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Introduction

Welcome to IWCS 2015. IWCS is about all computational aspects of natural language semantics, and
in this year’s meeting we have a good representative subset thereof. This is reflected in the thematic
structure of the sessions. On the one side, we have a range of papers on the statistical approaches to
language: lexical, probabilistic, and distributional semantics (8 papers in total); on the other side, there
are the formal logical and grammatical models of meaning (5 papers in total); we also have a number
discussing the dynamic and incremental aspects of meaning in discourse and dialogue (9 papers in total).
The short paper selection extends these topics in many different interesting directions, from quantifiers
and compounds to multilinguality, crowdsourcing, and the combination of natural language with other
modalities such as image and sound.

Our three keynote speakers also embody the range of approaches in today’s natural language semantics
world: Prof. Bengio’s work shows how statistical models can become deeply embedded, with layers
of meaning learnt by neural nets; Prof. Copestake shows the state of the art on compositionality in
generative logical models and their corresponding automated tools; and last but not least, Prof. Barzilay’s
work shows how the meaning of language can be grounded in and learnt from tasks in order to control
computer programs and guide intelligent software.

In total we accepted 22 long papers (36% of the submissions received) and 12 short papers (72%). The
long papers will be presented in eight thematic sessions across the three days, with each day starting with
a keynote talk. Along the way, we will also have poster session for the short papers, with each introduced
by a lightning talk beforehand. We also have an afternoon for an open space (or “unconference”) event,
to allow anyone to propose and discuss topics that interest them. We enjoyed this approach at IWCS
2013 and hope you find it equally stimulating this time.

Before the conference, we have five workshops on various aspects of computational semantics:
annotation, modality, ontologies, dialogue, and distributional semantics. This year, we also have a
Hackathon preceding the main meeting and its workshops. This is a two day event, sponsored by a
mix of academia and industry, where programmers from both venues gather to tackle three main tasks,
also representative of the topics covered by the main meeting.

On the social side, we have a reception at Queen Mary’s own Italian restaurant (Mucci’s) at the end of
the first day, and a dinner on a river boat cruising the Thames at the end of the second day. We hope you
enjoy the conference!

Matthew Purver, Mehrnoosh Sadrzadeh and Matthew Stone
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Invited Speakers

Regina Barzilay, Massachusetts Institute of Technology:

Semantics of Language Grounding

Abstract: In this talk, I will address the problem of natural language grounding. We assume access
to natural language documents that specify the desired behaviour of a control application. Our
goal is to generate a program that will perform the task based on this description. The programs
involve everything from changing the privacy settings on your browser, playing computer games,
performing complex text processing tasks, to even solving math problems. Learning to perform
tasks like these is complicated because the space of possible programs is very large, and the con-
nections between the natural language and the resulting programs can be complex and ambiguous.
I will present methods that utilize semantics of the target domain to reduce natural language ambi-
guity. On the most basic level, executing the induced programs in the corresponding environment
and observing their effects can be used to verify the validity of the mapping from language to
programs. We leverage this validation process as the main source of supervision to guide learning
in settings where standard supervised techniques are not applicable. Beyond validation feedback,
we demonstrate that using semantic inference in the target domain (e.g., program equivalence) can
further improve the accuracy of natural language understanding.

Yoshua Bengio, Université de Montréal:

Deep Learning of Semantic Representations

Abstract: The core ingredient of deep learning is the notion of distributed representation. This talk
will start by explaining its theoretical advantages, in comparison with non-parametric methods
based on counting frequencies of occurrence of observed tuples of values (like with n-grams). The
talk will then explain how having multiple levels of representation, i.e., depth, can in principle give
another exponential advantage. Neural language models have been extremely successful in recent
years but extending their reach from language modelling to machine translation is very appealing
because it forces the learned intermediate representations to capture meaning, and we found that
the resulting word embeddings are qualitatively different. Recently, we introduced the notion of
attention-based neural machine translation, with impressive results on several language pairs, and
these results will conclude the talk.

Ann Copestake, University of Cambridge:
Is There Any Logic in Logical Forms?

Abstract: Formalising the notion of compositionality in a way that makes it meaningful is notori-
ously complicated. The usual way of formally describing compositional semantics is via a version
of Montague Grammar but, in many ways, MG and its successors are inconsistent with the way se-
mantics is used in computational linguistics. As computational linguists we are rarely interested in
model-theory or truth-conditions. Our assumptions about word meaning, and distributional mod-
els in particular, are very different from the MG idealisation. However, computational grammars
have been constructed which produce empirically useful forms of compositional representation
and are much broader in coverage than any grammar fragments from the linguistics literature.
The methodology which underlies this work is predominantly syntax-driven (e.g., CCG, LFG and
HPSG), but the goal has been to abstract away from the language-dependent details of syntax. The
question, then, is whether this is ’just engineering’ or whether there is some theoretical basis which
is more consistent with CL than the broadly Montogovian approach. In this talk, I will start by out-
lining some of the work on compositional semantics with large-scale computational grammars and
vi



in particular work using Minimal Recursion Semantics (MRS) in DELPH-IN. There are grammar
fragments for which MRS can be converted into a logical form with a model-theoretic interpreta-
tion but I will argue that attempting to use model theory to justify the MRS structures in general is
inconsistent with the goals of grammar engineering. I will outline some alternative approaches to
integrating distributional semantics with this framework and show that this also causes theoretical
difficulties. In both cases, we could consider inferentialism as an alternative theoretical grounding
whereby classical logical properties are treated as secondary rather than primary. In this view, it is
important that our approaches to compositional and lexical semantics are consistent with uses of
language in logical reasoning, but it is not necessary to try and reduce all aspects of semantics to
logic.
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Leveraging a Semantically Annotated Corpus to Disambiguate
Prepositional Phrase Attachment

Guy Emerson and Ann Copestake
Computer Laboratory, University of Cambridge
15 JJ Thomson Avenue, Cambridge CB3 OFD, United Kingdom

{gete2, aaclO}@cam.ac.uk

Abstract

Accurate parse ranking requires semantic information, since a sentence may have many candidate
parses involving common syntactic constructions. In this paper, we propose a probabilistic frame-
work for incorporating distributional semantic information into a maximum entropy parser. Further-
more, to better deal with sparse data, we use a modified version of Latent Dirichlet Allocation to
smooth the probability estimates. This LDA model generates pairs of lemmas, representing the two
arguments of a semantic relation, and can be trained, in an unsupervised manner, on a corpus anno-
tated with semantic dependencies. To evaluate our framework in isolation from the rest of a parser,
we consider the special case of prepositional phrase attachment ambiguity. The results show that
our semantically-motivated feature is effective in this case, and moreover, the LDA smoothing both
produces semantically interpretable topics, and also improves performance over raw co-occurrence
frequencies, demonstrating that it can successfully generalise patterns in the training data.

1 Introduction

Ambiguity is a ubiquitous feature of natural language, and presents a serious challenge for parsing. For
people, however, it does not present a problem in most situations, because only one interpretation will
be sensible. In examples (1) and (2), fluent speakers will not consciously consider a gun-wielding dog
or a moustache used as a biting tool. Both of these examples demonstrate syntactic ambiguity (the
final prepositional phrase (PP) could modify the preceding noun, or the main verb), rather than lexical
ambiguity (homophony or polysemy).

(1)  The sheriff shot a dog with a rifle.
(2)  The dog bit a sheriff with a moustache.

In many cases, parse ranking can be achieved by comparing syntactic structures, since some constructions
are more common. In the above examples, however, the same set of structures are available, but the best
parse differs: the PP should modify the verb “shot” in (1), but the noun “sheriff” in (2). Dealing with
such cases requires semantic information.

A promising approach to represent lexical semantics assumes the distributional hypothesis, which
was succinctly stated by Turney and Pantel (2010): “words that occur in similar contexts tend to have
similar meanings”. Our method uses corpus data to estimate the plausibility of semantic relations, which
could then be exploited as features in a maximum entropy parser. In section 3, we first describe the
general framework, then explain how it can be specialised to tackle PP-attachment.

To overcome data sparsity, we introduce a generative model based on O Séaghdha (2010)’s modified
version of Latent Dirichlet Allocation (LDA), where two lemmas are generated at a time, which we use to
represent the two arguments of a binary semantic relation. The probabilities produced by the LDA model
can then be incorporated into a discriminative parse selection model, using our general framework.

1
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This LDA model can be trained unsupervised using a semantically annotated corpus. To clarify
what this means, it is helpful to distinguish two notions of “labelled data”: linguistic annotations, and
desired outputs. Following Ghahramani (2004), supervised learning requires both a set of inputs and a
set of desired outputs, while unsupervised learning requires only inputs. Although we use a corpus with
linguistic annotations, these are not desired outputs, and learning is unsupervised in this sense. Since our
training data was automatically produced using a parser (as explained in section 4.2), our method can
also be seen as self-training, where a statistical parser can be improved using unlabelled corpus data.

Because of its central role in linguistic processing, parse ranking has been extensively studied, and
we review other efforts to incorporate semantic information in section 2. To evaluate our framework,
we consider the special case of PP-attachment ambiguity, comparing the model’s predictions with hand-
annotated data, as explained in section 4. Results are presented in section 5, which we discuss in section
6. Finally, we give suggestions for future work in section 7, and conclude in section 8.

2 Related Work

The mathematical framework described in section 3.3 follows the “Rooth-LDA” model described by
O Séaghdha (2010). However, he uses it to model verbs’ selectional preferences, not for parse ranking.
The main difference in this work is to train multiple such models and compare their probabilities.

The use of lexical information in parse ranking has been explored for some time. Collins (1996) used
bilexical dependencies derived from parse trees, estimating the probabiliity of a relation given a sentence.
We consider instead the plausibility of relations, which can be included in a more general ranking model.

Rei and Briscoe (2013) consider re-ranking the output of a parser which includes bilexical grammat-
ical relations. They use co-occurrence frequencies to produce confidence scores for each relation, and
combine these to produce a score for the entire parse. To smooth the scores, they use a semantic vector
space model to find similar lexical items, and average the scores for all such items. From this point of
view, our LDA model is an alternative smoothing method. Additionally, both our approach and theirs can
be seen as examples of self-training. However, their re-ranking approach must be applied on the output
of a parser, while we explain how such scores can be directly integrated as features in parse ranking.

Hindle and Rooth (1993) motived the use of lexical information for disambiguating PP-attachment.
More recently, Zhao and Lin (2004) gave a state-of-the-art supervised algorithm for this problem. Given
a new construction, they use a semantic vector space to find the most similar examples in the training
data, and the most common attachment site among these is then assigned to the new example.

Unlike Zhao and Lin, and many other authors tackling this problem using the Penn Treebank, our
model is unsupervised and generative. The first fact makes more data available for training, since we
can learn from unambiguous cases, and the second plays an important role in building a framework that
can handle arbitrary types of ambiguity. This provides a significant advantage over many discriminative
approaches to PP-attachment: despite Zhao and Lin’s impressive results, it is unclear how their method
could be extended to cope with arbitrary ambiguity in a full sentence.

Clark et al. (2009) use lexical similarity measures in resolving coordination ambiguities. They pro-
pose two similarity systems, one based on WordNet, and the other on distributional information extracted
from Wikipedia using the C&C parser. Hogan (2007) also consider similarity, both of the head words
and also in terms of syntactic structure. However, while similarity might be appropriate for handing
coordination, since conjuncts are likely to be semantically similar, this does not generalise well to other
relations, where the lexical items involved may be semantically related, but not similar.

Bergsma et al. (2011) approach coordination ambiguity using annotated text, aligned bilingual text,
and plain monolingual text, building statistics of lexical association. However, this method works at the
string level, without semantic annotations, and there is no clear generalisation to other semantic relations.

Agirre et al. (2008) use lexical semantics in parsing, both in general and considering PP-attachment
in particular. They replace tokens with more general WordNet synsets, which reduces data sparsity for
standard lexicalised parsing techniques. Our LDA approach essentially provides an alternative method
to back-off to semantic classes, without having to deal with the problem of word sense disambiguation.



3 Generative Model

3.1 Modelling an Arbitrary Relation

Despite the vast variety of syntactic frameworks, many parsers will produce semantic or syntactic re-
lations in some form. We might therefore rephrase parse ranking as follows: given a set of candidate
parses, choose the one with the most plausible relations.

Given a binary relation = — 1 between lexical items z and y, we can consider the joint probability
distribution P (r, x, y), which is the chance that, if we are given a random instance of any binary relation,
we observe it to be the relation r between items = and y. However, rare lexical items will have low prob-
abilities, even if they are a close semantic fit, so we should normalise by the words’ overall probability
of occurrence, P (x) and P (y), as shown in (3). The denominator can be interpreted as co-occurrence
of x and y under the null hypothesis that they are generated independently, according to their overall
frequency. We do not normalise by P (r), so that the frequency of the relation is still taken into account,
which is important, as we will see in section 3.2.

P(r,z,y)
score (r,x,y) = ———— 3)

5 = Py P )
A Maximum Entropy parser (MaxEnt; Berger et al., 1996) relies on a set of features fi, ..., f,, with
corresponding weights Ay, ..., \,;,. The probability of a parse ¢ for a sentence s is given in (4), where

Z is a normalisation constant which can often be neglected. The values of the weights \; are chosen to
maximise the likelihood of training data, sometimes including a Gaussian prior for regularisation.

1 m
P (t|s) = - €XP Z Xifi (t) 4)
i=1

To incorporate the above scores into a MaxEnt parser, we could define a feature which sums the
scores of all relations in a parse. However, the scores in (3) are always positive, so this would bias us
towards parses with many relations. Instead, we can take the logarithm of the score, so that plausible
relations are rewarded, and implausible ones penalised.! For a parse ¢ containing k relations x; — 1;, we
define f to be the sum of the log-scores, as shown in (5). Given a grammar and decoder that can generate
candidate parses, this feature allows us to exploit semantic information in parse ranking.

k

f@)= Z log (score (13, i, yi)) 5)

i=1
3.2 Application to PP-attachment

The effect of such a model on a wide-coverage parser will be complicated by interactions with other com-
ponents. To evaluate it independently, we restrict attention to PP-attachment in four-lemma sequences
w = (v,n1,p,n2), of the form (verb, noun, preposition, noun), where (p, na) forms a PP which could
attach to either the verb v, or the verb’s direct object n;. Surrounding context is not considered. For
example, we could have the sequence (eat, pasta, with, fork).

We consider two relations, both mediated by the preposition p: for nominal attachment, a relation
rp,N between ny and ng; and for verbal attachment, a relation r,, » between v and ns.

Given a sequence w, we seek the probability of attachment to 71 or v, which we denote as P (N |w)
and P (V]w), respectively. Taking their ratio and applying Bayes rule yields (6). To use the scores
defined in (3), we first make two independence assumptions: if the PP is attached to ni, then v is
independent, and if the PP is attached to v, then n; is independent. We then make the approximation that
the probabilities P (N |p) and P (V|p) for this particular ambiguity are proportional to the probabilities
of observing 7, y and r,, i in general.? This precisely gives us a ratio of plausibility scores, shown in (9).

IThe expected value of the log-score is equal to the mutual information of  and 1, minus the conditional entropy of 7 given
z and y. A smaller bias would therefore remain, depending on which of these two quantities is larger.

Technically, as we move from (7) to (8), we shift from considering a probability space over four-lemma sequences to a
probability space over binary relations. We abuse notation in using the same P to denote probabilities in both spaces.
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P(Nlw) P (Nlp) P (v,n1,n2|p, N) ©)
P (V|w) P (Vlp) P (v,n1,n2|p, V)
~ P Np) P (n1,nalp, N) P (v) 7
P (Vlp) P (v,n2|p,V) P (n1)
_ Plop) P, alry) P (0) P () ©
P (rpv) P (v,na|rpv) P (n1) P (n2)
_ score (rp,n, 11, N2) ©)

score (rpv,v,n2)

In the context of a MaxEnt parser, suppose we have defined f, as in (5), with weight \. For parses ¢ 5
and ty representing nominal and verbal attachment, whose features are identical except for f, the ratio
in their probabilities is shown in (10). This depends precisely on the ratio of plausbility scores, hence
using f is equivalent to making the above independence assumptions and approximations.

A
P(ty) [ score(ryn,n1,ne2)
P(ty) \ score (rp,v,v,n2)

In the following section, we describe a generative model to produce better estimates of the proba-
bilities P (n1,n2|rp n) and P (v, na|rpv). Note that a discriminative model would have to consider all
three lemmas v, n1, and ny, which would both reduce the amount of training data (since unambiguous
cases only using two lemmas must be discarded), and increase the number of model parameters (since we
must account for three lemmas, not two). These two facts combined could strongly encourage overfitting.

10)

3.3 Latent Dirichlet Allocation

In its original formulation, Latent Dirichlet Allocation (LDA; Blei et al., 2003) models the topics present
in a collection of documents. O Séaghdha (2010) adapted this framework to model verb-object colloca-
tions. Instead of considering a document and the words it contains, we consider a relation (such as the
verb-object relation) and all instances of that relation in some corpus (verbs paired with their objects).
The aim is to overcome data sparsity, generalising from specific corpus examples to unseen collocations.
This is achieved using latent variables, or “topics”.

Intuitively, each topic should correspond to two sets of lemmas, whose members have a strong se-
mantic connection via the given relation. For example, the sets {run, walk, stroll, gallop} and {road,
street, path, boulevard} are semantically related via a preposition like down. A rare combination such as
gallop and boulevard might not be observed in training, but should still be considered plausible.

Although LDA was first introduced as a clustering algorithm, we are interested in the probability of
generation, and the topic assignments themselves can be discarded.

3.3.1 Formal Description

A pair (v, n) is generated from a relation r in two stages. First, we generate a topic z from the relation,
and then independently generate v and n from the topic. To do this, we associate with each relation
a distribution #(") over topics, and with each topic a pair of distributions go(z) and () over words.
Symbolically, we can write this as in (12), where Cat denotes a categorical® distribution, i.e. one where
each probability is defined separately.

To prevent overfitting, we define Bayesian priors, to specify the kinds of distribution for 6, ¢ and
1 that we should expect. The most natural choice is a Dirichlet distribution, as it is the conjugate prior
of a categorical distribution, which simplifies calculations. We have three priors, as shown in (11), with
hyperparameters «, 5 and ~. The entire generative process is shown using plate notation in figure 1,
where R relations are generated, each with M instances, using 7" topics.

3Sometimes known as multinomial or unigram.



0 ~ Dir(a), @ ~Dir(8), 1 ~ Dir(y) 1n
2 ~ Cat (90“)) . v~ Cat (w)) , n ~ Cat (W)) (12)

We apply this framework to PP-attachment by replacing the pair (v,n) with either: (nj,ns) for
nominal attachment, or (v, ng) for verbal attachment. Each preposition is therefore associated with two
LDA models, which yield probabilities P (v, na|rp v ) and P (n1, na|r, y) for use in equation (8).

o ——>9——>Z<Z )

MR

A

¢ <1
Wty
T

Figure 1: The modified LDA model

3.3.2 Inference

Defining the LDA model requires fixing four hyperparameters: the number of latent topics 7', and the
three Dirichlet priors o, 3, and . Given these, and some training data, we can infer latent topic as-
signments z, and categorical distributions 6, ¢, and ). However, for new instances, the distributions are
semantically informative, while the topic assignments are not. Hence, we would like to sum over all topic
assignments to obtain the marginal posterior distributions for 8, ¢, and . Calculating this is intractable,
but we can approximate it using Gibbs sampling, applied to LDA by Griffiths and Steyvers (2004). This
assigns a topic to each token (each pair of lemmas), and iteratively changes one topic assignment, con-
ditioning on all others. Given a sample set of topic assignments, we can estimate the distributions 6, ¢,
and 1), as shown in (13). Finally, we estimate the marginal probability of generating a pair (x,y), as
shown in (14). The formulae also make clear the effect of the Dirichlet priors - compared to a maximum
likelihood estimate, they smooth the probabilities by adding virtual samples to each f.. term.

A far + A (2) fox + 0 2 (2) fzy‘{"y
b, =2 = pla) =2 = L 13
Fo S an ot Vﬁ W= v (13
Zez% (14)

A single Gibbs sample will not be representatlve of the overall distribution, so we must average the
probabilities from several samples. However, the topics themselves are labelled arbitrarily, so we cannot
average the statistics 0, , and ¢ Nonetheless, the statistic P is invariant under re- ordering of topics and
can therefore be meaningfully averaged. This gives us a better approximation of the true value, and the
standard deviation provides an error estimate, which we explore in section 5.3.

3.3.3 Model Selection

Training requires fixing the hyperparameters 7', c, # and ~y in advance. Griffiths and Steyvers (2004)
recommend setting parameters to maximise the training data’s log-likelihood L. However, this could
result in overfitting, if more parameters are used than necessary; intuitively, some topics may end up
matching random noise. One alternative is the Akaike Information Criterion (AIC; Akaike, 1974), which
penalises the dimensionality & of the parameter space, and is defined as 2k — 2log (L). Bruce and Wiebe
(1999) demonstrate that such a criterion in natural language processing can avoid overfitting.

We have T' — 1 independent parameters from 6, and T'(V — 1) from each of ¢ and v, where V' is the
vocabulary size.* Neglecting lower order terms, this gives & = 2TV. However, rare lemmas appear in
few topics, giving sparse frequency counts, so k is effectively much lower. We are not aware of a method
to deal with such sparse values. However, a simple work-around is to pretend V' is smaller, for example
V' = 1000, effectively ignoring parameters for rare lexical items.

“Reordering topics only represents a finite number 7! of symmetries, and therefore does not reduce the dimensionality.
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4 Experimental Setup

4.1 Choice of Prepositions

We trained models for the following prepositions: as, at, by, for, from, in, on, to, with. They were chosen
for their high frequency of both attachment sites. Rare prepositions (such as betwixt) were discarded
because of limited data. Prepositions with a strong preference of attachment site (such as of) were
discarded because choosing the more common site already provides high performance.

Instances  Proportion N Instances  Proportion N
as 1,119,000 20.3 % in 5,288,000 37.6 %
at 1,238,000 37.4 % on 1,628,000 49.7 %
by 612,000 293 % to 1,411,000 46.1 %
Sfor | 2,236,000 55.7 % with | 1,638,000 37.4 %
Sfrom | 1,056,000 43.6 %

Table 1: Number of training instances, with proportion of nominal attachment

4.2 Training Data

We trained the model using the WikiWoods corpus (Flickinger et al., 2010), which is both large, and also
has rich syntactic and semantic annotations. It was produced from the full English Wikipedia using the
PET parser (Callmeier, 2000; Toutanova et al., 2005) trained on the gold-standard subcorpus WeScience
(Ytrestgl et al, 2009), and using the English Resource Grammar (ERG; Flickinger, 2000). Of particular
note is that the ERG incorporates Minimal Recursion Semantics (MRS; Copestake et al., 2005), which
can be expressed using dependency graphs (Copestake, 2009).

The relations mentioned in section 3.2 are not explicit in the ERG, since prepositions are represented
as nodes, with edges to mark their arguments. To produce a set of training data, we searched for all
preposition nodes’ in the corpus, which either had both arguments ARG1 and ARG?2 saturated, or, if
no ARG1 was present, was the ARG1 of another node. We split the data based on nominal or verbal
attachment, discarding PPs attached to other parts of speech. Each training instance was then a tuple of
the form (v, p,n) or (n1, p, na), for verbal or nominal attachment, respectively. We used lemmas rather
than wordforms, to reduce data sparsity. The WeScience subcorpus was withheld from training, since it
was used for evaluation (see section 4.3). In total, 16m instances were used, with a breakdown in table 1.

4.3 Evaluation Data

Two datasets were used in evaluation. We produced the first from WeScience, the manually treebanked
portion of the Wikipedia data used to produce WikiWoods. This dataset allows evaluation in the same
domain and with the same annotation conventions as the training data. We extracted all potentially
ambiguous PPs from the DMRS structures: for PPs attached to a noun, the noun must be the object of
a verb, and for PPs attached to a verb, the verb must have an object. Duplicates were removed, since
this would unfairly weight those examples: some repeated cases, such as (store metadata in format), are
limited in their domain. If the same tuple occurred with different attachment sites, the most common site
was used, which happened twice, or if neither was more common, it was discarded, which happened four
times. This produced 3485 unique sequences, of which 2157 contained one of the nine prepositions under
consideration. The data is available on https://github.com/guyemerson/WeSciencePP.
The second data set was extracted from the Penn Treebank by Ratnaparkhi et al. (1994). This dataset
has been widely used, allowing a comparison with other approaches. We extracted tuples with one of

5The ERG includes some prepositions in the “sense” field of a verb, rather than as a separate node. This is done for
semantically opaque constructions, such as rely on a friend, where the meaning cannot be described in terms of rely and on a
friend. We may wish to ignore such cases for two reasons: firstly, the preposition often appears either immediately following
the verb or sentence-finally, which makes ambiguous sentences less common; secondly, the semantics is often idiosyncratic
and hence less amenable to generalisations across lemmas. We discuss these cases further in section 6.1.
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the relevant prepositions, lemmatised all words, and removed out of vocabulary items. This gave 1240
instances from the evaluation section of the corpus. We note that the data is noisy: it contains ‘nouns’
such as the (98 times), all (10 times), and ’s (10 times), which are impossible under the annotation
conventions of WikiWoods. We discuss limitations of evaluating against this dataset in section 6.1.

4.4 Baselines

We give results compared to two baselines. The low baseline chooses the most common attachment site
for each preposition, as seen in the training data, regardless of the other lexical items. The high baseline
is the maximum likelihood estimate, using Laplace smoothing with parameter 0.01. Comparing to the
low baseline shows the effect of our framework using the feature defined in (5), while comparing to the
high baseline shows the effect of the LDA smoothing. Additionally, we can consider an LDA model with
a single topic, which is equivalent to the simpler smoothing method of backing off to bigram frequencies.

5 Results

5.1 Model Selection

We varied T to find the effect on the log-likelihood and the AIC' (taking V' = 1000), either fixing
a =50/T, and 3 = v = 0.01, which follows the recommendations of Steyvers and Griffiths (2007), or
using hyperparameter optimisation, which allows asymmetric «. The results are shown in figure 2. For
unoptimised models, using the log-likelihood suggests T ~ 70, and the AIC suggests 1" ~ 35. For the
optimised model, the AIC suggests T ~ 40; however, the log-likelihood has not yet found its maximum,
suggesting a much larger value, exactly what AIC'is designed to avoid.

134

13.2 / Minus log-likelihood
= 2R
= ‘-\-/ AIC (V=1000)
V] 13 ~ o ~ . . .
T 12.8 el G mmmmad T Minus log-likel. (optim.)
. = AIC (V=1000, optim.)
12.6
10 100 1000

Number of Topics

Figure 2: Model selection for LDA

5.2 Evaluation

Overall accuracy in choosing the correct attachment site is given in table 2. The large gap between
the high and low baselines shows the importance of lexical information. The high baseline and the 1-
topic model (i.e. backing off to bigrams) show similar performance. The best performing LDA models
achieve 3 and 7 percentage point increases for WeScience and the Penn Treebank, demonstrating the
effectiveness of this smoothing method. The higher gain for the Penn Treebank suggests that smoothing
is more important when evaluating across domains.

The choices of hyperparameters suggested by the log-likelihood and AIC' closely agree with the
best performing model. The results also suggest that the LDA smoothing is robust to choosing too high
a value for 7'. As we can see in table 2, there is only a small drop in performance with larger values of
T'. This result agrees with Wallach et al. (2009), who show that LDA, as applied to topic modelling, is
reasonably robust to large choices of 7', and that it is generally better to set 7" too high than too low.

Surprisingly, hyperparameter optimisation (allowing « to be asymmetric) did not provide a signifi-
cant change in performance, even though we might expect some topics to be more common.



Accuracy

T | Samp. | Optim.? | WeSci | PTB
1 - - 0.708 | 0.659
35 10 no 0.744 | 0.701
50 10 no 0.745 | 0.697
50 30 no 0.747 | 0.698
50 10 yes 0.741 | 0.695
70 10 no 0.736 | 0.694
70 30 no 0.738 | 0.696
70 10 yes 0.741 | 0.700
100 10 no 0.735 | 0.700
300 10 no 0.738 | 0.680
High baseline 0.718 | 0.629
Low baseline 0.609 | 0.571

Table 2: Performance of our model, varying number of topics 7', number of Gibbs samples, and hyper-
parameter optimisation. The highest scores for each dataset are shown in bold.

1 1
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Figure 3: Coverage against precision (left WeScience, right Penn Treebank)

Since the model is probabilistic, we can interpret it conservatively, and only predict attachment if the
log-odds are above a threshold. This reduces coverage, but could increase precision. We can be more
confident when Gibbs samples produce similar probabilities, so we make the threshold a function of the
estimated error, as in (15).% Here, £ v and ¢y denote the standard error in log-probability for the nominal
and verbal models - for k£ samples with standard deviation s, the standard error in the mean is € = ﬁs.
When summing independent errors, the total error is the square root of the sum of their squares.

[log P (N|w) —log P (V|w)| > A (1 + \/6?\, + 5%) (15)

Graphs of coverage against precision are given in figure 3, for both datasets. As the threshold in-
creases, the curve moves down (lower coverage) and to the right (higher precision). The increase in
precision shows that the estimated probability does indeed correlate with the probability of being cor-
rect. The difference between the two solid curves shows the effect of the LDA smoothing.

5.3 Variability of Gibbs Samples

To explore how stable the probability estimates are, we evaluated the individual Gibbs samples of the
T = 50 model. If the standard deviation s is larger than the difference in log-probability A, then the

®More complicated functions did not appear to offer any advantages; we omit results for brevity.
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attachment site predicted by a single sample is not reliable - this was true for 18% of the WeScience data.
If the standard error £ = %s is larger than A, then the attachment site predicted by the averaged model
is not reliable - this was true for 3% of the WeScience data. Furthermore, the average accuracy of a
single T" = 50 sample on the WeScience dataset was 0.734 (standard deviation 0.0035) Hence, averaging
over 30 samples reduces the number of unreliable cases by a factor of six, and increases accuracy by 1.3

percentage points.

5.4 Semantic Content of Topics

Figure 4 shows that genuine semantic information is inferred. We could characterise the first topic as
describing a BUILDING in an AREA. However, the second topic reminds us that, since the topics are
unsupervised, there may not always be a neat characterisation: the no lemmas are all war-related, except
for election. There is still a plausible connection between election and most of the n; lemmas, but we
leave the reader to decide if elections are indeed like wars.

For large T', many topics are completely unused (with no tokens assigned to the topic), agreeing with
the above conclusions that the optimal value of 7" is around 50.

ny | school, building, station, house, church, home, street, center, office, college
ng | area, city, town, district, country, village, state, neighborhood, center, county

n1 | preparation, plan, time, way, force, date, support, responsibility, point, base
ng | invasion, war, attack, operation, battle, campaign, deployment, election, landing, assault

Figure 4: Most likely lemmas in two inferred topics (from T = 50 samples). Top: in. Bottom: for.

6 Discussion

6.1 Comparison with Other Approaches to PP-attachment

Our reported accuracy on the Penn Treebank data appears lower than state-of-the-art approaches, such
as Zhao and Lin (2004)’s nearest-neighbour algorithm (described in section 2), which achieves 86.5%
accuracy. However, the figures cannot be directly compared, for three main reasons.

Firstly, there will be a performance drop due to the change of domain - for instance, the PTB has
more financial content. To quantify the domain difference, we can find the probability of generating the
test data. For the 7' = 50 model, the average probability of a tuple is 8.9 times lower for the PTB than
for WeScience, indicating it would be unlikely to find the PTB instances in the WikiWoods domain.

Secondly, we considered only nine prepositions, which cover just 40% of the test data. Many other
prepositions are easier to deal with; for example, of constitutes nearly a third of all instances (926 out
of 3097), but 99.1% are attached to the noun. If we simply choose the most frequent attachment site for
prepositions not in our model, we achieve 79.0% accuracy, which is 7.5% lower than state-of-the-art, but
this difference is well within the cross-domain drops in performance reported by McClosky et al. (2010),
which vary from 5.2% to 32.0%, and by MacKinlay et al. (2011), which vary from 5.4% to 15.8%.

Thirdly, there are annotation differences between WikiWoods and the PTB, which would cause a
drop in performance even if the domain were the same. As a striking example, fo is the best performing
preposition in WeScience (94% accuracy, over a baseline of 74%), but has mediocre performance on the
PTB (70% accuracy, over a baseline of 61%). Much of this drop can be explained by the fact that fo is
often subcategorised for, both by verbs (give fo, pay to, provide to), and by nouns (exception to, damage
to). For such cases, the ERG includes fo in the verb or noun’s lexical entry, and there is no preposition in
the semantics, so they do not appear in the WikiWoods training data. As a result, these cases in the PTB
are often misclassified.

Finally, it may appear that performance on WeScience is also lower than state-of-the-art, but this
dataset may in fact be more difficult than the PTB dataset. To quantify how useful each slot of the 4-
tuple is for predicting the attachment site, we can use the conditional entropy of the attachment site given



aslot.” A value of 0 would imply it is perfectly predictive. For the verb slot, and both of the noun slots,
the WeScience data has higher conditional entropy than the PTB® (1% higher for v, 17% higher for n;,
and 11% higher for ns), suggesting that predicting attachment in the PTB data is an easier task.

6.2 Quality of Training Data

Flickinger et al. (2010) estimate the quality of the automatic WikiWoods annotations by sampling 1000
sentences and inspecting them manually to find errors. They judge “misattachment of a modifying
prepositional phrase” to be a minor error, which is particularly of note considering such errors provide
us with inaccurate training data. In their sample, 65.7% of sentences contained no minor errors. They do
not give a breakdown of error types, so it is not possible to determine the accuracy for PP-attachment,
but it is clear that a significant number of such errors were present. The results therefore indicate that our
model enjoys some robustness to errors in its training data.

7 Future Work

PP-attachment ambiguities represent a fraction of all syntactic ambiguities. The most important future
step is therefore to confirm the effectiveness of our framework in a wide-coverage parser, as explained
in section 3.1. Additionally, the LDA smoothing could be integrated with other approaches, such as Rei
and Briscoe (2013)’s reranking method, described in section 2.

The LDA model could be trained on multiple relations simultaneously, to account for cases where
more than one preposition is possible, as shown in (16). This could reduce data sparsity and hence
improve performance, particularly for rare prepositions. This requires no change to the mathematical
formalism, simply involving multiple samples from the same Dirichlet distribution c.

(16) They walked {along, across, down} the road.

To simplify model selection, we could use a Hierarchical Dirichlet Process (Teh et al., 2006), which
modifies LDA to allow an arbitrary number of topics.

8 Conclusion

We have described a novel framework for incorporating distributional semantic information in a max-
imum entropy parser. Within this framework, we used a generative model based on Latent Dirichlet
Allocation, in order to overcome data sparsity. We evaluated this approach on the specific task of resolv-
ing PP-attachment ambiguity, explaining how this problem relates to the general case. The LDA model
successfully extracted semantic information from corpus data, and outperformed a maximum likelihood
baseline. Furthermore, we demonstrated that training the model is robust to various hyperparameter set-
tings, which suggests that this method should be easy to apply to new settings. These results indicate
that this is a promising approach to integrating distributional semantics with parse ranking.
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Abstract

Resolving attachment ambiguities is a pervasive problem in syntactic analysis. We propose and
investigate an approach to resolving prepositional phrase attachment that centers around the ways
of incorporating semantic knowledge derived from the lexico-semantic ontologies such as VERBNET
and WORDNET.

1 Introduction

Syntactic parsing is a process of uncovering the internal structure of sentences, in particular, articulating
what the constituents of a given sentence are and what relationships are between them. Software systems
that perform this task are called (syntactic) parsers. Parsing technology has seen striking advances.
Wide-coverage off-the-shelf parsers are freely available and ready to use. Yet, modern parsers are not at
the level of human-expert agreement. One of the notorious problems in parsing technology is determining
prepositional phrase attachment. For example, the following phrase by Ray Mooney:

eat spaghetti with chopsticks. Q)

is syntactically ambiguous allowing for two syntactic structures: in one, the prepositional phrase with
chopsticks modifies (attaches to) the verb eat and in another, it modifies the noun spaghetti. The latter
is erroneous as it suggests that spaghetti with chopsticks constitutes a meal. The phrase

eat spaghetti with meatballs 2)

is syntactically ambiguous in a similar manner. Modern advanced parsers do not produce proper syntactic
representations for these phrases: instead they favor the same structure for both statements (Lierler and
Schiiller, 2013).

These “spaghetti” examples illustrate the necessity to incorporate semantic knowledge into the pars-
ing process, in particular, one has to take into account selectional restrictions (Katz and Fodor, 1963) —
the semantic, common-sense restrictions that a word imposes on the environment in which it occurs. For
instance, the fact that chopsticks are an instrument suggests that with chopsticks modifies eat spaghetti
in phrase (1) as a tool for eating. Current statistical methods, dominant in the field of syntactic analysis,
take into account selectional restrictions implicitly by assigning the most probable syntactic structure
based on observed co-occurrences of words and structures in training corpora. As mentioned, this is
often not sufficient. In this work we propose and investigate an approach to the prepositional phrase at-
tachment problem that incorporates explicit semantic knowledge available in the lexico-semantic dataset
VERBNET into the decision process for resolving the ambiguity of prepositional statements. Machine
learning forms a backbone of the decision procedure that we investigate.
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This work targets to bring knowledge representation techniques into syntactic parsing. Indeed, lexical
ontologies VERBNET and WORDNET are at heart of this project. Lierler and Schiiller (2013) advocated a
framework for parsing that results in what they call semantically-coherent syntactic parses. These parses
account for selectional restrictions. On the one hand, that work suggests a promising direction. On the
other hand, it outlines the need for automatic methods for acquiring lexico-semantic information that
relates to parsing a sentence. Present work takes a step in the direction of establishing principles to mine
existing lexico-semantic resources and incorporate found information into parsing process.

The importance of taking semantic information, including selectional restrictions, into account dur-
ing parsing has long been recognized. Ford (1982), Jensen and Binot (1987), Hirst (1988), Dahlgren
(1988), and Allen (1995) devised methods for parsing that performed selectional restrictions analysis.
These methods assume that a systematic word taxonomy as well as a database of selectional restric-
tions is available. Developments in the field of Lexical semantics have made such systematic large scale
datasets, including WORDNET (Miller et al., 1990) and VERBNET (Kipper et al., 2000), a reality. The
WORDNET project provides a taxonomy that organizes words into a coherent representation that reflects
some lexical relationships between them. The VERBNET project provides a domain-independent, broad-
coverage verb lexicon that includes selectional restriction information. Also recent research illustrates
the benefits of lexico-semantic information in tasks closely related to parsing. Zhou et al. (2011) illustrate
how web-derived selectional preferences improve dependency parsing. Zapirain et al. (2013) show that
selectional preferences obtained by means of WORDNET-based similarity metrics improve semantic role
labeling. Srikumar and Roth (2013) illustrate how selectional restrictions posed by prepositions improve
relation prediction performance. Agirre et al. (2008, 2011) also suggest the necessity of incorporating
semantic information into parsing by providing evidence that word sense information stemming from
WORDNET improves parsing and prepositional phrase attachment.

These findings support the importance of developing parsing algorithms that can handle semantic
information effectively. We view the decision procedure for resolving prepositional phrase attachment
developed in this paper as complementary to above mentioned methods. The main driving vehicle of this
work is the VERBNET ontology. To the best of our knowledge no current approach relies on the use of
VERBNET in compiling selectional preferences information.

The prepositional phrase attachment problem has received a lot of attention as a stand alone task.
Lapata and Keller (2005) provide a summary of systems attempting to solve this problem. All of the re-
ported systems have centered on machine learning approaches such as a maximum entropy model (Ratna-
parkhi et al., 1994), a back-off model (Collins and Brooks, 1995), a transformation based approach (Brill
and Resnik, 1994), a memory-based learning approach (Zavrel et al., 1997), and unsupervised ap-
proaches (Ratnaparkhi, 1998) or (Pantel and Lin, 2000). The reported accuracy of the systems ranged
from 81.60% to 88.10%. The average human precision on the task is reported to be 88.20%.

The outline of the paper follows. We begin by introducing the relevant resources and concepts, in
particular, VERBNET and WORDNET along with the concept of selectional restriction. Following that, we
introduce the problem of prepositional phrase attachment. Once these foundations have been laid, we
provide the details of a machine-learning based algorithm that makes use of the VERBNET and WORDNET
resources in a systematic way. We then evaluate a system that implements the outlined algorithm and
discuss our plans for its future.

2 The VERBNET, WORDNET Lexicons and Selectional Restrictions

Levin classes (Levin, 1993) are groups of verbs that share usage patterns and have semantic similar-
ity. For instance, the Levin class for the verb hit includes the words bang, bash, click and thwack.
These words can be used alike and suggest similar sentence structures. Organizing verbs into groups
according to the similarity of their syntactic behavior is the basis of Levin classes. It is supported by an
extensive study suggesting that similar syntactic behavior translates into common semantic features of
verbs (Levin, 1993). The VERBNET ontology (Kipper et al., 2000) is an English-language verb lexicon
that collects verbs into extended Levin classes and provides information about the sentence structure that
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these classes share.

The VERBNET dataset is composed of basic structures, called frame syntax. For example, a frame
syntax for a hit-verb class follows:

AGENTntControl V. PATIENT {with} INSTRUMENT concrete 3)

This frame syntax suggests that one possible structure for the use of a verb in the hit-class is to have
an AGENT followed by the verb itself, then a PATIENT, the preposition with and an INSTRUMENT. The
AGENT, PATIENT and INSTRUMENT are called thematic roles. VERBNET allows 23 such roles including
THEME, RECIPIENT, SOURCE.! The thematic roles in VERBNET are augmented further by restrictions.
VERBNET maintains a hierarchy of restrictions based on the top-level entries in EuroWordNet (Kipper-
Schuler, 2005, Section 3.1.2) consisting of 37 entries. This hierarchy allows VERBNET to specify that
the AGENT thematic role for the verbs in class hit is of the type intelligent control (intControl) and
the INSTRUMENT role in hit is concrete. In other words, an entity that serves an INSTRUMENT role of
hit possesses a property of being concrete — some concrete physical object.

The WORDNET system is a comprehensive manually developed lexical database from Princeton Uni-
versity (Miller et al., 1990). In WORDNET, nouns, verbs, and adjectives are organized into synonym sets
each representing one underlying lexical concept. Several semantic relations among words are incorpo-
rated into WORDNET as links between the synonym sets. These semantic relations include super/sub-
ordinate relations — hypernymy, hyponymy or ISA relation; and part-whole relation — meronymy. Thus
we can investigate relationships between various concepts by following links within WORDNET. For
instance, by following the ISA links, one may easily establish that synonym set containing a noun boy is
in ISA relation with a synonym set for the intelligent control concept. The WORDNET lexicon has been
extensively used for developing metrics and procedures for determining the relatedness/similarity of lex-
ical concepts. The task of identifying whether and how given words are related has many applications in
natural language processing (NLP) (e.g., word sense disambiguation, information extraction). Budanit-
sky and Hirst (2006) present a comprehensive study that compares five different measures of relatedness
based on WORDNET including a measure by Leacock and Chodorow (1998). In this work we also use
WORDNET for similar purposes. For example, with the help of WORDNET we define what it means that
a noun “matches” a restriction or a thematic role. Section 4 presents the definition of matching.

Selectional restrictions (Katz and Fodor, 1963) are the semantic, common-sense restrictions that a
word imposes on the environment in which it occurs. A selectional construct is a tuple [w, t, T, p] where
(1) w is a word, (ii) t is a thematic role that the word w allows, (iii) 7 is a restriction on the thematic role ¢
with respect to the word w (by the empty set we denote no restrictions), (iv) p is a set of prepositions
that can be used to realize the thematic role ¢ of the word w (this set may be empty suggesting that
no preposition is necessary to realize this thematic role). Selectional construct is meant to capture the
selectional restrictions (sometimes we use these terms interchangeably). The VERBNET lexicon can be
viewed as a systematic, wide-coverage knowledge base about selectional restrictions of verbs. Recall a
frame syntax (3) for the verb hit. We now present three selectional constructs that follow from the frame:

(hit, AGENT, intControl,()), (hit, PATIENT, D, (), (hit,INSTRUMENT, concrete,{with}).

3 Prepositional Phrase Attachment

Resolving prepositional phrase (PP) attachment ambiguities is a pervasive problem in NLP exemplified
by phrases (1) and (2). They look “identical” modulo one word, yet the proper syntactic analyzer will
process (1) differently from (2). Indeed, the “instrumental” use of the preposition with — as in phrase (1)

ITable 2 of the VERBNET website http://verbs.colorado.edu/~mpalmer/projects/verbnet.html lists
the thematic roles and brief explanations.
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should be parsed into dependency structure of the form:
PREP-POBJ

OBJ

verb nouni with nouns (4)

This parse structure reveals the prepositional phrase attachment describes the action being undertaken.
“Comitative” use of with such as in phrase (2) leads to a structure of the form

PREP-POBJ
DOBJ

verb nouni with nouns (5)

We call (4) and (5) P-parse structures. We call a phrase, P-phrase, when it has the form
verb noun-phrase preposition noun-phrase.

In the introduction, we argued that selectional restrictions provide sufficient information to disam-
biguate many PP attachments. We now incorporate selectional restrictions into syntactic parsing of
‘P-phrases. We say that a selectional construct justifies an edge annotated by PREP-POBJ from w to n
if it has the form (w, ¢, r, p), where thematic role ¢ and restriction 7 on ¢ are “matched” by word n.
Section 4 presents the definition of matching for different thematic roles and restrictions. A P-parse
structure is semantically coherent if its edge annotated by PREP-POBJ is justified by some selectional
construct triggered by the words occurring in a P-parse structure.

For example, P-phrase (1) triggers the selectional construct

(eat, INSTRUMENT, concrete, {with}). (6)

Intuitively, this construct justifies the PREP-POBIJ edge between spaghetti and chopsticks. P-parse of
the form (4) is thus semantically coherent.

We can view selectional restrictions as conditions that must be satisfied in the process of parsing. In
other words, semantically coherent parse structures are the ones that satisfy these conditions. It is clear
that at times more than one parse structure is semantically coherent for a phrase. Similarly, more than
one selectional construct may justify a PREP-POBJ edge.

4 PP-attachment Selection Algorithm

The dataset by Ratnaparkhi et al. (1994) is often used to devise and evaluate PP-attachment resolution
systems. We use it in this work also. For the rest of the paper we refer to the Ratnaparkhi et al. dataset
as R. The R dataset is a collection of P-phrases stemming from Penn Treebank. Each data entry in R
is a tuple of the form

(verb, nouny, prep, nouns). @)

Intuitively, each tuple corresponds to a P-phrase. Figure 1 presents the basic statistics on ten most occur-
ring prepositions in the dataset. The second row titled Total gives the number of tuples contained in R
that mention the respective preposition. The third row presents the ratio of the number of occurrences
of a preposition (the second row) over the size of the R dataset. Overall R contains 23898 P-phrases.
The last row represents the frequencies of the verb attachment for the respective prepositions. We note
how by far the most frequent preposition of is also very bias in a sense that 99% of the time it triggers
the attachment to a noun. This is why we present the column named All-of that gives the statistics for all
tuples that do not contain the preposition of .

Machine learning methods are commonly used for implementing decision/classification procedures
called classifiers. In supervised learning, the classifier is first trained on a set of labeled data (train-
ing data) that is representative of the domain of interest. Typically labeled data consists of pairs of
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l Preposition All All - of [ of [ in [ to [ for [ on [ from [ with [ at [ as [ by ‘
Total 23898 | 17395 | 6503 | 3973 | 3005 | 2522 | 1421 | 1059 | 1049 | 780 | 564 | 526
% of R 100 72.8 272 | 166 | 126 | 10.6 | 59 44 44 33 24 | 22
% Verb Attachment | 46.9 64.2 0.9 546 | 80.1 | 51.2 | 53.8 | 68.6 | 644 | 804 | 81.2 | 722

Figure 1: Basic statistics on the Ratnaparkhi et al. (1994) dataset.

input objects and a desired output. An input object is often summarized by so called feature vector.
A classifier of choice analyzes the training data and produces a model that can be used to evaluate
unlabeled input objects. In this work we rely on Logistic Regression classification algorithm as the
vehicle for implementing the decision procedure for the PP-attachment selection problem. To imple-
ment this procedure we used the Logistic Regression classifier with a ridge estimator of 107 avail-
able in Weka? (Hall et al., 2009) — software by University of Waikato which contains tools for data
preprocessing, classification, and clustering. We call our system PPATTACH, which is available at
http://www.unomaha.edu/nlpkr/software/ppattach/.

In our settings we used the ‘R dataset to produce training data. Each P-phrase (7) in R is mapped to
a feature vector composed of five elements:

o the preposition prep of the tuple (7);

e the VERBNET verb class of the verd in (7). If the verb class is unavailable in VERBNET then

lemmatized verb serves the role of a feature itself. We call this feature Verbclass;
e Features named VERBNET[noun; , nounz|, VERBNET|[nounz|, and Nominalization, which encode

information that some selectional constructs stemming from VERBNET are “applicable” to the

tuple (7).
We now speak about the rationale behind choosing these features. Figure 1 clearly indicates that prepo-
sitions are bias to one or another attachment decision. Lapata and Keller (2005) present a generic base-
line for the prepositional phrase attachment decision by choosing noun attachment in all cases, which
achieves correct attachment 56.9% of the time. They further present that this baseline can be improved
simply by choosing the most likely attachment decision for each preposition reaching 72.2% accuracy.
These observations provide strong evidence for the necessity of the first feature. As discussed verbs
impose selectional restrictions. The second feature in combination with the first one allows us to use
the R dataset to collect the statistical information about verb classes and their usage. The last three
features are based on the information stemming from VERBNET. These features allow us to incorpo-
rate explicit information on selectional restrictions available in VERBNET into the decision procedure
for the PP-attachment selection problem. We now proceed towards the description of how these three
VERBNET-based features are computed.

To describe the computation of the VERBNET-based features precisely, we define a concept of match-
ing. We say that a noun matches a thematic role (a restriction) listed in Figure 2 if one of its WORDNET
senses has a path in WORDNET justified by the ISA links to a corresponding lexical concept depicted
in Figure 2. We also say that a noun matches the thematic role INSTRUMENT if the definition (gloss)
of one of the noun’s WORDNET senses contains a string “used”. Likewise, we establish a match with
the restriction pointy by finding the string, “sharp” within the definition for one of the noun’s senses.
Accounting for parts of word’s definition stems from the work by Jensen and Binot (1987). Figure 2
contains all 23 thematic roles of the VERBNET dataset.

Descriptions of the computation procedures of VERBNET-based features follow. Each procedure is
given a tuple of the form (7) as its input. These features are binary, their default values are 0.

Feature VERBNET|[noun;, noung]: We start by searching for all verb-classes that include verbd from
tuple (7). Frame syntax structures of the form

THEMROLE verb THEMROLE! estriction; {PLeP} THEMROLESestrictions 8

http://www.cs.waikato.ac.nz/ml/weka/
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Thematic Role WORDNET Concept

THEME, PATIENT, RECIPIENT, OBLIQUE, DESTINATION, EXPERIENCER, | entity.n.01
SOURCE, BENEFICIARY, AGENT, PRODUCT, MATERIAL, TOPIC,
PREDICATE, ASSET, EXTENT, PROPOSITION, CAUSE, VALUE
ACTOR causal_agent.n.01
LOCATION location.n.01, location.n.03
INSTRUMENT instrumentality.n.03, act.n.02, commu-
nication.n.02, body_part.n.01
ATTRIBUTE attribute.n.02
STIMULUS stimulation.n.02
l Restriction WORDNET Concept ‘ l Restriction WORDNET Concept
abstract abstraction.n.06 location location.n.01, location.n.03
communication communication.n.02 animal animal.n.01
body_part body_part.n.01 animate causal_agent.n.01,
force entity.n.0l living_thing.n.01
pointy, concrete, refl, | physical_entity.n.01 currency currency.n.01
solid machine machine.n.01
organization group.n.01 scalar scalarn.01
region region.n.01 comestible comestible.n.01

Figure 2: WORDNET ISA-Parent

are extracted from these classes. Frame syntax (8) translates into selectional constructs that include

(verb, THEMROLE1, restrictions , () 9

(verb, THEMROLEg, restrictiong, {prep}) (10)

For each frame syntax, we (i) verify whether noun; matches the thematic role THEMROLE; as well
as the restriction restriction;, which suggests that selectional construct (9) justifies an edge between
verb and noung, and (ii) verify whether nouno matches THEMROLE, as well as restrictions, which
suggests that selectional construct (10) justifies a PREP-POBJ edge between verb and nouns. If this test
is positive for at least one frame syntax we assign value VERB to the feature VERBNET|[nouny , nounz].

Feature VERBNET[noung|: This procedure is similar to the previous method. Frame syntax structures
of the form
THEMROLE v {prep} THEMROLE2restrictions (11

are extracted from the verb-classes in VERBNET that include verb from tuple (7). The frame syntax (11)
translates into selectional constructs that include restriction (10). We then verify whether nouno matches
THEMROLE; as well as restrictiong, which suggests that selectional construct (10) justifies an edge
between verb and nouns. Subsequently we assign value VERB to the feature VERBNET[noung).

Feature Nominalization: Nominalization is the use of a verb, an adjective, or an adverb as a noun, with
or without morphological transformation. In this work, we are especially interested in nouns derived from
verbs. Such nouns typically behave as nouns grammatically, yet semantically they carry information of
a respective verb. For example, a noun “conversation” is derived from a verb “to converse”, which infor-
mally suggests at least two participants in the event of conversation. Given tuple (7), the Nominalization
method starts by identifying whether noun; is derived from a verb. The WORDNET lexicon contains
edges between nouns and verbs that are called derivationally related forms. We search WORDNET for
connections via these edges between noun; and some verb. We require that the root word remains the
same between noun; and a found verb. If such verb exists we consider noun; to be a nominalization. If
noun; is derived from some verb, the VERBNET lexicon is searched for all verb-classes that include this
verb. Frame syntax structures of the form (11) are extracted. We then verify whether nouny matches
THEMROLE; as well as restrictiong, which suggests that selectional construct (10) justifies a NOUN
assignment for the feature.
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5 Evaluation

We use various metrics to gauge the overall performance of the PPATTACH system. First we consider
a baseline which consists of the most likely attachment on a per preposition basis. We also construct a
PPATTACH- system by dropping the Verbclass feature from PPATTACH. We construct a GENERIC system
by dropping the VERBNET-based features from the PPATTACH system.

We train and test each system on the whole R dataset and subsets of R on a preposition-by-preposition
basis. Given that each resultant dataset is of limited size (see the second row in Figure 1), we use 10-fold
cross-validation to evaluate the methods. The cross-validation was done in Weka. The main idea is to
randomly select instances that constitute the test set. Subsequently we train a classifier on the remaining
instances and evaluate the model on the selected test set. This is conducted ten times (with different test-
training set pairs). Figure 3 summarizes the classification accuracy (the number of correct classifications
over the number of classifications) of the system using Logistic Regression classifier.

| Preposition | All [ All-of [ of [ in | to [ for [ on [ from | with | at [ as [ by |
Baseline 74.6 65.4 99.1 | 546 | 80.1 | 51.2 | 53.8 | 68.6 | 644 | 80.4 | 81.2 | 72.2
PPATTACH- | 79.3 72.7 99.0 | 64.6 | 87.8 | 66.6 | 685 | 755 | 70.9 | 81.8 | 79.8 | 80.0
GENERIC 79.0 72.3 99.0 | 64.7 | 87.8 | 67.0 | 68.2 | 763 | 69.7 | 829 | 79.8 | 82.3
PPATTACH 79.3 72.5 99.0 | 64.7 | 88.0 | 669 | 69.6 | 754 | 70.7 | 81.9 | 78.5 | 81.7

Figure 3: Evaluation Data on PPATTACH using Logistic Regression.

We see substantial improvements from Baseline across most prepositions. Figure 4 presents data
that can be used to explain this. For each VERBNET-based feature, this figure presents two rows. The
row named Recall gives a percentage that describes the frequency at which the feature is assigned a
value different from default; the row named Precision gives a percentage of relevant instances such that
the feature assignment agrees with the correct attachment decision. For six out of ten prepositions the
precision for the VERBNET[noun;, noung| feature is at least 83.6%. For five out of these prepositions
the recall ranges from 10.3% to 37.6%. There are two prepositions at and as that have high precision,
yet the performance of PPATTACH is comparable to that of Baseline. We also find that in this case the
verb class does not play a role in improving the classification accuracy (Baseline and GENERIC behave
practically identical). Figure 1 illustrates that the prepositions at and as have strong attachment bias
for verb. Most of the features in PPATTACH also favor such attachment. Gaining evidence for the other
decision shall improve the situation.

| VERBNET-based features [ [ of [ in [ to [ for [ on [ from [ with [ at [ as [ by ‘
VERBNET[noun;, noung] | Recall 4.1 129 | 37.6 | 255 | 94 | 253 | 157 | 103 | 223 | 0.8
Precision 6.0 66.0 | 91.5 | 59.6 | 71.6 | 83.6 | 92.7 | 93.8 | 98.4 | 100.0
VERBNET[noungz] Recall 1.2 75 | 275 | 38 | 106 | 7.0 9.2 1.7 0.0 5.5
Precision 0.0 59.8 | 89.7 | 604 | 853 | 824 | 88.5 | 100 | N/A | 96.6
Nominalization Recall 1.5 12.8 | 9.8 3.9 3.7 2.8 103 | 0.3 0.0 1.0
Precision | 100.0 | 70.2 | 27.8 | 66.3 | 64.2 | 56.7 | 66.7 | 50.0 | N/A | 60.0

Figure 4: Features Evaluation for PPATTACH.

We now note on the difference that changing the classification algorithm can make to PPATTACH
performance. Figure 5 summarizes the classification accuracy of PPATTACH using the Naive Bayes
classifier of Weka. In this case, PPATTACH- markedly lags behind GENERIC and PPATTACH, indicating
the importance of the classification algorithm selection.

The PPATTACH system lags behind its peers (see Introduction). The top performing system for dis-
ambiguating prepositional attachment on R by Stetina and Nagao (1997) reported in (Lapata and Keller,
2005) incorporates manual word sense disambiguation. Also, let us take a closer look at several samples
from R. Consider tuples (held,talks,with,parties) and (establish,relation, with,institution).
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They were annotated in Penn Treebank as having verb attachment suggesting errors in this corpus?.

[ Preposition | All [ All-of [ of [ in | to [ for [ on [ from | with | at [ as [ by |
PPATTACH- | 74.5 67.7 99.1 | 59.8 | 80.1 | 545 | 57.0 | 69.2 | 67.9 | 80.3 | 81.2 | 71.9
GENERIC 79.0 71.3 99.1 | 645 | 86.2 | 66.5 | 683 | 76.1 | 69.9 | 80.4 | 81.0 | 80.0
PPATTACH | 78.9 71.2 99.1 | 653 | 87.9 | 66.5 | 685 | 76.5 | 72.8 | 80.5 | 81.0 | 80.0

Figure 5: Evaluation Data on PPATTACH using Naive Bayes.

6 Beyond VERBNET: Preposition with Case-Study

This section focuses on a specific preposition, with. We investigate whether and how with-specific
features improve classification accuracy. We start by noting that VERBNET often omits information.
Consider sentence (1). There is nothing in VERBNET that suggests the selectional construct (6). This
construct is intuitively triggered by the preposition with itself. Indeed, there are three main uses of
with: instrumental, adverbial, and comitative. The instrumental use of with indicates that the preposi-
tional phrase conveys details in which the object serves the role of an instrument while executing the
action suggested by the verb. Phrase (1) illustrates the instrumental use of with. In contrast, the phrase
eat spaghetti with enthusiasm illustrates an adverbial use of with. Here, the prepositional phrase answers
the question of how the action was undertaken. To accommodate for common instrumental and adverbial
uses of with we propose the following generic selectional constructs

(v, INSTRUMENT, concrete, {with}) (12)
(v, MANNER, (), {with}), (13)

where v is a variable that can be substituted by any verb including eat or hit.

The grammatical case comitative denotes accompaniment. In English this case is often realized by
with and captures the sense of together with or in company with. Expressions spaghetti with meatballs
and boat with an engine illustrate the comitative case. In the former example, words spaghetti and
meatballs are closely related to each other as they both denote food entities. In the later example, boat
and engine are in lexical relation meronymy. We propose two selectional constructs that account for
such examples

(w, COMPANION, related (w), {with}) (14)
(w, COMPANION, meronym(w), {with}) (15)

where w is a variable that can be substituted by any word, e.g., spaghetti or boat; related(w) stands for
any word w’ such that w and w’ are related (according to a certain metric); meronym(w) stands for any
word w’ such that w’ is a meronym of w.

In describing selectional constructs (14) and (15) we identified the need not only for a metric to estab-
lish relatedness between words, but also for a wide-coverage meronym relation database. The WORDNET
lexicon records meronymy relations between synonym sets. However, it is not flawless and questions
arise when attempting automatic methods for identifying meronymy. For example, in WORDNET arm is
listed as a direct meronym of human, but leg is not. Thus to identify that leg is a meronym of human,
deeper mining of WORDNET becomes a necessity. Later in this section we describe an algorithm that we
devised for this purpose. To establish relatedness between words we rely on WORDNET and the metric
developed by Leacock and Chodorow (1998).

Below we present features that capture the aforementioned reasoning as well as several other obser-
vations. We use these features to augment the PPATTACH system to construct the system PPATTACH+.

3Held talks represents the case of light verb construction; establish is an aspectual verb: both cases hint a noun attachment.
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Feature Instrumentality: This method accounts for “instrument” selectional construct (12). We verify
whether nouno matches the thematic role INSTRUMENT, which suggests that selectional construct (12)
justifies an edge between verb and nouns. We assign VERB to the feature.

Feature Adverbial Use: We proposed to characterize an adverbial use of with by selectional con-
struct (13). We say that a noun matches the thematic role MANNER if there exists an adverbial derivation
from a noun to some verb in WORDNET. The “derivationally related forms” edges of WORDNET are used
to establish an adverbial derivation. If nouns in the given tuple (7) matches the thematic role MANNER
then selectional construct (13) justifies an edge between verb and nouns. We assign VERB to the feature.

Feature Similarity: This procedure accounts for “related” selectional construct (14). We verify whether
noun; and noung of the given tuple (7) are related using the Leacock-Chodorow algorithm (1998).If the
value produced by the Leacock-Chodorow procedure exceeds 2, we assume that the nouns are related.
This translates into the fact that selectional construct (12) justifies an edge between noun; and nouns.
We assign a value NOUN to the feature.

Feature Meronymy: This procedure accounts for “meronymy” selectional construct (15). For a given
tuple (7), we verify whether nouns is a meronym of noun; using a WORDNET-based method that we
propose. First, we take the noun; and construct a set containing its full hypernymy and hyponymy tree
for all of its WORDNET synsets. Second, we construct a set consisting of the full hyponymy for nouns
for all of its WORDNET synsets. If an element from the set for nouns is a meronym, as defined by
WORDNET, of an element in the set for nouni, then we conclude that nouns is a meronym of noun;. If
the meronymy selectional construct justifies an edge between noun; and nouns, the feature is assigned
NOUN.

Feature Relational Noun: Phrases such as developed a relationship with people contain a relational
noun relationship. Relational nouns suggest that there is a possessive relation between “individuals”
participating in an utterance. To accommodate for relational nouns we propose the following generic
selectional construct (n, POSSESSOR, (), {with}), where n is a relational noun. Given tuple (7), the Re-
lational Noun method identifies whether noun; is a relational noun by observing if one of its WORDNET
senses has a path justified by the ISA links in WORDNET to a lexical concept relation. Currently, we as-
sume that any noun matches the thematic role POSSESSOR. We assign the feature NOUN if we establish
that noun; is relational.

Feature Idiom: Some verb/noun combinations represent an idiomatic use, such as “make hay”. The
WORDNET lexicon contains entries representing idioms. We verify whether verb and noun; of the given
tuple (7) form an idiom by means of WORDNET. If this is the case, we assign VERB to the feature.

We analyzed performance of each described feature. Figure 6 presents the data in a similar fashion
as Figure 4. On the left, we list higher precision features. We note the high recall of Instrumentality and
rather reliable precision. This is a positive indication that we may address the limitations encountered
for VERBNET and to generally improve classification. On the right, we list the lower precision features.
The “right” results suggest that the ways to refine algorithms for implementing low-precision features
should be sought out. Also, it is possible that the semantic information carried by the verb outweighs
the information available from Similarity and Meronymy. In the future we plan to investigate these
possibilities. The classification accuracy of the PPATTACH+ system is 71.2% for with. Due to the

Instrumentality Recall 48.0 Similarity | Recall 15.7
Precision | 70.6 Precision | 38.8

Relational Noun | Recall 5.8 Meronymy | Recall 3.1
Precision | 75.4 Precision | 48.5

Adverbial Use Recall 2.3 Idiom Recall 1.6
Precision | 75.0 Precision | 35.3

Figure 6: Features Evaluation for PPATTACH+.
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poor precision we witnessed for the “right” features, we retested the PPATTACH+ after removing these
features. We subsequently achieve a classification accuracy of 72.0%, outperforming the PPATTACH
accuracy of 70.7%. Overall, the results appear to be promising, suggesting that preposition-specific
selectional constructs will lead to better classification as a whole.

7 Discussion and Future Work

In this work we proposed a principled method for incorporating wide-coverage lexical resources VERB-
NET and WORDNET into decision making for the task of resolving prepositional phrase attachment. Our
preliminary system PPATTACH illustrates the feasibility and promise of the approach.

The proposed method relies on a number of features that are suggestive of why a particular attach-
ment is reasonable. For instance, consider the feature Instrumentality. In cases when the value of this
feature is VERB, we are urged to believe that the second noun of a given P-phrase tuple can be labeled
as an instrument of the action indicated by the verb of the tuple (following from the fact that the “instru-
ment” selectional construct is applicable to this P-phrase tuple). A long-term goal of this project is to
incorporate elements of the proposed decision procedure into modern parsing technology and, in partic-
ular, into semantic role labeling methods. Work by Zhou et al. (2011), Srikumar and Roth (2013), Agirre
et al. (2008, 2011), and Belinkov et al. (2014) encourages research in this direction.

As we continue development of this project, we hope to improve the presented method in several
ways. We will use WORDNET to a greater extent to determine selectional restrictions on nouns. For
example, the current method does not draw any distinction between AGENT and ASSET. We also intend
to incorporate a semantic ontology called NOMLEX (Macleod et al., 1998) that incorporated noun-based
selectional restrictions. Figure 1 illustrates that all but one preposition of prefer verb attachment. Most
of the features we investigated also favor such attachment. Gaining evidence for the other decision
will be helpful. We illustrated how we improve on preposition with by augmenting available lexico-
semantic ontologies with knowledge specific to this preposition. We will pursue similar effort for other
prepositions in the future. We also intend to go beyond the development and evaluation geared by the R
dataset. Our discussion in the Evaluation section suggests such necessity.
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Abstract

Adjectives are one of the major contributors to conveying subjective meaning to sentences. Un-
derstanding the semantics of adjectives is essential for understanding natural language sentences. In
this paper we propose a novel approach for learning different properties that an adjective can de-
scribe, corresponding to the ‘attribute concepts’, which is not currently available in existing linguis-
tic resources. We accomplish this by reading adjective glosses and bootstrapping attribute concepts
from a seed of adjectives. We show that we can learn new attribute concepts using adjective glosses
of WordNet adjectives with high accuracy as compared with human annotation on a test set.

1 Introduction

Adjectives have not been studied in lexical semantics as much as verbs and nouns. However, they have
a very interesting polymorphic behavior in adding subtle meaning to a sentence. The main function
of adjectives is the modification of words, such as nouns, by describing some properties of them. For
instance, the adjective fast in the sentence ‘a fast car’ is describing the speed property of a car. Another
example is the adjective tall in the sentence ‘he is tall’ which describes the ‘stature’ property of someone.
Adjectives can describe a different value for the same property. For instance, large and small each
describe the ‘size’ property of something. Such properties can be associated with an abstract scale, on
which some adjectives are ordered by their semantic intensity. Generally, is it possible for an entity to
have a quality which lies somewhere in the middle of a scale associated with a property. For instance,
assuming a scale for size, it is possible to grade new adjectives so that they describe some new spot on the
size scale. Such adjectives are called ‘gradable adjectives’. We generally determine whether an adjective
is gradable by deciding whether or not graded usages with comparative modifiers (more, less, etc) is
possible for it (Rusiecki, 1985). Gradable adjectives imply the existence of an underlying semantic scale
(pertaining to a property). It has been argued that gradable adjectives denote functions from objects to
intervals or points on a scale (Kennedy, 1999).

Not all adjectives are intended to be interpreted in a gradable sense. A famous example of the class
of non-gradable adjectives is the set of color adjectives such as red. It is argued that when someone says
‘His tie is red’ it would scarcely make sense to follow up with the question ‘how red is the tie?’ (Young,
1984). However, we can all understand gradable usages of ‘red’ in sentences such as ‘the reddest I have
ever seen’, which is because ‘red’ is being used as a quality adjective (Young, 1984). Many of the classic
non-gradable adjectives can be seen to be used with degree-modifiers and comparatives or superlatives
in various contexts, such as “This dog is the wildest’. By observing such adjectives deeper, one can see
that there are some adjectives which specifically define a property, but that property does not really have
other adjectives related to it. For instance, the adjective ‘intermural’ which means ‘between two or more
institutions’ can be associated with ‘institution’ property, as one can say ‘some organization is more
intermural than the other’. However, there are no other adjectives talking about ’institution’ property.
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Another example is the adjective feminine, which modifies the ‘femininity’ property, as someone can say
‘someone is more feminine than the other’.In language understanding knowing the underlying properties
being modified by the adjective in a gradable sense is useful, so we try to come up with a property
denoting attribute concept for all of the adjectives in general. We use ‘attribute identification’ to refer to
the task of assigning a set of “attribute concepts” to an adjective. Hence, in the earlier examples, ‘size’
is the attribute concept of ‘large/small/tiny’, and ‘institution’ is the attribute concept of the ‘intermural’
adjective. Furthermore, there are adjectives that modify more than one property of an entity. For instance,
the adjective gangling means “tall and thin and having long slender limbs”. It is evident from the meaning
that gangling can modify the noun it is describing with respect to two different properties: ‘height” and
‘thickness’. Another example is the adjective ‘squab’ which means ‘short and fat’ which again describes
two distinct properties. Hence, the set of attribute concepts for both ‘gangling’ and ‘squab’ is {height,
thickness}.

Determining the attribute concepts of adjectives can improve our understanding of the natural lan-
guage sentences. For instance, consider a sentence such as ‘The tap water here is lukewarm, but it is
usually freezing uptown’. By having the knowledge of attributes and scales, one can have ordering of
adjectives regarding their intensities, and then can understand how different the temperature property of
tap water is in uptown. In general, learning the set of attribute concepts and associating adjectives to
them is a pre-requisite for ordering adjectives and their polarity magnitude on scales. Moreover, having
attribute concepts, one can disambiguate among various senses of an adjective such as Aot in the sentence
‘our debate is so boring, but this topic is hot.”, by knowing that two adjectives usually pertain to the same
attribute concept in order to be comparable.

Existing linguistic resources (dictionaries, WordNet (Miller, 1995), and thesauri) rarely contain in-
formation on adjectives being part of a scale, relating to an attribute concept, or being of a particular
strength. In this paper, we present a novel approach for finding all the attribute concepts including scales
that an adjective synset (here in WordNet 3.0) is graded on. Our approach is based on reading adjective
glosses and bootstrapping attribute concepts from a seed of adjectives. Our approach builds on the fact
that there are redundant syntactic and semantic patterns in definitions of words which enables bootstrap-
ping (Yarowsky, 1995).To our knowledge, none of the earlier works have attempted to find more than
one scale that an adjective can describe. In Section 4 we show that we can learn attribute concepts us-
ing adjective glosses with high accuracy as compared with human annotation on a sub-set of adjectives.
Moreover, none of the earlier approaches have had as good coverage as our method, which is about
77% of WordNet adjectives. Last but not least, our bootstrapping algorithm can be generally employed
in learning any kind of property from definitional texts for different parts of speech, not only adjec-
tives. We focus on adjectives as property-denoting lexical entities, since they are valuable for acquiring
concept representations for areas such as ontology learning. The result of this work can lead towards
describing the semantics of adjectives contained in as part of a larger effort to develop new techniques
for automatically acquiring deep lexical knowledge for capturing knowledge about concepts.

2 Adjectives in WordNet

The semantic organization of adjectives in the WordNet is not similar to the organization of nouns and
verbs, as adjectives do not show a hierarchical organization (Mendes, 2006). In general, adjectives in
WordNet are divided into descriptive and relational classes. Descriptive adjectives are the ones that
ascribe a value of an attribute to a noun, i.e, they describe a property of a noun they modify. WordNet
has links between some of the descriptive adjectives expressing a value of an attribute and the noun
with which that attribute is lexicalized. For example, the adjective ‘tall’ is linked to the noun attribute
‘stature’.

Among all 18,156 adjective synsets in WordNet, only about 620 of them have the attribute link.
Instead of the hypernymic relation that is used among nouns, the main relation used for descriptive
adjectives is antonymy. Binary opposition of adjectives, which shows contrary values of an attribute, is
represented by pointers with the meaning of ‘IS-ANTONIMOUS-TO’. For adjectives that do not seem
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Class Total in WordNet | Examples

Descriptive (head of dumbbell | 620 tall, warm, beautiful, heavy
structures, with attribute links)

Descriptive (similar to a head | 3,541 damp, scorching, lukewarm,
of a dumbbell, with indirect at- massive

tribute links)

Descriptive (have antonyms, but | 3,226 cheap, poor, dry, valuable

no attribute links)

Relational (no direct or indirect | 4,951 oxidized, racial, rat-like, beaten
antonym)

Table 1: Statistics of different classes of adjectives in WordNet

to have a direct antonym, WordNet has a pointer with the meaning of ‘IS-SIMILAR-TO’ which points to
an adjective which is similar in meaning, through which an indirect antonym is inherited. For example,
wet and dry are direct antonyms and an indirect antonymic pointer exists between damp and dry since
damp is similar to wet. WordNet encodes such structures in the form of clusters (adjective-sets), which
are often called dumbbells or satellites. In dumbbells two antonymous synsets (head-words) are linked to
a noun which they describe (attribute) and each head-word is linked to its similar adjectives. Dumbbells
seemed well motivated psycho-linguistically and distributionally, but they are not sufficiently informative
for detecting and quantifying meaning similarities among adjectives. For instance, there is no specific
semantic distinction between all the similar-to links of a particular head-word, i.e., they are all treated
in the same way. Moreover, only 3,541 adjectives are encoded in dumbbell structure, which is a limited
coverage on all adjectives. There are 3,226 descriptive adjectives in WordNet which have antonyms and
inherently ascribe a value to an attribute, but are not linked to any attributive nouns, e.g. ‘cheap’ and
‘expensive’, none of which has an attribute link in WordNet. Our main goal in this paper is to expand the
set of attribute concepts to all WordNet adjectives, proposing a methodology for high coverage attribute
learning. As will be explained in Section 4, our approach covers about 14,104 adjectives (77%) on
average.

Relational adjectives (pertainyms) are the ones that do not have an antonym and are related by deriva-
tion to specific nouns. If an adjective does not have a direct or indirect antonym, then it is relational and
it has a pointer to the noun it relates to, i.e., is derived from. Relational adjectives are mostly known
not to be gradable (Mendes, 2006), e.g., atomic, however, there are relational adjectives which pass the
linguistic test for gradability, such as ‘nutritional’. We apply our approach to relational adjectives as
well, and try to find a property-defining attribute concept for them. The results of this experiment can
be found in section 4. Table 1 summarizes some statistics on adjectives in WordNet. The sum of total
adjectives in this table is larger than 18,156, which is due to the intersection between adjectives with
pertainym link and descriptive adjectives with no direct or indirect attribute link.

3 The Approach

Glosses, as a short meaning explanations for words, provide a rich pieces of information about the words
they describe. In this paper, we present our novel approach on using WordNet glosses for understanding
the semantics of adjectives, specifically the properties they can describe. As mentioned earlier, we aim
to identify all the attribute concepts (including scales) that an adjective can be associated with. We
propose a semi-supervised method for learning attribute concepts. The idea is to use the already encoded
attribute links of 620 adjectives in WordNet as the initial seed and bootstrap attribute concept of the rest
of adjectives by learning patterns. The high-level iterative bootstrapping algorithm is described in the
Algorithm 1. In the upcoming subsections we will describe each phase of this algorithm in detail.
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Algorithm 1 Algorithm for learning attribute concepts
Require: set J = All adjectives
set ©7 = Features in iteration T’
set S = Seed adjectives with known attributes
set X; = Candidate attributes for adjective j
/l Pre-processing and Candidate Attribute Extraction
for adjective j in J do
Process j’s gloss, and get back its link-augmented-dependency tree (LAD)
Process j’s gloss, and get back its set of candidate attributes, X ;
end for
while not converged do
//Feature Extraction and Model Training
©! = Extract features from S
Train a classifier F', using features ©*
10:  //Decoding and Updating the Seed
11:  for adjectivej € Jandj & S do

R e I A A S A o

12: Using F', tag all candidates attributes in j

13: if Any of the candidates is tagged as ‘attribute’ then
14: addjto S

15: end if

16:  end for
17: end while

prep Iﬂ

/prep in conj_or
RB "9 4 V

not uprlght |n pos:tlon or posture
1 .

| [

antonym attribute attribute

Figure 1: The link-augmented graph of the gloss of the adjective ‘unerect’

3.1 Pre-processing

For each adjective we should process its gloss first. The idea is to enrich the dependency structure of the
gloss with the semantic links. First, we parse the gloss using Stanford dependency parser (de Marneffe
et al., 2006). Here we use Collapsed CC-processed dependencies, which produces a graph for a sentence
with a node for some of the words in the sentence and an edge for some predefined relations between
the nodes. Second, we extract all the semantic links (such as ‘IS-ANTONIMOUS-TO, ‘IS-SIMILAR-
TO’ and ‘ATTRIBUTE’) that the adjective has and incorporate it as links into the dependency tree. We
call the resulting data structure a ‘link-augmented-dependency tree’ (LAD). As an example, consider the
adjective unerect, which means ‘not upright in position or posture’. Figure 1 shows the resultant LAD
structure for this adjective. As you can see, the node upright is tagged as ‘IS-ANTONIMOUS-TO’ with
directive antonym, and both nodes position and posture are tagged as ‘ATTRIBUTE’ with directive
attribute.

3.2 Candidate Attribute Extraction

For each adjective, we need to have a set of candidate attributes, X ;. As all seed attribute concepts are
nouns, we restrict our candidate set to only nouns. Experimenting on an initial development set, we
found the following criteria for the candidate attributes of a given adjective j:
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o All nouns appearing in the gloss of ;.
o All nominalizations of the adjectives appearing in the gloss of j.

e All hypernyms of nouns appearing in gloss, up to two levels in WordNet hierarchy. For example,
for the candidate ‘tallness’ we extract ‘height’.

e All hypernyms of nominalizations of the adjectives appearing in the gloss, up to two levels in
WordNet hierarchy.

o All candidates of the adjectives appearing in the gloss of j. For example, for the adjective gangling
which is defined as ‘tall and thin’ we recursively include all the candidates of ‘tall’ and ‘thin’ as
the candidates for ‘gangling’.

Using all these criteria, we extract a set X; for each j, which will be used in the training phase.

3.3 Feature Extraction

After pre-processing all glosses and making a LAD, in each iteration we extract features from our seed
set. We mainly extract the syntactic and semantic features which are counted as evidence for pinpointing
the attribute concepts. The rationale behind the forthcoming feature extraction is the observation that
the glosses tend to look alike, so there are some hidden syntactic and semantic patterns among glosses.
We use the paths of a given LAD for finding general lexical and semantic patterns in the glosses. The
resulting patterns make our feature set. Following are the four types of features, each of which provides
a different kind of information.

o Lexical-semantic Features: These are the features which use both lexical and semantic aspects
of a path in LAD.

e Semantic Features: These are the features which only use semantic aspects of a path.
o Lexical Features: These features only use lexical aspects of a path.

e POS Features: These rules only use part of speech information of a path.
From Figure 1 consider the example path: not &L upright prepin, position. Following is the four
types of feature that we extract for this path:

prep-in
e E—

e Lexical-semantic Feature: not(RB) -l upright(ANT-JJ) 2(NN).

neg prep-in

e Semantic Feature: not(RB)«— *(ANT-JJ) ——— ?(NN).

prep_in
B

e Lexical Feature: not(RB)<—~ upright(JJ) 2(NN).

prep_in

e POS Feature: *(RB)«——Z *(JJ) 2(NN).

2

In all of the above features, the ‘?” indicates the noun attribute concept for which we are extracting fea-
tures. Also, the ‘*’ shows any lexical item which satisfies the constraints provided inside the parentheses.

3.4 Model Training

For each adjective j, there is a set of candidates X ;, each of which should be tagged as either attribute or
non-attribute. Therefore, the task of finding attribute concepts of an adjective becomes a tagging prob-
lem, where X is the set of candidates and Y is the set of possible tags. The two models we experiment
with here are Logistic Regression and Conditional Random Fields:
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Logistic Regression: The first model we experimented with is a binary classifier which attempts
to tag each candidate attribute either as an attribute or non-attribute. The features used for training the
model are the extracted features in the previous phase. Here we use a Logistic Regression model, which
has one attribute candidate as its input. The probability of tagging attribute candidate x with tag y is as
follows:

K
po(ylx) = Zel(x) exp { > Oty x)} (D
k=1

where f is the feature function and Zy(x) is defined as follows:

K
Zo(x)= Y. exp{Zekfk@,x)} @)

yey T k=1

The results of training a classifier using a logistic regression model are presented in Section 4.

Conditional Random Fields: In order to better estimate the tag for each attribute candidate it is
essential to know the other candidates. The Logistic Regression model does not take into account the set
of specific candidates derived from the gloss of one specific adjective. A common approach for taking
into account such a sequential tagging is to model the problem with Conditional Random Fields (CRF)
(Lafferty et al., 2001). We decided to use a linear chain CRF, which produces promising results. The
results of training a classifier using a CRF model are presented in Section 4.

3.5 Decoding and Updating the Seed

The bootstrapping algorithm described earlier iterates until convergence, which is until the seed set gets
stabilized. At each iteration, we try to find all attribute concepts for some new adjectives which are
not covered in the seed, decoding using the trained model parameters. At each iteration, the seed gets
updated with a new set of adjectives, the ones which have at least one of their attribute candidates tagged
as attribute by the decoder. Changes in seed set result in extracting new features for the next iterations,
hence making a more general classifier. Table 2 shows some of the adjectives classified under the attribute
concepts ‘size’, ‘magnet’, ‘price’ and ‘moisture’ using our algorithm. We will discuss the evaluation
results of our approach in the next section.

Attribute Adjective Gloss
minor limited in size or scope
Size great relatively large in size or number or extent
mountainous like a mountain in size and impressiveness
Magnet attractable | capable of being magnetized or attracted by a magnet
magnetic having the properties of a magnet
Price cheap relatively low in price or charging low prices
expensive high in price or charging high prices
Moisture dry lackin.g mois.ture or Volati1§ components
wet containing moisture or volatile components

Table 2: Example of the learned attribute concepts for adjectives using our algorithm

4 Evaluation and Experimental Results

We evaluate the quality of our extracted attribute concepts in two stages: evaluation of the tagging and
the full iterative approach.
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4.1 Evaluation of the Tagging

The first stage attempts to evaluate the classifiers together with feature sets independent from the boot-
strapping method. In order to compare the classifiers’ performance standalone, we sampled a test set
from the set of gold-standard attribute links of WordNet, which have not been used as in the initial seed
set. We compared our learned attribute concepts with this gold-standard test set. As discussed earlier, we
mainly use two classifiers for finding attribute concepts. The first method is Logistic Regression (LR)
and the second method is (C'RF'). We measure precision, recall and F1-score for each of these classifiers,
for both attribute and non-attribute tags. The results of this experiment are depicted in tables 3 and 4.

Method Precision Recall F1-Score
CRF 87% 62% 72%
LR 79% 63% 70%

Table 3: Attribute Tagging Results

Method Precision Recall F1-Score
CRF 1% 91% 80%
LR 70% 83% 76%

Table 4: Non-Attribute Tagging Results

As the results show, the classification method using our feature set has high accuracy for both at-
tribute and non-attribute tagging. The CREF classifier outperforms the LR classifier mainly in tagging
as attribute. This was expected, as the CRF model takes into account the set of candidates for a given
adjective, which results in better predictions. Overall, the classifiers have higher accuracy on assigning
attribute tag, i.e., true positive cases. Also, the lower recall in attribute-tagging is affected by the fact that
most of the candidates are non-attributes and only one or few candidates for each adjective are tagged as
attribute.

4.2 Evaluating the Full Iterative Approach

The second scenario aims at evaluating the full approach, including the iterative bootstrapping. For this
purpose, we made a dataset of randomly selected 250 WordNet adjectives (either descriptive or relational)
which did not have an attribute link and were associated with an attribute concept by our approach. We
attempted to manually annotate this dataset with a gold-standard attribute concept. We asked 20 human
judges to perform the evaluation task. The judges were provided with a guideline defining the notions of
attribute-concept and gradability for adjectives. Then for each adjective, we provided the human judges
with a few lines of information regarding the adjective in question, together with our extracted attribute
concept for that adjective. As an example, the evaluation task for the adjective ‘dry’ is as follows:

* [Synset: dry (lacking moisture or volatile components)
example usage: "dry paint"]

>> Is this a gradable adjective? (y,n)

* ATTRIBUTE CONCEPT: moisture

>> Does the above attribute concept sound correct to you? (y,n)

>> If not, what is your suggestion?

>> Was it vague to assign an attribute to this adjective? (y,n)

The annotation agreement using Fleiss’ kappa measure (Fleiss, 1981) was x = 74%, which shows a
substantial agreement. Only the adjectives with substantial agreements on all annotation questions were
included in the gold-standard set, resulting in about 210 adjectives. Given the fact that our algorithm
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has found an attribute concept for all the gold-standard data, we only report on Precision score. Also, it
is important to note that the bootstrapping algorithm is sensitive to the adjectives added to the seed on
every iteration, so we tune our classifiers to have better precision than recall. That is, we would rather
have a robust feature extraction phase which accounts for true positives and fewer false positives. Table 5
summarizes the results of evaluation of the two methods LR and C' RF' against the created gold-standard
dataset under Precisiong column.

As the results show, 57% of our approach’s decisions on determining the attribute concepts were cor-
rect. Among the adjectives for which the system has determined wrong answers, 82% were annotated as
vague or hard to annotate by the human judges, most of which were relational adjectives. An example of
an incorrect answer of the algorithm is for the adjective abdominal, in a noun phrase such as ‘abdominal
muscles’. In order to correctly determine the scalability and gradability of such adjectives, we need to
have world knowledge about various concepts, knowing that abdominal refers to a part of body. The
algorithm’s selected attribute for this adjective was abdomen, which does not seem natural to a human
annotator, but from the algorithm’s viewpoint it is the main property that this adjective is modifying.
Most such adjectives are classified as being vague and mostly non-gradable by the human annotators.

We compute the descriptive precision (Precisiongescriptive) SCOTe by removing the adjectives which
have been tagged as vague. As the results in Table 5 show, the accuracy of finding the attribute concepts
on mostly descriptive adjectives is high. This shows that our approach performs very well on pinpointing
the gradable adjectives, learning new attribute concepts for about 77% of adjectives in WordNet. As
mentioned earlier in section 2, many of the relational adjectives can be considered gradable, e.g., for
the adjective ‘nutritional’ it is plausible to say ‘Milk is more nutritional than soda’. Hence, including
relational adjectives in the attribute concept dataset can be very useful.

Method Precisiong; Precisiongescriptive
CRF 57% 85%
LR 48% 72%

Table 5: Evaluation results on hand annotated random test set.

5 Related Work

Typically adjectives play a significant role in conveying opinion and subjectivity of language. There
have been many works concerning the semantics of adjectives in the field of opinion mining which can
relate to our work. Hatzivassiloglou and McKeown (1993) performed the first attempt towards automatic
identification of adjective scales. They presented an approach for clustering adjectives in the same scale
based on their positive or negative orientation. Another work (Hatzivassiloglou and McKeown, 1997)
proposes to classify the semantic polarity of adjectives based on their behavior in conjunction with other
adjectives in a news corpus. They employ the existing clustering algorithms for this task.Turney and
Littman (2003) decide on semantic orientation of a word (positive, negative combined with mild or
strong) using statistical association with a set of positive and negative paradigm words. OPINE (Popescu
and Etzioni, 2005), a system for product review mining, ranks opinion words by their strength. Our work
differs fundamentally from these works in that it does not attempt to assign positive or negative polarities
to adjectives. All such works focus on detection of semantic orientation of adjectives, and do not report
on extracting attribute concepts or scales for adjectives. The information on orientation of adjectives is
very helpful for understanding their semantics, but it is not sufficient for deep understanding which can
enable further inference.

Another ongoing research project is on adjective intensity ordering, where researchers aim at or-
dering/ranking similar adjectives based on their intensity, such as lukewarm < warm < hot. Sheinman
and Tokunaga (Sheinman and Tokunaga, 2009a) attempt to automatically learn adjective scaling patterns
using seed adjectives and Web hits. They collect lexico-semantic patterns via bootstrapping from seed
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adjective pairs to obtain pairwise intensities. AdjScale (Sheinman and Tokunaga, 2009a,b) proposes a
new semantic relation for gradable adjectives in WordNet, which encodes the information on the intensity
of different adjectives which share the attribute link. They use lexical-semantic patterns for mining the
Web for evidence of the relative strength of adjectives such as ‘large’ and ‘gigantic’ with respect to their
attribute ‘size’. Then they can derive pairwise partial ordering on adjectives which share an attribute.
They apply the extracted patterns on WordNet dumbbells, for which they get new intensity relation links
among the similar adjectives in the dumbbells. Finally, Melo and Bansal (de Melo and Bansal, 2013)
present an unsupervised approach that uses semantics from Web-scale data (patterns such as ‘good but
not excellent’) to rank words by assigning them positions on a continuous scale. They use Mixed Integer
Linear Programming to determine the ranks on scales, as opposed to pairwise ranking in earlier works.
All the mentioned works have only taken into account the descriptive adjectives in WordNet, i.e., the
ones having an attribute link in the dumbbell structures — which provides a limited coverage, only about
22% of all adjectives. These works come short on extracting non-existing attribute concepts for nam-
ing new scales. Our work can find attribute concepts for all WordNet adjectives and associate relevant
adjectives to the same attribute concept, which is a big step towards high quality ordering of adjective
intensities. Moreover, none of these works investigate finding more than one scale that an adjective is
graded on. Our work determines not only one, but all different aspects that an adjective could describe.

Another close body of work is the research on assigning attributes to adjective-noun phrases. The
compositional semantics of adjective-noun phrases can be modeled in terms of selective binding (Puste-
jovsky, 1995), i.e., the adjective selects one of possibly several roles or attributes from the seman-
tics of the noun. For example, given the phrase (/) warm weather, the semantic representation is
‘TEMPERATU RE(weather) = warm’. Hartung and Frank (Hartung and Frank, 2010a) attempt to
extract the attribute for adjective-noun phrases, by selecting the semantics of the noun that is selected by
the adjectiveMainly, this kind of knowledge has been extracted from corpora by searching for patterns
(Almuhareb, 2006; Cimiano, 2006). An instance of pattern is [the x of the y is z], where x is an attribute,
yis a noun, and z is an adjective that paraphrases (1), e.g. the color of the car is blue. However, linguistic
patterns that explicitly relate triplet co-occurrences of nouns, adjectives, and attributes are very rare —
and in many cases, may not even provide sufficient evidence to determine an attribute for a given noun-
adjective pair. Hartung and Frank (Hartung and Frank, 2010b) propose an alternative method which is
doublet co-occurrences. They first search for noun-attribute co-occurrences, then adjective-attribute co-
occurrences. However, doublet co-occurrences do not result in significant boost in web hits for patterns
and their approach still lacks breadth in identifying adjective attributes.

6 Conclusion

In this paper we presented a new approach for comprehensive identification of the attribute concepts
of adjectives in WordNet. The main idea is to learn the attribute concepts by bootstrapping using the
adjective glosses. Our results show that our approach can identify the attribute concepts of about 77%
of WordNet adjectives with high accuracy. Our algorithm can be generalized in order to be applied to
various applications which require finding certain properties from definitional texts. Our work on de-
termining the adjective attribute concepts could also benefit the research on sentiment orientation (posi-
tive/negative) of adjectives.

Another semantic relation between adjectives that is not considered by WordNet is gradation, i.e,
the intensity of adjectives as compared with one another, going from a weak strength to a strong one.
Once we have the extensive attribute concepts for most of the WordNet adjectives, we can attempt to
order the adjectives classified under the same concept based on their degree of intensity. Our work aims
at producing a large, unrestricted number of individual intensity scales (attribute concepts) for different
qualities and hence can help in fine-grained sentiment analysis with respect to very particular aspects. As
the next step of this work, we are planning to order all adjectives associated with the attribute concepts
that we identified in this work. Also, given the promising results using linear chain CRF, we are planning
to experiment with other structured CRF models as a future work. Moreover, we are planning to release
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the derived attribute concepts dataset, which could be helpful for various language understanding tasks.
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Abstract

This article presents a distributional approach to predict the compositionality of German particle
verbs by modelling changes in syntactic argument structure. We justify the experiments on theoretical
grounds and employ GermaNet, Topic Models and Singular Value Decomposition for generalization,
to compensate for data sparseness. Evaluating against three human-rated gold standards, our fine-
grained syntactic approach is able to predict the level of compositionality of the particle verbs but is
nevertheless inferior to a coarse-grained bag-of-words approach.

1 Introduction

In German, particle verbs (PVs) such as aufessen (to eat up) are a frequent and productive type of multi-
word expression composed of a base verb (BV) and a prefix particle. We are interested in predicting the
degrees of compositionality of German PVs, which exhibit a varying degree of compositionality with
respect to their base verbs, as illustrated in (1) vs. (2). The meaning of the highly compositional PV
nachdrucken (to reprint) is closely related to its BV drucken (to print), while the PV nachgeben (to give
in) has little in common with the BV geben (to give).

) Der Verlag druckte das Buch nach.
The publisher printed the book again-PRT.

“The publisher reprinted the book.’

) Peter gab ihrer Bitte nach.
Peter gave her request in-PRT.

‘Peter gave in to her request.’

In previous work we demonstrated that the compositionality level of PVs can be predicted by using a
simple Word Space Model which represents local word contexts as a bag-of-words extracted from a
symmetric window around the target PV instances (Bott and Schulte im Walde, 2014a). The approach
worked well because compositional PVs tend to co-occur locally with the same words as their corre-
sponding base verbs.

The compositionality of German PVs is, however, also influenced by syntactic factors. While se-
mantically similar verbs in general tend to have similar subcategorization frames (Merlo and Stevenson,
2001; Joanis et al., 2008), PV-BV pairs may differ in their syntactic properties, even if the PV is highly
compositional. We refer to this linguistic phenomenon as “syntactic transfer problem”. We understand
transfers as regular changes in subcategorization frames of PVs by transfer, incorporation or addition of
complements in comparison to the BV (Stiebels, 1996; Liideling, 2001). For example, the semantic role
expressed by the subject of the BV leuchten in (3) is “transferred” to an instrumental PP of the highly
compositional PV anleuchten in (4). In addition, the patient of anleuchten (i.e., the direct object) has no
correspondence for leuchten. We call this a case of argument extension. The opposite case (i.e., a PV
does not realize a semantic role used by its BV) is called argument incorporation.
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3) Die Lampe leuchtet.
‘The lamp-SBJ shines.’

4) Peter leuchtet das Bild mit der Lampe an.
Peter-SBIJ shines the picture-OBJ 4o with the lamp-PPp 47 at-PRT.

‘The man beams at the picture with the lamp.’

Our hypothesis is that the degree of reliability of the prediction of such syntactic transfers represents
an indirect indicator of semantic transparency: If many of the complements of a PV correspond to a
complement of its BV, the PV is regarded as highly compositional, even if the PV complements are not
realized as the same syntactic argument types. Conversely, if few of the PV complements correspond to
BV complements, this is an indicator of low compositionality.

To explore our hypothesis, we rely on the distributional similarity between PV-BV complements,
to model argument correspondences in order to predict PV compositionality. For example, identifying
strong distributional similarity between the instrumental PPs of anleuchten and the subjects of leuchten
(see examples (3) and (4) above) would allow us to predict strong PV compositionality, even though the
distributional similarity of identical complement types (e.g., the subjects) is low.

Our novel approach exploits fine-grained syntactic transfer information which is not accessible within
a window-based distributional approach, while it should preserve an essential part of the information con-
tained in context windows, since the head nouns within subcategorization frames typically appear in the
local context. To compensate for the inevitable data sparseness, we employ the lexical taxonomy Ger-
maNet (Hamp and Feldweg, 1997), Topic Models (Blei et al., 2003) and Singular Value Decomposition
(SVD) to generalize over individual complement heads. All of them have proven effective in other distri-
butional semantics tasks (Joanis et al. (2008), o} Séaghdha (2010), Guo and Diab (2011), Bullinaria and
Levy (2012), among others).

The variants of our fine-grained syntactic approach are able to predict PV compositionality, but
even though our model is (a) theoretically well-grounded, (b) supported by sophisticated generalization
methods and (c) successful, a conceptually much simpler bag-of-words approach to the distributional
representation of PVs cannot be outperformed.

2 Related Work & Motivation

The problem of predicting degrees of PV compositionality is not new and has been addressed previ-
ously, mainly for English (Baldwin et al., 2003; McCarthy et al., 2003; Bannard, 2005). For German,
Schulte im Walde (2005) explored salient features at the syntax-semantics interface that determined the
semantic nearest neighbors of German PVs. Relying on the insights of this study, Kiihner and Schulte
im Walde (2010) used unsupervised clustering to determine the degree of compositionality of German
PVs. They hypothesized that compositional PVs tend to occur more often in the same clusters with
their corresponding BVs than opaque PVs. Their approach relied on nominal complement heads in two
modes, (1) with and (2) without explicit reference to the syntactic functions. The explicit incorporation
of syntactic information (mode 1) yielded less satisfactory results, since a given subcategorization slot
for a PV complement does not necessarily correspond to the same semantic type of complement slot for
the BV, thus putting the syntactic transfer problem in evidence, again.

In our previous approach, we relied on word window information with no access to syntactic infor-
mation (Bott and Schulte im Walde, 2014a), with a focus on PV frequency and ambiguity. For the current
work, we started out from the idea that syntactic information should be more useful than window infor-
mation if the distributional similarity is measured over individual salient slot correspondences rather than
across all slots as in earlier approaches. Therefore, a pre-processing step automatically determines the
distributionally most similar complement slot pairs for a given PV-BV pair and their subcategorization
frames, in order to measure the similarity between PVs and their BVs. In Bott and Schulte im Walde
(2014b) we already showed that the prediction of syntactic transfers with distributional methods is fea-
sible. In the present work we exploit the prediction of syntactic transfer patterns as an intermediate step
for the assessment of compositionality levels.
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Through dividing up the local context among different subcategorization slots we expected a problem
of data sparseness more severe than for window-based approaches which represent all the context words
in the same vector and are less likely to result in sparse representations. For this reason, we apply a
series of generalization techniques utilizing a lexical taxonomy and Topic Models, as well as SVD as a
dimensionality reduction technique.

3 Experiments

3.1 Syntactic Slot Correspondence

In order to build a model of syntactic transfer to predict PV compositionality, a pre-processing step de-
termined a measure of syntactic slot correspondence. We selected the 5 most common subcategorization
frames of each PV and each BV induced from dependency parses of the German web corpus SdeWaC
containing approx. 880 million words (Bohnet, 2010; Faa3 and Eckart, 2013). From these 5 most proba-
ble verb frames, we used all noun and prepositional phrase complement slots with nominal heads, except
for adjuncts. Each PV slot was compared against each BV slot, by measuring the cosine between the
vectors containing the complement heads as dimensions, and head counts' within the slots as values.
E.g. (see examples (3) and (4)), we found the nouns Licht and Taschenlampe (among others) both as
instrumental PP (DAT-mit)?> of anleuchten and as subject (SBJ) of leuchten, and the cosine of this slot
correspondence over all nouns was 0.9898.

3.2 Syntactic Transfer Strength

In order to use the syntactic slot correspondence scores to predict the degree of PV-BV compositionality,
we first selected the best matching BV slot for each PV complement slot, as suggested in Bott and Schulte
im Walde (2014b) and then calculated the average score over these best matches across all PV slots. This
average value is considered as a confidence measure for the assumption that the PV-BV complement
slots correspond to each other and realize the same semantic roles. Regarding our hypothesis, we rely on
the average cosine value to predict the degree of PV compositionality.

To account for possible null correspondences in argument incorporation and argument extension
cases, we applied a variable threshold on the cosine distance (¢ = 0.1/0.2/0.3, and ¢ = 0 referring to no
threshold). If the best matching BV complement slot of a PV complement slot had a cosine below this
threshold, it was not taken into account.

3.3 Generalization

The major problem of this approach is data sparseness. We thus applied three generalization techniques
to the head nouns:

1. GermaNet (GN) is the German version of WordNet (Hamp and Feldweg, 1997). We use the n®
topmost taxonomy levels in the GermaNet hierarchy as generalizations of head nouns. In the case of
multiple inheritance the counts of a subordinate node are distributed over the superordinated nodes.

2. LDA: We use the MALLET tool (McCallum, 2002) to create LDA topic generalizations for the head
nouns, in a similar way as O Séaghdha (2010). While LDA is usually applied over text documents, we
consider as document the set of noun heads in the same subcategorization slot.

3. SVD: We use the DISSECT tool (Dinu et al., 2013) to apply dimensionality reduction to the vectors
of complement head nouns.

"We used Local Mutual Information (LMI) (Evert, 2005).
2PP slots are marked with case and preposition.
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3.4 Evaluation

We evaluated our models against three gold standards (GS). Each of them contains PVs across different
particles and was annotated by humans for the degree of compositionality:
GSI: A gold standard collected by Hartmann (2008), consisting of 99 randomly selected PVs across 11
particles, balanced over 8 frequency ranges and judged by 4 experts on a scale from 0 to 10.
GS2: A gold standard of 354 randomly selected PVs across the same 11 verb particles, balanced over
3 frequency ranges while taking the frequencies from three corpora into account. We collected ratings
with Amazon Mechanical Turk on a scale from 1 to 7.3
GS3: A subset of 150 PVs from GS2, after removing the most frequent and infrequent PVs as well as
prefix verbs, because we concentrate on the empirically challenging separable PVs.

In the actual evaluation, we compared the rankings of the system-derived PV-BV cosine scores
against the human rankings, using Spearman’s p (Siegel and Castellan, 1988).

4 Results & Discussion

In the following, we describe and discuss our results across methods, across cosine threshold values, and
across gold standards. Figure 1 presents the p values for the threshold ¢ = 0.3 (which in the majority of
cases outperformed the other threshold levels) and across gold standards. Across all syntactic models, we
obtained the best results when evaluating against GS3. This was expected given that this gold standard
excludes prefix verbs and very infrequent and very frequent PVs which are hard to assess in terms of
PV-BV compositionality: Infrequent verbs are highly affected by data sparseness; highly frequent verbs
have a tendency towards lexical ambiguity(Bott and Schulte im Walde, 2014a). In the same vein, the
particularly low results® obtained with GS1 can be explained by its large proportion of low-frequent and
high-frequent PVs.

Figure 1 also shows that the syntactic approach (a) provides poor results when it relies on raw fre-
quency counts or LMI values; (b) is better for GermaNet level 2 than level 1 and the levels >2:% (c)
provides the best results with SVD and (d) relying on LDA is most robust against low and high fre-
quency and obtains the best results for GS2, which are however outperformed by GermaNet and SVD
models.

Finally, Figure 1 demonstrates that, against our expectations, our new approach was not able to
perform better than our previous bag-of-words models extracted from local windows. Even if the window
models are conceptually simple, they seem to carry a lot of salient information which is also more robust
against low frequency and ambiguity (obtaining better results for GS1 vs. GS2 vs. GS3). The virtues
of bag-of-words models can apparently not even be outperformed by generalizing over nouns or by
dimensionality reduction. Hoping that our novel syntactic information is in some way complementary to
window information, we carried out an additional experiment where we computed a weighted average of
the cosine values obtained from both feature types. Comparing the combined predictions with the human
rankings, the system was however still beaten by window information alone.

Figure 2 provides a deeper look into our results across thresholds, now focusing on GS3. The plot
shows that for the most successful generalization models (GN level 2 and SVD), the results improve with
an increasing threshold. Excluding subcategorization complement slots of PVs that do not correspond to
a distributionally similar subcategorization slot of its BV thus seems to support the identification of PV
syntactic argument changes. This is an interesting theoretical result because it corroborates the influence
of argument incorporation and argument extensions.

Error analysis in combination with theoretical considerations revealed that, overall, data sparseness
appears to remain a central problem. The representation of each verb as a series of vectors, one for each

*https://www.mturk.com

“We do not treat non-separable prefix verbs like ver|lieben, but note that a series of verbs, such as um|fahren do exists as
PVs and prefix verbs, with different readings.

SNegative p values are omitted in the plot.

SGN results for levels >3 are omitted for space reasons.
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Figure 2: Results across thresholds, for GS3.

subcategorization complement, splits up the mass of counts in comparison to a verb window vector. Our
syntax-based approach may need much more data to perform on an equal level as the window approach.

5 Conclusions

In this article we described a novel distributional approach to predict the degree of compositionality of
German particle verbs. Our approach exploited syntactic information and involved a direct modeling of
the syntactic transfer phenomenon. Relying on various gold standards, and varying complement simi-
larity thresholds and generalization methods, we successfully predicted PV compositionality. Threshold
variation indicated that we indeed capture PV-BV syntactic argument changes, and generalization by
GermaNet high taxonomy levels and SVD helped with the apparent data sparseness. Nevertheless, in-
formation provided by context windows outperforms our fine-grained syntactic approach.
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Abstract

While continuous word vector representations enjoy increasing popularity, it is still poorly un-
derstood (i) how reliable they are for other languages than English, and (ii) to what extent they
encode deep semantic relatedness such as paradigmatic relations. This study presents experiments
with continuous word vectors for English and German, a morphologically rich language. For evalu-
ation, we use both published and newly created datasets of morpho-syntactic and semantic relations.
Our results show that (i) morphological complexity causes a drop in accuracy, and (ii) continuous
representations lack the ability to solve analogies of paradigmatic relations.

1 Introduction

Until recently, the majority of research on semantic spaces concentrated on vector spaces relying on
context counts (count vector spaces). However, increasing attention is being devoted to low-dimensional
continuous word vector representations. Unlike count vectors, these continuous vectors are the result of
supervised training of context-predicting models (predict vector spaces).!

Mikolov et al. (2013) reported that a predict vector space trained with a simplified neural language
model (cf. Bengio et al. (2003)) seemingly encodes syntactic and semantic properties, which can be

recovered directly from the space through linear translations, to solve analogies such as
A — —  ——
king — man = queen — woman.

Baroni et al. (2014) presented experiments where predict vectors outperform count vectors on several
semantic benchmarks involving semantic relatedness, word clustering, and selectional preferences.

Several open questions regarding predict vectors remain. In this paper, we focus on two shortcom-
ings of previous analyses. First, the analogies in the “syntactic” and “semantic” benchmark datasets by
Mikolov et al. (2013) in fact cover mostly morpho-syntactic relations — even in the semantic category.
Consequently, it is still unknown to what extent predict vector spaces encode deep semantic relatedness,
such as paradigmatic relations. Rei and Briscoe (2014) offered some insight by testing hypernymy rela-
tions through similarity; Melamud et al. (2014) investigated synonymy, hypernymy, and co-hyponymy
relations. However, no systematic evaluation of deep semantic analogies has been performed so far.

Second, it remains unclear whether comparable performance can be achieved for a wider range of re-
lations in morphologically rich languages, as most previous work on predict vectors worked with English
data. A notable exception is Zuanovic et al. (2014), who achieved strong performance for superlative and
country-capital analogies in Croatian. Wolf et al. (2013) learned mappings of predict vectors between
English, Hebrew, and Arabic, but provided no deeper insight into the model’s capabilities on a direct
evaluation of semantic relations. Faruqui and Dyer (2014) trained predict vectors using two languages,
but evaluated only in English.

We present a systematic exploration of morpho-syntactic and semantic relatedness in English and
the morphologically richer language German. We show detailed results of the continuous bag-of-words
model (CBOW) by Mikolov et al. (2013), which we apply to equivalent morpho-syntactic tasks for both

'The terminology follows Baroni et al. (2014).
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languages. Pertaining to the question of deep semantic relatedness, we evaluate on existing benchmarks
on general semantic relatedness, and on newly created paradigmatic semantic analogies. To make the
models for the two languages as comparable as possible, they are trained on web corpora which were
obtained with the same crawling technique, and which we subsample to comparable size.

We present evidence that — while general semantic relatedness is captured well by predict models —
paradigmatic relations are problematic for count vector spaces. Moreover, our experiments on German
show that its morphological richness does indeed make the prediction of analogies more difficult.

2 Data

2.1 Morpho-Syntactic and Semantic Tasks

We evaluate a variety of analogy and semantic relatedness tasks, 23 for English and 21 for German. They
are in part taken from the literature and in part newly constructed.’

The Google semantic/syntactic analogy datasets (Google-Sem/Syn) were introduced in Mikolov
et al. (2013). The datasets contain analogy questions of the form A:B::C:D, meaning A is to B as Cis to
D, where the fourth word (D) is unknown. We constructed German counterparts of the datasets through
manual translation and subsequent cross-checking by three human judges. We omitted the relation type
“adjective—adverb” for both languages, because it does not exist in German. The final task set contains
five Google-Sem and eight Google-Syn relation types with 18 552 analogy tasks per language.

The paradigmatic semantic relation dataset (Sem-Para) also contains analogy tasks. Here, the
paradigmatic relation between A and B is the same as between C and D. The dataset was constructed
from antonymy, synonymy, and hypernymy relation pairs collected by Lenci & Benotto for English
and by Scheible & Schulte im Walde for German, using the methodology described in Scheible and
Schulte im Walde (2014): Relying on a random selection of target nouns, verbs and adjectives from
WordNet/GermaNet — balanced for semantic class, degree of polysemy, and frequency according to
the WaCKy corpora (Baroni et al., 2009) —, antonyms, synonyms, and hypernyms were collected in an
experiment hosted on Amazon Mechanical Turk. We constructed analogy questions by selecting only
those target-response pairs that were submitted by at least four out of ten turkers. Then, we exhaustively
combined all pairs for each word class and relation type.®> The resulting English dataset contains 7 516
analogies; the German dataset contains 2 462 analogies.

In the same way, we created an analogy dataset with 10 000 unique analogy questions from the
hypernymy and meronymy relations in BLESS (Baroni and Lenci, 2011), by randomly picking semantic
relation pairs. BLESS is available only for English, but we included it in Sem-Para as it is a popular
semantic benchmark.

Overall, the Sem-Para dataset constitutes a deep semantic challenge, containing very specific, domain-
related and potentially low-frequent semantic details that are difficult to solve even for humans. For ex-
ample, the tasks include antonyms such as biblical:secular::deaf:hearing or screech:whisper::ink:erase;
hypernyms such as groove:dance::maze:puzzle; and synonyms such as skyline:horizon::rumor:gossip.

The general semantic dataset (Sem-Gen) does not require to solve analogies but to predict the degree
of semantic relatedness between word pairs. It contains three semantic benchmarks:

1. RG (Rubenstein and Goodenough, 1965) and its German equivalent Gur65 (Gurevych, 2005).

2. WordSim353 (Finkelstein et al., 2001) and its translation into German WordSim280 by Schmidt
et al. (2011): As Schmidt et al. did not re-rate the German relation pairs after translation (which
we considered necessary due to potential meaning shifts), we collected new ratings for the German
pairs from 10 subjects, applying the same conditions as the original WordSim353 collection task.
To ensure identical size for both languages, we reduced the English data to the common 280 pairs.

2The new datasets are available at http://www.ims.uni-stuttgart.de/data/analogies/.

3Regarding hypernymy and meronymy (see BLESS below), we restricted the pair combination such that the word to be
predicted is always the hypernym or holonym, respectively. The reason for this restriction is that there are too many correct
choices for the corresponding hyponyms and meronyms.
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Google-Sem Google-Syn Sem-Gen Sem-Para w/o BLESS TOEFL
ENW | 688 718 395|819 805 579|779 778 778|193 164 156|962 962 722
ENL |683 718 403 |47.1 474 293|805 786 664|184 159 158 |90.0 875 66.2
DEW | 424 459 273|484 47.1 310|756 733 589|147 144 148 | 69.0 683 544
DEL |435 459 289|318 315 237|733 757 647|151 138 149|694 685 5538

Table 1: Results (p for Sem-Gen, accuracy for others) by task category across models.

3. 80 TOEFL (Test of English as a Foreign Language) questions by Landauer and Dumais (1997) for
English, and 426 questions from a similar collection by Mohammad et al. (2007) for German. Each
semantic similarity question is multiple choice, with four alternatives for a given stem. Unlike the
original English TOEFL data, the German dataset also contains phrases, which we disregarded.

2.2 Corpora

We obtain vectors using the COW web corpora ENCOWI4 for English and DECOWI2 for German
(Schifer and Bildhauer, 2012). The corpora contain lemma and part-of-speech annotations. In addition,
we applied some basic pre-processing: we removed non-alphanumeric tokens and sentences with fewer
than four words, and we lowercased all tokens. In order to limit effects of corpus size, we subsampled the
English corpus to contain approximately the same number of tokens as the German corpus, 7.9 billion.

3 Experiments

3.1 Setup and Evaluation

Our setups vary model type (two predict models and one count model), language (English and German),
and word forms vs. lemmas in the training data — leading to a total of 3x2x2 models. Our predict models
are the standard CBOW and SKIP-gram models, trained with the word2vec toolkit (Mikolov et al.,
2013). We use negative sampling with 15 negative samples, 400 dimensions, a symmetrical window of
size 2, subsampling with p = 10~°, and a frequency threshold of 50 to filter out rare words.

Our count model is a standard bag-of-words model with positive point-wise mutual information
weighting and dimensionality reduction through singular value decomposition. The dimensionality and
the window size were set identical to the predict vectors.

We solve analogy tasks with the 3COSMUL method (Levy and Goldberg, 2014), and similarity tasks
with cosine similarity. For the Google, TOEFL, and Sem-Para tasks, we report accuracy; for RG and
WordSim we report Spearman’s rank-order correlation coefficient p.

3.2 Results

Table 1 compares the word-based (W) and lemma-based (L) results of the English (EN) and the German
(DE) predict vs. count models. We first confirm previous insight (Baroni et al., 2014) that the predict
models (CBOW:; SKIP) in most cases outperform the count models (BOW). Second, we also confirm that
the SKIP-gram model outperforms CBOW only on Google-Sem (Mikolov et al., 2013). Third, we find
that lemmatized models generally perform slightly better on semantic tasks, whereas full word forms are
necessary for morpho-syntactic tasks. Table 2 presents a breakdown by task for the overall best model
(CBOW). Based on this, we will now discuss our two main questions.

(i) Morphological richness of target language: For the Google-Sem/Syn analogies, the level of
performance is generally higher in English than in German. The only exceptions are the tasks nationality-
adjective (L), and plural-verbs (both W+L). Our experiments demonstrate that, compared to English, the
Google analogies are more difficult to solve for the morphologically richer language German. Using full
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Google-Sem Google-Syn Sem-Para Sem-Gen
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DEL |81.8 588 175 175 60.7 | 214 851 148 79 630 377 177 13| 53 03 3.6 86 1.1 - =791 767" 694

Table 2: Results by task for the English and German CBOW models.

word forms, these differences are consequently the strongest for the Google-Syn morpho-syntactic tasks*
opposite, comparative, superlative, plural-nouns, present-participle, and past-tense, where considerably
more word forms per lemma exist in German than in English. As a consequence, the German search
space is larger, and it becomes more difficult to predict the correct form. For example, while English
only uses three adjective word forms per lemma, i.e., positive, comparative and superlative (e.g., fast,
faster, fastest), German inflects adjectives for case, gender and number (e.g., schneller(e|enler|es) are
all valid translations of faster). The results for nationality-adjective confirm this insight, because the
lemma-based (L) German data with a reduced search space (i.e., only offering one adjective lemma
instead of the various inflected forms) clearly improves over the word-based German version (40.3% —
85.1%). Regarding plural-verbs, we assume that the German task is not more difficult than the English
task, because even though German verbs are also inflected, written language predominantly uses two
verb forms (third person singular and plural), as in English.

(ii) Deep semantic tasks: First, we contrast the Google tasks with varying morpho-syntactic and light
semantic content against the semantic relation tasks Sem-Gen and the deep semantic tasks Sem-Para. We
observe that performance across models and languages is still high when addressing semantic relatedness
on a coarse-grained level (Sem-Gen): This is true when the number of related pairs is comparably low,
and the relation types differ more strongly (RG and WordSim), or when the search space is very restricted
(TOEFL, which is a multiple choice task). However, accuracy is dramatically low when deep semantic
knowledge is required, as in Sem-Para. Only adj-ant and noun-syn achieve accuracy scores of over 5.0%
for both languages. In most cases, lemmatization slightly helps by reducing the search space, because
distinguishing between word forms is not required by the tasks. Yet, the gain is lower than we had
expected due to lemmatization errors on the web data, which led to a considerable set of full inflected
forms still being part of the search spaces.

Data analysis reveals the following major error types in the Sem-Para task category: Next to a minor-
ity of clearly wrong solutions, the CBOW model suggested wrong words/lemmas that are nevertheless
related to the requested solution, either morphologically or semantically. An example for a wrong but
morphologically similar solution is Freiheit (freedom) instead of gefangen (caught) as the prediction
for unfruchtbar:fruchtbar::frei:? (sterile:fertile::free:?). Examples for wrong but semantically simi-
lar solutions are the hyponym Holzstuhl (wooden chair) instead of the hypernym Mobel (furniture) for
Atomwaffe:Waffe::Stuhl:? (atomic weapon:weapon::chair:?); the synonym erhohen (increase) instead
of the antonym abfallen (decrease) for verbieten:erlauben::ansteigen:? (forbid:allow::increase:?); and
the synonym undetermined instead of the antonym known for manual:automatic::unknown:?. Overall,
wrong semantic suggestions are most often synonyms (instead of hypernyms or antonyms).

Morphological variation is again a more serious problem for the German data, not only regarding
inflection but also regarding composition: many wrong solutions are compounds suggested for their
heads (as in the Stuhl-Holzstuhl example above). Further examples of this type of error are Cayenne-
pfeffer (cayenne pepper) instead of Salz (salt) as the antonym of Pfeffer (pepper); and Lufttemperatur
(air temperature) instead of Wdirme (warmth) as the synonym of Temperatur (temperature).

*The performance gap on the Google-Sem tasks is smaller. An exception is city-in-state, where this gap may be attributed
to better coverage of American cities in English.
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ENW | 255 7.7 39 291 79 46 0.6
ENL 236 9.1 43 2638 90 56 06
DEW | 144 42 175 273 4.9 - -
DEL 151 7.1 161 27.1 6.2 - -
SKIP

ENW | 25,7 72 34 216 50 40 06
ENL 237 6.7 32 219 57 54 08
DEW | 152 29 171 242 5.8 - -
DEL 155 29 168 223 3.9 - -
BOW

ENW | 249 7.1 6.1 210 186 6.1 19
ENL 164 64 6.7 203 196 85 24
DEW 63 78 283 268 4.9 - -
DEL 85 58 228 310 6.8 - -

Table 3: Sem-Para results across models, for recall at ten.

Table 3 compares the Sem-Para results across models, now relying on recall of the target being in the
top 10 (Rec10). We consider this measure a fairer choice than accuracy because (a) the Sem-Para dataset
contains considerably more difficult tasks, and (b) the higher proportions allow a better comparison
across conditions. Bold font indicates the best results per column and language. Similar to before, the
best results are reached for adj-ant and noun-syn, as well as for noun-ant, with Rec10 between 25.7% and
31.0%. Performance on noun-hyp reaches > 15% in only two cases, and the verb-ant and BLESS results
are always < 10.0% for both languages and W/L conditions. Furthermore, there is no clear tendency for
one of the languages or W vs. L to outperform the other. It is clear, however, that the superiority of the
CBOW model in comparison to BOW vanished: in most cases, the BOW models outperform the CBOW
(and SKIP) models, most impressively for noun-ant and noun-hyp.

4 Conclusion

We presented a systematic cross-lingual investigation of predict vectors on morpho-syntactic and seman-
tic tasks. First, we showed that their overall performance in German, a morphologically richer language,
is lower than in English. Second, we found that none of the vector spaces encodes deep semantic infor-
mation reliably: In both languages, they lack the ability to solve analogies of paradigmatic relations.
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Abstract
As part of our ongoing work on grounding in dialogue, we present a corpus-based investigation of
intention-level clarification requests. We propose to refine existing theories of grounding by con-
sidering two distinct types of intention-related conversational problems: intention recognition and
intention adoption. This distinction is backed-up by an annotation experiment conducted on a corpus
assembled with a novel method for automatically retrieving potential requests for clarification.

1 Introduction

Dialogue is commonly modelled as a joint activity where the interlocutors are not merely making in-
dividual moves, but actively collaborate. A central coordination device is the common ground of the
dialogue participants, the information they mutually take for granted (Stalnaker, 1978). This common
ground is changed and expanded over the course of a conversation in a process called grounding (Clark,
1996). We are interested in the mechanisms used to establish agreement, i.e., in the conversational means
to establish a belief as joint. To investigate this issue, in this paper we examine cases where grounding
(partially) fails, as indicated by the presence of clarifications requests (CRs). In contrast to previous
work (i.a., Gabsdil, 2003; Purver, 2004; Rodriguez and Schlangen, 2004), which has mostly focused
on CRs triggered by acoustic and semantic understanding problems, we are particularly concerned with
problems related to intention recognition (going beyond semantic interpretation) and intention adoption
(i.e., mutual agreement). The following examples, from the AMI Meeting Corpus (Carletta, 2007), are
cases in point:

(1) A:1think that’s all. (2) A:Justuh do that quickly. (3) A:T'dsay two.
B: Meeting’s over? B: How do you do it? B: Why?

In these examples, it cannot be said that B has fully grounded A’s proposal, but also not that B rejects A’s
utterance. Rather, B asks a question that is conducive to the grounding process. In (1), B has apparently
understood A’s utterance, but is unsure as to whether A’s intention was to conclude the session. We
therefore consider CRs like B’s question in (1) as related to intention recognition. In contrast, in (2) and
(3), B displays unwillingness or inability (but no outright refusal) to ground A’s proposal, and requests
further information she needs to establish common ground, i.e., to adopt A’s intention as joint. Requests
for instructions have also been related to clarification in Benotti’s (2009) work on multiagent planning.

In this paper, we present a corpus-based investigation of intention-level clarification, part of an ongo-
ing project that aims to analyse the grounding process beyond semantic interpretation. In the next section,
we introduce some theoretical observations and refine existing theories of grounding (Clark, 1996; All-
wood, 1995) by distinguishing between intention recognition and intention adoption. We then present
a systematic heuristic to retrieve potential clarification requests from dialogue corpora and discuss the
results of a small-scale annotation experiment.! We end with pointers for future work.

*The research presented in this paper has been funded by the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 567652 ESSENCE: Evolution of Shared Semantics in Computational Environments
(http://www.essence-network.com/).

"We will make our annotated data freely available.
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Level Joint Action Example Clarification

1 contact A and B pay attention to each other Are you talking to me?
2 perception A produces a signal and B perceives it What did you say?

3 understanding A conveys a meaning and B recognises it What did you mean?
4.1 intention recognition A intends a project and B understands it ~ What do you want?

4.2 uptake intention adoption A proposes a project and B accepts it Why should we do this?

Table 1: Grounding hierarchy for speaker A and addressee B with refined uptake level.

2 Theoretical Observations

As extensively discussed by Hulstijn and Maudet (2006), the intentional level we are interested in is
commonly denoted with the term uptake. In particular, in Clark’s (1996) stratification of the grounding
process into four distinct levels (see Table 1 for our take on it), the fourth level, “proposal and consid-
eration (uptake),” is related to the speaker’s intentions. When discussing joint projects at level 4, Clark
introduces the notion of joint construals: the determination and consideration of speaker meaning, in-
cluding the intended illocutionary force (Clark, 1996, pp. 212-213). However, he also points out that
uptake may fail due to unwillingness or inability: “when respondents are unwilling or unable to comply
with the project as proposed, they can decline to take it up” (Clark, 1996, p. 204). We contend that this
difference between construal and compliance—between intention recognition and intention adoption—
has been obscured in the literature so far.” For example, in their annotation scheme for CRs, Rodriguez
and Schlangen (2004) reproduce the underspecification in labelling their level 4 CRs as “recognising or
evaluating speaker intention.”

Since we, with Clark (1996), consider such intentional categories to be part of the grounding hier-
archy, we expect problems on an intentional level to be evinced in much the same way as other conver-
sational mishaps: in particular by CRs aimed at fixing these different types of conversational trouble.
When studying the CRs annotated as intention related in the corpus of Rodriguez and Schlangen (2004)
we indeed find examples related to recognition and others which aim at adoption:?

(4) K: okay, again from the top (5) K: for me that is in fact below this
I: from the very top? I: why below?
K: no, well, [...] K: yes, it belongs there, all okay.

In (4), speaker I has evidently not fully understood what K’s question is, despite having successfully
parsed and understood the propositional content of K’s utterance. On the other hand, I displays no such
problem in (5), but rather some reluctance to adopt K’s assertion as common ground. We consider (4) to
be a clarification question related to intention recognition whereas the one in (5) relates to intention adop-
tion. A particularly striking class of intention recognition CRs are speech act determination questions as
in the following example:*

(6) A: And we’re going to discuss [...] who’s gonna do what and just clarify
B: Are you asking me whether I wanna be in there?

Our hypothesis is that the classes of clarification requests related to intention recognition and intention
adoption, respectively, are distinct and discernible. In particular, we propose to improve upon Clark’s
(1996) hierarchy by splitting his uptake-level into two, separating recognition from adoption. Table 1
shows our amended hierarchy and constructed examples for clarification requests evincing failure at a
certain level. To test this hypothesis, we have surveyed existing corpora of CRs and assembled a novel
corpus of intention-related CRs to check if annotators could reasonably discern the two classes.

2While DIT++ (Bunt, 2012) stratifies the grounding hierarchy into “attention / perception / interpretation / evaluation /
execution,” it is similarly underspecified: To us, evaluation (e.g., checking an asserted proposition for consistency) relates to
intention adoption, whereas (semantic) understanding and (pragmatic) intention retrieval (e.g., recognising on level 4.1 that an
indicative was intended as an inform act and hence requires a consistency check on level 4.2) are again distinct categories.

3We thank the authors for providing us with their annotated corpus; in the dialogues, I is explaining to K how to assemble a
paper airplane. We had the German-language examples translated to English by a native speaker of German.

“Retrieved from the British National Corpus (BNC) (Burnard, 2000) using SCoRE (Purver, 2001).
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3 Corpus Study

3.1 Previous Studies

Our work builds on previous corpus studies of CRs (Purver et al., 2003; Rodriguez and Schlangen, 2004;
Rieser and Moore, 2005). However, existent studies are not perfectly suited for investigating ground-
ing at the level of intentions.’ Firstly, the annotation scheme of Purver et al. (2003; 2004), which the
authors apply to a section of the BNC (Burnard, 2000), makes use of semantic categories that cannot
easily be mapped to the intention-level distinctions introduced in the previous section. Secondly, while
the schemes employed by Rodriguez and Schlangen (2004) and Rieser and Moore (2005) (both based on
Schlangen, 2004) do include a category for intention-level CRs, the corpora they annotate—the Biele-
feld Corpus and the Carnegie Mellon Communicator Corpus, respectively—are highly task-oriented and
hence the intentions of the interlocutors are to a large degree presupposed: the participants intend to
fulfil the task. Finally, in all cases, the focus of the authors did not lie with intentional clarification and
therefore they might have left out questions in their annotations that are interesting to us, in particular
more complex intention adoption CRs (which may not have been considered CRs to begin with, given
the lack of well established theoretical distinctions discussed in the previous section).

For our study, we have chosen to extract questions from the AMI Meeting Corpus (Carletta, 2007),
a collection of dialogues amongst four participants role-playing a design team for a TV remote control.
The dialogues are loosely task- and goal-oriented, but the conversation is mostly unconstrained. Due
to this setting, we expect a larger amount of discussion and decision making, which should give rise to
more intention-level CRs. In addition, the rich annotations distributed with the AMI Corpus enabled us
to apply a sophisticated heuristic to automatically extract potential CRs, which we describe next.

3.2 Data

The AMI Corpus is annotated with dialogue acts, including a class of ‘Elicit-*’ acts denoting different
kinds of information requests/questions, but without specifically distinguishing CRs. However, the cor-
pus is also annotated with relations between utterances, loosely called adjacency pair annotation,® which
indicates whether or not an utterance is considered a direct reply to another one. We utilise observations
on the sequential nature of CRs (“other-initiated repair”) in group settings made by Schegloff (2000) to
assemble a set of possible clarification requests as follows. Take all utterances () where:

a. () is turn-initial and annotated as an ‘Elicit-’ type of dialogue act, spoken by a speaker B.
b. @ is the second part of an adjacency pair; the first part (the source) is spoken by another speaker A.
c. @ is the first part of another adjacency pair; the second part (the answer) is spoken by A as well.

This heuristic is based on the intuition that CRs are proper questions (i.e., utterances that demand an
answer) with a backward-looking function (i.e., related to an earlier source utterance) that are typically
answered by the speaker of the source. We expect this heuristic to have a sufficiently high recall to be
quantitatively applicable, but are aware that it cannot find each and every CR.”

There are 338 utterances () in the AMI Corpus satisfying the criteria above. We note that the an-
notation manual for the AMI Corpus states that CRs are usually annotated as ‘Elicit-’ acts, but that
some very simple CRs (e.g., ‘huh?’) can instead be tagged as ‘Comment-about-Understanding (und).
However, this class also contains some backchannel utterances: positive comments about understanding.
If we apply the same heuristic to the utterances annotated as ‘und,” we find 195 additional possible CRs.
We confirmed that our heuristic successfully separates CRs from backchannels, and that these CRs are

SWe have carefully studied the annotated data described in Purver et al. (2003) and Rodriguez and Schlangen (2004), which
was kindly provided to us by the authors upon request.

6See http://mmm.idiap.ch/private/ami/annotation/dialogue_acts_manual_1.0.pdf.

"In particular, previous work indicates that some CRs are simply not answered; Rodriguez and Schlangen (2004) report
8.7% unanswered CRs in their corpus. Our heuristic does not find these.
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indeed related to levels 1-3 of Clark’s (1996) hierarchy. However, these utterances are not the primary
subject of our study. We henceforth refer to CRs on levels 1-3 collectively as low-level.

3.3 Annotation Procedure

As indicated above, we are primarily interested in the 338 possible CRs annotated as ‘Elicit-’ dialogue
acts and therefore included only these in our annotation. Since our main interest is in intention-level CRs
and our primary ambition is the investigation of intention adoption vs. intention recognition, we used
the following simple annotation scheme: Each question found by our heuristic is annotated as one of
{not,low, int-rec,int-ad, ambig}, where the categories are defined as follows.

* not CR. Select this category if you are sure that the question is not a clarification request. That
is, if it does not serve to better the askers understanding of the previous highlighted utterance. For
instance if the question is requesting novel information, moving the dialogue forward.

* low CR. Select this category if the question indicates that the asker has not fully understood the
semantic / propositional content of the previous highlighted utterance. This includes, for example,
word meaning problems, acoustic problems, or reference resolution.

* intention recognition CR. Select this category if the question indicates semantic understanding,
but that the CR utterer has not fully understood (or is trying to guess) the speaker’s goal/intention
(the intended function of the previous highlighted utterance). The prototypical case is speech act
determination.

* intention adoption CR. Select this category if the question indicates the CR utterer has under-
stood/recognised the speaker’s main goal (their intention), but does not yet accept it because he
wants/needs more information or he has incompatible beliefs. For instance, if the CR utterer asks
about the reason behind the speaker’s utterance before accepting it, or requests information needed
to carry out her proposal.

* ambiguous. Sometimes it may not be possible to decide what function a CR has precisely, maybe
due to a lack of context. In those cases, annotate the question as ambiguous.

We instructed our annotators to follow a decision tree where they first decide whether a question is clearly
not a CR, and only otherwise consider the different categories of CRs. This is because in a pilot study
we found that the distinction between ‘not CR’ and ‘intention adoption CR’ was difficult for some
annotators. To reduce the confusion, we defined the ‘not CR’ class as only clear-cut cases of not-CR
questions, at the risk of incurring a higher amount of ambiguity when the decision tree bottoms out, i.e.,
when a question that was not definitely not a CR could not be matched to a CR-category after all. Our
annotation scheme only refines one dimension (namely, ‘source’) of the multi-dimensional schemes
applied by Rodriguez and Schlangen (2004) and Rieser and Moore (2005). Since our main ambition
in this work is to establish the two levels of intentionality, we leave a fuller annotation with further
dimensions—such as syntactic categories like Schlangen’s (2004) ‘form’—for future work.

Nevertheless, this is a difficult annotation task: Annotators can only play the role of overhearer and
therefore have a more indirect access to the intentions of the interlocutors. In addition, CRs in particular
can be fragmented and ambiguous. Therefore, annotators were shown a substantial dialogue excerpt
starting 10 utterances before the source and ending with either the 10th utterance after the answer to
the CR or with the CR-asker’s next reply (the follow-up). We found that answer and follow-up are
particularly helpful in determining the function of a CR: the answer gives hints towards the speaker’s
interpretation of the CR, and the follow-up can show whether the asker agrees with that construal.’

In the full study, the corpus was annotated by 2 expert annotators, since we deemed the task to be too
complex and fine-grained for naive annotators. One third of the corpus was annotated by both annotators,
the remaining two thirds by one annotator each. To create a gold-standard on the overlapping segment,
the annotators discussed the utterances where their initial judgement differed and mutually agreed on the
appropriate annotation.

8Rodrl’guez and Schlangen (2004) include the CR asker’s ‘happiness’ (as evinced by the follow-up) in their annotation.
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Category Count including ‘und’”  Example

not CR 90 (27%) - A: ‘You can call me Peter’ — B: ‘And you are? In the project?’
low-level 78 (23%) 273 (62%) A: ‘Seventy-five percent of users find it ugly.” — B: ‘The LCD?’
intent. recognition 53 (16%) 53 (12%) A: ‘I think that’s all.” — B: ‘Meeting’s over?’

intent. adoption 77 (23%) 77 (17%) A: ‘That’s a very unnatural motion.” — B: ‘Do you think?’
ambiguous 40 (12%) 40 (9%)

Total 338 (100%) 443 (100%)

Table 2: Distribution of clarification requests in our corpus with examples for each category.

3.4 Results

In the five-way classification task described above, our annotators had an agreement (Cohen’s x, 1960)
of k = 0.76 on the overlapping third of the corpus;’ of x = 0.85 in the boolean task of determining
whether an utterance is a CR; and of x = 0.82 in the boolean task of retrieving intention-related CRs
from all other questions. The distribution of categories is shown in Table 2. In order to compare our
distribution to previous work, we have also recorded the distribution we obtain when dropping the items
annotated as ‘not CR’ and adding the questions annotated as ‘Comment-about-Understanding (und)’
as low-level CRs. Then the total number of CRs in our corpus is 443.

The AMI Corpus contains about 42,000 turns, so we found that roughly 1.1% of turns receive clar-
ification according to our heuristic. Previous studies have indicated a higher number: Purver (2004)
reports about 4% and Rodriguez and Schlangen (2004) about 5.8%. Rodriguez and Schlangen (2004)
themselves conjecture that their corpus might contain an unusually high amount of CRs due to the set-
ting (an instructor guiding a builder). For comparison, we have manually extracted CRs from a 2500-turn
subset of the AMI Corpus: We found 52 CRs in that segment, indicating that about 2% of turns prompt
a CR. It is to be expected that our heuristic misses some CRs, e.g., ones that do not receive an answer,
and its coverage is dependent on how systematic the adjacency pair annotation in the AMI Corpus is.

While our heuristic only retrieves an estimated 50% of CRs,'? the distribution of classes we found is
comparable to the results described by Rodriguez and Schlangen (2004) and Rieser and Moore (2005):
They report 63.5% and 75%, respectively, of low-level CRs and 22.2% / 20% on intention-level. Rodriguez
and Schlangen (2004) mark the remaining 14.3% as ambiguous, whereas Rieser and Moore (2005) report
5% “other/several” and do not mention an ambiguity class.!! By and large, this is comparable to the dis-
tribution we found. We have low ambiguity (9%) compared to Rodriguez and Schlangen (2004) because
we conflated different categories of lower-level CRs into one ‘low CR’ category. As we had hoped, we
find a larger amount (29%) of intention-level CRs than the previous studies. We take the similarity in
distributions as tacitly confirming the viability of our heuristic for quantitative evaluation.

4 Conclusion

We have theoretically motivated a distinction within grounding hierarchies between intention recognition
and intention adoption and have created a novel corpus of intention-level CRs to investigate its tenability.
Our corpus is not only novel in its contents, but also in its construction: unlike previous studies, we
have developed and applied a suitable heuristic that exploits rich existing annotations to automatically
find possible clarification requests. A small-scale annotation experiment on our corpus showed that
the theoretical distinction we propose is viable. Our immediate next step in this project is a deeper
investigation into the form and problem sources of the intention-level CRs in our corpus, including a
more fine-grained annotation.

Rodriguez and Schlangen (2004) report x = 0.7 in the task of determining the level of understanding that the CR addresses.
However, their categorisation is different from ours. In particular, they do not include a ‘not CR’ category.

%We surveyed the CRs not found by our heuristic and attribute this mostly to the adjacency pair annotation; however, in
addition to CRs that are not answered at all, there are also CRs that are answered by a different person than the source speaker.

"'Their category “ambiguity” refers to a class of CRs dubbed “ambiguity refinement” and not to uncertainty in the annotation.
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Abstract

Multimodal semantic models attempt to ground distributional semantics through the integration
of visual or perceptual information. Feature norms provide useful insight into human concept acqui-
sition, but cannot be used to ground large-scale semantics because they are expensive to produce. We
present an automatic method for predicting feature norms for new concepts by learning a mapping
from a text-based distributional semantic space to a space built using feature norms. Our experimen-
tal results show that we are able to generalise feature-based concept representations, which opens up
the possibility of developing large-scale semantic models grounded in a proxy for human perceptual
data.

1 Introduction

Distributional semantic models (Turney and Pantel, 2010; Sahlgren, 2006) represent the meanings of
words by relying on their statistical distribution in text (Erk, 2012; Bengio et al., 2006; Mikolov et al.,
2013; Clark, 2015). Despite performing well in a wide range of semantic tasks, a common criticism is
that by only representing meaning through linguistic input these models are not grounded in perception,
since the words only exist in relation to each other and are not in relation to the physical world. This
concern is motivated by the increasing evidence in the cognitive science literature that the semantics
of words is derived not only from our exposure to the language, but also through our interactions with
the world. One way to overcome this issue would be to include perceptual information in the semantic
models (Barsalou et al., 2003). It has already been shown, for example, that models that learn from
both visual and linguistic input improve performance on a variety of tasks such as word association or
semantic similarity (Bruni et al., 2014).

However, the visual modality alone cannot capture all perceptual information that humans pos-
sess. A more cognitively sound representation of human intuitions in relation to particular concepts
is given by semantic property norms, also known as semantic feature norms. A number of property
norming studies (McRae et al., 2005; Vinson and Vigliocco, 2008; Devereux et al., 2013) have focused
on collecting feature norms for various concepts in order to allow for empirical testing of psycholog-
ical semantic theories. In these studies humans are asked to identify the most important attributes of
a concept; e.g. given AIRPLANE, its most important features could be to_fly, has_wings and
is_used_for_transport. These datasets provide a valuable insight into human concept repre-
sentation and have been successfully used for tasks such as text simplification for limited vocabulary
groups, personality modelling and metaphor processing, as well as a proxy for modelling perceptual in-
formation (Riordan and Jones, 2011; Andrews et al., 2009; Hill et al., 2014). Feature norms provide an
interesting source of semantic information because they capture higher level conceptual knowledge in
comparison to the low level perceptual information represented in images, for example.

Despite their advantages, semantic feature norms are not widely used in computational linguistics,
mainly because they are expensive to produce and have only been collected for small sets of words; more-
over there is no finite list of features that can be produced for a given concept. In Roller and Schulte im
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is_edible, 19 a_vegetable, 25 clothing, 21
is_small, 17 eaten_in_salads, 24 | worn_by_women, 15
lives_in_water, 12 is_green, 23 is_feminine, 10
is_pink, 11 is_long, 15 is_formal, 10
tastes_good, 9 eaten_as_pickles, 12 is_long, 10
has_a_shell, 8 has_skin, 9 different_styles, 9
lives_in_oceans, 8 | grows_in_gardens, 7 | made_of _material, 9

Table 1: Examples of features and production frequencies for concepts from the McRae norms

Walde (2013), the authors construct a three-way multimodal model, integrating textual, feature and vi-
sual modalities. However, this method is restricted to the same disadvantages of feature norm datasets.
There have been some attempts at automatically generating feature norms using large text corpora (Kelly
et al., 2014; Baroni et al., 2010; Barbu, 2008) but the generated features are often a production of care-
fully crafted rules and statistical distribution of words in text rather than a proxy for human conceptual
knowledge. Our work focuses on predicting features for new concepts, by learning a mapping from
a distributional semantic space based solely on linguistic input to a more cognitively-sound semantic
space where feature norms are seen as a proxy for perceptual information. A precedent for this work has
been set in Johns and Jones (2012), but whilst they predict feature representations through global lexical
similarity, we infer them through learning a cross-modal mapping.

2 Mapping between semantic spaces

The integration of perceptual and linguistic information is supported by a large body of work in the
cognitive science literature (Riordan and Jones, 2011; Andrews et al., 2009) that shows that models that
include both types of information perform better at fitting human semantic data.

The idea of learning a mapping between semantic spaces appears in previous work; for example
Lazaridou et al. (2014) learn a cross-modal mapping between text and images and Mikolov et al. (2013)
show that a linear mapping between vector spaces of different languages can be learned by only relying
on a small amount of bilingual information from which missing dictionary entries can be inferred. Fol-
lowing the approach in Mikolov et al. (2013), we learn a linear mapping between the distributional space
and the feature-based space.

2.1 Feature norm datasets

One of the largest and most widely used feature-norm datasets is from McRae et al. (2005). Participants
were asked to produce a list of features for a given concept, whilst being encouraged to write down
different kinds of properties, e.g. how the concept feels, smells or for what it is used (Table 1). The dataset
contains a total of 2526 features for 541 concrete concepts, with a mean of 13.7 features per concept.
More recently, Devereux et al. (2013) collected semantic properties for 638 concrete concepts in a similar
fashion. There are also other property norms datasets which contain verbs and nouns referring to events
(Vinson and Vigliocco, 2008). Since the semantic property norms in the McRae dataset have been used
extensively in the literature as a proxy for perceptual information, we will report our experimental results
on this dataset.

2.2 Semantic spaces

A feature-based semantic space (FS) can be represented in a similar way to the co-occurrence based
distributional models. Concepts are treated as target words, features as context words and co-occurrence
counts are replaced with production frequencies, i.e. the number of participants that produced the feature
for a given concept (Table 2). We build two such feature-based semantic spaces: one using all the 2526
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has_fur | has_wheels | an_animal | a_pet
cat_Fs 22 0 21 17
dog black book animal
cat_DS 4516 3124 1500 2480

Table 2: Example representation of CAT in the feature-based and distributional spaces

features in the McRae dataset as contexts (FS1) and one obtained by reducing the dimensions of FS1 to
300 using SVD (FS2).

For the distributional spaces (DS), we experimented with various parameter settings, and built four
spaces using Wikipedia as a corpus and sentence-like windows together with the following parameters:

e DS1: contexts are the top 10K most frequent content words in Wikipedia, values are raw co-
occurrence counts.

e DS2: same contexts as DS1, counts are re-weighted using PPMI and normalised as detailed in
Polajnar and Clark (2014).

e DS3: perform SVD to 300 dimensions on DS2.

e DS4: same as DS3 but with row normalisation performed after dimensionality reduction.

We also use the context-predicting vectors available as part of the word2vec! project (Mikolov et al.,
2013) (DS5). These vectors are 300 dimensional and are trained on a Google News dataset (100 billion
words).

2.3 The mapping function

Our goal is to learn a function f: DS — FS that maps a distributional vector for a concept to its feature-
based vector. Following Mikolov et al. (2013), we learn the mapping as a linear relationship between
the distributional representation of a word and its featural representation. We estimate the coefficients
of the function using (multivariate) partial least squares regression (PLSR) as implemented in the R pls
package (Mevik and Wehrens, 2007), with the latent dimension parameter of PLSR set to 50.

3 Experimental results

We performed all experiments using a training set of 400 randomly selected McRae concepts and a test
set of the remaining 138.2 We use the featural representations of the concepts in the training set in order
to learn a mapping between the two spaces, and the featural representations of the concepts in the test set
as gold-standard vectors in order to analyse the quality of the learned transformation.

For each item in the test set, we computed the concept’s predicted vector, f(Z), by applying the
learned mapping, f, to the concept’s representation in DS, . We then retrieved the top neighbours
of the predicted vector in FS using cosine similarity. We were interested in observing, for a given
concept, whether the gold-standard featural vector was retrieved in the topN neighbours of the predicted
featural vector. Results averaged over the entire test set are summarised in Table 3. We also report the
performance of a random baseline (RAND), where a concept’s nearest neighbours are randomly ranked,
and we note that our model outperforms chance by a large margin.

For the experiments in which the feature space dimensions are interpretable, i.e. not reduced (FS1),
we also report the MAP (Mean Average Precision). This allows us to measure the learnt mapping’s
ability to assign higher values to the gold features of a McRae concept (those properties that have a non-
zero production frequency for a particular concept in the McRae dataset) than to the non-gold features.

"https://code.google.com/p/word2vec/
20ut of the 541 McRae concepts, we discarded three (AXE, ARMOUR and DUNEBUGGY) because they were not available in
the pre-trained word2vec vectors.
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DS [ Fs [ topl | top5 | topl0 | top20 | MAP
RAND - 037 | 0.74 1.85 3.70 -
DS1 Fsl | 0.72 | 1449 | 29.71 | 49.28 0.30
DS2 FS1 | 290 | 12.32 | 2391 | 47.10 0.29
DS3 FS1 | 290 | 13.04 | 24.64 | 49.28 0.37
DS3 FS2 | 2.17 | 15.22 | 26.09 | 50.00 -
Ds4 FS2 | 3.62 | 1522 | 25.36 | 49.28 -
DS5 FS1 1.45 14.49 | 24.64 | 44.20 0.29
DS5 FS2 | 1.45 19.57 | 26.09 | 46.38 -

Table 3: Percentage (%) of test items that retrieve their gold-standard vector in the topN neighbours of
their predicted vector.

Word ‘ Nearest neighbours of predicted vector ‘ Result H Top weighted predicted features

JAR bucket, strainer, pot, spatula not top20 || made_of_plastic, is_round*, made_of_metal, found_in_kitchens*
JEANS shawl, shirt, blouse, sweater not top20 || clothing, different_colours, worn_by_women*

BUGGY skateboard, truck, scooter, cart in top20 has_wheels, made_of_wood*, is_large*, used_for_transportation
SEAWEED shrimp, perch, trout, salmon in top20 is_edible, lives_in_water*, is_green, swims*, is_small*

HORSE cow, ox, sheep, donkey in top10 an_animal, has_4_legs, is_large, has_legs, lives_on_farms
PLATYPUS | otter, salamander, turtle, walrus in top10 an_animal, is_small*, lives_in_water, is_long*,

SPARROW | starling, finch, partridge, sparrow in top5 a_bird, flies, has_feathers, has_a_beak, has_wings

SPATULA strainer, spatula, grater, colander in top5 made_of_metal, found_in_kitchens, made_of_plastic

HATCHET | hatchet, machete, sword, dagger in topl made_of_metal, is_sharp, has_a_handle, a_tool, a_weapon*
GUN gun, rifle, bazooka, shotgun in topl used_for_killing, a_weapon, made_of_metal, is_dangerous

Table 4: Qualitative analysis of predicted vectors (obtained by mapping from DS3 to FS1) for 10 concepts
in the test set. Features annotated with an asterix(*) are not listed in the gold standard feature vector for
the given concepts.

We compute the MAP score as follows: for each concept in the test set, we rank the features from the
predicted feature vector in terms of their values, and measure the quality of this ranking with IR-based
average precision, using the gold-standard feature set as the “relevant” feature set. The MAP score is
then obtained by taking the mean average precision over the entire test set. Overall, the model seems to
rank gold features highly, but the MAP score is certainly affected by the features which have not been
seen in training (these account for 18.8% of the total number of features), because these will have a zero
weight assigned to them, and so will be found at the end of the ranked feature list for that concept.

A qualitative evaluation of the top neighbours for predicted featural vectors can be found in Table
4. Overall, the mapping results look promising, even for items that do not list the gold feature vector
as one of the top neighbours. However, overall the mapping looks too coarse. One reason could be the
fact that the feature-based space is relatively sparse (the maximum number of features for a concept is
26, whereas there are over 2500 dimensions in the space). The reason why, for example, the predicted
vector for JAR does not contain its gold standard in the top 20 neighbours might simply be that there are
not enough discriminating features for the model to learn that a jar usually has a lid and a bucket does
not; or that jeans are worn on the lower body, as opposed to shawls which are worn on the shoulders. It
is important to note that a production frequency of zero for a concept-feature pair in the McRae dataset
does not necessarily mean that the feature is not a plausible property of the concept, but only that it is
not one of the most salient features, since it was not produced by any of the human participants (e.g. the
feature has_teeth has not been listed as a property of CAT in the McRae dataset, but it is clearly a
plausible property of the CAT concept). Many of the top-predicted features for the concepts in the test
set are plausible, even if they are not listed in the gold data (e.g 1ives_in_water for SEAWEED).
This is yet another indication that the concept-feature pairs listed in the McRae dataset are not complete,
meaning that there are salient features that apply to some concepts which have not been spelled out by
the participants.
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The ability to generalise feature representations to unseen concepts also means that these can now be
evaluated on standard NLP tasks since we can obtain full coverage on the evaluation datasets. In order
to show that the quality of the predicted vectors is in line with the state of the art on modelling concept
similarity and relatedness, we computed the correlation on a subset of 1288 noun-noun pairs (485 words)
from the MEN dataset (Bruni et al., 2014), leaving it to future work to test such transformations on dif-
ferent parts of speech like verbs or adjectives. It is important to mention that in the construction of this
subset we also excluded all McRae concepts from MEN, because we didn’t want any of that training data
to occur in the test set. The mapping function was trained on all the concepts in the McRae dataset and
then used to predict featural vectors for words in the MEN subset described above. A qualitative anal-
ysis of the predicted vectors show that they contain highly plausible features for words that are highly
perceptual (e.g. the top predicted features for COOKIE are is_round, is_edible, tastes_good,
eaten_by_baking), as opposed to words that are more abstract or don’t rely on perceptual informa-
tion (e.g. the top predicted features for LOVE are an_animal, made_of_metal, is_sharp). We
obtain the best Spearman correlation (0.71) for the predicted featural vectors by training the mapping
on the Mikolov vectors (DS5), the Spearman correlation of these vectors on the MEN subset being 0.75.
The high correlation with the MEN scores shows that the featural vectors capture lexical similarity well,
but suggest that rather than using them in isolation to construct a semantic model, they would be most
helpful as an added modality in a multimodal semantic model.

4 Conclusion

Feature norms have shown to be potentially useful as a proxy for human conceptual knowledge and
grounding, an idea that has been the basis of numerous psychological studies despite the limited avail-
ability of large-scale data for various semantic tasks. In this paper, we present a methodology to auto-
matically predict feature norms for new concepts by mapping the representation of the concept from a
distributional space to its feature-based semantic representation.

Clearly much experimental work is yet to be done, but in this initial study we have demonstrated
the promise of such a mapping. We see two major advantages to our approach. First, we are no longer
limited to the sparse datasets and expensive procedures when working with feature norms, and second,
we can gain a better understanding of the relationship between the distributional use of a word and our
cognitive and experiential representation of the corresponding concept. We envisage a future in which
a more sophisticated computational model of semantics, integrating text, vision, audio, perception and
experience, will encompass our full intuition of a concept’s meaning.

In future work, we plan to pursue this research in a number of ways. First, we aim to investigate
ways to improve the mapping between spaces by exploring different machine learning approaches, such
as other types of linear regression or canonical-correlation analysis. We are also interested in comparing
the performance of non-linear transformations such as neural network embeddings with that of linear
mappings. In addition, we wish to perform a more qualitative investigation of which distributional di-
mensions are particularly predictive of which feature norms in feature space.
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Abstract

Predicting the (distributional) meaning of derivationally related words (read / read+er) from one
another has recently been recognized as an instance of distributional compositional meaning construc-
tion. However, the properties of this task are not yet well understood. In this paper, we present an
analysis of two such composition models on a set of German derivation patterns (e.g., -in, durch-).
We begin by introducing a rank-based evaluation metric, which reveals the task to be challenging due
to specific properties of German (compounding, capitalization). We also find that performance varies
greatly between patterns and even among base-derived term pairs of the same pattern. A regression
analysis shows that semantic coherence of the base and derived terms within a pattern, as well as
coherence of the semantic shifts from base to derived terms, all significantly impact prediction quality.

1 Introduction

Derivation is a major morphological process of word formation (e.g., read — read+er), which is typically
associated with a fairly specific semantic shift (+er: agentivization). It may therefore be surprising
that the semantics of derivation is a relatively understudied phenomenon in distributional semantics.
Recently, Lazaridou et al. (2013) proposed to consider the semantics of a derived term like read+er as
the result of a compositional process that combines the meanings of the base term read and the affix
+er. This puts derivation into the purview of compositional distributional semantic models (CDSMs).
CDSMs are normally used to compute the meaning of phrases and sentences by combining distributional
representations of the individual words. A first generation of CDSMs represented all words as vectors and
modeled composition as vector combination (Mitchell and Lapata, 2010). A second generation represents
the meaning of predicates as higher-order algebraic objects such as matrices and tensors (Baroni and
Zamparelli, 2010; Coecke et al., 2010), which are combined using various composition operations.
Lazaridou et al. predict vectors for derived terms and evaluate their approach on a set of English
derivation patterns. Building on and extending their analysis, we turn to German derivation patterns and
offer both qualitative and quantitative analyses of two composition models on a state-of-the-art vector
space, with the aim of better understanding where these models work well and where they fail. Our
contributions are as follows. First, we perform all analyses in parallel for six derivation patterns (two
each for nouns, adjectives, and verbs). This provides new insights, as we can cross-reference results from
individual analyses. Secondly, we evaluate using a rank-based metric, allowing for better assessment
of the practical utility of these models. Thirdly, we construct a regression model that is able to explain
performance differences among patterns and word pairs in terms of differences in semantic coherence.

2 Modeling Derivation as Meaning Composition

Morphological derivation is a major morphological process of word formation that combines a base
term with functional morphemes, typically a single affix, into a derived term, and may additionally involve
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stem changes. In contrast to inflection, derivation produces new lexical items, and it is distinct from
composition, which combines two bases. Derivation comprises a large number of distinct patterns. Some
cross part-of-speech boundaries (nominalization, verbalization, adjectivization), but many do not (gender
indicators like actor / actress or (de-)intensifiers like red / reddish). In many languages, such as German
or the Slavic languages, derivational morphology is extremely productive (Stekauer and Lieber, 2005).
Particularly relevant from a semantic perspective is that the meanings of the base and derived terms
are often, but not always, closely related to each other. Consequently, derivational knowledge can be used
to improve semantic processing (Luong et al., 2013; Padé et al., 2013). However, relatively few databases
of derivational relations exist. CELEX (Baayen et al., 1996) contains derivational information for several
languages, but was largely hand-written. A recent large-coverage resource for German, DErivBase (Zeller
et al., 2013), covers 280k lemmas and was created from a rule-based framework that is fairly portable
across languages. It is unique in that each base-derived lemma pair is labeled with a sequence of derivation
patterns from a set of 267 patterns, enabling easy access to instances of specific patterns (cf. Section 3).

Compositional models for derivation. Base and derived terms are closely related in meaning. In
addition, this relation is coherent to a substantial extent, due to the phenomenon of productivity. In
English, for example, the suffix -er generally indicates an agentive nominalization (sleep / sleeper) and
un- is a negation prefix (well / unwell). Though Mikolov et al. (2013) address some inflectional patterns,
Lazaridou et al. (2013) were the first to use this observation to motivate modeling derivation with CDSMs.
Conceptually, the meaning of the base term (represented as a distributional vector) is combined with some
distributional representation of the affix to obtain a vector representing the meaning of the derived term.
In their experiments, they found that the two best-motivated and best-performing composition models
were the full additive model (Zanzotto et al., 2010) and the lexical function model (Baroni and Zamparelli,
2010). Botha and Blunsom (2014) use a related approach to model morphology for language modeling.
The additive model (ADD) (Mitchell and Lapata, 2010) generally represents a derivation pattern p as a
vector computed as the shift from base term vector b to the derived term vector d, i.e., b + p ~ d. Given
a set of base-derived term pairs (b, d) for p, the best p is computed as the average of the vector difference,
p= % > (di — b;).! The lexical function model (LEXFUN) represents the pattern as a matrix P that
encodes the linear transformation that maps base onto derived terms: Pb =~ d. The best matrix Pis
typically computed via least-squares regression between the predicted vectors d; and the actual vectors d;.

3 Experimental Setup

Distributional model. We build a vector space from the SdeWaC corpus (Faal3 and Eckart, 2013),
part-of-speech tagged and lemmatized using TreeTagger (Schmid, 1994). To alleviate sparsity arising
from TreeTagger’s lexicon-driven lemmatization, we back off for unrecognized words to the MATE
Tools (Bohnet, 2010), which have higher recall but lower precision than TreeTagger. We also reconstruct
lemmas for separated prefix verbs based on the MATE dependency analysis. Finally, we get a word list
with 289,946 types (content words only). From the corpus, we extract lemmatized sentences and train a
state-of-the art predictive model, namely CBOW (Mikolov et al., 2013). This model builds distributed
word vectors by learning to predict the current word based on a context. We use lemma-POS pairs as both
target and context elements, 300 dimensions, negative sampling set to 15, and no hierarchical softmax.

Selected patterns and word pairs. We investigate six derivation patterns in German and the word pairs
associated with them in DErivBase (see Table 1). We consider only patterns where base and derived terms
have the same POS, and we prefer patterns encoding straightforward semantic shifts. Such patterns tend
to encode meaning shifts without corresponding argument structure changes; thus they are represented
appropriately in composition models based on purely lexical vector spaces. Per pattern, we randomly
select 80 word pairs for which both base and derived lemmas appear at least 20 times in SdeWaC.?

"Lazaridou et al. (2013) use a slightly different formulation of the additive model. We experimented with both theirs and the
standard version of the additive model. Since we obtained best results with the latter, we use the standard version.
2We replace a small number of erroneous pairs (e.g., Log — Login for NN02) found by manual inspection.
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1D Pattern Sample word pair English translation BL ADD LEXFUN

AA02 un- sagbar — unsagbar sayable — unspeakable 42.5% (.46) 41.25% (.49) 18.75% (.31)
AAO03 anti- religios — antireligios religious — antireligious 7.5% (.51)  37.5%(.58) 47.5% (.58)
NNO2 -in Biicker — Bdickerin baker — female baker 35.0% (.56) 66.25% (.65) 26.25% (.51)
NN57 -chen Schiff — Schiffchen ship — small ship 20.0% (.55) 28.75% (.57) 15.0% (.49)
VV13 an- backen — anbacken to bake — to stick, burn  18.75% (.43) 18.75% (.43) 5% (.27)
VV31l durch- sehen — durchsehen  to see — to peruse 3.75% (.40) 7.5% (40) 1.25% (.27)
Mean 21.25% (.49) 33.33% (.52) 18.96% (.41)

Table 1: Derivation patterns, representative examples (and translations), and prediction performance in
terms of R,or percentages and mean similarity between derived and gold vectors, 10-fold cross-validation.

Experimental design and baseline. We experiment with the two composition models described in
Section 2 (ADD and LEXFUN) as implemented in the DISSECT toolkit (Dinu et al., 2013). As baseline
(BL), again following Lazaridou et al. (2013), we predict the base term of each word pair as the derived
term. With six derivation patterns, our investigation thus includes 18 experiments. In each experiment, we
perform 10-fold cross-validation on the 80 word pairs for each pattern.

All these models predict some point in vector space for the derived term, and we compare against the
gold standard position of the derived term with cosine similarity. Like Lazaridou et al. (2013), we consider
this average similarity directly, but believe that it is not informative enough since it does not indicate
concretely how many correct derivations are found. Therefore, we adopt as our primary evaluation metric
the Roor (Recall out of five) metric proposed by McCarthy and Navigli (2009) for lexical substitution. It
counts how often the correct derived term is found among the five nearest neighbors of the prediction
(selected from all words of the same POS). Rqor is motivated by rank-based evaluation metrics from IR
(such as Precision at n), but our setup differs in that there can be at most one true positive in each list.

4 Results and Discussion

Global observations. Table 1 shows R, performance and mean similarities, pattern-by-pattern, of
the two composition models (ADD and LEXFUN) and the baseline. Measured by Ry score, ADD
strongly outperforms BL for four patterns; for the other two, it achieves (nearly-)equivalent performance.
LEXFUN, on the other hand, beats BL for one pattern (AA03) and in all other cases is much worse. ADD
outperforms LEXFUN for all but one pattern. A comparison of R, and mean similarity indicates that
similarity alone is not a good indicator of how reliably a model will include the actual derived vector in
the nearest neighbors of its prediction. This validates our call for a more NLP-oriented evaluation.

The mean similarities are sufficient to make some comparisons across languages, though. Lazaridou
et al. (2013) find that both additive and lexical function models yield higher mean similarities than the
baseline. For our German data, this is true only for ADD. This shows that the semantic shifts underlying
derivation patterns are, to some extent, expressible as vector addition in the CBOW space, while it is
more difficult to capture them as a lexical function. The overall worse performance is, in our view, related
to some specific characteristics of German. First, due to the general capitalization of nouns, named
entities are not orthographically recognizable. Consequently, for Strauf3 (bouquet), BL and ADD return
terms related to the composers Richard (e.g., Alpensinfonie) or Johann (e.g., Walzerkonig (waltz king))
Strauss. Secondly, nominal compounds introduce higher sparsity and more confounders. For example,
for the derived term Apfelbiumchen (~apple treelet), LEXFUN’s closest returned neighbor is the noun
Bdumchen, which is a case of combined derivation and composition, yet is counted as incorrect. In
English, compounds such as apple tree(let) are considered neither as base nor as potential derived terms.

Semantic coherence appears to be an important determinant of prediction quality. The best-performing
pattern for ADD is NNO2, the gender affix -in (turning masculine into feminine nouns), which applies
to fairly coherent classes of people (nationalities, roles, and professions). We see a similar effect for the
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Norweger — Norweger+in NNO2 | pluralistisch — anti+pluralistisch AA03
(male — female Norwegian) (pluralistic — antipluralistic)

BL ADD LEXFUN | BL ADD LEXFUN

1. Norweger Norweger Schwed+in 1. pluralistisch  pluralistisch  anti+demokratisch

2. Diine Schwed+in Australier+in 2. plural plural anti+liberal

3. Schwede  Norweger+in Norweger+in 3. demokratisch demokratisch — anti+modernistisch

4. Islinder  Diine Diin+in 4. sdkular anti+totalitiir  anti+pluralistisch

5. Solberg Ddan+in Landsfrau 5. freiheitlich sdkular anti+modern

Table 2: Five nearest neighbors to the predicted vector for the derived term. Correct derived term appears
in bold; + mar