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Abstract 

This paper describes our ongoing work on 

grammatical error correction (GEC). Focusing 

on all possible error types in a real-life 

environment, we propose a factored statistical 

machine translation (SMT) model for this task. 

We consider error correction as a series of 

language translation problems guided by 

various linguistic information, as factors that 

influence translation results. Factors included 

in our study are morphological information, i.e. 

word stem, prefix, suffix, and Part-of-Speech 

(PoS) information. In addition, we also 

experimented with different combinations of 

translation models (TM), phrase-based and 

factor-based, trained on various datasets to 

boost the overall performance. Empirical 

results show that the proposed model yields an 

improvement of 32.54% over a baseline 

phrase-based SMT model. The system 

participated in the CoNLL 2014 shared task 

and achieved the 7
th

 and 5
th

 F0.5 scores
1
 on the 

official test set among the thirteen 

participating teams. 

 

1 Introduction 

The task of grammatical error detection and 

correction (GEC) is to make use of 

computational methods to fix the mistakes in a 

written text. It is useful in two aspects. For a 

non-native English learner it may help to 

improve the grammatical quality of the written 

text. For a native speaker the tool may help to 

remedy mistakes automatically. Automatic 

                                                           
1

 These two rankings are based on gold-standard edits 

without and with alternative answers, respectively. 

correction of grammatical errors is an active 

research topic, aiming at improving the writing 

process with the help of artificial intelligent 

techniques. Second language learning is a user 

group of particular interest. 

Recently, Helping Our Own (HOO) and 

CoNLL held a number of shared tasks on this 

topic (Dale et al., 2012, Ng et al., 2013, Ng et al., 

2014). Previous studies based on rules (Sidorov 

et al., 2013), data-driven methods (Berend et al., 

2013, Yi et al., 2013) and hybrid methods (Putra 

and Szabó, 2013, Xing et al., 2013) have shown 

substantial gains for some frequent error types 

over baseline methods. Most proposed methods 

share the commonality that a sub-model is built 

for a specific type of error, on top of which a 

strategy is applied to combine a number of these 

individual models. Also, detection and correction 

are often split into two steps. For example, Xing 

et al. (2013) presented the UM-Checker for five 

error types in the CoNLL 2013 shared task. The 

system implements a cascade of five individual 

detection-and-correction models for different 

types of error. Given an input sentence, errors are 

detected and corrected one-by-one by each sub-

model at the level of its corresponding error type.  

The specifics of an error type are fully 

considered in each sub-model, which is easier to 

realize for a single error type than for multiple 

types in a single model. In addition, dividing the 

error detection and correction into two steps 

alleviates the application of machine learning 

classifiers. However, an approach that considers 

error types individually may have negative 

effects: 

 This approach assumes independence 

between each error type. It ignores the 

interaction of neighboring errors. Results 

(Xing et al., 2013) have shown that 
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consecutive errors of multiple types tend to 

hinder solving these errors individually. 

 As the number of error types increases, the 

complexities of analyzing, designing, and 

implementing the model increase, in 

particular when combinatorial errors are 

taken into account. 

 Looking for an optimal model combination 

becomes complex. A simple pipeline 

approach would result in interference and the 

generation of new errors, and hence to 

propagating those errors to the subsequent 

processes. 

 Separating the detection and correction tasks 

may result in more errors. For instance, once 

a candidate is misidentified as an error, it 

would be further revised and turned into an 

error by the correction model. In this 

scenario the model risks losing precision. 

In the shared task of this year (Ng et la., 

2014), two novelties are introduced: 1) all types 

of errors present in an essay are to be detected 

and corrected (i.e., there is no restriction on the 

five error types of the 2013 shared task); 2) the 

official evaluation metric of this year adopts F0.5, 

weighting precision twice as much as recall. This 

requires us to explore an alternative universal 

joint model that can tackle various kinds of 

grammatical errors as well as join the detection 

and correction processes together. Regarding 

grammatical error correction as a process of 

translation has been shown to be effective (Ehsan 

and Faili, 2013, Mizumoto et al., 2011, 

Yoshimoto et al., 2013, Yuan and Felice, 2013). 

We treat the problematic sentences and golden 

sentences as pairs of source and target sentences. 

In SMT, a translation model is trained on a 

parallel corpus that consists of the source 

sentences (i.e. sentences that may contain 

grammatical errors) and the targeted translations 

(i.e. the grammatically well-formed sentences). 

The challenge is that we need a large amount of 

these parallel sentences for constructing such a 

data-driven SMT system. Some researches 

(Brockett et al., 2006, Yuan and Felice, 2013) 

explore generating artificial errors to resolve this 

sparsity problem. Other studies (Ehsan and Faili, 

2013, Yoshimoto et al., 2013, Yuan and Felice, 

2013) focus on using syntactic information (such 

as PoS or tree structure) to enhance the SMT 

models.  

In this paper, we propose a factored SMT 

model by taking into account not only the surface 

information contained in the sentence, but also 

morphological and syntactic clues (i.e., word 

stem, prefix, suffix and finer PoS information). 

To counter the sparsity problem we do not use 

artificial or manual approaches to enrich the 

training data. Instead we apply factored and 

transductive learning techniques to enhance the 

model on a small dataset. In addition, we also 

experimented with different combinations of 

translation models (TM), phrase- and factor-

based, that are trained on different datasets to 

boost the overall performance. Empirical results 

show that the proposed model yields an 

improvement of 32.54% over a baseline phrase-

based SMT model. 

The remainder of this paper is organized as 

follows: Section 2 describes our proposed 

methods. Section 3 reports on the design of our 

experiments. We discuss the result, including the 

official shared task results, in Section 4,. We 

summarize our conclusions in Section 5. 

2 Methodology 

In contrast with phrase-based translation models, 

factored models make use of additional linguistic 

clues to guide the system such that it generates 

translated sentences in which morphological and 

syntactic constraints are met (Koehn and Hoang, 

2007). The linguistic clues are taken as factors in 

a factored model; words are represented as 

vectors of factors rather than as a single token. 

This requires us to pre-process the training data 

to factorize all words. In this study, we explore 

the use of various types of morphological 

information and PoS as factors. For each possible 

factor we build an individual translation model. 

The effectiveness of all factors is analyzed by 

comparing the performance of the corresponding 

models on the grammatical error correction task. 

Furthermore, two approaches are proposed to 

combine those models. One adopts the model 

cascading method based on transductive learning. 

The second approach relies on learning and 

decoding multiple factors learning. The details of 

each approach are discussed in the following 

sub-sections. 

2.1 Data Preparation 

In order to construct a SMT model, we convert 

the training data into a parallel corpus where the 

problematic sentences that ought to be corrected 

are regarded as source sentences, while the 

reference sentences are treated as the 

corresponding target translations. We discovered 

that a number of sentences is absent at the target 

side due to incorrect annotations in the golden 
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data. We removed these unparalleled sentences 

from the data. Secondly, the initial 

capitalizations of sentences are converted to their 

most probable casing using the Moses truecaser
2
. 

URLs are quite common in the corpus, but they 

are not useful for learning and even may cause 

the model to apply unnecessary correction on it. 

Thus, we mark all of the ULRs with XML 

markups, signaling the SMT decoder not to 

analyze an URL and output it as is.  

2.2 Model Construction 

In this study we explore four different factors: 

prefix, suffix, stem, and PoS. This linguistic 

information not only helps to capture the local 

constraints of word morphologies and the 

interaction of adjacent words, but also helps to 

prevent data sparsity caused by inflected word 

variants and insufficient training data.  

Word stem: Instead of lemmas, we prefer  

word stemming as one of the factors, considering 

that stemming does not requires deep 

morphological analysis and is easier to obtain. 

Second, during the whole error detection and 

correction process, stemming information is used 

as auxiliary information in addition to the 

original word form. Third, for grammatical error 

correction using word lemmas or word stems in 

factored translation model shows no significant 

difference. This is because we are translating text 

of the same language, and the translation of this 

factor, stem or lemma, is straightforwardly 

captured by the model. Hence, we do not rely on 

the word lemma. In this work, we use the 

English Porter stemmer (Porter, 1980) for 

generating word stems.  

Prefix: The second type of morphological 

information we explored is the word prefix. 

Although a prefix does not present strong 

evidence to be useful to the grammatical error 

correction, we include it in our study in order to 

fully investigate all types of morphological 

information. We believe the prefix can be an 

important factor in the correction of initial 

capitalization, e.g. “In this era, engineering 

designs…” should be changed to “In this era, 

engineering designs…” In model construction, 

we take the first three letters of a word as its 

prefix. If the length of a word is less than three, 

we use the word as the prefix factor. 

Suffix: Suffix, one of the important factors, 

helps to capture the grammatical agreements 

between predicates and arguments within a 

                                                           
2
 After decoding, we will de-truecase all these words. 

sentence. Particularly the endings of plural nouns 

and inflected verb variants are useful for the 

detection of agreement violations that shown up 

in word morphologies. Similar to how we 

represent the prefix, we are interested in the last 

three characters of a word.  

 Examples 

Sentence 

this card contains biometric data to 

add security and reduce the risk of 

falsification 

Original 

POS 

DT NN BVZ JJ NNS TO VB NN 

CC VB DT NN IN NN 

Specific 

POS 

DT NN VBZ JJ NNS TO_to VB 

NN CC VB DT_the NN IN_of 

NN 

Table 1: Example of modified PoS. 

According to the description of factors, Figure 

1 illustrates the forms of various factors 

extracted from a given example sentence.  

Surface 

constantly combining ideas will 

result in better solutions being 

formulated 

Prefix con com ide wil res in bet sol bei for 

Suffix tly ing eas ill ult in ter ons ing ted 

Stem 
constantli combin idea will result in 

better solut be formul 

Specific 

POS 

RB VBG NNS MD VB IN JJR NNS 

VBG VBN 

Figure 1: The factorized sentence. 

PoS: Part-of-Speech tags denote the morpho-

syntactic category of a word. The use of PoS 

sequences enables us to some extent to recover 

missing determiners, articles, prepositions, as 

well as the modal verb in a sentence. Empirical 

studies (Yuan and Felice, 2013) have 

demonstrated that the use of this information can 

greatly improve the accuracy of the grammatical 

error correction. To obtain the PoS, we adopt the 

Penn Treebank tag set (Marcus et al., 1993), 

which contains 45 PoS tags. The Stanford parser 

(Klein and Manning, 2002) is used to extract the 

PoS information. Inspired by Yuan and Felice 

(2013), who used preposition-specific tags to fix 

the problem of being unable to distinguish 

between prepositions and obtained good 

performance, we create specific tags both for 

determiners (i.e., a, an, the) and prepositions. 

Table 1 provides an example of this modification, 

where prepositions, TO and IN, and determiner, 
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DT, are revised to TO_to, IN_of and DT_the, 

respectively. 

2.3 Model Combination 

In addition to the design of different factored 

translation models, two model combination 

strategies are designed to treat grammatical error 

correction problem as a series of translation 

processes, where an incorrect sentence is 

translated into the correct one. In both 

approaches we pipeline two translation models, 

    and    . In the first approach, we derive 

four combinations of different models that 

trained on different sources.  

 In case I,    
  and    

  are both factored 

models but trained on different factors, e.g. 

for     
 training on “surface + factori” and 

    
  on “surface + factorij”. Both models 

use the same training sentences, but different 

factors.  

 In case II,     
  is trained on sentences that 

paired with the output from the previous 

model,     
 , and the golden correct sentences. 

We want to create a second model that can 

also tackle the new errors introduced by the 

first model. 

 In case III, similar to case II, the second 

translation model,    
  is replaced by a 

phrase-based translation model.  

 In case IV, the quality of training data is 

considered vital to the construction of a good 

translation model. The present training dataset 

is not large enough. To complement this, the 

second model,     
 , is trained on an enlarged 

data set, by combining the training data of 

both models, i.e. the original parallel data 

(official incorrect and correct sentence pairs) 

and the supplementary parallel data 

(sentences output from the first model,     
 , 

and the correct sentences). Note that we do 

not de-duplicate sentences.  

In all cases, the testing process is carried out 

as follows. The test set is translated by the first 

translation model,     
 . The output from the first 

model is then fed into the second translation 

model,     
 . The output of the second model is 

used as the final corrections. 

The second combination approach is to make 

use of multiple factors for model construction. 

The question is whether multiple factors when 

used together may improve the correction results. 

In this setting we combine two factors together 

with the word surface form to build a multi-

factored translation model. All pairs of factors 

are used, e.g. stem and PoS. The decoding 

sequence is as follows: translate the input stems 

into target stems; translate the PoS; and generate 

the surface form given the factors of stem and 

PoS. 

3 Experiment Setup  

3.1 Dataset 

We pre-process the NUCLE corpus (Dahlmeier 

et al., 2013) as described in Section 2 for training 

different translation models. We use both the 

official golden sentences and additional 

WMT2014 English monolingual data
3
 to train an 

in-domain and a general-domain language model 

(LM), respectively. These language models are 

linearly interpolated in the decoding phase. We 

also randomly select a number of sentence pairs 

from the parallel corpus as a development set and 

a test set, disjoint from the training data. Table 2 

summarizes the statistics of all the datasets.  

Corpus Sentences Tokens 

Parallel 

Corpus 
55,503 

1,124,521 / 

1,114,040 

Additional 

Monolingual 
85,254,788 2,033,096,800 

Dev. Set 500 10,532 / 10,438 

Test Set 900 18,032 / 17,906 

Table 2: Statistics of used corpora. 

The experiments were carried out with 

MOSES 1.0
4
 (Philipp Koehn et al., 2007). The 

translation and the re-ordering model utilizes the 

“grow-diag-final” symmetrized word-to-word 

alignments created with GIZA++
5
 (Och and Ney, 

2003) and the training scripts of MOSES. A 5-

gram LM was trained using the SRILM toolkit
6
 

(Stolcke et al., 2002), exploiting the improved 

modified Kneser-Ney smoothing (Kneser and 

Ney, 1995), and quantizing both probabilities 

and back-off weights. For the log-linear model 

training, we take minimum-error-rate training 

(MERT) method as described in (Och, 2003). 

The result is evaluated by M
2
 Scorer (Dahlmeier 

and Ng, 2012) computing precision, recall and 

F0.5.  

                                                           
3
 http://www.statmt.org/wmt14/translation-task.html. 

4
 http://www.statmt.org/moses/. 

5
 http://code.google.com/p/giza-pp/. 

6
 http://www.speech.sri.com/projects/srilm/. 
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In total, one baseline system, five individual 

systems, and four combination systems are 

evaluated in this study. The baseline system 

(Baseline) is trained on the words-only corpus 

using a phrase-based translation model. For the 

individual systems we adopt the factored 

translation model that are trained respectively on 

1) surface and stem factors (Sys+stem), 2) surface 

and suffix factors (Sys+suf), 3) surface and prefix 

factors (Sys+pref), 4) surface and PoS factors 

(Sys+PoS), and 5) surface and modified-PoS 

factors (Sys+MPoS). The combination systems 

include: 1) the combination of “factored + 

phrase-based” and “factored + factored” for 

models cascading; and 2) the factors of surface, 

stem and modified-PoS (Sys+stem+MPoS) are 

combined for constructing a correction system 

based on a multi-factor model. 

4 Results and Discussions 

We report our results in terms of the precision, 

recall and F0.5 obtained by each of the individual 

models and combined models.  

4.1 Individual Model 

Table 3 shows the absolute measures for the 

baseline system, while the other individual 

models are listed with values relative to the 

baseline.  

Model Precision  Recall  F0.5 

Baseline 25.58 3.53 11.37 

Sys+stem -14.84 +13.00 +0.18 

Sys+suf -14.57 +14.77 +0.60 

Sys+pref -15.74 +12.20 -0.77 

Sys+PoS -11.63 +9.79 +2.45 

Sys+MPoS -10.25 +10.60 +3.70 

Table 3: Performance of various models. 

The baseline system has the highest precision 

score but the lowest recall. Nearly all individual 

models except Sys+pref show improvements in the 

correction result (F0.5) over the baseline. Overall, 

Sys+MPoS achieves the best result for the 

grammatical error correction task. It shows a 

significant improvement over the other models 

and outperforms the baseline model by 3.7 F0.5 

score. The Sys+stem and Sys+suf models obtain an 

improvement of 0.18 and 0.60 in F0.5 scores, 

respectively, compared to the baseline. Although 

the differences are not significant, it confirms our 

hypothesis that morphological clues do help to 

improve error correction. The F0.5 score of 

Sys+pref is the lowest among the models including 

the baseline, showing a drop of 0.77 in F0.5 score 

against the baseline. One possible reason is that 

few errors (in the training corpus) involve word 

prefixes. Thus, the prefix does not seem to be a 

suitable factor for tackling the GEC problem. 

Type 
Sys+stem 

(%) 

Sys+suf 

(%) 

Sys+MPoS 

(%) 

Error 

Num. 

Vt 17.07 12.20 12.20 41 

ArtOrDet 37.65 36.47 29.41 85 

Nn 33.33 19.61 23.53 51 

Prep 10.26 10.26 12.82 39 

Wci 9.10 10.61 6.10 66 

Rloc- 15.20 13.92 10.13 79 

Table 4: The capacity of different models in 

handling six frequent error types. 

We analyze the capacities of the models on 

different types of errors. Sys+PoS and Sys+MPoS are 

built by using the PoS and modified PoS. Both of 

them yield an improvement in F0.5 score. Overall, 

Sys+MPoS produces more accurate results than 

Sys+pref. Therefore, we specifically compare and 

evaluate the best three models, Sys+stem, Sys+suf 

and Sys+MPoS. Table 4 presents evaluation scores 

of these models for the six most frequent error 

types, which take up a large part of the training 

and test data. Among them, Sys+stem displays a 

powerful capacity to handle determiner and 

noun/number agreement errors, up to 37.65% 

and 33.33%. Sys+suf shows the ability to correct 

determiner errors at 36.47%; Sys+MPoS yields a 

similar performance to Sys+suf. All three 

individual models exhibit a relatively high 

capacity to handle determiner errors. The likely 

reason is that this mistake constitutes the largest 

portion in training data and test set, giving the 

learning models many examples to capture this 

problem well. In the case of preposition errors, 

Sys+MPoS demonstrates a better performance. This, 

once again, confirms the result (Yuan and Felice, 

2013) that the modified PoS factor is effective 

for every preposition word. For these six error 

types, the individual models show a weak 

capacity to handle the word collocation or idiom 

error category (Wci). Although Sys+MPoS 

achieves the highest F0.5 score in the overall 

evaluation, it only achieves 6.10% in handling 

this error type. The likely reason is that idioms 

are not frequent in the training data, and also that 

in most of the cases they contain out-of-

vocabulary words never seen in training data. 

4.2 Model Combination 

We intend to further boost the overall 

performance of the correction system by 
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combining the strengths of individual models 

through model combination, and compare against 

the baseline. The systems compared here cover 

three pipelined models and a multi-factored 

model, as described earlier in Section 3. The 

combined systems include: 1) CSyssuf+phrase: the 

combination of Sys+suf and the baseline phrase-

based translation model; 2) CSyssuf+suf: we 

combine two similar factored models with suffix 

factors, Sys+suf, which is trained on the same 

corpus; and 3) TSyssuf+phrase: similar to 

CSyssuf+phrase, but the training data for the second 

phrase-based model is augmented by adding the 

output sentences from the previous model (paired 

with the correct sentences). Our intention is to 

enlarge the size of the training data. The 

evaluation results are presented in Table 5. 

Model Precision Recall F0.5 

Baseline 25.58 3.53 11.37 

CSyssuf+phrase -14.70 +14.61 +0.45 

CSyssuf+suf -15.04 +14.13 +0.09 

TSyssuf+phrase -14.76 +14.61 +0.40 

Sys+stem+MPoS -15.87 +11.72 -0.90 

Table 5: Evaluation results of combined models. 

In Table 5 we observe that Sys+stem+MPoS hurts 

performance and shows a drop of 0.9% in F0.5 

score. Both the CSyssuf+phrase and CSyssuf+suf 

show minor improvements over the baseline 

system. Even when we enrich the training data 

for the second model in TSyssuf+phrase, it cannot 

help in boosting the overall performance of the 

system. One of the problems we observe is that, 

with this combination structure, new incorrect 

sentences are introduced by the model at each 

step. The errors are propagated and accumulated 

to the final result. Although CSyssuf+phrase and 

CSyssuf+suf produce a better F0.5 score over the 

baseline, they are not as good as the individual 

models, Sys+PoS and Sys+MPoS, which are trained 

on PoS and modified-PoS, respectively. 

4.3 The Official Result 

After fully evaluating the designed individual 

models as well as the integrated ones, we adopt 

Sys+MPoS as our designated system for this 

grammatical error correction task. The official 

test set consists of 50 essays, and 2,203 errors. 

Table 6 shows the final result obtained by our 

submitted system.  

Table 7 details the correction rate of the five 

most frequent error types obtained by our system. 

The result suggests that the proposed system has 

a better ability in handling the verb, article and 

determiner error than other error types. 

Criteria Result Alt. Result 

P 0.3127 0.4317 

R 0.1446 0.1972 

F0.5 0.2537 0.3488 

Table 6: The official correction results of our 

submitted system. 

Type Error Correct % 

Vt 203/201 21/22 10.34/10.94 

V0 57/54 9/9 15.79/16.67 

Vform 156/169 11/18 7.05/10.65 

ArtOrDet 569/656 84/131 14.76/19.97 

Nn 319/285 31/42 9.72/10.91 

Table 7: Detailed error information of evaluation 

system (with alternative result). 

5 Conclusion 

This paper describes our proposed grammatical 

error detection and correction system based on a 

factored statistical machine translation approach. 

We have investigated the effectiveness of models 

trained with different linguistic information 

sources, namely morphological clues and 

syntactic PoS information. In addition, we also 

explore some ways to combine different models 

in the system to tackle the correction problem. 

The constructed models are compared against the 

baseline model, a phrase-based translation model. 

Results show that PoS information is a very 

effective factor, and the model trained with this 

factor outperforms the others. One difficulty of 

this year’s shared task is that participants have to 

tackle all 28 types of errors, which is five times 

more than last year. From the results, it is 

obvious there are still many rooms for improving 

the current system. 
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