
D S Sharma, R Sangal and J D Pawar. Proc. of the 11th Intl. Conference on Natural Language Processing, pages 287–294,
Goa, India. December 2014. c©2014 NLP Association of India (NLPAI)

Segmentation of Navya-Nyāya Expressions

Arjuna S.R. & Amba Kulkarni
Department of Sanskrit Studies,

University of Hyderabad,
Hyderabad, India

arjunsr1987@gmail.com, apksh@uohyd.ernet.in

Abstract

Navya-Nyāya (NN), a school of Indian
logic and philosophy, has evolved a so-
phisticated language to deal with verbal
cognition, logic and epistemology. This
language is known for its use of long
compounds, productive use of secondary
derivational suffixes, and a special techni-
cal vocabulary. In this paper we present a
specially designed domain specific splitter
to split the NN compounds into its com-
ponents. The performance of this splitter
is tested on a set of compounds from a
Navya-Nyāya text. The result on the test
data show a recall rate of 91%. While the
average number of splits was around 50,
in 75% cases the correct split was found to
be the first one.

1 Introduction

Segmentation is an important task in NLP.
Sanskrit being dominated by an oral tradition,
most Sanskrit texts are written as a continuous
stream of phonemes, without any explicit word or
sentence boundaries. Moreover such a continuous
stream of phonemes also undergoes phonetic
changes at the juncture of word boundaries. This
makes the task of splitting more complex.

There are noteworthy efforts in the field of
Sanskrit segmentation in the past years. Hyman
(2008) describes a Finite State Transducer (FST)
for the Paninian sandhi rules. Huet (2009) has
discussed the segmentation in Sanskrit in detail
and has built an efficient Finite State Automata
(FSA) based segmenter. Mittal (2010) describes
two approaches; one using FST and the other

one based on Optimality Theory, by defining the
posterior probability function to choose among
the valid splits. Kumar et al. (2010) used different
posterior probability function and obtained better
results. Natarajan and Charniak (2011) proposed
sandhi splitting based on the Dirichlet process.
Mittal, Kumar et al. and Natarajan and Charniak
report the evaluation of their segmenters on a
Sanskrit text corpus developed by the Sanskrit
Consortium of India. This corpus does not contain
very long sequences of characters. In the real cor-
pus such as plays by Kālidāsa, strings containing
more than hundred phonemes are very common.
The possible segmentations of such strings run
into millions. Huet and Goyal (2013) describe the
design of a lean interface for displaying all such
possible segmentation in a compact form.

Sandhi operation (phonological changes at the
juncture of word boundaries) is just one rea-
son behind the long strings of characters in San-
skrit. Rich derivational morphology that results
due to possible recursion in the morphological
process is another reason behind the long char-
acter sequences. This recursion is discussed in
(Akshar Bharati, 2006) and (Kulkarni and Shukl,
2009). For quick reference, we produce the au-
tomaton showing the recursion in Sanskrit mor-
phology in Figure 1.

As can be seen from this figure, theoretically the
possible forms are infinite in number and owing to
the finite size of the alphabet these forms can po-
tentially be of infinite length. This figure does not
show the compound formation in Sanskrit. Com-
pound formation is typically binary where each
component can in turn be a compound. The re-287



Figure 1: Recursion in Sanskrit Morphology

Table 1: Legends
dhātu (verbal root) dhātupātha(list of verbal roots) kr. t(non-finite verbal suffix)
samāsa(compound) sanādi(derivational suffixes) śabdakos. a(lexicon)
subanta(noun) sup(nominal suffix) taddhita(secondary derivational suffix)
tiṅ(finite verbal suffix) tiṅanta(finite verb form) upasarga(verbal prefix)

cursion in the definition results in compounds of
arbitrary long length. The Navya-Nyāya ‘Neo-
Logic’ (NN) school of Indian tradition sees the
culmination of productive compound formation in
the form of compounds running through pages.
The components of such compounds are typically
formed with more than one taddhita (secondary
derivational) suffixes. Such compounds also use
the technical language of NN.1

Here is an example of linguistic expression in
Navya-Nyāya (NNE) involving a compound with
ten components:

1The technical language of NN consists of a few concep-
tual terms and it provides a mechanism to express the under-
lying cognitive structure corresponding to a linguistic expres-
sion in an unambiguous way.

samavāya-sambandha-avacchinna-gandhatva-
avacchinna-gandha-nis. t.ha-ādheyatā-nirūpita-
adhikaran. atāvatı̄.

For the sake of readability we have split the
components, but in the printed texts this is written
as a single word with underlying phonological
changes as

samavāyasambandhāvacchinnagandhatvāva-
cchinnagandhanis. t.hādheyatānirūpitādhikara-
n. atāvatı̄.

In spite of a continuous stream of characters in-288



volving arbitrarily long compounds, the cognitive
structure being described by such an expression
helps a human mind to understand them.

All the efforts related to segmentation described
earlier had focused on general Sanskrit texts. But
for much more complex and domain-specific
inputs like NNE, which is known for long
compounds, use of technical vocabulary, and
productive use of secondary derivational suffixes
(taddhita) a specially trained segmenter is needed.

In this work we present a segmenter specially
designed for NNE taking into consideration the
special vocabulary and secondary derivative suf-
fixes NNE uses. In the next section we describe
the earlier work on handling NNEs. In the third
section we describe our approach for getting the
desired splits on the top. The fourth section dis-
cusses the results of the experiment, followed by
the conclusion.

2 Heritage segmenter for NNEs

The first attempt to develop a domain spe-
cific segmenter for NNE is reported in Ar-
juna and Huet (2014). A sample of NNEs
was collected from the Āloka commentary
on Tarkasaṅgraha (Varadacharya, 2007) and
Pañcalaks. an. ı̄sarvasvam (Sastry, 2005). There
were 49 NNEs from the Āloka commentary and
352 NNEs from Pañcalaks. an. ı̄sarvasvam. These
compounds were split manually into the compo-
nents, which formed the Gold data. We also
extracted the possible combination of secondary
derivational suffixes that are found in the selected
texts. Figure 2 shows these possible combinations.

Arjuna and Huet (2014) summarize the difficulties
in handling NNEs as follows.

1. Long compounds,

2. Technical vocabulary,

3. Productive use of taddhita suffixes, and

4. Semi-formal compound structure.

Heritage segmenter was enhanced to handle the
first three of these. The salient features of the en-
hancement are

1. New databanks were added for the inflected
forms of the taddhita suffixes viz. -tal (Fem),
-tva (Neu), and -matup (in all three genders),

2. Technical vocabulary of Navya-Nyāya was
acquired in the lexicon,

3. Segmenter transitions were added to accom-
modate taddhita productivity,

4. Word mode for single pada was used
rather than sentence in order to curb over-
generation, and

5. Lean interface described in Huet and Goyal
(2013) was used in order to share the huge
solution space.

The recall of the segmenter after this enhancement
was 91%.

There are three major problems with this
segmenter. The first problem is with the number
of solutions. For a typical NNE, this segmenter
results with thousands and sometimes even
millions of solutions. Typically the topmost row
gives the most probable choice, and thus for a
compound with n components, n choices by the
user results in the proper split of the compound.
Thus even if there are thousands of solutions, the
user has to look for only a handful of choices.
Hence this problem is not that serious.

The second problem with this segmenter is
with the granularity. The Heritage segmenter
is enhanced with the technical vocabulary of
Navya-Nyāya. But still it splits many technical
words into components. For example, nirūpita,
avacchinna, samānādhikaran. a etc. are split as
ni-rūpita, ava-chinna, and samāna-adhi-karan. a
respectively. In order to understand the NNEs that
uses their own specialised technical vocabulary
with well-defined meanings, to get a broader
picture of a NNE, a Naiyāyika(Indian Logician)
prefers to hide the derivation of these technical
terms, and would like to see these words as single
units without any splits.

Thus while admitting the fact that the term
samānādhikaran. a is compositionally equal to
samāna-adhi-karan. a, or vyadhikaran. a being
compositionally equal to vi-adhi-karan. a, these
being technical terms, a Naiyāyika would like289



Figure 2: FSA showing possible taddhita suffixes in NNE

to look at them as a packaged entry with all the
analysis hidden. Treating such technical words as
a single unit would also result in lesser choices for
user selection.

Finally while the user interface has its own
advantages, one would like to reduce the user
interaction as far as possible, pushing the correct
solution to the top or preferably the first position
for further automatic processing of such com-
pounds.

The major focus of the work reported in this pa-
per is on how to take advantage of the specialised
vocabulary in order to prune out the bad solutions
or push them down and push the better solutions to
the top. This time we used Sanskrit morphologi-
cal analyser developed at the University of Hyder-
abad, mainly because of more familiarity and easy
accessibility. In the next section we describe our
approach.

3 Our approach

As a first step we used the same domain specific
corpus that was collected by Arjuna and Huet
(2014) and enhanced the morphological analyser
of University of Hyderabad to handle the taddhita
suffixes reported in Figure 2. The 49 NNEs
obtained from the Āloka commentary were used
for the development purpose, and we set aside the
352 NNEs for testing purpose. All the collected
NNEs were further analysed for their components.

The statistics showed that there are a few nominal
stems, which are not typical of NN, but occur
frequently as a component in the NNEs. These
stems are artha, ātmaka, pūrvaka, vidha, kara etc.
which occur as a final component of a compound
(in fine compositi or samāsa-uttarapada). Figure
3 shows the sequence of taddhita suffixes after
which these stems occur.

We extended our morphological analyser to
handle the derivational morphology – both the sec-
ondary derivations as well as frequent compounds
shown in Figures 2 and 3 respectively. We also
extended our lexicon with the technical terms in
Navya-Nyāya.

The treatment of some taddhita suffixes such as
‘ka’ and the treatment of kr. t suffixes (primary
derivatives) in compound formation need spe-
cial mention. The taddhita suffix ‘ka’ results
in a bahuvrı̄hi (exo-centric) compound. Such
compounds, since have their head external to the
compound, they are more like adjectives, and
thus can decline in all the three genders. For
example, if ‘the one which has smoke as the
cause’ refers to a masculine referent, it will have
the form dhūmahetuka, and if the referent is a
feminine, it will have the form dhūmahetukā.
But such words when occur as a component
of a compound as iics (in initio compositi or
samāsa-pūrvapada), they will always undergo an290



Figure 3: ifcs(in fine compositi or samāsa-uttarapada) found in NNEs

operation of puṁvadbhāva2 resulting into a word
in masculine gender. Thus we get dhūmahetuka
as an iic form, whatever be the object it refers to.

Similarly, the adjectives formed by the non-
finite suffixes (kr. t suffixes) such as n. vul (in
the sense of an agent), or kta (in the sense of
an object) also take the base form3 when they
occur in the compounds as iics. For example, a
compound ‘a lady cook’ will be pācakastrı̄, and
not pācikāstrı̄.

The Paninian sūtra that governs
the formation of such compounds is
pum. vatkarmadhārayajātı̄yadeśı̄yes. u 6.3.42.
We have enhanced our morphological analyser to
take into account this phenomenon.

With this we were able to split all 49 examples
from the development data. The possible splits in
each case were in thousands and in 3 cases even
in tens of thousands. This was mainly because,
though the technical terms were available in
the lexicon, machine in addition to this lexical
term, also showed all possible splits of such
words. For example, for sambandhāvacchinna
is split as sambandha+avacchinna, and also as
sambandha+ava+chinna, and so on. The second
one should be pruned out since in the context of

2Condition for puṁvadbhāva is given in Paninian sūtra
6.3.42. It says - In Karmadhāraya compound and in those
cases where the second component of a compound ends in
a jātı̄ya or deśı̄ya suffix, the word in feminine gender will
assume the bhās. itapum. ska ‘expressed as a masculine’ form.

3The technical term for such base forms in Sanskrit is the
one with puṁvadbhāva

Navya-Nyāya, avacchinna being a technical word
need not be split further. So we needed a splitter
that discards splits of morphologically analysable
long words. We describe below the algorithm of
this splitter followed by its performance on the
development data as well as the test data.

3.1 SCL-NN splitter
The main aim of this algorithm is to reduce the
over-generation ensuring that the imposed condi-
tions do not under-generate, and at the same time
push the most preferred solution to the top of the
possible solutions. The over-generation and the
under-generation are measured only with respect
to the NN vocabulary. Thus a split which is an
over-generation from the NN point of view, may
be a genuine split in the classical Sanskrit. The
salient features of the algorithm are stated below.

1. The sandhi rules are of the form
u → v + w; f , where f indicates the
number of cases this rule was observed in
the Sanskrit Consortium Corpus. Even if u
is just a concatenation of v and w, without
any underlying phonetic change, then also
we treat it as a sandhi rule, in order to use the
frequency information.

The splitter scans the string from the left
and looks for the longest match each time.
At each juncture, typically more than one
sandhi rules are available. In case there are
more than one applicable rules, the one with
longer u is preferred over the smaller ones,
and in case of two rules with matching u of291



equal length, the one with higher frequency
is chosen.

For example, consider a string
adhikaran. atānirūpaka. There are two
possible splits for this viz. adhikaran. atā +
nirūpaka, and adhikaran. atā + anirūpaka.
The first split corresponds to a split rule ān
→ ā + n, which involves a window of two
phonemes. The second split corresponds to
the split rule ā → ā + a which involves a
context of only one phoneme. The prefer-
ence for two phoneme rule produces the split
adhikaran. atā + nirūpaka before other split
adhikaran. atā + anirūpaka. Thus we ensure
that the most likely output appears before the
other solutions.

There are four ways in which ā can be split,
viz. a+a, a+ā, ā+a, and ā+ā, with frequency
of occurrence in the Sanskrit Consortium cor-
pus as 3413, 2072, 350 and 233 respectively.
Machine uses these rules in the decreasing or-
der of frequency to ensure that the most prob-
able one is reported first.

2. Preference is given to the NN vocab-
ulary over others. The expression
avacchinnakāryatā is wrongly split as
avacchinnaka+āryatā as the more pre-
ferred one rather than the correct split
avacchinna+kāryatā, because greedy match
prefers the longest component in the begin-
ning. As we notice, the phoneme sequence
‘ka’ can be potentially a taddhita suffix
of the first component as well as an initial
sequence of a NN technical vocabulary. We
resolve such conflicts in favour of the NN
technical vocabulary.

3. The splitting is done recursively following
the depth first search. The boundaries at
which the string is split and the split rule
used are remembered. The string is not split
twice at the same place with the same split
rule. This is to avoid the further splitting of
bigger components, and thereby increasing
the precision. For example, a string pratiyo-
gitānirūpaka is split as pratiyogitā+nirūpaka
with a rule ān → ā+n, and as pratiyo-
gitā+anirūpaka with a rule ā → a+a. But

the string pratiyogitā is not split further as
prati+yogitā, nor is nirūpaka as ni+rūpaka.

4. The treatment of puṁvadbhāva in the
derivational morphology of compounds
help in pruning out the wrong splits such
as nis. t.hā+ādheyatā for nis. t.hādheyatā.
Puṁvadbhāva ensures that we get only the
valid split nis. t.ha+ādheyatā.

5. A split is considered to be an over-generation
if it does not contain any NN technical term.

4 Analysis of the Result

Our aim was to improve the precision and also get
the correct solution to the top of the list. We first
discuss the precision and recall.

4.1 Precision and Recall

We tested 49 NNEs collected from Āloka com-
mentary of Tarkasaṅgraha on both the Heritage
splitter as well as the SCL-NN splitter. The num-
ber of possible splits produced by both these split-
ters is reported in Table 2 and Table 3.

As is obvious from the tables, the number of
solutions is reduced drastically, increasing the
precision.

The result of the test data of 352 examples (see
table 4) from Pañcalaks. an. ı̄sarvasvam also con-
firms that the new algorithm prunes out all irrel-
evant splits. The recall is around 91%, which is
as good as the recall of Heritage splitter, and at
the same time the number of solutions is reduced
substantially, increasing the precision almost 100
times.

4.2 Correct Solution

We compared all the generated solutions with the
manually tagged Gold data. The table 5 shows

No of Solutions No of Cases
0-100 10
101-1,000 15
1,001-100,000 18
> 100,000 5
Time-out 1
Total 49

Table 2: Number of solutions of Heritage Splitter292



No of Solutions No of Cases
0-5 14
6-10 11
11-100 18
101-1000 5
> 1000 1
Total 49

Table 3: Number of solutions of SCL-NN Splitter

No of Solutions No of Cases Percentage
0-5 196 55.7
6-10 56 15.9
11-100 72 20.4
101-1000 13 3.6
> 1000 3 1
No Split 12 3.4
Total 352 100

Table 4: Number of solutions of SCL-NN Splitter

the number of cases corresponding to the position
of the correct solution among the ones produced.
In 42 cases, the first solution produced by the
machine was the correct one. Later we tested
examples from Pañcalaks. an. ı̄sarvasvam. The
results are shown in the table 6.

Here is a sample input consisting of 319
phonemes and the first solution with 40 compo-
nents, which happens to be the correct one.

Input:
sādhyatāvacchedakasambandhāvacchinna-
sādhyatāvacchedakāvacchinnapratiyogitāka-
sādhyābhāvatvaviśis. t.hanirūpitasādhyatāvaccheda-
kasambandhāvacchinnasādhyatāvacchedakāva-
cchinnapratiyogitākasādhyābhāvavr. ttisādhya-
sāmānyı̄yapratiyogitvatadavacchedakatvānya-
tarāvacchedakasambandhāvacchinnanirūpakatā-

Position No. of Cases Percentage
1 42 86
2 2 4
3 4 8
7 1 2
Total 49 100

Table 5: Position of the correct solution in the De-
velopment data

Position No. of cases Percentage
1 264 75
2-5 42 11.9
6-10 6 1.7
11-100 7 2.0
>101 2 0.6
No Split 12 3.4
No-correct solution 19 5.4
Total 352 100

Table 6: Position of the correct solution in the test
data

nirūpitaniravacchinnādhikaran. atāśrayavr. ttitva-
sāmānyābhāvah.

Output:
sādhyatā- avacchedaka- sambandha- avacchinna-
sādhyatā- avacchedaka- avacchinna- pratiyo-
gitāka- sādhya- abhāvatva- viśis. t.ha- nirūpita-
sādhyatā- avacchedaka- sambandha- avacchinna-
sādhyatā- avacchedaka- avacchinna- pratiyo-
gitāka- sādhya- abhāva- vr. tti- sādhya-
sāmānyı̄ya- pratiyogitva- tad- avacchedakatva-
anyatara- avacchedaka- sambandha-avacchinna-
nirūpakatā- nirūpita- niravacchinna-
adhikaran. atā- āśraya- vr. ttitva- sāmānya-
abhāvah.

5 Conclusion

Thus with the help of domain specific words,
greedy approach in selecting the long compo-
nents, avoiding alternative splits of an already
split segment, and selecting the more frequent
split rule over the less frequent one, and ensuring
that the solution thus produced has at least one
NN term in it, we could increase the precision,
without compromising the recall, and also we
could push the correct solution to the top of the
list.

While building this splitter, we took an advan-
tage of the fact that the NNEs are unambiguous.
The algorithm does not allow more than one splits
at the same position. Thus if a string w is split as
w0 + w1 + w2 + w4, it can not be split again as
w0 + w5 + w6 + w4. This splitter therefore, can
not be used to split the strings that are ambiguous,
since it does not allow two different ways of split-
ting a substring.

293



References
[Akshar Bharati2006] V Sheeba Akshar Bharati, Amba

P Kulkarni. 2006. Building a wide coverage mor-
phological analyser for sanskrit: A practical ap-
proach. First National Symposium on Modeling and
Shallow Parsing of Indian Languages,IIT Mumbai.

[Arjuna and Huet2014] S. R. Arjuna and Gérard Huet.
2014. Semi-automatic analysis of Navya-Nyāya
compounds, SALA-30, Hyderabad. SALA-30, Uni-
versity of Hyderabad.

[Holz and Biemann2008] Florian Holz and Chris Bie-
mann. 2008. Unsupervised and knowledge-free
learning of compound splits and periphrases. In CI-
CLing, pages 117–127. Lecture Notes in Computer
Science - Springer.

[Huet and Goyal2013] Gérard Huet and Pawan Goyal.
2013. Design of a lean interface for Sanskrit corpus
annotation. In Dipti Mishra Sharma, Rajeev Sang-
hal, Karunesh Kr.Arora, and B.K.Murthy, editors,
Proceedings of ICON-2013, pages 177–186.

[Huet2009] Gérard Huet. 2009. Sanskrit Segmenta-
tion, South Asian Languages Analysis Roundtable
xxviii, Denton, Texas. South Asian Languages
Analysis Roundtable XXVIII.

[Hyman2008] Malcolm D. Hyman. 2008. From
Paninian Sandhi to Finite State Calculus. In San-
skrit Computational Linguistics, pages 253–265.

[Koehn and Knight2003] Philipp Koehn and Kevin
Knight. 2003. Empirical Methods for Compound
Splitting. In Proceedings of the Tenth Conference
on European chapter of the Association for Com-
putational Linguistics - Volume 1, pages 187–193.
Association for Computational Linguistics.

[Kulkarni and Shukl2009] Amba Kulkarni and De-
vanand Shukl. 2009. Sanskrit morphological anal-
yser: Some issues. Indian Linguistics, 70(1-4):169–
177. in the Festscrift volume of Bh. Krishnamoorty.

[Kumar et al.2010] Anil Kumar, Vipul Mittal, and
Amba.P.Kulkarni. 2010. Sanskrit Compound
Processor. In Sanskrit Computational Linguistics,
pages 57–69.

[Macherey et al.2011] Klaus Macherey, Andrew M.
Dai, David Talbot, Ashok C. Popat, and Franz Och.
2011. Language-independent Compound Splitting
with Morphological Operations. In Proceedings of
the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies - Volume 1, pages 1395–1404. Association for
Computational Linguistics.

[Mittal2010] Vipul Mittal. 2010. Automatic Sanskrit
Segmentizer Using Finite State Transducers. In ACL
(Student Research Workshop), pages 85–90.

[Natarajan and Charniak2011] Abhiram Natarajan and
Eugene Charniak. 2011. Sˆ3 - Statistical Sandhi
Splitting. In IJCNLP, pages 301–308.

[Sastry2005] Sriram Sastry. 2005. Pañcalaks. an. ı̄-
sarvasvam. Bharatiya Vidya Sansthan, Varanasi.

[Varadacharya2007] Varadacharya. 2007. Tarka-
saṅgraha with Āloka commentary. Arya Grantha
Prakashan, Mysore.

294


