
Hydra: A Software System for Wordnet

Borislav Rizov
Department of Computational Linguistics

Institute for Bulgarian
Bulgarian Academy of Sciencies

Sofia, Bulgaria
boby@dcl.bas.bg

Abstract

This paper presents an overview of the
software for wordnet processing Hydra.
The system has fully-fledged GUI and
API, both working with powerful modal
query language. Hydra has been used for
the development of the Bulgarian Word-
Net for the last 7 years and recently was
improved, became open source and is dis-
tributed as part of the Meta-Share plat-
form.

1 Introduction

During the development of Bulgarian WordNet
(BulNet (Koeva et al., 2004)) at IBL1 the need
for a convenient and powerful tool for creating
and processing wordnet arose. Multiple appli-
cations of wordnet in various computational lin-
guistics tasks suggested definition and implemen-
tation of API (Application Programing Interface)
to work with Wordnet as well. The presented sys-
tem, Hydra, solved these problems, and provided
additional benefits such as abstract mathematical
query language, concurrent user access, undo /
redo of user operations, synchronization between
languages. As part of the project CESAR2 Hydra
was improved, the range of the supported linguis-
tic databases that it can work with was increased,
configurability and use by end users was greatly
facilitated. Hydra’s code was opened and is cur-
rently used by several teams working with word-
nets for various languages like Croatian and Ro-
manian.

2 Overview

Hydra is a system for dealing with lexical-
semantic networks such as wordnet. It is open

1http://dcl.bas.bg/
2http://cesar.nytud.hu/

source under the GPL v3 license and it is avail-
able at: http://dcl.bas.bg/en/hydra.
html. The program has a convenient and rich
user interface. Hydra provides an API for access
to the semantic networks of this type, which pro-
vides an abstract and easy access to such linguistic
databases. It was used in the last several years for
the development of BulNet. The relational model
that Hydra uses is generic enough and allowed the
archive of the Department of Bulgarian Dialectol-
ogy and Linguistic Geography at IBL3 to be im-
ported and the user interface and API of Hydra
used for its processing.

Hydra supports all the operations necessary for
the creation of electronic linguistic databases sim-
ilar to wordnet (definable in terms of a relational
structure). The main features include editing of
existing synsets and relations adding, editing and
deleting a synonym set, reverting a single action
(undo) or group of actions (cancel), returning a
canceled operation (redo). The second type of
features includes two operations (i) creation of
synsets and relations which do not have analog
in another Wordnet (e.g. language-specific con-
cepts), and (ii) cloning synsets, an operation where
synset is copied from one language wordnet to an-
other.

Hydra is implemented in Python4, using the
platform independent GUI library Tkinter. The
data is managed by a MySQL server, which re-
mains hidden from the end users after the initial in-
stallation. The system has been successfully used
on Windows and Linux.

Hydra has the following important features:

• The program allows users to edit or query any
number of wordnets simultaneously. Individ-
ual wordnets can be synchronized, allowing

3http://ibl.bas.bg/en/departments_en4.
htm

4http://python.org/

http://dcl.bas.bg/
http://cesar.nytud.hu/
http://dcl.bas.bg/en/hydra.html
http://dcl.bas.bg/en/hydra.html
http://ibl.bas.bg/en/departments_en4.htm
http://ibl.bas.bg/en/departments_en4.htm
http://python.org/

simultaneous visualization of the equivalent
synsets in different languages.

• Allows concurrent access by multiple users.

• The changes in the database are available to
all users right after they are made.

• Powerful modal language for searching in
linguistic data (Rizov, 2008), as well as
an user interface with variety of predefined
query utilities:

– simple queries on words and combina-
tions of words

– search with regular expressions using
MySQL syntax

– search formulas - complex searches
based on the Modal Language for Word-
Net.

• Enables checks for completeness and consis-
tency, some of which are built into the pro-
gram.

3 Wordnet as a Relational Structure

This paper does not aim to describe the properties
and applications of wordnet. Let us just recall the
main features to focus on the proposed solution.
Words of the language are divided into synonym
sets (synsets) and their relationships expressed in
relations such as hyperonymy, antonymy, etc (se-
mantic, morpho-semantic and other). (Vossen,
2004) The modal approach to logical represen-
tation of this formalism in Hydra suggests that
wordnet is encoded as a relational structure: a set
of objects and a set of binary relations between
them. Consider the data in Wordnet. We have
synsets provided with:

1. Identifier that is common to the equivalent
meanings (synsets) in different languages
(ili)

2. part-of-speech (pos)

3. encyclopedic definition (definition)

These data will be designated as single type be-
cause they have just one instance in one synset.
We also have those of multiple type such as us-
age examples, the synsets notes (snotes) and oth-
ers. Synsets comprise several words. They
have, in the Bulgarian WordNet, the form of

the word/compound word (word), basic form
(lemma), and a unique number to identify the word
sense (sense). These are the data of single type.
The members of a synset often are provided with
notes that are of multiple type – we may have
any number of them. The following convention is
adopted for encoding the data as a relational struc-
ture. Objects contain all single type data. Any
object of multiple type is a separate object and its
belonging to the original object is expressed by a
relation. Thus the following 3 types of objects are
defined (we call them linguistic units). Synset
contains the data: pos, ili, definition and other sin-
gle type data. Literal represents a word in a synset
and contains the data: word, form, sense. Mem-
bership of a literal to synset is expressed by the
relation literal, so every literal in a synset is asso-
ciated with a single synset with this relation. The
third type of object is formally called Note and
presents text information such as examples and
notes. Several provisional relations such as literal
are responsible to assign objects to their ’owners’.
For example, usage examples are associated with
synsets with the relation usage. An important as-
sumption is that each object is associated to ex-
actly one synset. Each synset is associated to it-
self, each literal to the synset it belongs to and each
note is ’part of’ exactly one synset or literal and
thus inherits its synset association. This associa-
tion is not explicit but it is important and is true in
the other wordnet representations. It allows to syn-
chronize linguistic units from different languages.
This is achieved by synchronizing their synsets.
Here it is appropriate to mention that synsets in
different languages, which have the same mean-
ing, are connected by the relation ili.

4 Modal Language for Wordnet

The main task of the modal language is to pro-
vide a clear formalism for queries with sufficient
expressive power with which to address the ma-
jor problems in dealing with Wordnet. This in-
cludes search, validation, synchronization of lan-
guages, etc. This modal language is easy to learn
and use for the average user and does not require
specialized knowledge of databases and program-
ming which is common for other approaches. An-
other advantage of this abstraction is that it hides
the data presentation from the user and allows its
various implementations and modifications. Thus,
it is extremely easy to add new relations or data

(single type) in the already defined types.
Modal language in Hydra is based on that given

in (Koeva et al., 2004).

4.1 Syntax and Semantics

Detailed syntax and semantics of The Modal Lan-
guage for Wordnet is given in (Rizov, 2008). We
will present how the syntax looks in Hydra and
also its informal interpretation. Note that for a
given formula the system returns all objects that
are a model for it (the formula is true in them).
Also, we will use the term query, together with a
formula which is natural in the context of the sys-
tem Hydra.

Atomic Queries:
• Each object in the database has a primary

key and it is a nominal (constant) in our lan-
guage. They are natural numbers divided into
3 disjoint sets, and thus their type is identi-
fiable. Examples: 1 – Literal, 12111003 –
Note, 1231100311 – The synset nominals are
encoded to be portable and depend only on
ili, pos and the language of the synsets they
denote.

• constants $s – all synsets, $l – all literals, and
$n – all text objects (of type Note) at the lin-
guistic database.

• constants for fields of objects, type(′value′),
such as word(’person’). Returns items that
have a field type with value value. To use
a regular expression, add # before the first
quote – word(#’c[au]t’).

Queries:
• Atomic queries are queries.

Let q and r be queries (formulae), then
the following queries are true in the objects
where:

• !q – q is not true;

• q & r – q and r are true;

• q | r – q is true or r is true;

• q => r – q is not true or r is true;

• q <=> r – q and r have the same thruth value.

Let also R be a relation:

• In x the query <R> q is true if there is
an object y, xRy and q is true in y. In
other words, find those objects, for whose
neighbours by the relation R the query q
is true. For example, to find hypernyms
of synset with number 10140069453, we
need the query <∼hypernym>10140069453
(∼ R is the reversed relation of R) or
<hyponym>10140069453.

• <R,n> q is true in the object x iff
|{y | xRy ∧ y ϕ}| > n. So to find the
synsets with more than one hypernym we can
use the query <hypernym, 1>$s

• In x is true <R,n:m> q iff
|{y | xRy ∧ y ϕ}|m > n |{y | xRy}|

4.2 Example Queries
Here are some example queries and how they are
expressed in the defined language:

• Find all literals that have word with value
game: word(’game’), then all of its mean-
ings (synsets): <literal>word(’game’)
and their meanings in bulgarian (bg):
<ili><literal>word(’game’)&lang(’bg’)

• ili(’eng-30-01815628-v’) - returns the synset
with the ILI eng-30-01815628-v in every
wordnet in the wordnet database in which it
is found

• <snote>$n - retrieves all the synsets that
have at least one Snote

• <literal><lnote>note(’pl. t.’) – synsets
that contain literals having an lnote pl. t. D.
Searching in synset-to-synset relations

• <hypernym>ili(’eng-30-02396716-v’) –
matches all the synsets that share a hypernym

5 Graphical User Interface

The user interface consists of a search window and
a window with dictionaries. The search window
provides the entry point to the data in the linguistic
database. It also provides for opening dictionar-
ies for the languages. A very useful innovation is
the loading of results from external sources. File
/ Open menu command loads the file, assuming
that the first word of each non-empty line is an
identifier (nominal) of an object in the database.
The same result is achieved by entering the path

to the file in the search box prefixed with ’file:’,
e.g. ’file:/home/boby/biology.txt’. This function-
ality provides an easy way for using results from
external scripts (for example, those who use API
of Hydra). It is very important for some data ex-
tractions that cannot be expressed with the modal
language, such as some transitive closures of rela-
tions. For example, we can find all the hyponyms
of a given synset (not only immediate one) with
this simple script:
from wordnet import wn

def hyponyms(synset):
for h in wn.relations[’hyponym’].neighbours(synset):

print h.ID()
hyponyms(h)

hyponyms(wn.ling(1231100311))

Then we can start it, store the output in file hy-
ponyms.txt and open it in the searcher.
$ python hyponyms.py > hyponyms.txt

Figure 1: Search Window

Each dictionary in the second window contains
multiple views for visualization of a synset. The
dictionary is tied to a single language and displays
the clone (see API) of the current object in this lan-
guage. Dictionaries can be synchronized accord-
ing to the users will.

Figure 2: The Dictionaries Window

Editing and adding new linguistic units is done
directly in the main view of the dictionary. Data
consistency during concurrent access is provided
by locking of the edited units and their neighbours.
User actions in navigation and editing can be can-
celed one by one (undo), in groups (cancel) and
redone (redo).

A detailed overview of the user interface and
other features of the Hydra system is available in
the user guide:

http://dcl.bas.bg/Tools/Hydra/

Hydra-UserManual.pdf

6 Data Representation

When developing a solution how to store and man-
age the data, the choice fell to relational DBMS
and specifically to MySQL. Hydra instances work
directly with the MySQL server and take care for
consistency of the data during the concurrent ac-
cess. Modal formulas of the Language for Word-
net are translated directly to SQL queries, each
returning those object where the formula is true.
The main data types are stored in the tables corre-
sponding to their names: Synset, Literal and Note.
The relation pair are in table Rel. Also the table
Relation keeps the definitions of the relations in
Wordnet. Hydra is designed to work in a very
general case(Gamma et al., 1995). The data in
an object type is not strictly fixed. Its structure is
configured in module descriptor.py. Consider the
structure of Synset.
class SynsetId(Table):

table = ’Synset’
fields = (’id’, ’ili’, ’pos’, ’definition’,
’stamp’, ’bcs’, ’lang’,
’frequency’,’domain’)

foreign = {’pos’: POSId,
’lang’: LangId, ’domain’: DomainId}

In any such definition there are two mandatory
fields: table – specifies the name of the database
tables and fields – list of fields in that table. As is
shown in the example, there is a third field, which
is optional, foreign. It specifies the foreign key
fields. Values in the dictionary are the descrip-
tors of the tables whose keys are stored in the re-
spective fields. Here, such field is pos, the part
of speech of the synset. The ’Synset’ table stores
only keys from the table ’POS’. Its descriptor is:
class POSId(Table):

table = "POS"
fields = (’id’, ’name’)

The use of foreign keys has several advantages.
Usually their values are small fixed set. This set is

http://dcl.bas.bg/Tools/Hydra/Hydra-UserManual.pdf
http://dcl.bas.bg/Tools/Hydra/Hydra-UserManual.pdf

easily accessible and its values can be easily mod-
ified without affecting other tables in the database.
For example, we can change the name of a part
of speech, and that will not change any record
in the table Synset. However, users will see the
new name in the synsets. Another place where
the changes need to be specified in the structure
of the data is dbfeeder.py, which is responsible for
database creation and feed with data.

7 API

The entry point of the Hydra API is the object wn
in the wordnet module. Search by a formula is car-
ried out with its get method. The method receives
one argument, formula of the modal language, and
returns a list of all the objects in which the formula
is true. Objects in the result are in three types of
objects, which build wordnet – Synset, Literal and
Note. They are defined in the linguistic units mod-
ule.

To get all the synsets from language ’bg’:
>>> from wordnet import wn
>>> synsets = wordnet.get("lang(’bg’)")

wn.ling constructs an object by its nominal (its
ID in the database).

wn.relations is dictionary of the type ’relation
name’: object of type Relation (defined in module
relations.py)

7.1 Objects
The main wordnet object types inherit the class
Ling. Here are its main methods.

1. to string(field=None) – return the string rep-
resentation of the object. Can be called with
an optional field name argument, in which
case it returns its string value.
>>> literals = wn.get("word(’name’)")
>>> print literals[0].to_string()
name:1 {}
>>> print literals[0].to_string(’word’)
name

More convenient way to access the field is:
>>> print literals[0][’word’]
name

2. edit() – turns the object in edit mode
3. from string(value, field) – when in edit mode,

the field receives the value
4. save() – save the changes and turns the object

in non-edit mode.
>>> print literal[’word’]
name
>>> literal.edit()
>>> literal.from_string(’NAME’, ’word’)
>>> literal.save()
>>> print literal[’word’]
NAME

5. check() – Used for data consistency checks of
the object and its relations. The inherited ob-
ject provides implementations to maintain the
invariants in the Wordnet structure. It is used
by the user interface. For example, when sav-
ing a Synset it is mandatory to have at least
one Literal. Literals are checked to have non-
empty field word.

6. clonning(lang) – returns the corresponding
object in the language lang. If lang is equal
to the object language, the object itself is re-
turned, otherwise the synset with the same ili
as the synset associated with our object, but
in language lang is returned.

Synset
literals() – returns the list of the literals in the

synonym set.

7.2 Relations

Another type is that of the relations – Relation. It
provides methods to add and remove elements of
relation, use the reverse relation etc. Access to ob-
jects for each of the relations in the database is
provided by the wn.relations dictionary, the values
being of type Relation or its inheritants, such as
ReverseRelation.
>>> relation = wn.relations[’hypernym’]
>>> relation[’name’]
u’hypernym’
>>> relation[’rname’]
u’hyponym’
>>> synset = wn.get("<literal>word(’game’)")[0]
>>> print relation.neighbours(synset)[0].to_string()
en - n: activity:2 {}

The example demonstrated the method
neighbours, which returns the immediate
neighbours of the given linguistic object.

7.3 Applications

The API is used in many products of DCL like
the DCL Search Engine5, Bulgarian WordNet–
web access6 (RESTful webservice) etc. The GUI
classes were used for the open source corpora an-
notation tool Chooser7 but their use is beyond the
scope of this paper.

Acknowledgments

This paper was prepared within the project In-
tegrating New Practices and Knowledge in Un-

5http://search.dcl.bas.bg
6http://metashare.ibl.bas.bg/
7http://dcl.bas.bg/en/Chooser.html. Also

available at Meta-Share

http://search.dcl.bas.bg
http://metashare.ibl.bas.bg/
http://dcl.bas.bg/en/Chooser.html

dergraduate and Graduate Courses in Compu-
tational Linguistics (BG051PO001-3.3.06-0022)
implemented with the financial support of the Hu-
man Resources Development OP 2007-2013 co-
financed by the European Social Fund of the EU.
The author takes full responsibility for the con-
tent and under no conditions can the conclusions
be considered a position of the European Union or
the Ministry of Education, Youth and Science of
the Republic of Bulgaria.

References
Erich Gamma, R. Helm, R. Johnson and J. Vlissides.

1995. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Svetla Koeva, S. Mihov and T. Tinchev. 2004. Bul-
garian Wordnet - Structure and Validation volume
7, No. 1-2: 61–78. Journal: Romanian Journal of
Information Science and Technology.

Svetla Koeva 2010. Bulgarian Wordnet - current state,
applications and prospects. Bulgarian-American
Dialogues, Prof. M. Drinov Academic Publishing
House. Sofia. 120–132

Borislav Rizov. 2008. Processing Wordnet with Modal
Logic: 93–100. Proceedings of the 6th International
Conference on Formal Approaches to South Slavic
and Balkan Languages.

Piek Vossen. 2004. EuroWordNet: A Multilingual
Database of Autonomous and Language-Specific
Wordnets Connected via an Inter-Lingual Index. In-
ternational Journal of Lexicography, 17(1): 161–
173, June.

	Introduction
	Overview
	Wordnet as a Relational Structure
	Modal Language for Wordnet
	Syntax and Semantics
	Example Queries

	Graphical User Interface
	Data Representation
	API
	Objects
	Relations
	Applications

