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Abstract 

This paper describes the submission of 
the UGENT-LT3 SCATE system to the 
WMT15 Shared Task on Quality Estima-
tion (QE), viz. English-Spanish word and 
sentence-level QE. We conceived QE as 
a supervised Machine Learning (ML) 
problem and designed additional features 
and combined these with the baseline 
feature set to estimate quality. The sen-
tence-level QE system re-uses the word 
level predictions of the word-level QE 
system. We experimented with different 
learning methods and observe improve-
ments over the baseline system for word-
level QE with the use of the new features 
and by combining learning methods into 
ensembles. For sentence-level QE we 
show that using a single feature based on 
word-level predictions can perform better 
than the baseline system and using this in 
combination with additional features led 
to further improvements in performance. 

1 Introduction 

Machine Translation (MT) Quality Estimation 
(QE) is the task of providing a quality indicator 
for unseen automatically translated sentences 
without relying on reference translations 
(Gandrabur & Foster, 2003; Blatz et al., 2004). 
Predicting the quality of MT output has many 
applications in computer-aided translation work-
flows that utilize MT, including error analysis 
(Ueffing and Ney 2007), filtering translations for 
human post-editing (Specia et al., 2009) and 
comparing the quality of different MT systems 
(Rosti et al. 2007).  

The most common approach is to treat the QE 
problem as a supervised Machine Learning (ML) 
task, using standard regression or classification 

algorithms. A considerable amount of related 
work on both word and sentence-level QE is de-
scribed in the WMT shared tasks of previous 
years (Bojar et al., 2014; Bojar et al., 2013). 

The WMT 2015 QE shared task proposes 
three evaluation tasks: (1) scoring and ranking 
sentences according to predicted post-editing 
effort given a source sentence and its translation; 
(2) predicting the individual words that require 
post-editing; and (3) predicting the quality at 
document level. In this paper, we describe the 
UGENT-LT3 SCATE submissions to task 1 
(sentence-level QE) and task 2 (word-level QE).  

Sentence-level and word-level QE are related 
tasks. Sentence-level QE assigns a global score 
to an automatically translated sentence whereas 
word-level QE is more fine-grained and tries to 
detect the problematic word sequences. There-
fore we first developed a word-level QE system 
and incorporate the word-level predictions as 
additional features in the sentence-level QE sys-
tem. The usefulness of including word-level pre-
dictions in sentence-level QE has already been 
demonstrated by de Souza et al. (2014) 

For both tasks, we extracted additional fea-
tures and combine these with the baseline feature 
set to estimate quality. The new features try to 
capture either accuracy or fluency errors, where 
accuracy is concerned with how much of the 
meaning expressed in the source is also ex-
pressed in the target text, and fluency is con-
cerned with to what extent the translation is well-
formed, regardless of sentence meaning. This 
distinction is well known in quality assessment 
schemes for MT (White, 1995; Secară, 2005; 
Lommel et al., 2014). Some of the additional 
features are based on ideas that were explored in 
previous work on QE, such as; context features 
for the target word and of POS tags, (Xiong et 
al., 2010), alignment context features (Bach et 
al., 2011) and adequacy and fluency indicators 
(Specia et al., 2013).  
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The rest of this paper is organized as follows. 
Section 2 and Section 3 give an overview of the 
shared task on word-level QE and sentence-level 
QE respectively and describe also the features 
we extracted, the learning methods and the addi-
tional language resources we used and the exper-
iments we conducted. Finally, in Section 4, we 
discuss the results we obtained and the observa-
tions we made. 

2 Word-level Quality Estimation 

The word-level QE task is conceived as a binary 
classification task. The goal is to label translation 
errors at word level by marking words either as 
“GOOD” or “BAD”. The WMT2015 QE task 
focuses on the F1 score for the “BAD” class as 
the main evaluation metric. For the word-level 
QE task, the organizers provided a data set of 
English-Spanish sentence pairs generated by a 
statistical MT system, which consists of a train-
ing set of 11,271 sentences, a development set of 
1,000 sentences and a test set of 1,817 sentences. 
All the target sentences of the training and de-
velopment data sets contain binary reference la-
bels for each word, which were automatically 
derived by aligning the MT output and the post-
edited translations using TERCOM (Snover et 
al., 2006). The distribution of the binary labels in 
the training and development sets is provided in 
Table 1.  

 # Words % GOOD % BAD 
training set 257548 

 
80.85 19.15 

dev. set 23207 
 

80.82 19.18 

Table 1: Distribution of the binary labels on the 
training and development set for word-level QE 

2.1 Language Resources and Features 

In our experiments, in addition to the provided 
25 baseline features which were described in the 
WMT14 QE shared task (Bojar et al., 2014), we 
added 55 features to characterize each target 
word of the MT output. The new features were 
extracted from the provided training data and 
additional language resources we gathered. The 
new features try to model the two main MT error 
categories: accuracy and fluency. For fluency, we 
extracted surface-level features as well as more 
abstract PoS-based features and Named Entity 
(NE) information. For accuracy, we used bilin-
gual information. In the following subsections, 
we describe the additional language resources 
and list out the additional features we used in the 

WMT 2015 word-level QE task. Necessary pre-
processing operations are applied on the target 
sentences (depending on the feature type) prior 
to feature extraction.  

2.1.1 Additional Resources 

Since most of the new features rely on statistical 
information, we used two additional data re-
sources. As monolingual data resource, we used 
a corpus of more than 13 million Spanish sen-
tences collected from the News Crawl Corpus1 
(years 2007-2013) to build two types of language 
models: one based on surface forms and one 
based on PoS codes. The following prepro-
cessing steps have been applied on the data be-
fore building the language models: normalizing 
punctuation and numbers, tokenization, named 
entity recognition using the Stanford NER tool 
(Finkel et al., 2005), lowercasing, and PoS-
tagging using FreeLing (Padró and Stanilovsky, 
2012). The surface form LM has been built using 
KenLM (Heafield 2011). For the PoS LM, we 
used  IRSTLM with Witten-Bell smoothing 
(Federico et al., 2008) as the modified Kneser-
Ney smoothing, which is used by KENLM, is not 
well defined when there are no singletons (Chen 
and Goodman 1999), which leads to modeling 
issues in the PoS corpus.  

As bilingual data, we selected 6 million sen-
tence pairs from OPUS (Tiedemann 2012) from 
various domains and used the Moses toolkit 
(Koehn et al. 2006) to obtain word and phrase 
alignments. Even though there are more bilingual 
sentences available, to avoid a bias to one specif-
ic domain, a similar number of sentences of dif-
ferent domains were selected. The following 
preprocessing steps have been applied on the 
data prior to training: normalization on punctua-
tion and numbers, tokenization, NER (only the 
Spanish side) and lowercasing. The phrase table 
has been pruned to exclude alignments with a 
direct alignment probability 𝑃(𝑡|𝑠)  < 0.01, 
where 𝑠 denotes source and 𝑡 denotes target text.  

The resulting language models and phrase ta-
bles were stored in databases and indexed to 
speed up lookup. 

2.1.2 Fluency Features 

The fluency features try to capture whether the 
Spanish MT translations adhere to the norms of 
the Spanish language. Most of the fluency fea-
tures are derived from the two language models 
                                                
1 http://www.statmt.org/wmt13/translation-task.html 
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described in section 2.1.1 and use the context 
around the focus word (𝑤!). To ensure computa-
tional feasibility, we limited the language models 
to 3-gram sequences. However, for each 𝑤!, for 
which we extract a contextual feature, we gener-
ate three 3-gram features depending on the posi-
tion of 𝑤! using a sliding window approach: 

• 𝑤!!!  𝑤!!!  𝑤!    
• 𝑤!!!  𝑤!   𝑤!!!   
• 𝑤!   𝑤!!!  𝑤!!! 

This sliding window approach (sw) is used for 
extracting all context features. In the table below, 
these features are indicated with “sw” together 
with the total number of features extracted by 
this approach.  

The following fluency features were used: 
• The LM score of 𝒘𝒊 (one feature); 
• (sw) The LM scores of the 3-gram context of 

𝒘𝒊 (three features); 
• (sw) Binary features indicating whether a 3-

gram context exists in the 3-gram database 
(three features); 

• Separate features of the PoS codes of 
𝑤!!!,𝑤! ,𝑤!!! (three features); 

• Separate features of the simplified PoS codes 
(only main category) of 𝑤!!!,𝑤! ,𝑤!!! (three 
features); 

• (sw) The PoS sequences of the 3-gram con-
text of 𝒘𝒊 (three features); 

• (sw) The simplified PoS sequences of the 3-
gram context of 𝒘𝒊 (three features); 

• The PoS LM score of PoS tag of 𝒘𝒊 (one 
feature); 

• (sw) The PoS LM scores of the 3-gram PoS 
context of 𝒘𝒊 (three features); 

• (sw) Binary features indicating whether a 3-
gram PoS context exists in the 3-gram PoS 
database (three features); 

• (sw) The Log-Likelihood Ratio (LLR) 2 of 
the 3-gram PoS context of 𝒘𝒊  (three fea-
tures); 

• (sw) Binary features indicating whether the 
LLR of the 3-gram PoS context of the focus 
word is above the critical value 3.84 (95th 
percentile; significant al the level of p < 
0.05) (three features); 

                                                
2 LLR compares frequencies weighted over two different 
corpora (in our case the Spanish MT output and the Spanish 
News Crawl Corpus) and assigns high LLR values to se-
quences in the Spanish MT output having much lower or 
higher frequencies than expected. 
 

• Binary features indicating whether 𝒘𝒊 is the 
first word or the last word in a sentence (two 
features); 

• Binary features indicating whether 𝒘𝒊!𝟏,𝒘𝒊 
or 𝒘𝒊!𝟏  is a NE (three features); 

• (sw) NE annotation of the 3-gram context of 
𝒘𝒊 (three features). 

2.1.3 Accuracy Features 

The accuracy features try to capture errors that 
can only be identified when comparing source 
and target sentences: wrong translations, addi-
tions and deletions. Some accuracy features are 
derived from the phrase table described in sec-
tion 2.1.1. Other accuracy features make use of 
the alignment features that were given in de 
baseline feature set. The following accuracy fea-
tures were used: 

• (sw) Phrase table alignment scores of any 
possible alignment of words in the source 
sentence with words in the target sentence, 
containing 𝒘𝒊, using direct translation prob-
ability (six features are defined for n-grams 
of size 1-3); 

• (sw) Same phrase table as above with the 
additional condition that the source align-
ment for each 𝒘𝒊  (which is provided as a 
baseline feature) is included in the align-
ments found (six features are defined similar-
ly); 

• Binary feature indicating whether 𝒘𝒊 is iden-
tical to its source alignment, the alignment 
given as in the baseline features (one fea-
ture); 

• Binary features indicating whether 𝒘𝒊 and its 
source alignment are either both content 
words or both function words, based on the 
PoS codes of 𝒘𝒊 and its source alignment, 
given as in the baseline features (two fea-
tures). 

2.2 Learning Methods 

We use Conditional Random Fields (CRFs) 
(Lafferty et al., 2001) and Memory-Based Learn-
ing (MBL) (Daelemans and Van den Bosch, 
2005) as ML methods for word-level QE. CRFs 
take an input sequence 𝑋 with its associated fea-
tures, and try to infer a hidden sequence 𝑌, con-
taining the class labels. They are as such compa-
rable to Hidden Markov Models (HMMs) and 
Maximum Entropy Markov Models (MEMMs). 
However, CRFs, unlike HMMs, do not assume 
that all features are independent, and they can 
take future observations into account using a 
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forward-backward algorithm, unlike MEMMs, 
thus avoiding two fundamental limitations of 
those models (Lafferty et al, 2001). We used the 
CRF++ toolkit, version 0.58 (Lafferty et al., 
2001). In MBL, on the other hand, a so-called 
lazy learner, which stores all training instances in 
memory and at classification time, a new test 
instance 𝑋 is compared to all instances 𝑌 in the 
memory. The similarity between the instances is 
computed using a distance metric ∆ 𝑋,𝑌 . The 
extrapolation is done by assigning the most fre-
quent category within the found set of most simi-
lar example(s) (the k-nearest neighbors) as the 
category of the new test example. We used 
TiMBL, version 6.4.2 (Daelemans et al., 2010) in 
our experiments. In addition, we used Gallop 
(Desmet et al, 2013), a genetic algorithm (GA) 
toolbox for optimizing the classifiers on two lev-
els: feature selection and hyper-parameter opti-
mization.  

2.3 Experiments 

We carried out experiments with the two ML 
methods and three different feature sets, namely 
the baseline features (b), the new features (n) we 
described in Section 2.2 and a merged feature set 
(m), which contain all features from the first two 
groups. We trained CRF models with basic uni-
gram (uni) and bigram (bi) templates and the de-
fault settings for the regularization algorithm and 
the hyper-parameters. While unigram templates 
use each feature as it is, bigram templates auto-
matically create additional features, combining 
the features for 𝒘𝒊!𝟏    and 𝒘𝒊,. TiMBL learning is 
performed with explicitly defined numerical fea-
tures. For a first round of experiments, both 
learners were applied relying on their default 
parameter settings. Figure 1 summarizes the 
classification results of the first round of experi-
ments, where evaluation metrics are defined as 
follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
tp + tn

tp + tn + fp + fn 

𝐹1  "BAD" =
2   ∙   𝑃!"#    ∙   𝑅!"#
𝑃!"# + 𝑅!"#

 

where 𝑡𝑝, 𝑡𝑛, 𝑓𝑝, 𝑓𝑛  denote true positives, true 
negatives, false positives and false negatives re-
spectively, and 𝑃!"# and 𝑅!"# denote precision 
and recall for the “BAD” class. Figure 1 shows 
that merging the baseline features with the newly 
designed features improves the classification per-
formance on the “BAD” class for both learning 
methods (systems “CRF m-uni”, “CRF m-bi” 
and “TiMBL m”). For this experiment, the uni-

gram CRF systems generally have a better per-
formance than the bigram systems. 

 
Figure 1: Classification performance of different 
feature groups and learning methods.  
 
In order to gain more insight into which features 
are most informative for our task, we performed 
feature selection using a GA-based search. Given 
that it is by no means certain that the default pa-
rameters, in both learners, are also the optimal 
parameter settings for our classification task, we 
performed joint feature selection and parameter 
optimization. For this purpose, we used Gallop 
with 3-fold cross-validation, population size of 
100 and a maximum of 50 generations.   

Due to time limitations, we used a reduced 
training data set of 60,000 feature vectors for the 
Gallop experiments. Unfortunately, we were not 
able to improve the results of “TiMBL m” by 
using only the features or the hyper-parameters 
that are selected by Gallop. Some of the features 
that were consistently selected by Gallop in the 
5-best scoring feature sequences, are the follow-
ing: LM scores of 3-gram context, binary fea-
tures indicating whether the 3-gram context ap-
pears in the LM or POS-LM, binary feature indi-
cating whether the target word is identical to the 
source alignment, binary feature indicating 
whether the target word and the corresponding 
source alignment are both content or function 
words. 

Based on the hypothesis that both learners use 
a different learning strategy and might thus make 
different types of errors, we performed a final 
experiment with classifier ensembles, using two 
simple methods. While the first method uses the 
TiMBL word-level predictions as an additional 
feature in CRF (hybrid-1), the second method 
combines the labels of the best CRF and TiMBL 
systems (“CRF m-uni” and “TiMBL m”) by vot-
ing for the “BAD” label if (1) any of the systems 
labels the target word as “BAD” (hybrid-2A) or 
(2) both systems label the target word as “BAD” 
(hybrid-2B).  The classification performance of 
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the ensemble systems, together with the best 
TiMBL system, are provided in Table 2. 
 

 Accuracy F1 “BAD” 
TiMBL-m 0,74 

 
0.317 
 Hybrid 1 

 

0,79 
 

0.292 
Hybrid 2A 0,81 0.161 
Hybrid 2B 0,73 

 
0.375 

Table 2: Classification performance of the best 
TiMBL system, in comparison with the ensemble 
systems on the development set. 

Based on all the results, we selected the follow-
ing systems for the submission of this year’s 
shared task on word-level QE: 
• SCATE-HYBRID: Hybrid 2B 
• SCATE-MBL: TiMBL-m 

 
These two systems obtained comparable scores 
(F1 “BAD”) on the test set of 0.367 and 0.305 
respectively. 

3 Sentence-level Quality Estimation 

The sentence-level QE task aims at predicting 
Human mediated Translation Edit Rate (HTER) 
(Snover et al., 2006) between the raw MT output 
and its manually post-edited version. In addition 
to scoring the sentences for quality, a ranking 
variant of this task is defined as ranking all MT 
sentences, for all source sentences, from best to 
worst.  

3.1 Features and Language Resources 

In our experiments, in addition to 17 baseline 
features that were provided together with the da-
ta sets, we designed 17 additional features. In 
this section, we briefly list out the additional fea-
tures we used in WMT 2015 sentence-level QE 
task. We used the same additional language re-
sources as in the word-level QE task to extract 
additional features. As mentioned before, we in-
clude the word level predictions as features for 
sentence-level QE. The following additional fea-
tures were used: 
• The percentage of predicted “BAD” tokens 

in the target sentence (𝑝!"#).  
• The percentage of PoS n-grams in the target 

sentence that appear in the PoS n-gram da-
tabase more than once (𝑝!"#). Five features 
are extracted for n-grams of size 2-6. 

• The percentage of n-grams in the target sen-
tence that appear in the n-gram database at 

least once (𝑝!"#). Four features are extracted 
for n-grams of size 2-5. 

• The percentage of n-grams in the target sen-
tence that appear in the phrase table, being 
aligned to n-grams from the corresponding 
source sentence with direct alignment prob-
ability (EN-to-ES) 𝑃 𝑡 𝑠 > 0.01   ( 𝑝!" ). 
Seven features are extracted for n-grams of 
size 1-7. 

3.2 Learning Methods 

We use LibSVM (Chang and Lin 2011) to train a 
regression model using Support Vector Machines 
(SVMs) with a Radial Basis Function (RBF) 
kernel.  

3.3 Experiments 

In a first set of experiments we compare the per-
formance of a system using the baseline features 
with three systems using only a single feature 
( 𝑝!"# ), that is the percentage of predicted 
“BAD” tokens in the target sentence. We extract 
this feature from three different word-level QE 
systems “TiMBL m”, “CRF m-uni” and “HY-
BRID_2B”. The performance of these sentence-
level QE systems are measured with Mean 
Squared Error (MSE), Squared Correlation Coef-
ficient (𝑟!) and Mean Average Error (MAE), 
which are defined as follows: 

MSE =
1
𝑛 f x! − y! !

!

!!!

 

r! =
𝑛 𝑓 𝑥! 𝑦!   −!

!!! 𝑓 𝑥!!
!!! 𝑦!!

!!!
!

𝑛 𝑓 𝑥! ! −!
!!!    𝑓 𝑥!!

!!!
!    𝑛 𝑦!!!

!!! − 𝑦!!
!!!

!  

MAE =
1
𝑛 f x! − y!

!

!!!

 

 

where 𝑓 𝑥! ,… , 𝑓 𝑥!  are the decision values 
predicted by LibSVM and 𝑦!,… , 𝑦!  are the true 
values. We train the systems with default values 
for hyper-parameters and perform evaluation on 
the development set provided for the sentence-
level QE task. Figure 3 summarizes the perfor-
mance of baseline features in comparison with 
𝑃!"# , which is obtained from different word-
level QE systems. In addition to the systems 
above, we build a final system, which uses the 
given reference labels to extract 𝑃!"#  (𝑃!"#  -
ReferenceLabels). The purpose of building and 
evaluating this system is to show an upper 
boundary for the performance of 𝑃!"#, as a sin-
gle feature.  

 

357



 MSE 𝑟! MAE 
baseline 

 

 

0,039 0,03
5 
 

0,147 
𝑃!"# – Timbl m 0,038 0,06  0,145 
𝑃!"# - CRF m-uni 

 

 

0,037 
 

0,08
2 

0,145 
𝑃!"# - HYBRID 2B 

 + 

0,036 0,10 0,144 
𝑃!"# - ReferenceLabels 

 

0,005 0,89 0,055 

Table 3: Sentence-level QE performance of SVM 
systems using baseline features vs. 𝑝!"# extract-
ed from three different systems. 
 
As a second set of experiments we enrich the 
baseline feature set by combining it with the ad-
ditional features that are described in Section 3.1. 
For the feature 𝑃!"#  we use the best output, 
coming from the system “HYBRID_2B”. Table 
4 shows the impact of the different feature sets 
on the overall performance. 
 
 MSE 𝑟! MAE 
basel. 

 

 

0,037 
 

0,03
5 
 

0,147 
𝑝!"# 0,036 0,07  0,147 
basel.+𝑝!"# 

 

 

0,037 
 

0,04
2 

0,147 
basel.+𝑝!"#+𝑝!" 

 + 

0,036 0,06 0,145 
basel.+𝑝!"#+𝑝!"+𝑝!"# 

 

0,036 0,07 0,143 
basel.+𝑝!"#+𝑝!"+𝑝!"#+𝑝!"# 

  

0,035 
 

0,10 0,142 

Table 4: Performance of the SVM systems on 
sentence-level QE, using different feature sets 

Based on the results, we selected the following 
two systems for the submission of this year’s 
shared task on sentence-level QE: 
• SCATE-SVM-single: SVM trained with the 

single feature 𝑝!"# 
• SCATE-SVM: SVM trained with baseline and 

new features (base.+𝑝!"#+𝑝!"+𝑝!"#+𝑝!"#) 
 
 MSE 𝑟! MAE 
𝑝!"# 0.035 0.07 0,146 
basel.+pos+pt+tok+𝑝!"# 

 + pt 

0.034 0.10 0,142 

Table 5: Performance of the submitted sentence-
level QE systems on development set, compared 
with the baseline system. 

We apply grid search to optimize the γ, ε and C 
parameters using 5-fold cross validation prior to 
building SVM models to use for our submis-
sions. We perform sentence ranking based on the 
predicted HTER scores for both systems. Table 5 
gives an overview of the performance of the two 
optimized systems we submit on the develop-
ment set. On the test set, the performance (MAE) 
of both of these systems was 0.14, based on the 
official results. 

4 Results and Discussion 

For the word-level QE task, we extracted addi-
tional features based on accuracy and fluency of 
translations, for labeling words for quality as a 
ML classification problem. The results showed 
that the additional features, as a whole, were 
found to be relevant for the two different learn-
ing methods. We obtained better results using 
both MBL and CRF when we used the additional 
features in combination with the baseline feature 
set. We also observe that MBL performs better 
than CRF when looking at the F1 scores on the 
“BAD” class for this task, even though it per-
forms worse when overall classification accuracy 
is considered. One possible explanation for MBL 
obtaining a better performance could be the use 
of similarity-based reasoning as a smoothing 
method for estimating low-frequency events, 
considering the heterogeneous nature of the 
“BAD” class for this specific task and the suita-
bility of MBL for handling exceptions 
(Daelemans and Van den Bosch, 2005). 

Finally, a simple combination of the two clas-
sifiers into an ensemble system provides a better 
system for classifying the “BAD” class, which 
encourages us to carry out more experiments 
with ensemble systems for the word-level QE 
task. 

For sentence-level QE, we trained regression 
models using additional features we extracted, in 
combination with the baseline feature set. We see 
in Table 4 that a single feature, which is based 
only on the predicted word labels, can lead to a 
sentence-level QE system with better perfor-
mance than a system built with 17 baseline fea-
tures. For demonstrating the potential of this sin-
gle feature further, we built a system based on 
the given correct word labels, which defines a 
high upper bound for quality estimations, as ex-
pected. As a result we show that a word-level QE 
system that is accurate “enough” can lead to suc-
cessful sentence-level QE. In the future, we 
would like to investigate more closely the rela-
tionship between word-level and sentence-level 
QE and examine the portability of the developed 
systems to English-Dutch.  
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