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Abstract
This paper describes our submission to
the ANLP-2014 shared task on auto-
matic Arabic error correction. We present
a pipeline approach integrating an er-
ror detection model, a combination of
character- and word-level translation mod-
els, a reranking model and a punctuation
insertion model. We achieve an F1 score
of 62.8% on the development set of the
QALB corpus, and 58.6% on the official
test set.

1 Introduction

Devising algorithms for automatic error correction
generated considerable interest in the community
since the early 1960s (Kukich, 1992) for at least
two reasons. First, typical NLP tools lack in ro-
bustness against errors in their input. This sen-
sitivity jeopardizes their usefulness especially for
unedited text, which is prevalent on the web. Sec-
ond, automated spell and grammar checkers facil-
itate text editing and can be of great help to non-
native speakers of a language. Several resources
and shared tasks appeared recently, including the
HOO task (Dale and Kilgarriff, 2010) and the
CoNLL task on grammatical error correction (Ng
et al., 2013b). In this paper we describe our partic-
ipation to the first shared task on automatic error
correction for Arabic (Mohit et al., 2014).

While non-word errors are relatively easy to
handle, the task is more challenging for gram-
matical and semantic errors. Detecting and cor-
recting such errors require context-sensitive ap-
proaches in order to capture the dependencies be-
tween the words of a text at various lexical and se-
mantic levels. All the more so for Arabic which

brings dependence down to the morphological
level (Habash, 2010).

A particularity interesting approach to error cor-
rection relies on statistical machine translation
(SMT) (Brockett et al., 2006), due to its context-
sensitivity and data-driven aspect. Therefore, the
pipeline system which we describe in Section 2
has as its core a phrase-based SMT component
(PBSMT) (Section 2.3). Nevertheless, several fac-
tors may hinder the success of this approach, such
as data sparsity, discrepancies between transla-
tion and error correction tasks, and the difficulty
of incorporating context-sensitive features into the
SMT decoder.

We address all these issues in our system which
achieves a better correction quality than a simple
word-level PBSMT baseline on the QALB corpus
(Zaghouani et al., 2014) as we show in our exper-
iments in Section 3.

2 Pipeline Approach to Error Correction

The PBSMT system accounts for context by learn-
ing, from a parallel corpus of annotated errors,
mappings from erroneous multi-word segments of
text to their corrections, and using a language
model to help select the suitable corrections in
context when multiple alternatives are present.
Furthermore, since the SMT approach is data-
driven, it is possible to address multiple types of
errors at once, as long as examples of them appear
in the training corpus. These errors may include
non-word errors, wrong lexical choices and gram-
matical errors, and can also handle normalization
issues (Yvon, 2010).

One major issue is data sparsity, since large
amount of labeled training data is necessary to
provide reliable statistics of all error types. We ad-
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dress this issue by backing-off the word-level PB-
SMT model with a character-level correction com-
ponent, for which richer statistics can be obtained.

Another issue may stem from the inherent dif-
ference in nature between error correction and
translation. Unlike translation, the input and out-
put vocabularies in the correction task overlap sig-
nificantly, and the majority of input words are typi-
cally correct and are copied unmodified to the out-
put. The SMT system should handle correct words
by selecting their identities from all possible op-
tions, which may fail resulting in over-correction.
To help the SMT decoder decide, we augment our
pipeline with a problem zone detection compo-
nent, which supplies prior information on which
input words need to be corrected.

The final issue concerns the difficulty of incor-
porating features that require context across phrase
boundaries into the SMT decoder. A straightfor-
ward alternative is to use such features to rerank
the hypotheses in the SMT n-best hypotheses lists.

Since punctuation is particularity noisy in Ara-
bic data, we add a specialized punctuation inser-
tion component to our pipeline, depicted in Figure
1.

2.1 Error Detection

We formalize the error detection problem as a
sequence labeling problem (Habash and Roth,
2011). Errors are classified into substitution, in-
sertion and deletion errors. Substitutions involve
an incorrect word form that should be replaced by
another correct form. Insertions are words that
are incorrectly added into the text and should be
deleted. Deletions are simply missing words that
should be added.

We group all error classes into a simple binary
problem tag: a word from the input text is tagged
as “PROB” if it is the result of an insertion or
a substitution of a word. Deleted words, which
cannot be tagged themselves, cause their adjacent
words to be marked as PROB instead. In this way,
the subsequent components in the pipeline can be
alerted to the possibility of a missing word via its
surroundings. Any words not marked as PROB are
given an “OK” tag.

Gold tags, necessary for training, can be gener-
ated by comparing the text to its correction using
some sequence alignment technique, for which we
use SCLITE (Fiscus, 1998).

For this task, we use Yamcha (Kudo and Mat-

sumoto, 2003) to train an SVM classifier using
morphological and lexical features. We employ
a quadratic polynomial kernel. The static feature
window context size is set to +/- 2 words; the pre-
vious two (dynamic) predicted tags are also used
as features.

The feature set includes the surface forms and
their normalization after “Alef”, “Ya” and digit
normalization, the POS tags and the lemmas of the
words. These morphological features are obtained
using MADA 3.0 (Habash et al., 2009).1 We also
use a set of word, POS and lemma 3-gram lan-
guage models scores as features. These LMs are
built using SRILM (Stolcke, 2002).

The error detection component is integrated into
the pipeline by concatenating the predicted tags
with the words of the input text. The SMT model
uses this additional information to learn distinct
mappings conditional on the predicted correctness
of words.

2.2 Character-level Back-off Correction
Each word that is labeled as error (PROB) in the
output of the error detection component is mapped
to multiple possible corrections using a weighted
finite-state transducer similar to the transducers
used in speech recognition (Mohri et al., 2002).
The WFST, for which we used OpenFST (Al-
lauzen et al., 2007), operates on the character
level, and the character mapping is many-to-many
(similar to the phrase-based SMT framework).

The score of each proposed correction is a com-
bination of the scores of character mappings used
to build it. The list is filtered using WFST scores
and an additional character-level LM score. The
result is a list of error-tagged words and their cor-
rection suggestions, which constitutes a small on-
the-fly phrase table used to back-off primary PB-
SMT table.

During training, the mapping dictionary is
learned from the training after aligning it at the
character level using SCLITE. Mapping weights
are computed as their normalized frequencies in
the aligned training corpus.

2.3 Word-level PBSMT Correction
We formalize the correction process as a phrase-
based statistical machine translation problem
(Koehn et al., 2003), at the word-level, and solve

1We did not use MADAMIRA (the newest version of
MADA) since it was not available when this component was
built.
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Figure 1: Input text is run through the error detection component which labels the problematic words.
The labeled text is then fed to the character-level correction components which constructs a back-off
phrase table. The PBSMT component then uses two phrase tables to generate n-best correction hy-
potheses. The reranking component selects the best hypothesis, and pass it to the punctuation insertion
component in order to produce the final output.

it using Moses, a well-known PBSMT tool (Koehn
et al., 2007). The decoder constructs a correction
hypothesis by first segmenting the input text into
phrases, and mapping each phrase into its best cor-
rection using a combination of scores including a
context-sensitive LM score.

Unlike translation, error correction is mainly
monotonic, therefore we set disallow reordering
by setting the distortion limit in Moses to 0.2

When no mapping can be found for a given
phrase in the primary phrase table, the decoder
looks it up in the back-off model. The decoder
searches the space of all possible correction hy-
potheses, resulting from alternative segmentations
and mappings, and returns the list of n-best scor-
ing hypotheses.

2.4 N-best List Reranking

In this step, we combine LM information with lin-
guistically and semantically motivated features us-
ing learning to rank methods (Tomeh et al., 2013).
Discriminative reranking (Liu, 2009) allows each
hypothesis to be represented as an arbitrary set of
features without the need to explicitly model their
interactions. Therefore, the system benefits from
global and potentially complex features which are
not available to the baseline decoder.

Each hypothesis in an n-best list is represented
by a d-dimensional feature vector. Word error rate
(WER) is computed for each hypotheses by com-
paring it to the reference correction. The resulting

2Only 0.14% of edits in the QALB corpus are actually
reordering.

scored n-best list is used for supervised training
of a reranking model. We employ a pairwise ap-
proach to ranking which takes pairs of hypotheses
as instances in learning, and formalizes the rank-
ing problem as pairwise classification.

For this task we use RankSVM (Joachims,
2002) which is a method based on Support Vec-
tor Machines (SVMs). We use only linear kernels
to keep complexity low. We use a rich set of fea-
tures including LM scores on surface forms, POS
tags and lemmas. We also use a feature based on a
global model of the semantic coherence of the hy-
potheses (Tomeh et al., 2013). The new top ranked
hypothesis is the output of this step which is then
fed to the next component.

2.5 Punctuation Insertion
We developed a model that predicts the occurrence
of periods and commas in a given Arabic text.
The core model is a decision tree classifier trained
on the QALB parallel training data using WEKA
(Hall et al., 2009). For each space between two
words, the classifier decides whether or not to in-
sert a punctuation mark, using a window size of
three words surrounding the underlying space.

The model uses the following features:

• A class punctuation feature, that is whether to
insert a period, a comma or none at the cur-
rent space location;

• The part-of-speech of the previous word;

• The existence of a conjunctive or connective
proclitic in the following word; that is a “wa”

116



Precision−Recall Curve

Recall

P
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

−
8.

33
−

5.
02

−
1.

7
1.

61
4.

93

AUC= 0.715
PRBE= 0.483, Cutoff= −0.349
Prec@rec(0.800)= 0.345, Cutoff= −1.045

Figure 2: Evaluation of the error detection com-
ponent. AUC: Area Under the Curve, PRBE:
precision-recall break-even point. Classifier
thresholds are displayed on the right vertical axis.

or “fa” proclitic that is either a conjunction, a
sub-conjunction or a connective particle.

We obtain POS and proclitic information using
MADAMIRA (Pasha et al., 2014). The output of
this component is the final output of the system.

3 Experiments

All the models we use in our pipeline are trained
in a supervised way using the training part of the
QALB corpus (Zaghouani et al., 2014), while we
reserve the development part of the corpus for test-
ing.

3.1 Error detection

We evaluate the error detection binary classifier in
terms of standard classification measures as shown
in Figure 2. Each point on the curve is computed
by selecting a threshold on the classifier score.

The threshold we use correspond to recall equal
to 80%, at which the precision is very low which
leaves much room for improvement in the perfor-
mance of the error detection component.

3.2 Character-level correction

We evaluate the character-level correction model
by measuring the percentage of erroneous phrases
that have been mapped to their in-context refer-
ence corrections. We found this percentage to be

41% on QALB dev data. We limit the size of
such phrases to one in order to focus on out-of-
vocabulary words.

3.3 Punctuation insertion

To evaluate the punctuation insertion indepen-
dently from the pipeline, we first remove the pe-
riods and commas from input text. Considering
only the locations where periods and commas ex-
ist, our model gives a recall of 49% and a precision
of 53%, giving an F1-score of 51%.

When we apply our punctuation model in the
correction pipeline, we find that it is always better
to keep the already existing periods and commas
in the input text instead of overwriting them by
the model prediction.

While developing the model, we ran experi-
ments where we train the complete list of fea-
tures produced by MADAMIRA; that is part-of-
speech, gender, number, person, aspect, voice,
case, mood, state, proclitics and enclitics. This
was done for two preceding words and two follow-
ing words. However, the results were significantly
outperformed by our final set-up.

3.4 The pipeline

The performance of the pipeline is evaluated in
terms of precision, recall and F1 as computed by
the M2 Scorer (Dahlmeier and Ng, 2012b). The
results presented in Table 1 show that a simple
PBSMT baseline achieves relatively good perfor-
mance compared to more sophisticated models.
The character-level back-off model helps by im-
proving recall at the expense of decreased preci-
sion. The error detection component hurts the per-
formance which could be explained by its intrin-
sic bad performance. Since more investigation is
needed to clarify on this point, we drop this com-
ponent from our submission. Both reranking and
punctuation insertion improve the performance.

Our system submission to the shared task (back-
off+PBSMT+Rank+PI) resulted in an F1 score of
58.6% on the official test set, with a precision of
76.9% and a recall of 47.3%.

4 Related Work

Both rule-based and data-driven approaches to
error correction can be found in the literature
(Sidorov et al., 2013; Berend et al., 2013; Yi et
al., 2013) as well as hybridization of them (Putra
and Szabo, 2013). Unlike our approach, most of
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System PR RC F1

PBSMT 75.5 49.5 59.8
backoff+PBSMT 74.1 51.8 60.9
ED+backoff+PBSMT 61.3 45.4 52.2
backoff+PBSMT+Rank 75.7 52.1 61.7
backoff+PBSMT+Rank+PI 74.9 54.2 62.8

Table 1: Pipeline precision, recall and F1 scores.
ED: error detection, PI: punctuation insertion.

the proposed systems build distinct models to ad-
dress individual types of errors (see the CoNLL-
2013, 2014 proceedings (Ng et al., 2013a; Ng
et al., 2014), and combine them afterwords us-
ing Integer Linear Programming for instance (Ro-
zovskaya et al., 2013). This approach is relatively
time-consuming when the number of error types
increases.

Interest in models that target all errors at once
has increased, using either multi-class classifiers
(Farra et al., 2014; Jia et al., 2013), of-the-shelf
SMT techniques (Brockett et al., 2006; Mizu-
moto et al., 2011; Yuan and Felice, 2013; Buys
and van der Merwe, 2013; Buys and van der
Merwe, 2013), or building specialized decoders
(Dahlmeier and Ng, 2012a).

Our system addresses the weaknesses of the
SMT approach using additional components in a
pipeline architecture. Similar work on word-level
and character-level model combination has been
done in the context of translation between closely
related languages (Nakov and Tiedemann, 2012).
A character-level correction model has also been
considered to reduce the out-of-vocabulary rate in
translation systems (Habash, 2008).

5 Conclusion and Future Work

We described a pipeline approach based on
phrase-based SMT with n-best list reranking. We
showed that backing-off word-level model with a
character-level model improves the performance
by ameliorating the recall of the system.

The main focus of our future work will be on
better integration of the error detection model, and
on exploring alternative methods for combining
the character and the word models.
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