
dependencies. The post-processed transformation forms complete trees, and is thus evaluated
in terms of dependency type accuracy, dependency relation accuracy, and labeled attachment
score. The first step results in precision of 83.4% and recall of 80.7%. The final transformed
output after the machine learning based postprocessing, and after removing the null tokens,
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has dependency type accuracy of 91.1%, dependency relation accuracy of 90.1%, and labeled
attachment score of 88.2%.

The FTB-1 grammar examples is the only data at our disposal which allows a direct evaluation
of the transformation. However, the grammar examples considerably differ in style from the
target legal and parliamentary domain and are not fully representative of the transformation of
the whole treebank. As a further, indirect evaluation we thus compare the FTB scheme parsing
results reported in Table 2 with parsing results in the SD scheme on the JRC-Acquis and EuroParl
sentences which we have annotated as in-domain data, as described in Section 2. Taking a
weighted average in the proportions of JRC-Acquis and EuroParl texts in FTB-3, the dependency
type and dependency relation accuracies for a parser trained on the SD scheme can be estimated
as 92.3% and 89.1%. These figures are closely comparable with the figures achieved after
transformation, as reported in Table 2. This suggests a successful transformation as the overall
performance of the parser has not deteriorated compared to that prior to transformation.

6 Conclusions

In this paper, we have introduced the methods and resources used to build a large-scale Finnish
dependency parsebank. Having started from an external, non-negotiable specification of the
text to parse and the target scheme, we have developed a parsing pipeline capable of processing
the 76.4 million token corpus, resulting in a parsebank with highly accurate morphological and
syntactic annotation. The accuracy of the morphological information in the parsebank is in the
97-98% range whereas the accuracy of the dependency types and relations is in the 88-90%
range, both figures being the result of an independent evaluation carried out by FIN-CLARIN.

We have applied several techniques to modify the existing resources to conform to the specifica-
tion of the parsebank. In particular, we have introduced a dependency scheme transformation
procedure with hand-written rules followed by a machine-learning based post-processing com-
ponent. This procedure was used to transform the Turku Dependency Treebank into the target
dependency scheme, enabling us to train a statistical dependency parser on this treebank.

The resulting parsebank is made freely available by FIN-CLARIN at
http://www.ling.helsinki.fi/kieliteknologia/tutkimus/treebank/.
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(2007). MaltParser: A language-independent system for data-driven dependency parsing.
Natural Language Engineering, 13(2):95–135.

Pahikkala, T., Tsivtsivadze, E., Airola, A., Boberg, J., and Salakoski, T. (2007). Learning to rank
with pairwise regularized least-squares. In Joachims, T., Li, H., Liu, T.-Y., and Zhai, C., editors,
SIGIR 2007 Workshop on Learning to Rank for Information Retrieval, pages 27–33.

Steinberger, R., Pouliquen, B., Widiger, A., Ignat, C., Erjavec, T., Tufiş, D., and Varga, D. (2006).
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