
Proceedings of the Second Workshop on Natural Language Processing and Linked Open Data, pages 33–41,
Hissar, Bulgaria, 11 September 2015.

Accessing Linked Open Data via A Common Ontology*

Kiril Simov

Linguistic Modeling Department, IICT-BAS

KIvS@bultreebank.org

Atanas Kiryakov

Ontotext AD

Atanas.Kiryakov@ontotext.com

Abstract

In the paper we present the construction of the

FactForge service. FactForge represents a

reason-able view over several Linked Open

Data (LOD) datasets including DBPedia,

Freebase and Geonames. It enables users to

easily identify resources in the LOD cloud by

providing a general unified method for

querying a group of datasets. FactForge is

designed also as a use case for large-scale

reasoning and data integration. We describe

the datasets, ontologies, inference rules, and

manipulations done over the data. The datasets

are unified via a common ontology –

PROTON, whose concepts are mapped to the

concepts of the involved LOD datasets. Each

of the mapping rules relates a PROTON class

or a PROTON property to the corresponding

class or property of the other ontologies. This

mechanism of constructing a reason-able view

over selected LOD datasets ensures that the

redundant instance representations are cleaned

as much as possible. The instances are

grouped in equivalent classes of instances.

1 Introduction

Linked Open Data (LOD) (LOD 2014)

facilitates the emergence of a web of linked data

by publishing and interlinking open data on the

web in RDF (Brickley and Guha 2004). The

current datasets in LOD cover a wide spectrum

of subject domains – biomedical, science,

geographic, generic knowledge, entertainment,

government (LOD Cloud 2011). As they

constantly grow, we face the problem of

conveniently accessing, manipulating and further

developing them. It is believed that this large set

of interconnected data will enable new classes of

applications, making use of more sophisticated

querying, knowledge discovery and reasoning.

However, LOD is characterized by heterogeneity

and inconsistency of the datasets, which makes

their automated use via algorithms difficult. A lot

of research effort nowadays has been focused on

 * The research reported here is done within Ontotext AD

detecting methods to cope with and preserve the

diversity of LOD, which can scale and manage

their increasing growth rates. These methods

bring experimental results, which show that the

state of the art is still far from the performance

necessary for real life applications. Highly

heterogeneous contexts such as LOD and the

Web need mechanisms to ensure consistency

based on a set of data agreed upon or commonly

acceptable, shared by various datasets, and make

them interconnected. In order to provide such a

mechanism we use a reference layer, consisting

of one or more ontologies with different degrees

of generality built on top of LOD and interlinked

with their schemata and instances. This is a

viable and optimal solution for handling LOD

heterogeneity. In the Semantic Web, the idea of

having an integrated global ontology which

extracts information from the local ontologies

and provides a unified view through which users

can query the local ontologies is unrealistic,

since it is practically impossible to maintain this

global ontology in a highly dynamic

environment. The idea of building reference

structures at the schema level has been advocated

previously (Jain et al. 2010). They state that it

would be valuable to have a schema describing

the subject domain of the datasets in LOD.

Besides the reference layer, we think that the

actual datasets in LOD needs to be tuned to fit

the reference layer. Such a tuning includes:

unification of modelling principles for the

various datasets and cleaning the instance data

that do not fit the conceptualization. In the paper

we present the preparation of datasets for one

LOD service including these two components: a

reference layer and cleaning of the involved

datasets, based on the detected conceptual

mismatches between the common ontology and

conceptualization of each involved dataset.

LOD are valuable source of information of NLP

like extraction of vobularies, names, features. In

this paper we do not discuss any concrete NLP

task or application, but for each of them we need

a reliable LOD dataset - the topic of the paper.

33

The structure of the paper is as follows: Section

2 gives the background of our idea. Section 3

focuses on the conctruction of FactForge.

Section 4 concludes the paper.

2 Background

This section outlines the three components our

approach is based on: (a) conceptual schema of

the world (ontologies); (b) instance data; and (c)

mechanisms for inferring new information from

these two sources of information. First, we

provide a general overview of ontologies with

emphasis on upper level ontologies. Then, we

characterize LOD and describe an approach to

using the LOD data with reasoning.

Ontologies. Ontologies are defined as “a formal,

explicit specification of a shared

conceptualization” (Studer et al. 1998). They are

sets of definitions in a formal language for terms

describing the world. Ontologies organize

knowledge domains in concepts and relations

between them. They allow for inheritance of

properties and characteristics, and for reasoning

according to different logics. These are some of

the powerful mechanisms of ontologies that offer

increased knowledge coverage, consistency, and

lack of redundancy or contradiction. Depending

on the generality of the knowledge domains they

cover, several types of ontologies are

distinguished. These are upper-level ontologies,

domain ontologies and application ontologies.

Upper-level ontologies, or foundational

ontologies, describe very general concepts that

can be used across multiple domains; examples

include DOLCE 1 , SUMO 2 , and PROTON 3 .

Domain ontologies cover the conceptualization

of given subject domains. They describe

concepts and relationships representative for the

subject domain like biology, vehicle sales,

product types, etc. The most common ontology

design principles include: defining the scope of

the ontology, creating a balanced class hierarchy,

providing methods to evaluate the concepts and

properties, as well as consistency checking. The

OntoClean method (Guarino, N., & Welty 2002)

is a very popular ontology design method. It

recommends distinguishing between type and

role when defining the concepts. It uses

metaproperties to check the consistency of the

ontology with predefined constraints helping to

discover taxonomic errors. Data driven

1 http://www.loa-cnr.it/DOLCE.html
2 http://www.ontologyportal.org/
3 http://www.ontotext.com/proton-ontology

ontologies, such as the ontology of DBpedia4 ,

select the concepts based on the availability of

data instantiating them.

Linked Open Data. The notion of “linked data”

is defined by Tim Berners-Lee (Berners-Lee

2006), as RDF graphs, published on the WWW

so that one can explore them across servers by

following the links in the graph in a manner

similar to the way the HTML web is navigated.

“Linked data” are constituted by publishing and

interlinking open data sources, following the

principles of:

 Using URIs as names for things;

 Using HTTP URIs, so that people can look up

these names;

 Providing useful information when someone

looks up a URI;

 Including links to other URIs, so that people

can discover more things.

To this end, data publishers should make sure

that:

 The “physical” addresses of the pieces of

published data are the same as the “logical”

addresses, used as RDF identifiers (URIs);

 Upon receiving an HTTP request, the server

should return a set of triples describing the

resource.

LOD provide sets of referenceable, semantically

interlinked resources with defined meaning. The

central dataset of the LOD is DBpedia. Because

of the many mappings between other LOD

datasets and DBpedia, the latter serves as a sort

of a hub in the LOD graph ensuring a certain

level of connectivity. LOD is rapidly growing.

The largest number of datasets in LOD belongs

to the bio-medical domain. Another big subject

area in the LOD cloud is scientific literature

collection; entertainment data; government data

like; Language dataetc. Finally, some datasets

contain general-purpose encyclopedic knowledge

such as DBpedia and Freebase, and geographic

knowledge such as Geonames, etc.

The use of LOD and the development of

applications based on it are difficult because the

different LOD datasets are rather loosely

connected chunks of information, facts, and

instances. They have varying levels of

completeness and external linkages. They are

mainly connected at the instance level, thus

losing the benefits from the enrichment of the

data with implicit factual knowledge, when

ontologies and schema-level mappings are

involved. Even the linkage between instances of

4 http://dbpedia.org/About

34

different datasets in the LOD cloud, via the

predicate owl:sameAs shows drawbacks due to

the fact that the instances are not described in the

same way in the different datasets. They are,

strictly speaking, not the same. For instance,

New York’s population in DBpedia is given as of

July 2009, and counts 8,391,881, whereas in

Freebase it is 8,363,710 as of 2008.

Nevertheless, the two instances of New York

from DBpedia and from Freebase are linked

together with owl:sameAs, which implies that the

two resources are fully identical. Yet, the “facts”

for each instance differ. Another example points

to the country of Kosovo. In DBpedia, it is

described as a country, whereas in Freebase, it is

denoted as a region. Still these two instances are

reliably linked with owl:sameAs. Such

divergences make the use of LOD data

challenging in knowledge demanding

applications or for reasoning tasks. On the other

hand, introducing schema-level alignment of

LOD datasets would provide significant

advantages in ensuring the consistency of

linkages. Such linkages would enable

applications that can answer queries requiring

multiple and disparate information sources. The

quality of the data in the LOD cloud and their

linkage are not the only challenges for the

applications. The RDF datasets are supplied with

vocabularies, which imply inference and

generation of implicit facts. This considerably

increases the overall number of facts available

for exploration and poses the question of

managing LOD. Using linked data for data

management is considered to have great potential

for the transformation of the web of data into a

giant global graph (Heath and Bizer 2011). Still,

there are several challenges that have to be

overcome to make this possible, namely:

 LOD are hard to comprehend – the fact that

multiple datasets are interlinked and accessible

in the same data format is not enough to deal

with hundreds of data schemata, ontologies,

vocabularies and data modeling patterns;

 Diversity comes at a price – often there are

tens of different ways of expressing one and

the same piece of information even in a single

dataset, such as DBpedia;

 LOD is unreliable – many of the servers

behind LOD today are slow and have down

times higher than the one acceptable for most

of the data management setups;

 Dealing with data distributed on the web is

slow – a federated SPARQL query that uses,

say, three servers within several joins can be

very slow;

 No consistency is guaranteed – low

commitment to the formal semantics and

intended use of the ontologies and schemata.

Using reason-able views (Kiryakov et al. 2009),

described below, is one solution to the problem

of LOD management. Reason-able views are the

experimental setting for the approach presented

in this paper.

Reason-Able Views (RAV). Reasoning within

LOD with standard methods of sound and

complete inference with respect to First Order

Predicate Calculus is practically infeasible. The

closed-world assumption for sound and complete

reasoning is practically inapplicable in a web

context and has never been even considered for

the web of data. Due to the nature of the data in

LOD in its current state, inference with them in

many cases is useless, as it derives many false

statements. Having datasets dispersed in different

locations makes reasoning with them impractical.

Reason-able views are an approach to reasoning

over and managing linked data. Reason-able

view is an assembly of independent datasets,

which can be used as a single body of knowledge

with respect to reasoning and query evaluation.

The key principles of constructing reason-able

views can be summarized as follows:

 Group selected datasets and ontologies in a

compound dataset;

 Clean up, post-process and enrich the datasets

if necessary. Do this conservatively, in a

clearly documented and automated manner, so

that (a) the operation can easily be performed

each time a new version of one of the datasets

is published; and (b) the users can easily

understand the intervention made;

 Load the compound dataset into a single

semantic repository and perform inference

with respect to tractable OWL dialects;

 Define a set of sample queries against the

compound dataset. These determine the “level

of service” or the “scope of consistency”

contract offered by the reason-able view.

Each RAV aims at lowering the cost and the

risks of using specific LOD datasets. The design

objectives behind each reason-able view are to:

 Make reasoning and query evaluation feasible;

 Lower the cost of entry through interactive

user interfaces and retrieval methods such as

URI auto-completion and RDF search;

35

 Guarantee a basic level of consistency – the

sample queries guarantee the consistency of

the data;

 Guarantee availability – all data is the same

repository;

 Easier exploration and querying of unseen

data – sample queries provide re-usable

extraction patterns.

RAVs are built according to certain design

principles, e.g.:

 All datasets in the view represent linked data;

 Single set of reasonability criteria is imposed

on all datasets;

 Each dataset is connected to at least one of the

others.

RAVs are implemented in two public services,

namely, FactForge and LinkedLifeData.

3 Construction of FactForge

FactForge 5 represents a reason-able view over

several important Linked Open Data datasets. It

enables users to easily identify resources in

the LOD cloud by providing a general unified

method for querying a whole group of datasets.

FactForge is designed also as a use-case for

large-scale reasoning and data integration. In

brief, the datasets are unified via a common

ontology – PROTON, whose concepts are

mapped to the concepts of the involved LOD

datasets. We do this by a set of rules. Each of

them maps a PROTON class or a PROTON

property to the corresponding class or property

of the other ontologies. This mechanism of

constructing a reason-able view over selected

LOD datasets ensures that the redundant instance

representations (classes and properties) are

cleaned as much as possible. The instances are

grouped in equivalent classes of instances.

Finally, the instances in these datasets are linked

via owl:sameAs statements. FactForge

development can be divided into six main steps:

1. Selecting the LOD datasets

2. Checking each dataset for consistency

3. Mapping the PROTON concepts to the

respective LOD datasets concepts

4. Cleaning the datasets from any discrepancies

between the concepts in the different datasets

and PROTON

5. Loading all datasets in a joint repository

6. Loading owl:sameAs statements and checking

for consistency

5 http://www.ontotext.com/factforge

Here, we also present solutions for resolving

discrepancies when mapping concepts from the

central datasets in FactForge and PROTON, as

well as the way of cleaning the datasets. In some

of the cases, we have to add new instances,

which are introduced via inference rules.

Ultimately, FactForge provides a deeper

understanding of: the Linked Open Data

available on the web, some peculiarities of the

datasets conceptualization and the problems of

integrating the different LOD datasets.

3.1 Reference Layer Mapping Rules

This section describes the methodology for

creating a correspondence between two dataset

conceptualizations of the real world. When

constructing such a correspondence, several

manipulations of the datasets facts are

conducted: (1) introducing new individuals; (2)

deleting some individuals; (3) modifying some

individuals; (4) inserting/deleting/updating

relations between individuals; (5)

inserting/deleting/updating characteristics of the

individuals. The idea behind LOD is that such

transformations are minimal. Ideally, there

should be no transformations at all. We respect

this recommendation, as much as possible, when

constructing FactForge, except in cases where

the resulting reason-able view contradicts with

the conceptualization of the PROTON ontology.

Thus, in the development of FactForge, our first

aim is to support a full querying of the resulting

repository via PROTON. We use only

rdfs:subClassOf or rdfs:subPropertyOf

statements in order to ensure a complete

mapping coverage of the PROTON ontology to

the other schemas in FactForge. Generally, the

mapping statements can be arbitrary couples but

in most cases they are simply rdfs:subClassOf

or rdfs:subPropertyOf statements between

classes or properties explicitly defined in the

PROTON ontology, and the ontology or the

schema of a given dataset. For example6:

6 Here are the namespace declarations used in the document:
@prefix ptop:

<http://www.ontotext.com/proton/protontop#> .

@prefix pext:

<http://www.ontotext.com/proton/protonext#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-

syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-

schema#> .

@prefix dbp: <http://dbpedia.org/ontology/> .

@prefix dbp-prop:<http://dbpedia.org/property/> .

@prefix fb: <http://rdf.freebase.com/ns/> .

36

dbp:SportsTeam

 rdfs:subClassOf pext:Team .

foaf:homepage

 rdfs:subPropertyOf pext:hasWebPage .

However, due to the different conceptualizations,

in some cases a more complex mapping is

needed. For example, in the Geonames dataset

geographical objects are classified by codes and

not by an ontology hierarchy. In such cases the

mapping is done by more complex statements

such as:
[rdf:type owl:Restriction ;

 owl:onProperty geo-ont:featureCode ;

 owl:hasValue geo-ont:A.PCL]

 rdfs:subClassOf pext:Country .

Some of these compound statements require

adding new individuals. In such cases, we use the

OWLIM inference rules to create the necessary

additions. Here is an example:
//dbp-ont:PrimeMinister rdfs:subPropertyOf

// [ptop:hasPosition [pupp:hasTitle]].

 Id:PM

 p <rdf:type> <dbp-ont:PrimeMinister>

 p <ptop:hasPosition> j

 j <pext:hasTitle> <pext:PrimeMinister

Here, the inference rule is necessary because

the conceptualizations in the DBPedia ontology

and in the PROTON ontology are different. In

DBPedia, Prime Minister belongs to a class of

politicians, which is a class of person, while in

PROTON, Prime Minister is a title of a job

position. Thus, in DBPedia, a given Prime

Minister is an individual whereas in PROTON he

is an individual who has a position

PrimeMinister. Since the instance data about the

position itself (j in the rule above) is missing in

the DBPedia dataset, it has to be created so that

the mapping between the two ontologies is

consistent.

3.2 Cleaning Two LOD datasets

In this section we present two of the most

popular LOD datasets - DBPedia and Freebase

with respect to discrepancies between their

conceptualization and ontology in the reference

layer.

DBPedia Ontology and Dataset. The DBPedia

dataset is created by extracting structured

information from Wikipedia and presenting it in

an RDF form (http://dbpedia.org/About). The

conceptualization of the DBPedia dataset is

based on the categories that are designed and

implemented in Wikipedia, i.e. the data in the

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

info-box section of the articles. This

conceptualization is presented as an ontology.

For our purposes, we have used version 3.8. It

contains 359 classes, 800 object properties and

975 data types. The instances in the DBPedia

dataset are classified according to the conceptual

information in its ontology and some other well-

known ontologies like: http://schema.org and

http://xmlns.com/foaf/spec/. In addition, some of

the classes and properties of these other

ontologies are used in the definition of the

DBPedia ontology. In the majority of cases, the

conceptualizations of the DBPedia and PROTON

ontologies are compatible and the mapping

between them is straightforward as discussed

earlier. However, there are still some differences

as illustrated in the following two examples:

Architect as a Person. In the DBPedia ontology,

many roles in society, mainly performed by

persons, are formalized as subclasses of the class

dbp-ont:Person.
dbp-ont:Architect

 rdf:type owl:Class;

 rdfs:subClassOf dbp-ont:Person .

The definition in PROTON is:
pext:Architect

 rdf:type pext:Profession ;

 rdfs:comment "A profession of planning,

 design and oversight of the

 construction of buildings and some

 other artefacts. (Wikipedia)"@en .

and
pext:Profession

 rdf:type owl:Class ;

 rdfs:subClassOf pext:SocialFunction .

The main difference is that in PROTON the class

pext:Architect is defined as a profession and a

social function, in order for someone (or

something) to have this profession. This means

that not only persons can perform it. While in

DBPedia the definition follows the logic that all

architects described in Wikipedia are, in fact,

persons. It is relatively easy to overcome such

conceptual differences by an appropriate

mapping between the two ontologies:
dbp-ont:Architect rdfs:subClassOf

 [rdf:type owl:Restriction ;

 owl:onProperty pext:hasProfession ;

 owl:hasValue pext:Architect] .

This statement determines that all instances of

dbp-ont:Architect correspond to the instances

of the PROTON ontology with the profession

pext:Architect.

Sport as an Activity. Another example is the

definition of Sport. DBPedia defines it as follow:
dbp-ont:Sport

37

 rdf:type owl:Class;

 rdfs:comment "A sport is commonly

 defined as an organized,

 competitive, and skillful

 physical activity."@en;

 rdfs:subClassOf dbp-ont:Activity .

and PROTON defines it as:
pext:Sport

 rdf:type owl:Class ;

 rdfs:comment "A specific type of

 sport game"@en ;

 rdfs:subClassOf pext:SocialAbstraction.

The difference is that in DBPedia, Sport is a

specific activity and its characteristics such as

game rules, number of participants, etc. are not

defined in the class dbp-ont:Sport. In

PROTON the characteristics of the sport game

are defined in the class pext:Sport as a social

abstraction. The actual realization of the

definition as a sport event is an instance of

activity. Unfortunately, any mapping between

the two ontologies cannot solve this conceptual

difference. The following mappings:
dbp-ont:Activity

 rdfs:subClassOf pext:Activity .

and
dbp-ont:Sport

 rdfs:subClassOf pext:Sport .

automatically make all instances of the class

dbp-ont:Sport in PROTON to be

simultaneously instances of the classes

ptop:Happening and ptop:Abstract, which are

mutually disjoint.

In FactForge such conceptualization differences

between the two ontologies are solved by not

loading the DBPedia ontology into the FactForge

repository. In this way, we make use of the

richness of the DBPedia instances but impose the

conceptualization of PROTON ontology over it.

Another reason for not loading the DBPedia

ontology is that the definitions in the DBPedia

ontology also contain mappings to other

ontologies. However, we believe that including

ontology statements referring to classes

(properties, etc) of other ontologies is not a good

practice. First, presenting the necessary

conceptualization requires importing the other

ontology. And second, this can introduce some

contradictions in the ontology that uses these

statements. For example, the DBPedia ontology

contains some statements from the Schema

ontology (http://schema.org). However, because

DBPedia is not an extension of the Schema

ontology, therefore it is better to store these

statements separately. If they are included in the

definitions of the DBPedia classes, this can lead

to some contradictions as illustrated in the

examples below for University and College:
dbp-ont:University

 rdf:type owl:Class;

 rdfs:subClassOf

 dbp-ont:EducationalInstitution ;

 owl:equivalentClass

 schema:CollegeOrUniversity .

and
dbp-ont:College a owl:Class;

 rdf:type owl:Class;

 rdfs:subClassOf

 dbp-ont:EducationalInstitution ;

 owl:equivalentClass

 schema:CollegeOrUniversity .

Using owl:equivalentClass makes these two

classes - dbp-ont:University and dbp-

ont:College - the same. Such equivalent

statements are difficult to be noticed in the

DBPedia ontology as it is full of them but it is

also not very easy to use DBPedia without such

statements. The instance data also contains

statements that result from inferences from the

DBPedia ontology. In order to avoid all

conceptualizations that follow from the DBPedia

ontology we have to clean the DBPedia instance

data from such inferences. Here are some

examples:

Subclass - Superclass inference. In the DBPedia

instance data, each instance of sport is classified

as sport but also as an activity. Therefore, even if

we do not load the DBPedia ontology into the

FactForge repository, this inference is present in

the instance data. Thus, the classification of the

DBPedia sport instances will also be wrong in

PROTON when mapping PROTON to DBPedia.

To clean this instance data statement we have

created a deletion statement of the following

type:
delete {?s a dbp-ont:SuperClass} where

 { ?s a dbp-ont:SubClass .

 ?s a dbp-ont:SuperCLass . }

Here is an example:
delete {?s a dbp-ont:Activity} where

 { ?s a dbp-ont:Sport .

 ?s a dbp-ont:Activity . }

In this way, if there is a statement for a subclass,

we delete all the statements for the super classes.

After that, we use the inference mechanisms of

the repository to make the inferences that follow

from the mapping to the PROTON ontology.

rdfs:domain and rdfs:range statements. In the

DBPedia instance data, some statements for

domain and range have properties connected to

instances that do not belong to the appropriate

classes. Such unclassified instances in DBPedia

38

could be wrongly classified in PROTON, based

on these domain and range statements. In order

to clean such cases we use queries of the

following type:
delete {?s dbp-ont:dbpediaProperty ?y }

where

{?s dbp-ont:dbpediaProperty ?y .

 ?y rdf:type ?c .

filter(

 ?c = dbp-ont:Class01

 || ?c = dbp-ont:Class02

 || ...

 ## List of all unappropriate classes

)

}

Here is part of an example of the property dbp-

ont:birthPlace.
delete {?s dbp-ont:birthPlace ?y } where

{?s dbp-ont:birthPlace ?y .

 ?y rdf:type ?c .

filter(?c = dbp-ont:AcademicJournal

 || ?c = dbp-ont:Activity

 || ?c = dbp-ont:AdministrativeRegion

...

)

}

Apart from the deleted statements discussed

earlier, we have deleted all instance data

described by statements using classes that are not

from the DBPedia ontology. In this way, the

DBPedia instance data has a clean interpretation

in terms of the PROTON conceptualization.

Freebase Dataset. Freebase7 is a community-

curated database of well-known people, places,

and things. In Freebase, real-world entities are

represented as topics. There are topics for movie

stars, countries, cities, etc. The information for

each topic is structured in three levels as defined

in the Freebase schema. The first layer comprises

several domains (76). Each domain is defined by

type (second layer) and each type has properties

(third layer). The types are connected via the

special relation inclusion of type. This relation

connects more specific types with more general

types: the type fb:base/litcentral/named_person

includes the type: fb:people/person. It is not

possible to interpret this relation as superclass-to-

subclass relation, because it is not strict in the

sense that each instance of the subclass inherits

the properties of the instance of the super class.

For example, the type fb:film/actor also includes

the type fb:people/person. But its definition is:

"The Film Actor type includes people (and

credited animals) who have appeared in any film

7 http://www.freebase.com/

...". Therefore, in most cases, the instances of the

type fb:film/actor are people but there are also

cases where they are not. Thus, the interpretation

of the type inclusion relation is not strict with

respect to inheritance of the properties from the

included type. In the example above, if the film

actor is a person, then he or she inherits all

properties from the type for persons. But if it is

not a person, then it does not inherit any of these

properties. Instead, it inherits properties from

some other type(s).

These peculiarities of the Freebase schema

impose some restrictions over the mapping to the

PROTON ontology. Mapping so many types and

properties requires more extensive work.

Therefore, for our purposes, we have mapped

only the types with more than 500 instances in

the Freebase dataset to the PROTON concepts.

Another criterion is that the mapping does not

produce any misclassification of some instances.

For many types the mapping is straightforward:
fb:location.location

 rdf:type owl:Class;

 rdfs:comment "The Location type is

 used for any topic with a fixed

 location..."@en ;

 rdfs:label "Location";

 rdfs:subClassOf ptop:Location .

For types representing professions and other

social roles, the mappings are similar to the

mapping used for the DBPedia ontology:
 fb:military-militarycommander

 rdfs:subClassOf

 [rdf:type owl:Restriction ;

 owl:onProperty pext:hasTitle ;

 owl:allValuesFrom

pext:Commander].

Some of the types are mediators between a

type and a grouping of several other types. This

is mainly used to represents event information.

For example, the type Website ownership

describes an event of owning a website by an

agent for some period. A website can be owned

by different agents in different periods, thus it is

important that these ‘owning’ events are

represented as different instances in the dataset.

At present, we have not yet mapped the

mediator types to PROTON. For this type of

mapping it is necessary to use an appropriate

subclass of the class ptop:Happening. For

example, the type Website ownership can be

mapped to a subclass of the class ptop:Situation,

where the start and end date of the ownership are

stated, the owner and the address of the website

are specified, etc. As this requires huge extension

of PROTON, it is not featured in the current

version.

39

In the original dataset, there are also several

errors in the instance classification. For example,

organisation and location are very often

represented by the same instance. More

specifically, the types

fb:organization.organization and

fb:location.location have 42763 instances in

common. We believe that such cases result from

the linguistic intuition of the users who created

the data in question. In many cases, the same

word denotes both the meaning of an institution

and a location. We do not consider this a good

practice for the semantic representation in LOD

and we think that it should be avoided. The

different classes (types in Freebase) have

different properties. Although the Freebase types

are not strict in inheriting properties, some types

are still not mutually compatible (intuitively).

For example, due to this misclassification, the

instance of the United States of America

(https://www.freebase.com/m/09c7w0) is not only an

instance of the types Country, Location but also

of Food. We believe that such knowledge has to

be represented in a different way.

It is important to note that correcting such

cases of instances classification to many disjoint

types (classes) is outside the scope of the current

version of FactForge. In future, we envisage to

introduce new instances for each disjoint class

and to keep relations between them where

necessary via appropriate properties. Although

we could perform such an extension of Freebase,

in our view, it is better this to be done in the

original dataset. We consider these mismatches

as a result from crowdsourcing where some of

the providers of knowledge where influenced by

the semantics of natural language.

4 Conclusion

In this paper we present some problems in

accessing LOD via a common ontology. The

main problems of using this approach with

respect to involved datasets are demonstrated via

examples from two of the most popular LOD

datasets: DBPedia and Freebase. The main

lessons learned are as follows:

1. The world can be modelled in many different

ways, which can be formally incompatible but

still understandable by human users. It is true

that the main value of a dataset is in its

usefulness to the stakeholders. However, this

is not enough in terms of the Semantic Web

where the goal is to have LOD datasets that

can be processed by machines. To achieve

this, it is necessary to apply some formal

evaluation of the represented knowledge.

2. The incompatibility can appear on different

levels: granularity of conceptualization,

representation of different kinds of knowledge

(for example, the difference between sortals

and roles), etc. Generally, the conclusion is

that if we want LOD to achieve their goals,

they should not only follow some formats but

also their conceptualizations should adhere to

certain restrictions and ensure compatibility.

3. Constructing new ontologies based on existing

ones has to incorporate the complete

semantics of the corresponding ontologies

instead of just fragments of them. Such an

approach will have an effect on the

consistency of the new ontologies and their

interoperability with the existing ones.

In our view LOD needs more requirements on

semantic level in order to be more reliable web

of semantically linked open data..

Acknowledgements

This work was partially supported by

MULTISENSOR project (FP7-610411) .

References

Linking Open Data. Retrieved from W3C Semantic

Web Education and outreach community

project: http://linkeddata.org/. (2014).

Brickley D., & Guha R.V. RDF Vocabulary

Description Language 1.0: RDF Schema. W3C

Recommendation 10 February 2004.

http://www.w3.org/TR/rdf-schema/. (2004).

State of the LOD Cloud. Retrieved from

http://www4.wiwiss.fu-berlin.de/lodcloud/state.

(2011).

Jain, P., Hitzler, P., Sheth, A. P., Verma, K., & Yeh,

P. Z. Ontology Alignment for Linked Open

Data. In Patel-Schneider, Y. P. P. (Ed.),

Proceedings of the 9th International Semantic

Web Conference. Shanghai. (2010).

Studer R, Benjamin V. R., & Fensel D. Knowledge

Engineering: Principles and Methods. IEEE

Transactions on Data and Knowledge

Engineering , 25 ((1-2)), pp. 161-199. (1998).

Guarino, N., & Welty, C. Evaluating Ontological

Decisions with OntoClean. Communications of

the ACM, 45(2) , pp. 61-65. (2002).

Berners-Lee, T. Design Issues: Linked Data.

Retrieved from

http://www.w3.org/DesignIssues/LinkedData.ht

ml. (2006).

Heath, T., & Bizer, C. Linked Data: Evolving the

Web into a Global Data Space. (J. H. (eds.), Ed.)

Synthesis Lectures on the Semantic Web:

Theory and Technology (1:1), 1-136. (2011).

40

Kiryakov, A., Ognyanoff, D., Velkov, R., Tashev, Z.,

& Peikov, I. LDSR: Materialized Reason-able

View to the Web of Linked Data. In R. H. Patel-

Schneider (Ed.), Proceedings of OWLED 2009 .

Chantilly, USA. (2009).

41

