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Abstract

Less-configurational languages such as German often show not just morphological variation but
also free word order and nonprojectivity. German is not exceptional in this regard, as other
morphologically-rich languages such as Czech, Tamil or Greek, offer similar challenges that
make context-free constituent parsing less attractive.

Advocates of dependency parsing have long pointed out that the free(r) word order and non-
projective phenomena are handled in a more straightforward way by dependency parsing. How-
ever, certain other phenomena in language, such as gapping, ellipses or verbless sentences, are
difficult to handle in a dependency formalism.

In this paper, we show that parsing of discontinuous constituents can be achieved using easy-first
parsing with online reordering, an approach that previously has only been used for dependencies,
and that the approach yields very fast parsing with reasonably accurate results that are close to
the state of the art, surpassing existing results that use treebank grammars. We also investigate
the question whether phenomena where dependency representations may be problematic – in
particular, verbless clauses – can be handled by this model.

1 Introduction

Automatic syntactic parsing has been fruitfully incorporated into sytems for information extraction
(Miyao et al., 2008), question answering, machine translation (Huang and Chiang, 2007), among others,
but we also see syntactic structures being used to communicate facts about language use in the digital
humanities or in investigations of the language of language learners. In all of these applications, we see
fruitful use both of constituent trees, and of dependency trees.

Depending on the application, different criteria may become important: on one hand, the ability to
produce structures that are (intuitively) compatible with semantic composition, or where arguments and
adjuncts are related to their predicate in the tree, which commonly requires dealing with nonprojectivity.
Such a formalism should also deal with a wide range of constructions including verbless clauses. Finally,
parsing speed is somewhat important for many application cases, and a parser that changes the tokeniza-
tion of the input or inserts additional “null” tokens runs afoul many of the fundamental assumptions in
pipelines for semantic processing or information extraction.

If we look at the current three largest treebanks for German, namely the Hamburg Dependency Tree-
bank (Foth et al., 2014) with 101 000 sentences, the TüBa-D/Z treebank (Telljohann et al., 2009) with
85 000 sentences or the Tiger treebank (Brants et al., 2002) with about 50 000 sentences, we see find a
continuum of the nonprojective single-parent dependencies of the HDT on one side and projective phrase
structures of TüBa-D/Z, with Tiger straddling in the middle with a scheme that is neither projective nor
limited to dependencies, and which represents, we’ll argue, both the best and the worst of both worlds.
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Because of its expressivity, the Negra/Tiger scheme has also been used for other languages such as
Swedish Volk and Samuelsson (2004) as well as Georgian/Russian/Ukrainian (Kapanadze, 2012), and as
Early New High German (Pauly et al., 2012).

The Tiger scheme is arguably more expressive than either of the alternatives since it can capture
both elliptic clauses (which are difficult to represent in normal dependency schemes) and nonprojective
constructions (which have to be added as a second annotation layer in purely projective treebanks such
as TüBa-D/Z). It also makes it the most difficult to provide good automatic tool support, in terms of
effective parsing components or of annotation tools, since parsing of discontinuous constituents has only
recently become practical.

The straightforward approach of Kallmeyer and Maier (2013) to use a treebank-derived linear context-
free rewriting system suffers from near-exponential observed time consumption in practice. Approaches
that use context-free grammar approximation such as the ones of Schmid (2006), Cai et al. (2011) or
van Cranenburgh and Bod (2013), still have cubic time complexity; especially in the latter case, it is not
clear whether techniques that allow fast PCFG parsing such as those of Bodenstab et al. (2011) would be
suitable for the subsequent steps with increased grammar complexity.

In this paper, we present a novel application of the easy-first parsing principle of Goldberg and Elhalad
(2010) to discontinuous constituent parsing, which performs fast enough for interactive use (about 40
sentences per second) while giving an acceptable accuracy that is within the range normally seen with
unmodified treebank grammars.

In the remainder of the paper, we will include a short discussion of the interrelation between con-
stituency and dependency relations of syntax, as well as relevant prior work in section 2, and discuss the
construction of the parser in section 3. Section 4 and following contain a discussion of quantitative re-
sults on the Tiger corpus, whereas the penultimate section contains a more detailed analysis of the parser
behaviour on constructions that are problematic for either dependency parsers or projective constituent
parsing.

2 Constituency and Dependency: Good friends?

Constituency and dependency structures are two formalisms that are frequently used for theory-neutral
description of syntactic structures. In constituent structures, usually influenced by some version of X-
bar theory (see Kornai and Pullum, 1990 for a discussion; most notably, phrases are supposed to be
projections of a head), whereas in dependency structures it is usually assumed that each word has exactly
one governor (except one or more words that are attached to a virtual root node).

The common subset of both can be described (in the words of Hockenmaier, 2007) as “Heads, argu-
ments, modifiers, conjuncts”, which includes the grammatical function labels that are added in depen-
dency structures, and to varying extent in phrase structure treebanks. Nivre (2011) goes further and asks
whether we need constituents at all, since pure dependency parsing recovers arguments and adjuncts
while being generally faster (and, at least for results published on Czech and French which Nivre cites,
more accurate). Versley and Zinsmeister (2006) similarly argue that even “deep” dependency relations
(including nonlocal ones) can be recovered from single-parent dependencies if subsequent disambigua-
tion steps identify the scope of conjunctions, argument sharing in coordination, passive identification,
and lexicalized control phenomena. However, verbless clauses as they may occur in coordination pose
a problem to the idea that every phrase is headed by a preterminal, or the equivalent assumption in
dependency grammar that every argument has a governing head word.

In constituent treebanks, the solution to this problem is rather simple: deviate from the descriptive-
Xbar schema outlined earlier on and introduce headless projections for these clauses. Dependency tree-
banks lack this additional degree of freedom, and the choice is usually to either attach the respective
nodes somewhere else (Böhmova et al., 2001; Foth, 2006) or introduce empty nodes that are the gover-
nors of the orphaned subtrees (Bosco and Lombardo, 2006; Vincze et al., 2010; Dipper et al., 2013).

In dependency parsing, good solutions for nonprojective edges have been found, including pseudopro-
jective parsing (Nivre and Nilsson, 2005), approximate weighted constraint solving (Koo et al., 2010), as
well as deterministic online reordering (Nivre, 2009), which also has been applied to easy-first decoding
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strategies (Tratz and Hovy, 2011). Seeker et al. (2012) additionally employs an attach-inner opera-
tion which allows non-projective insertion into a structure that has already been built. Despite these
very reasonable solutions, the treatment of elliptic phrases, whether it is done using the somewhere-else
approach or by introducing empty nodes (see Seeker et al., 2012 and references therein) yields unin-
formative structures for subsequent processing components or even makes it necessary to re-engineer
subsequent processing stages for dealing with the newly introduced empty nodes, or (equally impracti-
cal) require the refactoring of annotated corpus resources to accommodate a new tokenization whenever
a null element is introduced or changed.

In constituency parsing, the problem of discontinuous constituents in parsing has, at least in German,
first been met with a proposals of raising degrees of complexity (among others, van Noord, 1991; Plaehn,
2000) and then silently been ignored both in the building of parsers and in their evaluation: researchers
from Dubey and Keller (2003) to the present day cite bracketing scores based on structures that would
make the reconstruction of “Heads, arguments, modifiers, and conjuncts” – usually – rather difficult.

Only relatively recently has the problem of discontinuous constituent parsing been tackled head-on.
Kallmeyer and Maier (2013) propose an approach that extracts a treebank LCFRS grammar, which is
then used for probabilistic parsing, albeit with near-exponential time consumption. Maier et al. (2012)
present an approach to make parsing in this approach more efficient by flattening coherent structures in
a sentence to one single sentence node and thus eliminating scrambling as a source of discontinuities,
together with other transformations, which allows a time complexity of O(n6) and parsing times of about
2 minutes for a 40-word sentence. van Cranenburgh and Bod (2013) use a more practical approach that
first creates phrase candidates from the n-best list of a projective constituent parser, and uses these to
construct LCFRS items that do not necessarily correspond to grammar rules seen in the training set, but
which are then matched against a collection of tree fragments extracted from the training set.

There exists some work on transforming dependency structures into constituents that may help in the
recovery of discontinuous constituents: Hall and Nivre (2008) propose to encode information about node
labels in the dependency labels, whereas Carreras et al. (2008) show that an ILP-based combination of
finding dependencies and adding phrase projections and adjunctions to a dependency backbone works
well for constructing structures matching those of the Penn Treebank. Seddah (2010) found that similar
spinal structures can be used for the French Treebank.

3 Incremental parsing

In general, statistical parsing follows one of several general approaches: one is the approach of item-
based decoding, which is centered around the creation of a parse forest that implicitly stores a very large
number of possible trees, followed by either dynamic programming in the case of projective parsing (e.g.
(Collins, 2003)) or techniques that provide an approximate or exact solution to the intractable problem
in the case of nonprojective parsing with second-order factors (Koo et al., 2010). The second large group
of approaches is based on incremental structure building, including the approaches of Magerman (1995)
or Sagae and Lavie (2006) in the case of constituent parsing, or of Nivre (2003) and following in the case
of dependency parsing, with approaches such as Stolcke (1995) or Huang and Sagae (2010) occupying a
middle ground.

While the idea of head lexicalization has played a large role in projective constituent parsing, there are
rather few approaches that attempt to bridge the gap between dependency and constituency representa-
tions in a way that could be exploited for the efficient building of discontinuous constituent structures.

Among these, both the approaches of Hall and Nivre (2008) and of Carreras et al. (2008) could be
described in terms of a spinal transform: each terminal in the input string is assigned a set of governing
nodes that form its spine; parsing then consists of assigning a dependency structure among the terminal
nodes and of assigning spines and the relation to each other.

In the remainder of this section, we describe two approaches that we used to perform nonprojective
constituent parsing in expected linear time: one is relatively close to the approach of Hall and Nivre
(2008), but instead of assigning nodes to the first terminal of their yield, uses a strategy more like the
spinal tree adjoining grammr of Carreras et al. (2008). The other is an application of the principle
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Figure 1: Example for an intermediate state in EaFi, with the preferred action candidates for each position

of easy-first parsing, which has been used for unlabeled dependency parsing by Goldberg and Elhalad
(2010), and for non-projective labeled dependency parsing by Tratz and Hovy (2011), towards discon-
tinuous constituency parsing. Because computed feature vectors can be memorized and only have to be
recomputed in a small window around the last parser action, this latter approach, just as a left-to-right
transition-based parser, has an expected time consumption that is linear in the number of words to be
parsed.

3.1 ADG: Constituency-to-Dependency Reduction

Our baseline is an approach close in spirit to Hall and Nivre (2008): The tree with node labels is turned
into a dependency graph that encodes, on the governor edge of each terminal, a combination of (i) the
node labels on the spine of this node, and (ii) the level at which this node attaches to its parent’s spine.

We change two parameters of Hall and Nivre’s approach: on one hand, we do not use the first terminal
in the yield of a node as its representative but the head according to the head table that we also use to
assign the head in the easy-first parser. The reason for this is a practical one: using the head, we get
a distribution of 531 different spine/level combinations when we use the head, whereas we would get
about 1525 categories when we use the first terminal.

To ensure efficient parsing, this list is further pared down to 100 entries, with the remaining entries
being replaced by an UNK placeholder. In decoding, terminals with these entries are assigned the most
frequent combination of spine and parent category for the POS tags of the node and its governor, and the
topmost spine node with a matching category (or simply the topmost one) would be chosen.

The decoding algorithm and parameter settings for MaltParser were then determined using the Malt-
Optimizer software (Ballesteros and Nivre, 2012). The settings selected use the stack-projective algo-
rithm with head+path marking strategy for pseudoprojective parsing.1

Hall and Nivre’s approach is more complex than the approach presented here, and involves interleaving
of identifying dependency edges (using the nonprojective Covington parsing scheme) and the stepwise
determination of the topmost edge label, then the path of edge labels, and finally the path of constituent
labels and its attachment. However, we find that this approach of dependency reduction constitutes a
very reasonable intelligent baseline, and is able to perform at a similar speed than our approach.

3.2 EaFi: Easy-first Constituency Parsing

The main approach that we will present here constitutes an adaptation of the Easy-First approach to
nonprojective constituent parsing. The parser keeps track of a sequence of nodes, beginning with the
terminals that are output by the preprocessing consisting of morphological analyzer and lemmatization,
and at each point applies one of several actions:

• Reduce-Unary: one node is grouped under a unary node of a given category, with the restriction that
the corresponding unary rule must have been observed in the treebank. (Additionally, we collapse
any two nodes with the same category embedding each other, which sometimes occurs in the Tiger
treebank when several empty-headed phrases are assumed to embed each other in coordination).

1MaltParser is able to do direct nonprojective parsing using the reordering approaches of Nivre (2009) and Nivre et al.
(2009), however the pseudoprojective approach was selected in MaltOptimizer’s parameter selection.
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Basic featureset
Unigram: n ∈ ni−2 . . . ni+3 CnPn CnWn CnMn CnLn
Left/Right Children: n ∈ ni,Lni,Rni+1,Lni+1,R CnPn
Bigram: m,n ∈ ni−1ni . . . ni+2ni+3 WmWn WmCn CmWn WmWn
Trigram: r,m,n ∈ ni−1nini+1 . . . ni+1ni+2ni+3
Medium featureset
Bigram+Child: m,n, r ∈ {nini+1ni+1,L;nini+1ni,R;

ni+1ni+2ni+1,R;nini−1ni,L} CmCnCr CmCnPr
Distance: ∆ ∈ {dist(ni, ni+1),gap(ni, ni+1)} ∆Cm ∆Cn ∆Pm ∆Pn

m,n = ni, ni+1 ∆Fm ∆Fn
Large featureset
Gap bigram: m,n ∈ ni−1ni+2, nini+2 WmWn WmCn CmWn WmWn
Bigram+2child: m,n ∈ ni−1ni . . . ni+2ni+3;C,D ∈ L,R CmCnCmCCnD CmCnCmCPnD

CmCnPmCCnD

Bigram-Dist m,n ∈ ni−1ni . . . ni+2ni+3 ∆
∆ = dist(m,n) ∆PmPn

Table 1: Features used: W=word, C=phrase label, M=head morph, P=head pos

• Reduce-Binary: two nodes are grouped under one node, with the head of the new node being
determined by a head table.

• Add-Left/Add-Right: one node is added as a child to a node on its left/to its right.

• Swap: if two nodes are in surface order (i.e., the head of the first node being left of the head of the
second node in the normal word ordering), they can be swapped.

In addition, we experimented with a retag action which allows the parser to change the tag of a word
that has been mistagged. While this has a positive effect on the parser’s accuracy for verb phrases, it also
results in a slight deterioration of other phrases, resulting in a very slight decline in performance.

To decide among different parsing actions, the parser uses a linear classifier with a pre-defined feature
set (POS, word form, morphological tag and lemma in a two-token window around the two nodes that
are being considered, the category and part-of-speech tag of the leftmost and rightmost dependent of
the nodes that are being considered; bigrams of words, categories, and one of each, in a window of
one around the two nodes being considered, and trigrams consisting of two category and one category,
part-of-speech tag, or word form within said window).

Weights are learned by performing online learning with early stopping, similar to the strategy em-
ployed by Collins and Roark (2004). We use the Adaptive Gradients method (Duchi et al., 2011) for
weight updates and averaging of the weight vector (in a fashion identical to the averaged perceptron).
We found that 5-10 epochs of training on Tiger were sufficient to get a mostly usable model, and used
15 epochs of training for the results reported in the later section. Considering that Goldberg and Elhalad
(2010) use a learning strategy that performs multiple perceptron updates until the constraint violation is
fixed, we also tried this strategy but did not achieve convergence.

3.3 Reordering Oracles for Constituents
The basic idea for reordering oracles in deterministic dependency parsing has been presented by Nivre
(2009). In the following, we present a straightforward adapation of the idea to constituent trees.

Given a set of terminals T = {w1, . . . ,wn} that is totally ordered by a relation <, an unordered tree
graph is a directed graph (NT ∪T,⊲)with nonterminal (NT) and terminal nodes (T), where the transitive
hull ⊲∗ of the parent relation ⊲ is acyclic, no node has a parent from T , and exactly one node, vroot, has
no parent.

An node ordering ≺ is consistent with ⊲ whenever, for any node u and an descendant u′ ⊳∗ u, and a
node v with an descendant v′ ⊳∗ v, u ≺ v entails u′ ≺ v′.

43



A tree cut of a tree is a sequence v1, . . . , vn that contains exactly one node from each path vroot, . . .wi

from the root to a terminal. Nivre’s insight, applied to constituent structures, is that sorting the terminals
in a ⊲-compatible order ≺ will allow us to use normal projective parsing techniques to find a sequence of
reductions that parses this tree, since any needed reduction would reduce one ≺-ordered cut to another≺-ordered cut. In the following, two orderings ≺, ≺′ are considered equivalent iff they only differ on pairs
of nodes u, v where one is the ancestor of the other.

Two subtrees under nodes u and v with yields yield(u) = {u′ ∈ T ∣u′ ⊲∗ u} and yield(v) = {v′ ∈
T ∣v′ ⊲∗ v} are separated by a surface ordering < whenever any two terminals u′ of u and v′ of v fulfill
u′ < v′. Note that two nodes without gaps (i.e. block-degree one) either embed each other (in which
case u ⊲∗ v or v ⊲∗ u is the case) or they are separated by <. In a slight abuse of notation, we extend< from a total order of the terminals to a partial order of the nonterminals by writing u < v whenever u
and v are separated. For projective trees, this extension of < specifies exactly one total relation (modulo
equivalence), and which is also ⊲-compatible.

For trees that are non-projective, we can have the situation where two nodes u and v are overlapping
in that u has descendants u′, u′′ and v has a descendant v′ with u′ < v′ < u′′. Then we cannot extend <
to an ordering of nodes that is ⊲-compatible. However, we can always find an ordering that respects <
locally such that, for two children u′ and u′′ of u, u′ < u′′ entails u′ ≺ u′′. Nivre proposes the sequence
assigned by an in-order traversal of the dependency tree. In our case, any function h ∶ NT → (NT ∪ T )
that assigns a “head” child to each node will do the same, with an extension h∗(w) = w for all terminals
and h∗(v) = h∗(h(v)) otherwise, through u ≺ v ∶⇒ h∗(u) ≺ h∗(v).2

A transition sequence for parsing a tree is then a sequence consisting of reductions (leading from
a cut . . . vi, u

′, . . . u′′, vj , . . . with a contiguous subsequence of the children of u to the sequence
. . . vi, u, vj , . . . that contains u instead) and swaps (leading from a cut . . . vi, vj . . . that has h∗(vi) and
h∗(vj) ordered with respect to < but not with respect to ≺ to a cut . . . vj , vi . . . that is orders h∗(vi) and
h∗(vj) with respect to ≺ but not <).

Nivre (2009) defines an oracle for shift-reduce parsing that is swap-eager in that it always allows
swapping. In Nivre’s case, the oracle is deterministic and always performs the swapping before any
reduction.

Nivre et al. (2009) note that the swap-eager oracle performs too many swaps because it swaps groups
of words that are later reduced. They propose a swap-lazy algorithm that does not swap two nodes if
one of them is adjacent to another node that is within the same maximal projective subtree.

The perspective of parsing as a series of swap and reduce actions allows us to specify a strategy that
performs less reductions in some cases: Consider that we need to reorder the <-contiguous sequence of
terminals to the ≺-contiguous sequence that is needed for reducing the tree to its final form. The number
of swaps performed, if we assume that we always swap adjacent constituents, is exactly equal to the
number of terminal pairs vi, vj that are <-ordered but not ≺-ordered. Any reduction of the number of
swaps relative to this baseline will come from a group of nodes with heads vi1, . . . vik that are reduced to
their parent vi before being swapped with a node vj .

We can take advantage of this fact by using any node with blockdegree one as a barrier: no node that
is a descendant of this node can be swapped with a node that is not a descendant before the reduction
that results in the barrier node has been carried out. Because any projective subtree has all nodes as
barrier nodes, any pair of nodes whose swapping is delayed by the swap-lazy approach will be kept from
swapping by a barrier. Conversely, nodes with a block-degree of one can also occur higher-up in the tree
(e.g. as clause or sentence nodes), in which case they can act as a barrier even when their subtrees are
not projective.

4 Quantitative Evaluation

In order to evaluate our approach, we used the Tiger treebank, with the split used in the SPMRL’2013
shared task (about 40 000 training sentences and 5 000 development and test sentences each; see also

2Note that the concrete choice of h is quite arbitrary: we could take the actual head child, but also the first or last child of a
node.
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` ≤ 30 ` ≤ 40
F1 F1 LA EX NP PP VP

EaFi: Preprocessing (large, barrier, noretag)
gold 77.95 76.64 92.17 41.71 75.0 82.8 56.6
marmot 75.51 73.97 91.08 38.48 72.7 81.3 48.3
pred 74.71 73.18 90.81 37.67 72.1 80.6 48.9
ADG, marmot preprocessing
marmot 73.42 72.24 90.95 33.77 68.0 77.4 52.1
EaFi: Train projective, evaluate on real data
gold 76.86 75.50 92.13 38.38 74.4 81.7 48.2

marmot 74.43 72.98 91.20 36.52 72.1 79.8 42.6

pred 73.75 72.32 90.72 35.55 71.8 79.2 42.4

EaFi: Train projective, evaluate on projective
gold 79.95 78.59 93.40 44.20 76.1 83.0 68.7

marmot 77.00 75.64 92.38 40.79 73.8 81.1 59.1

pred 76.25 74.94 91.87 39.60 73.5 80.5 58.4

Table 2: Results on SPMRL’13-dev (German, Tiger treebank) with varying preprocessing

` ≤ 30 ` ≤ 40
F1 F1 LA EX NP PP VP

EaFi: Feature set (barrier, noretag)
basic 70.26 68.60 89.03 34.03 69.1 77.1 40.1
medium 73.31 71.75 90.13 36.22 70.5 79.9 45.8
large 74.71 73.18 90.81 37.67 72.1 80.6 48.9
EaFi: Reordering (large, noretag)
eager 73.33 71.66 90.33 37.43 71.7 80.6 47.8
lazy 74.85 73.37 90.85 38.08 72.2 80.8 49.0
barrier 74.71 73.18 90.81 37.67 72.1 80.6 48.9
EaFi: Tag correction (large, barrier)
noretag 74.71 73.18 90.81 37.67 72.1 80.6 48.9
retag 74.62 73.16 90.83 37.51 71.5 80.3 49.4

Table 3: Results on SPMRL’13-dev (German, Tiger treebank) with pred preprocessing
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Seddah et al., 2013 for a more extensive description), with the state-of-the-art preprocessing results
for part-of-speech and morphological tags3 which were produced by Björkelund et al. (2013) using the
MarMoT tagger (Müller et al., 2013), in addition to the gold-standard preprocessing (gold) and automatic
predictions (pred) that are part of the official dataset of the SPMRL shared task.

We applied two transformations to the data, which are automatically reversed in the parser output:
one is adding NPs into PPs, which is also done by Seeker et al. (2012), and the other is that we make
parenthetical material subordinate to its embedding clause, as Maier et al. (2012) also advocate.

Evaluation was performed using the evaluator from the DISCODOP package of van Cranenburgh and
Bod (2013), excluding punctuation and the ROOT label added by disco-dop from the evaluation. Train-
ing was run for 15 epochs. Parsing the 5000 development sentences took about 90-120 seconds for
EAFI, which corresponds to 40-55 sentences per second (on a Core i7 2GHz) and is slightly faster than
MaltParser using the ADG-derived model and a LibLinear classifier.

In the results in table 2, we see the results for the dependency-to-constiuents approach, as well as for
the easy-first parsing with different reordering heuristics. As in Nivre et al. (2009), we notice that the
lazy strategy that keeps projective constituents together yields better results than the eager strategy which
allows moving right away. The overall results – around 76.6% f-score on gold tags and 73.1% f-score on
predicted tags in sentences of 40 words and below – indicate the promise of this approach, even though
they are significantly below the results of van Cranenburgh and Bod (2013) who achieve more than 78%
f-measure using predicted tags on a different split of the Tiger treebank. Van Cranenburgh’s approach is
about 15-20 times slower than ours, using 10 seconds for a 40-word sentence.

For informative purposes, we also included results for projective parsing in table 2, using a conversion
that first attaches punctuation and then projectivizes the tree by detaching non-head children.4 Compar-
ing the nonprojective parser and a variant that was trained on the projectivized version of the dataset,
we see that the projective parser is about 1-2 percent worse than the nonprojective one, corresponding
to our intuition that the reordering part improves the parsing on average. We also see that the projective
evaluation yields an estimate of parser performance that is substantially more optimistic than evaluating
on the original treebank.

4.1 Comparison with Related work
Tables 4 and 5 show previous results for discontinous constituent parsing on the Tiger and Negra tree-
banks. The current best results on the Tiger treebank have been achieved by van Cranenburgh and Bod
(2013), whose approach yields 78.8% Parseval F1 measure on the Tiger treebank in the split by Hall and
Nivre (2008), and 76.8% on the Negra treebank, in both cases with above 40% of exact matches among
the sentences of up to 40 words. Kallmeyer and Maier (2013) only report results on shorter sentences in
Negra for their approach using a modified treebank LCFRS. They achieve 75.6% on sentences of up to
30 words.

A recent approach that attempts to speed up discontinuous constituent parsing is the one by Angelov
and Ljunglöf (2014), whose parser takes about 100 seconds for a length-40 sentence, which can be
reduced to 10 seconds for a length-40 sentence with an approximate search strategy. For sentences
between 5 and 60 tokens, their approach reaches an F1 score of 69.3%, which however deteriorates
quickly when approximate search is used, to 61.9% F1 in the latter case.

It is quite evident that pushing for more speed in these formalisms forcibly leads to a deterioration
in the quality of the results. As such, we think that the speed/quality tradeoff achieved in our system is
quite useful.

5 Qualitative Analysis

In the following, we will provide a categorization of the phenomena concerning verbless clauses on
one hand, and discontinuous constituents on the other. Table 6 contains a breakdown on these types of

3Data from http://www.cis.lmu.de/˜muellets/marmot/marmot_spmrl.tar.bz2, version with file dates
of June 13th 2014. See http://code.google.com/p/cistern/wiki/marmotSPMRL

4The SPMRL shared task dataset is idiosyncratic in that it deprojectivizes before attaching punctuation, which leads to a
result that is rather dissimilar to the original treebank.
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` ≤ 30 ` ≤ 40
F1 EX F1 EX

Hall and Nivre (2008), golda — — 79.93 37.78
Hall and Nivre (2008), preda — — 75.33 32.63
van Cranenburgh and Bod (2013), preda — — 78.8 40.8
This work, golda 76.47 40.61 74.23 37.32
Maier (2010), LCFRS goldc 73.43 29.87 — —
Maier (2010), CFG goldc 75.57 31.80 — —
This work, goldb 77.95 43.81 76.64 41.71
This work, gold, eval w/ ROOTbc 81.13 43.81 79.80 41.71

a) Hall&Nivre split b) SPMRL split c) includes the ROOT node in the evaluation

Table 4: Previous results on the Tiger treebank

` ≤ 30 ` ≤ 40
F1 EX F1 EX

Maier (2010), LCFRS goldc 71.52 31.65 — —
Maier (2010), CFG goldc 74.04 33.43 — —
van Craenburgh (2012), LCFRS, gold — — 67.26 27.90
van Craenburgh (2012), Disco-DOP, gold — — 72.33 33.16
Maier et al. (2012) 74.5 — — —
Kallmaier and Maier (2013), LCFRS, gold 75.75 — — —
van Cranenburgh and Bod (2013), gold — — 76.8 40.5

c) includes the ROOT node in the evaluation

Table 5: Previous results on the NeGra treebank

phenomena according to whether they are:

• correctly parsed (+): when the incredients for the construction are present in the parse and they are
combined in a suitable fashion.

• missed (o): when the ingredients for the construction are present, but combined in another way –
for example, an extraposition where the extraposed item is misattached

• broken (-): when the ingredients for the construction are not present and the parse has a completely
different structure.

Many of the same categories are discussed by Seeker and Kuhn (2012), who only discuss examples,
and by Maier et al. (2014), who published a list of sentence numbers for each phenomenon that is,
however, disjoint with the development portion considered here. Although the distinctions between
“missed” and “broken” analyses are somewhat subjective, we think that it is still informative in the sense
that it helps to compare the relative difficulty of the problems involved.

5.1 Types of Verbless Clauses
In their conversion Seeker and Kuhn (2012) found 3 035 sentences that contain at least one empty node
in the Tiger treebank, or about one every 16 sentences. While this phenomenon may be more frequent in
spontaneously-produced text such as it may occur in user-generated content, it is still quite frequent.

Seeker et al. only distinguish among edge labels, followed by a guess on the clause type that they need
in order to place the inserted null element.

In this work, we will concentrate on verbless VP and S nodes, with rougly three categories:
The first consists of verbless copula clauses that mostly occur at top level,5 and where the most

obvious way to build a complete clause would be to add a be copula to the clause.
5sentences 40499, 41442, 41468, 41676, 41682, 41736, 41743, 42566, 42606, 42738
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ADG/marm large/pred

+ o - + o -
copula clauses 3 4 3 2 5 3
gapping/ellipsis 0 4 6 0 4 6
parentheticals 1 6 4 0 4 6
extraposition 1 7 2 0 7 3
scrambling 3 2 4 3 1 5
topicalization 3 6 1 4 4 2

+) construction parsed ok, o) construction missed, -) broken parse

Table 6: Qualitative analysis: Counts for ok/missed/broken examples

A second group consists of clauses with gapping/ellipsis which occur in a coordinated structure, but
do not have a verb of their own.6 Such cases can occur with a final constituent in clause coordination as
well as with a non-final constituent in verb-last clauses:

(1) a. Die
the

Anstalt
institution

soll
shall

[Anfang
start

1998
1998

noch
still

1200
1200

Beschäftigte]
employees

und
and

[ein
one

Jahr
year

später
later

600
600

zählen].
count.
“The institution will count 1200 employees at the start of 1998 and one year later, 600”.

b. [Die
the

Zahl
number

der
of

Urlaubsreisen
holiday trips

im
in

Inland
interior

fiel
fell

laut
according to

Schörcher
Schörcher

um
by

zwei
two

Prozent]
percent

und
and

[damit
hence

nicht
not

mehr
anymore

so
as

stark
strong

wie
as

im
in the

Vorjahreszeitraum]
previous year period

.

“The national number of holiday trips fell by two percent according to Schorcher, and hence
not as strongly anymore as in the corresponding period from last year”.

Finally, we have parentheticals, which are rather rather similar to the examples listed under verbless
copula clauses, except that they occur as parenthetical material in a larger clause rather than by them-
selves.7

5.2 Types of Non-projectivity Phenomena

For the purpose of this paper, we will make a three-way distinction in the phenomena that create discon-
tinuities, according to the following questions:

• If we serialize the sorted (sub)tree, would the result yield a grammatical sequence? Or, to ask a
related question, would anything be missing if we kept only the continuous block of the head?

• If we flatten the tree by introducing a common ordering domain for multiple heads (which would
be the result of tree flattening as proposed by Uszkoreit, 1987 or of a common argument list as
advocated by Hinrichs and Nakazawa, 1989; flattening the sentence is also the solution used in the
German LFG grammar of Forst, 2007), would we have gotten rid of the problem?

Making these distinctions gives us three rather large categories that we can use to classify nonprojec-
tivity phenomena:

Extraposition8 is phenomenon where the sorted subtree would (usually) be grammatical, and where
the continuous part only would (usually) be acceptable:

6sentences 40698, 40788, 40836, 41003, 41174, 41218, 41356, 41399, 41544, 41665
7sentences 40698, 40749, 40861, 40894, 40899, 40924, 41219, 41267, 41437, 41443
8Sentences 40506, 40507, 40517, 40528, 40567, 40583, 40589, 40594, 40622, 40672
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(2) a. Ele
Ele

hat
has

mir
me

[ein
a

Buch]
book

geschenkt
given

[über
about

die
the

Savanne].
savannah.

“Ele gave me a book about the savannah”.
b. Ich

I
habe
have

[Ele]
Ele

ein
a

Buch
book

geschenkt
given

[und
and

Susi].
Susi.

“I gave a book to Ele and Susi”.
c. Heute

Today
ist
is

[der
the

Staubsauger]
vacuum cleaner

gekommen,
come,

[den
which

Du
you

bestellt
ordered

hast].
have.

“Today, the vacuum cleaner that you ordered came.”

Note that extraposition can be arbitrarily deep, as NPs can embed each other recursively:

(3) a. Heute
Today

ist
is

(die
the

Rechnung
invoice

für
for

[den
the

Staubsauger])
vacuum cleanerj

gekommen,
come,

([den
whichj

Du
you

bestellt
ordered

hast]).
have.

“Today, the invoice for the vacuum cleaner you ordered came”
b. Ich

I
habe
have

(die
the

Rechnung
invoicei

für
for

[den
the

Staubsauger])
vacuum cleaner

gefunden,
found,

(die
whichi

Du
you

vermißt
missed

hast).
have.

“I found the invoice for the vacuum cleaner which you were missing”

Scrambling9 is the effect that occurs when two verbs that both have arguments are in the same clause,
and share the ordering domain in that clause, have crossing argument dependencies:

(4) . . . daß
. . . that

(dem
the

Kunden)
customer

[den
the

Kühlschrank]
fridge

bisher
until now

noch
yet

niemand
nobody

[zu
to

reparieren]
repair

zu
to

versuchen
try

(versprochen)
promised

hat.
has.

“that no one has promised the customer to try repairing the fridge.”

The example above is due to Becker et al. (1992), who claim that there is no bound on the distance over
which each element can scramble, nor a bound on the number of unbounded dependencies that can occur
in one sentence. Becker et al. further claim that no LCFRS can faithfully represent a sequence of m
verbs which are each preceded by one argument, where the arguments can be permuted freely.10

Finally, Topicalization11 or more generally V2-order phenomena are those where a part of the verb
clause (either an argument, or an argument of a phrase within the verb clause, or part of the verb clause
itself) is moved into clause-initial position.

(5) a. Ein
a

Buch
book

über
about

die
the

Savanne
savannah

hat
has

Ele
Ele

mir
me

geschenkt.
given.

“Ele gave me a book about the savannah.”
b. Über

about
die
the

Savanne
savannah

hat
has

mir
me

Ele
Ele

ein
a

Buch
book

geschenkt.
given.

“Ele gave me a book about the savannah.”
c. Ein

a
Buch
book

geschenkt
given

hat
has

Ele
Ele

mir.
me.

“Give me a book, Ele did.”

9Sentences 40524, 40567, 40572, 40588, 40594, 40595, 40601, 40885, 40966, 41025
10The practical consequence is that any LCFRS extracted from a treebank will either underspecify the dependencies in such

a construction – this is the flattening solution – or yield rules with growing block-degree. van Cranenburgh (2012) shows that
the sentences with up to 25 words in Negra can be parsed with an LCFRS that leads to O(n9) time complexity when a suitable
binarization is used, where the original treebank grammar would mean a parsing complexity of O(n19). Maier et al. (2012)
point out that the observed time complexity of the arbitrary-block-degree parser used by Maier (2010) and Kallmeyer and Maier
(2013) is due to necessary bookkeeping, and that their variant with fixed block degree yields a polynomial time complexity.

11Sentences 40513, 40521, 40528, 40544, 40546, 40548, 40551, 40572, 40580, 40585
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5.3 Analysis of Parser behaviour
Using the movement actions, the parser is able to correctly attach topicalized nodes in simple sentences,
and to sort out in most cases which nodes belong to the VP and which ones to the S node. In the presence
of complex sentence structure, the very local view on the sentence that the parser has quickly becomes
a hindrance. Extraposed material is attached correctly in the case of relative clauses, whereas infinitival
constructions (which can plausibly attach to the verb) are often missed, and clauses that are extraposed
modifiers of adverbs or adjectives are mostly missed. As with early treebank-based parsers, the presence
of multiple verbs (as in coherent constructions) can mislead the parser into assuming a more complex
structure than is actually present.

In general, verbless copula clauses, asyndetic coordination, and gapping/ellipsis, which are difficult
for dependency parsing, are also especially prone to confuse the very local view of the easy-first parser,
which is a rather anticlimactic, yet commonsensical conclusion.

In summary, simple material is often handled surprisingly well, whereas sentences with a complex
topological structure – i.e., coordination, clauses embedded in a nominal phrase, or correlations, are
rather challenging for easy-first parsing. Parsing algorithms with more context such as Sartorio et al.
(2013) or an application of beam search might help in some of these cases.

6 Summary and Future Work

In this article, we presented a deterministic parser that uses an easy-first strategy to perform non-
projective constituent parsing in expected linear time, with results that perform in a similar range as
results for discontinuous treebank grammars, and provides a means to provide rather fast parsing in
cases where discontinuous structure is required. We introduced the barrier formulation as an alternative
to the lazy reordering of Nivre et al. (2009), which shows similar performance but which may reveal a
closer connection to formalisms with restricted discontinuities.

While all experiments and the phenomen-oriented analysis have been performed on German data, the
reordering oracle approach does not make any language-specific assumptions and constitutes a general
technique for deterministic parsing of discontinuous constituent trees.

Acknowledgements The author would like to thank the three anonymous reviewers for their valuable
comments, and Thomas Müller for providing the Marmot-tagged version of the SPMRL dataset.
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Sprachwissenschaft, Universität Tübingen.

Tratz, Stephen and Eduard Hovy. 2011. A fast, accurate, non-projective, semantically-enriched parser. In
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (EMNLP
2011).

Uszkoreit, Hans. 1987. Word order and constituent structure in German. Number 8 in CSLI Lecture
Notes. Center for the Study of Language and Information.

van Cranenburgh, Andreas. 2012. Efficient parsing with linear context-free rewriting systems. In EACL
2012.

van Cranenburgh, Andreas and Rens Bod. 2013. Discontinuous parsing with an efficient and accurate
DOP model. In Proceedings of the International Conference on Parsing Technologies (IWPT 2013).

van Noord, Geertjan. 1991. Head corner parsing for discontinuous constituency. In Proceedings of ACL
1991.

Versley, Yannick and Heike Zinsmeister. 2006. From dependency parsing to deep(er) semantics. In
Proceedings of the Fifth International Workshop on Treebanks and Linguistic Theories (TLT 2006).
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