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Abstract

This paper describes a conceptual framework that enables online NLP pipelined applications to
solve various interoperability issues and data exchange problems between tools and platforms;
e.g., tokenizers and part-of-speech taggers from GATE, UIMA, or other platforms. We propose
a restful wrapping solution, which allows for universal resource identification for data manage-
ment, a unified interface for data exchange, and a light-weight serialization for data visualization.
In addition, we propose a semantic mapping-based pipeline composition, which allows experts
to interactively exchange data between heterogeneous components.

1 Introduction

The recent work on open infrastructures for human language technology (HLT) research and develop-
ment has stressed the important role that interoperability should play in developing Natural Language
Processing (NLP) pipelines. For example, GATE (Cunningham et al., 2002), UIMA (Ferrucci and Lally,
2004), and NLTK (Loper and Bird, 2002) all allow integrating components from different categories
based on common XML, or object-based (e.g., Java or Python) data presentation. The major categories
of components included in these capabilities include: Sentence Splitter, Phrase Chunker, Tokenizer,
Part-of-Speech (POS) Tagger, Shallow Parser, Name Entity Recognizer (NER), Coreference Solution,
etc. Pipelined NLP applications can be built by composing several components; for example, a text
analysis application such as “relationship analysis from medical records” can be composed by Sentence
Splitter, Tokenizer, POS Tagger, NER, and Coreference Resolution components.

In addition to interoperability, the very availability of a component can also play an important role in
building online application based on distributed components, especially in tasks such as online testing
and judging new NLP techniques by comparing to existing components. For example, the Language Grid
(Ishida, 2006) addresses issues relating to accessing components from different locations or providers
based on Service-Oriented Architecture (SOAs) models. In this paper, we explore structural, conceptual
interoperability, and availability issues, and provide a conceptual framework for building online pipelined
NLP applications.

The conventional view of structural interoperability is that a common set of data formats and com-
munication protocols should be specified by considering data management, data exchange, and data
visualization issues. Data management determines how to access, store and locate sources of data. For
example, GATE provides pluggable document readers or writers and XML (with meta-data configura-
tion) serialization of reusable objected-based data. UIMA provides document or database readers and
writers and XMI serialization of common object-based data structures. The Language Grid provides Java
object serialization of data collections. Data exchange strategies describe how components communi-
cate their data. For example, GATE provides CREOLE (Collection of REusable Objects for Language
Engineering) data collections for data exchange. UIMA provides CAS (Common Analysis Structure),
and NLTK provides API modules for each component type. Similarly, the Language Grid provides LSI
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(Language Service Interface) for a concrete ontology for a given language infrastructure. Data visu-
alization facilitates manual reading, editing and adjudication. For example, GATE and UIMA provide
XML-based viewers for selection, searching, matching and comparison functionality.

The conventional view of conceptual interoperability is that expert knowledge should be used in bridg-
ing heterogeneous components. For example, GATE provides integration plugins for UIMA, OpenNLP,
and Stanford NLP, where experts have already engineered the specific knowledge on conversion strate-
gies among these components. This leaves open the question of how one would ensure the interoperable
pipelining of new or never-before-seen heterogeneous components, for which experts have not encoded
bridge protocols.

In order to achieve an open infrastructure of online pipelined applications, we will argue two points
regarding the conceptual design, considering both interoperability and availability:

• Universal resource identification, a SQL-like data management, and a light-weight data serialization
should be added with structural interoperability in online infrastructure of distributed components.

• By verifying and modifying inconsistent ontology mappings, experts can interactively learn con-
ceptual interoperability for online heterogeneous components pipelines.

2 Data, Tool and Knowledge Types

Interoperability in building pipelined NLP applications is intended ensure the exchange of information
between the different NLP tools. For this purpose, existing infrastructures like GATE or UIMA have
paid a lot of attention to common entity based data exchanges between the tools. When exchanging
data between heterogeneous tools (e.g., the GATE tokenizer pipelined with the NLTK POS tagger),
the knowledge of how these different entity based NLP tools can work together becomes much more
important, because there might be exchange problems between heterogeneous data or tool information,
and we may need specific knowledge to fix them. Thus, when considering interoperability, the main flow
of information should be exchanged in the open infrastructure consisting of source data information,
NLP tools information, and the knowledge that allows the tools to work together.

What are the main entity types of data and tools in designing an open infrastructure for online NLP
pipeline applications? From an abstract view of how linguistic analysis is related to human knowledge,
there are the following: Morphological, Lexical, Syntactic, Semantic, Pragmatic tool classifications; and
Utterance, Phoneme, Morpheme, Token, Syntactic Structure, Semantic Interpretation, and Pragmatic In-
terpretation data classifications. (Manaris, 1998; Pustejovsky and Stubbs, 2013). From a concrete appli-
cation perspective, where tools are available for concrete text mining for communities such as OpenNLP,
Stanford CoreNLP and NLTK, there are classification tools such as Sentence Splitter, Tokenizer, POS
Tagger, Phrase Chunker, Shallow Parser, NER, Lemmatizer, Coreference; and data classifications such
as Document, Sentence, Annotation, and Feature (Cunningham et al., 2002).
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Figure 1: A NLP pipeline can be a (sub)-process of an abstract five-step process
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Figure 2: An example NLP pipeline of a concrete six-step process54



The knowledge types needed for designing an open infrastructure also can be seen abstractly or con-
cretely. Abstractly, an NLP pipeline should be part of the process of morphological, lexical, syntactic,
semantic to pragmatic processing (see Figure 1). From a concrete view, each component of an NLP
pipeline should have any requisite preprocessing. For example, tokenization is required preprocessing
for POS tagging (see Figure 2). Such knowledge for building NLP pipelines can be interactively deter-
mined by the NLP expert or preset as built-in pipeline models.
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Figure 3: Information for NLP pipeline application description

We can put the above analyzed data, tool, and knowledge types with their meta-information together as
the information required for describing an NLP pipeline application (see Figure 3). Regarding the docu-
ment format, structure and style, for example, the Text Encoding Initiative (TEI)1 provides one standard
for text encoding and interchange, which also enables meta-information description. Concerning the
main part (see dashdotted-line part of Figure 3), it is generally referred to as the model of annotation.
For example, GATE has its own single unified model of annotation, which is organized in annotation
graphs. The arcs in the graph have a start node and an end node, an identifier, a type and a set of
features (Bontcheva et al., 2004). One standardization effort (Ide and Romary, 2004), the Linguistic
Annotation Framework (LAF) architecture is designed so that a pivot format, such as GrAF (Ide and
Suderman, 2007), can bridge various annotation collections. Another standardization effort, the Syntac-
tic Annotation Framework (SynAF) (Declerck, 2006), has evolved into the Morpho-syntactic annotation
framework (MAF) (Declerck, 2008), which is based on the TEI and designed as the XML serialization
for morpho-syntactic annotations. A NLP processing middleware, the Heart of Gold, treats XML stand-
off annotations for natively XML support, and provides XSLT-based online integration mechanism of
various annotation collections (Schäfer, 2006). The UIMA specifies a UML-based data model of anno-
tation, which also has a unified XML serialization (Hahn et al., 2007). Differently from Heart of Gold’s
XSLT-based mechanism, the conversion tools that bridge GATE annotation and UIMA annotation use
GrAF as a pivot and are provided as GATE plugins and UIMA modules (Ide and Suderman, 2009).

Thus, while a pivot standard annotation model like GrAF seems very promising, popular annotation
models like those provided by GATE annotations (see Figure 4) or UIMA annotations (see Figure 4)
will continue to exist and evolve for a long time. As a result, more bridge strategies, like the conversion
plugin (module) of GATE (UIMA) and the XSLT-based middleware mechanism, will continue to be nec-
essary. In the following sections, we consider the issue of the continuing availability of such conversion
functions, and whether the current realization of those two conversion strategies is sufficient to bridge the
various annotations made available by linguistic experts, without further substantial engineering work.

3 Towards A Conceptual Design of Online Infrastructure

In this section, we discuss the conceptual design of online infrastructure, focusing on both the interop-
erability and availability of the tools. Concerning the latter, the Service-oriented architecture (SOA) is

1http://www.tei-c.org/ 55



<!-- GATE -->

<GateDocument>

<TextWithNodes>

<Node id="15"/>Sonnet<Node id="21"/>

</TextWithNodes>

<AnnotationSet>

<Annotation Id="18" Type="Token"

StartNode="15" EndNode="21">

<Feature>

<Name className="java.lang.String">length</Name>

<Value className="java.lang.String">6</Value>

</Feature>

<Feature>

<Name className="java.lang.String">category</Name>

<Value className="java.lang.String">NNP</Value>

</Feature>

<Feature>

<Name className="java.lang.String">kind</Name>

<Value className="java.lang.String">word</Value>

</Feature>

<Feature>

<Name className="java.lang.String">string</Name>

<Value className="java.lang.String">Sonnet</Value>

</Feature>

</Annotation>

</AnnotationSet>

</GateDocument>

<!-- UIMA -->

<xmi:XMI

xmlns:xmi="http://www.omg.org/XMI"

xmlns:opennlp=

"http:///org/apache/uima/examples/opennlp.ecore"

xmlns:cas="http:///uima/cas.ecore"

xmi:version="2.0">

<cas:Sofa

xmlns:cas="http:///uima/cas.ecore"

xmi:id="1" sofaNum="1" sofaID="_InitialView"

mimetype="text"

sofaString="Sonnet." />

<opennlp:Token

xmi:id="18" sofa="1"

begin="0" end="6"

posTag="NNP" />

<cas:View sofa="1"

members="18"/>

</xmi:XMI>

Figure 4: Examples of GATE XML annotation and UIMA XML annotation

a promising approach. For example, while the Language Grid infrastructure makes NLP tools highly
available (Ishida, 2006), it can still have limitations regarding interoperability issues. Generally, service
interfaces can be either operation-oriented which allows flexible operations with simple input/output
data, or resource-oriented which allows flexible input/output data with simple operations. The NLP
processing services of Language Grid are more or less operation-oriented, and lack a certain structural
flexibility for composing with each other. We present a resource-oriented view of NLP tools, which
should have universal resource identification for distributed reference, an SQL-like data management,
and a light-weight data serialization for online visualization. We propose Restful wrapping both data and
tools into Web services for this purpose.

Restful wrapping makes both data and tools easy-to-access and with a unified interface, enabling
structural interoperability between heterogeneous tools, assuming standoff annotation from various NLP
tools is applied. For example, if the NLP tools are wrapped into Restful services so that they are operated
through HTTP GET protocol, and the XML serialization of UIMA annotation is applied for input and
output, each NLP components will have the same interface and data structure.

Once an internationalized resource identifier (IRI) is given, all the input and output of tools can be
distributed and ubiquitously identified. Moreover, a PUT/GET/POST/DELETE protocol of restful data
management is equivalent to an SQL-like CRUD data management interface. For example, an IRI can
be defined by a location identifier and the URL of the data service (Wright, 2014).

In addition, a lightweight serialization of stand-off annotation can benefit the online visualization of
data, which will be easy for experts to read, judge, or edit. For example, the XML serialization of UIMA
annotation can be transferred into JSON serialization, which is preferred for online reading or editing.

NLP tool services will be available by applying restful wrapping (see Figure 5). However, structural
interoperability based on the restful wrapping is not enough for conceptual interoperability. For example,
if an OpenNLP tokenizer is wrapped using HTTP GET protocol and GATE annotation, but a Stanford
NLP POS tagger is wrapped using UIMA annotation, it will raise conceptual interoperability issues.
Based on the previously mentioned bridging strategies, a conversion service from GATE annotation to
UIMA annotation should work, or a transformation interaction with a XSLT-like service should work.
We would like to assume that the interaction and contribution of linguistic experts without online support
by engineers can solve this issue. But how can we design the interaction to take advantage of such expert
knowledge?

We present a semantic mapping-based composer for building an NLP pipeline application (see Fig-56



NLP Pipeline Application

NLP Tool Service

Source Data

(Document, Database)

NLP Tool

( OpenNLP, Standard 

NLP,  NLTK, etc )

Restful Wrapping
1. International resource identifier (IRI) ID

2. Unified interface, GET/PUT/POST/DELETE

3. Self-description message like XML or JSON

Meta-Information

( Provider, License, 

Location)

Semantic Mapping based Composing
1. NLP tool service pipeline engine

2. Proxy service of interactive ontology mapping

Workflow Engine

( BPEL )

Stand-off Ontology

(Vocabulary) 

Meta-Information

(Process Requirements)

Figure 5: Conceptual design of online NLP pipeline application

ure 5). Conceptual interoperability requires the same vocabularies for the same concept of a standoff
annotation. Once we have the standoff ontology of annotation, we can perform automatic semantic map-
ping from NLP tool output to that ontology. The interaction from experts will be triggered once the
automatic semantic mapping has failed (see Figure 6). For example, both GATE and UIMA XML an-
notations could be transformed into JSON formation, which is easy to present as tree structure entities.
Based on these tree structure entities, automatic ontology mapping tools like UFOme, which identifies
correspondences among entities in different ontologies (Pirró and Talia, 2010), can be applied to build
up various mapping solutions. Knowledge from experts can also be applied interactively, and successful
mapping solutions can be stored for further reference and use.
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</TextWithNodes>
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Figure 6: Interactive ontology mapping of two different annotations of NLP tools (Tree structures are
learned from XML annotations in Figure 4 )

The semantic mapping will be interactively created by the experts, when heterogeneous components
with different data models are used in the NLP pipeline created by the end-users, who create the NLP
pipeline without consideration of components interoperability. It means that this semi-automatically
created semantic mapping separates acquiring the knowledge of tool requirements from end-users and
acquiring the knowledge of data interpretation from experts (see Figure 3). For example, the end-users
chooses two POS Taggers (OpenNLP and NLTK) and two NER tools (OpenNLP and Stanford NLP)
components in the NLP application of “relationship analysis from medical records”. When NLTK POS57



Tagger output are serialized in to JSON formats but cannot be directly used as the input of Stanford NLP
NER component which requires the UIMA annotation, a semantic mapping issue will be automatically
created and reported to experts. This NLTK POS Tagger JSON format output will be mapped into
the standoff ontology of annotation of POS Tagger. After that, this output will bridge with the UIMA
annotation of the Stanford NLP NER. This particular semantic mapping between JSON serialization of
a NLTK POS Tagger and the standoff ontology of annotation of POS Tagger, and between the standoff
ontology of annotation of POS Tagger and the UIMA annotation of Stanford NLP NER will be reused in
the NLP application created by other end-users.

Our conceptual framework does not exclusively rely on the above interoperability design. Our con-
ceptual framework (see Figure 5) should integrate existing knowledge of various annotation frameworks,
for example, the alignment knowledge from the Open Annotation models (Verspoor and Livingston,
2012) and the pivot bridge knowledge from the GrAF (Ide and Suderman, 2007) under the Linguistic
Annotation Framework (LAF). Thus, existing pivot conversion solutions and XSLT-based middleware
solutions can also be applied. Our interactive ontology mapping design provides a more flexible choice
for linguistic experts to build up NLP pipeline applications on top of heterogeneous components, without
online help from engineers. Below we present varying levels of online NLP applications, according to
what kind of extra support would be needed for composing different NLP components:

• Components are interoperable without extra data exchange issues. For example, tools are from the
same community (e.g., only using OpenNLP tools).

• Components are interoperable with existing solutions of data exchange issues. For example, tools
are from popular communities such as GATE plugins or UIMA modules.

• Components are interoperable with extra knowledge from experts. For example, tools are both from
popular communities and personal developments or inner group software.

• Components are interoperable with considerable effort from both experts and engineers. For exam-
ple, tools are developed under novel ontology designs.

According to these levels, our conceptual framework is targeted at the third level of interoperability
issues. Our proposal will generate a ontology mapping storage (see Figure 6), which we hope will
contribute to improving a standard annotation ontology.

4 Conclusion

In this paper, we have tried to present a conceptual framework for building online NLP pipeline applica-
tions. We have argued that restful wrapping based on the Service-Oriented Architecture and a semantic
mapping based pipeline composition benefit both the availability and interoperability of online pipeline
applications. By looking at the information surrounding the data, tools, and knowledge needed for NLP
components pipelines, we explained how experts can be limited in building online NLP pipeline applica-
tions without help from engineers, and our restful wrapping and interactive ontology mapping design can
help in such situations. Finally, we have described various levels of support needed for building online
NLP pipelines, and we believe that this study can contribute to further online implementations of NLP
applications.
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