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Abstract

Guinaudeau and Strube (2013) introduce a
graph based model to compute local en-
tity coherence. We propose a computa-
tionally efficient normalization method for
these graphs and then evaluate it on three
tasks: sentence ordering, summary coher-
ence rating and readability assessment. In
all tasks normalization improves the re-
sults.

1 Introduction

Guinaudeau and Strube (2013) introduce a graph
based model (henceforth called entity graph) to
compute local entity coherence. Despite being un-
supervised, the entity graph performs on par with
Barzilay and Lapata’s (2005; 2008) supervised en-
tity grid on the tasks of sentence ordering, sum-
mary coherence rating and readability assessment.
The entity graph also overcomes shortcomings of
the entity grid with regard to computational com-
plexity, data sparsity and domain dependence.

The entity graph is a bipartite graph where one
set of nodes represents entities and the other set
of nodes represents the sentences of a document.
Guinaudeau and Strube (2013) apply a one mode
projection on sentence nodes (Newman, 2010) and
then compute the average out-degree of sentence
nodes to determine how coherent a document is.
They describe variants of their entity graph which
take the number of shared entities between sen-
tences and their grammatical functions into ac-
count thus resulting in weighted bipartite graphs
and weighted one mode projections. Here, we
propose to normalize weights for the entity graph.
Normalization allows to include distance between
mentions of the same entity, which improves the
performance on all three tasks thus confirming re-
search in related areas which states that normaliz-
ing weights leads to better performance (Zhou et
al., 2008; Zweig and Kaufmann, 2011).

2 The Entity Graph

The entity graph (Guinaudeau and Strube, 2013),
G = (V,E), represents the relations between sen-
tences and entities in a text, where node set V con-
tains all sentences and entities in a text and E is
the set of all edges between sentences and enti-
ties. Let function w(si, ej) indicate the weight of
an edge which connects sentence si and entity ej .
If w(si, ej) = 1, then this edge indicates that there
is a mention of ej in sentence si. In order to real-
ize the insight from Grosz et al. (1995) that certain
syntactic roles are more important than others, the
syntactic role of ej in si can be mapped to an inte-
ger value (Guinaudeau and Strube, 2013):

w(si, ej) =

{
3 if ej is subject in si

2 if ej is object in si

1 otherwise

Figure 1 illustrates a weighted entity graph for
three sentences.
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Figure 1: Weighted entity graph

Three types of one-mode projections capture
relations between sentences, PU , PW and PAcc.
PU creates an edge between two sentences if they
share at least one entity. PW captures the intu-
ition that the connection between two sentences
is stronger the more entities they share by means
of weighted edges, where the weights equal the
number of entities shared by sentences (Newman,
2004). The third type of projection, PAcc, inte-
grates syntactic information in the edge weights
calculated by the following formula:

Wik =
∑

e∈Eik

w(e, si) · w(e, sk) .
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Figure 2 shows the three kinds of one-mode pro-
jections used in the entity graph.
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Figure 2: One-mode projections

While the entity grid (Barzilay and Lapata,
2008) uses information about sentences which do
not share entities by means of the “- -” transition,
the entity graph cannot employ this negative in-
formation. Here, we propose a normalization for
the entity graph and its corresponding one-mode
projections which is based on the relative impor-
tance of entities and, in turn, the relative impor-
tance of sentences. Including negative informa-
tion allows to normalize the importance of entities
according to sentence length (measured in terms
of entity mentions), and hence to capture distance
information between mentions of the same entity.
This brings the entity graph closer to Stoddard’s
(1991, p.30) notion of cohesion: “The relative co-
hesiveness of a text depends on the number of co-
hesive ties [...] and on the distance between the
nodes and their associated cohesive elements.” By
using this information, edge weights are set less
arbitrary which leads to the more sound method
and higher performance in all tasks.

3 Normalized Entity Graph

The entity graph weighs edges by the number of
entities sentences share (PW ) and which syntactic
functions the entities occupy (PAcc). Here we nor-
malize the weights by the number of entities in a
sentence. This takes negative information into ac-
count as entities which do not occur in other sen-
tences also count. Hence normalization captures
the relative importance of entities as well as the
relative importance of sentences.

We follow Newman (2004) by applying node
degree normalization. For PW , we divide the
weight of each edge by the degree of the corre-
sponding sentence node. If a sentence contains
many entities, then the amount of information
each entity contributes is reduced. Assume ‖si‖
as the number of entities in sentence si. The im-
portance of entity ej for si is

Imp(si, ej) =
1
‖si‖ .
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Figure 3: Normalized entity graph

For PAcc we divide the weight of each edge by the
sum of all edges’ weights of a sentence. This gives
the importance of each entity in a sentence relative
to the sentence’s other entities (see Figure 3).

Imp(si, ej) =
w(si, ej)∑

ee∈Entities w(si, ee)
.

For also normalizing the one-mode projection
we introduce a virtual node TC capturing the
textual content of all sentences (inspired by the
graph based information retrieval model of Rode
(2008)). The virtual node TC is connected to all
sentences (see Figure 4).
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Figure 4: Entity graph with virtual node

Rode (2008) uses the following formula to com-
pute weights on the edges between the sentence
nodes and TC:

w(si, TC) =
Score(si|TC)∑
st

Score(st|TC)
,

where the function Score(si|TC) is the number
of entities in si which have overlap with TC. This
value is equal to the degree of each sentence.

Since we are interested in local coherence, we
restrict TC to pairs of sentences (See Figure 5).
Subsequently, instead of w(si, TC), we use the
notation lw

sj
si (local weight of sentence si accord-

ing to sentence sj).
We define the normalized one-mode projection

as follows:

Wsij =
∑

e∈Esij

{
(lw

sj
si
·Imp(si,e))+(lw

si
sj
·Imp(sj ,e))

}
.
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Figure 5: Restricted TC for a pair of sentences

Similar to Rode (2008), we use the product of
lw

sj
si and Imp(si, e) to approximate the salience

of entity e in sentence si. This prevents the model
to get biased by the length of sentences.

This method can be applied to graphs with
edges weighted according to syntactic role (PAcc).
To compute the connection’s strength of a pair of
sentences we follow Yang and Knoke’s (2001) ap-
proach: The path length in a weighted graph is the
sum of the edge weights in the path. In our case,
each path is defined between a pair of sentences
of the entity graph, so the number of edges of all
paths are equal to two. Figure 6 shows the nor-
malized projections where the weights have been
computed by the above formula.
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Figure 6: Normalized projections

4 Experiments

We compare the normalized entity graph with the
entity graph on all tasks, Guinaudeau and Strube
(2013) compared their work with the entity grid
(Barzilay and Lapata, 2008; Elsner and Charniak,
2011): sentence ordering, summary coherence rat-
ing and readability assessment. Following Guin-
audeau and Strube (2013) we test statistical sig-
nificance with the Student’s t-test and Bonferroni
correction, to check whether the best result (bold
value in the tables) is significantly different from
the results of the entity graph and the normalized
entity graph. Diacritics ** indicate significance
level 0.01, * indicates significance level 0.05.

Acc F
Random 0.496 0.496
B&L 0.877 0.877
E&C 0.915 0.915

Entity graph, G&S
PU , Dist 0.830 0.830**
PW , Dist 0.871 0.871
PAcc, Dist 0.889 0.889

Normalized entity graph
PU , Dist 0.830 0.830**
PW , Dist 0.886 0.886
PAcc, Dist 0.909 0.909

Table 1: Discrimination, baselines and entity
graph vs. normalized entity graph

4.1 Sentence Ordering

This task consists of two subtasks: discrimina-
tion and insertion. In both subtasks we evaluate
whether our model can distinguish between the
correct order of sentences in a document and an
incorrect one. Experimental setup and data fol-
low Guinaudeau and Strube (2013) (61 documents
from the English test part of the CoNLL 2012
shared task (Pradhan et al., 2012)).

For discrimination we use 20 permutations of
each text. Table 1 shows the results. Results
for Guinaudeau and Strube (2013), G&S, are re-
produced, results for Barzilay and Lapata (2008),
B&L, and Elsner and Charniak (2011), E&C, were
reproduced by Guinaudeau and Strube (2013).

The unweighted graph, PU , does not need nor-
malization. Hence the results for the entity graph
and the normalized entity graph are identical. Nor-
malization improves the results for the weighted
graphs PW and PAcc with PAcc outperforming
B&L considerably and closely approaching E&L.

Sentence insertion is more difficult than dis-
crimination. Following Elsner and Charniak
(2011), we use two measures for evaluation: Ac-
curacy (Acc.) and the average proportion of cor-
rect insertions per document (Ins.).

Acc. Ins.
Random 0.028 0.071
E&C 0.068 0.167

Entity graph, G&S
PU , Dist 0.062** 0.101**
PW , Dist 0.075 0.114**
PAcc, Dist 0.071 0.102**

Normalized entity graph
PU , Dist 0.062** 0.101**
PW , Dist 0.085 0.154
PAcc, Dist 0.077 0.157

Table 2: Insertion, baselines and entity graph vs.
normalized entity graph
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Acc. F
B&L 0.833

Entity graph, G&S
PU 0.800 0.815
PW 0.613 0.613*
PAcc 0.700 0.704

Normalized entity graph
PU 0.800 0.815
PW 0.775 0.775
PAcc 0.788 0.788

Table 3: Summary Coherence Rating, B&L and
entity graph vs. normalized entity graph

Table 2 shows that the normalized entity graph
outperforms the entity graph for PW and PAcc

(again, no difference for PU ). The normalized
entity graph outperforms E&C in Acc. and ap-
proaches it in Ins. The high value for Ins. shows
that if the normalized entity graph makes false de-
cisions they are closer to the original ordering than
the mistakes of the entity graph.

4.2 Summary Coherence Rating

We follow Barzilay and Lapata (2008) for evalu-
ating whether the normalized entity graph can de-
cide whether automatic or human summaries are
more coherent (80 pairs of summaries extracted
from DUC 2003). Human coherence scores are as-
sociated with each pair of summarized documents
(Barzilay and Lapata, 2008).

Table 3 displays reported results of B&L and
reproduced results of the entity graph and our nor-
malized entity graph. Normalizing significantly
improves the results for PW and PAcc. PU is still
slightly better than both, but in contrast to the en-
tity graph, this difference is not statistically signif-
icant. We believe that better weighting schemes
based on linguistic insights eventually will outper-
form PU and B&L (left for future work). Distance
information always degrades the results for this
task (see Guinaudeau and Strube (2013)).

4.3 Readability Assessment

Readability assessment aims to distinguish texts
which are difficult to read from texts which are
easier to read. In experiments, Barzilay and La-
pata (2008) assume that articles taken from Ency-
clopedia Britannica are more difficult to read (less
coherent) than the corresponding articles from En-
cyclopedia Britannica Elementary, its version for
children. We follow them with regard to data (107
article pairs), experimental setup and evaluation.

Table 4 compares reported results by Schwarm

Acc. F
S&O 0.786
B&L 0.509
B&L + S&O 0.888

Entity graph, G&S
PU , Dist 0.589 0.589**
PW , Dist 0.570 0.570**
PAcc, Dist 0.766 0.766**

Normalized entity graph
PU , Dist 0.589 0.589**
PW , Dist 0.897 0.897
PAcc, Dist 0.850 0.850

Table 4: Readability assessment, baselines and en-
tity graph vs. normalized entity graph

and Ostendorf (2005), S&O, Barzilay and Lapata
(2008), B&L, a combined method, B&L + S&O,
reproduced results for the entity graph, G&S, and
our normalized entity graph. Distance information
always improves the results.

Sentences in the Britannica Elementary are
simpler and shorter than in the Encyclopedia Bri-
tannica. The entity graph does not take into ac-
count the effect of entities not shared between sen-
tences while the normalized entity graph assigns a
lower weight if there are more of these entities.
Hence, Britannica Elementary receives a higher
cohesion score than Encyclopedia Britannica in
our model. Adding grammatical information, does
not help, because of the influence of the number
of entities (shared and not shared) outweighs the
influence of syntactic roles. The normalized en-
tity graph (PW , Dist) does not only outperform
the entity graph (significantly) and B&L but also
S&O and the combination B&L + S&O.

5 Conclusion

We proposed a normalization method for the en-
tity graph (Guinaudeau and Strube, 2013). We
compared our model to the entity graph and
to the entity grid (Barzilay and Lapata, 2008)
and showed that normalization improves the re-
sults significantly in most tasks. Future work
will include adding more linguistic information,
stronger weighting schemes and application to
other readability datasets (Pitler and Nenkova,
2008; De Clercq et al., 2014).
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