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Abstract

We develop a supervised ranking model to re-
rank candidates generated from an SMT-based
grammatical error correction (GEC) system.
A range of novel features with respect to GEC
are investigated and implemented in our re-
ranker. We train a rank preference SVM
model and demonstrate that this outperforms
both Minimum Bayes-Risk and Multi-Engine
Machine Translation based re-ranking for the
GEC task. Our best system yields a significant
improvement in I-measure when testing on the
publicly available FCE test set (from 2.87%
to 9.78%). It also achieves an F0.5 score of
38.08% on the CoNLL-2014 shared task test
set, which is higher than the best original re-
sult. The oracle score (upper bound) for the
re-ranker achieves over 40% I-measure perfor-
mance, demonstrating that there is consider-
able room for improvement in the re-ranking
component developed here, such as incorpo-
rating features able to capture long-distance
dependencies.

1 Introduction

Grammatical error correction (GEC) has attracted
considerable interest in recent years. Unlike clas-
sifiers built for specific error types (e.g. determiner
or preposition errors), statistical machine transla-
tion (SMT) systems are trained to deal with all error
types simultaneously. An SMT system thus learns to
translate incorrect English into correct English using
a parallel corpus of corrected sentences. The SMT
framework has been successfully used for GEC, as
demonstrated by the top-performing systems in the
CoNLL-2014 shared task (Ng et al., 2014).

However, the best candidate produced by an SMT
system is not always the best correction. An exam-
ple is given in Table 1.

Since SMT was not originally designed for GEC,
many standard features do not perform well on this
task. It is necessary to add new local and global fea-
tures to help the decoder distinguish good from bad
corrections. Felice et al. (2014) used Levenshtein
distance to limit the changes made by their SMT sys-
tem, given that most words translate into themselves
and errors are often similar to their correct forms.
Junczys-Dowmunt and Grundkiewicz (2014) also
augmented their SMT system with Levenshtein dis-
tance and other sparse features that were extracted
from edit operations.

However, the integration of additional mod-
els/features into the decoding process may affect the
dynamic programming algorithm used in SMT, be-
cause it does not support some complex features,
such as those computed from an n-best list. An al-
ternative to performing integrated decoding is to use
additional information to re-rank an SMT decoder’s
output. The aim of n-best list re-ranking is to re-rank
the translation candidates produced by the SMT sys-
tem using a rich set of features that are not used by
the SMT decoder, so that better candidates can be
selected as ‘optimal’ translations. This has several
advantages: 1) it allows the introduction of new fea-
tures that are tailored for GEC; 2) unlike in SMT,
we can use various types of features without wor-
rying about fine-grained smoothing issues and it is
easier to use global features; 3) re-ranking is easy to
implement, and the existing decoder does not need
to be modified; and 4) the decoding process in SMT
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Source There are some informations you have asked me about.
Reference There is some information you have asked me about.
10 best list

1st: There are some information you have asked me about.
2nd: There is some information you have asked me about.
3rd: There are some information you asked me about.
4th: There are some information you have asked me.
5th: There are some information you have asked me for.
6th: There are some information you have asked me about it.
7th: There is some information you asked me about.
8th: There are some information you asked me for.
9th: There were some information you have asked me about.

10th: There is some information you have asked me.

Table 1: In this example, there are two errors in the sentence (marked in bold): an agreement error (are→ is) and a mass noun error

(informations → information). The best output is the one with highest probability, which only corrects the mass noun error, but

misses the agreement error. However, the 2nd-ranked candidate corrects both errors and matches the reference (marked in italics).

The source sentence and error annotation are taken from the FCE dataset (Yannakoudakis et al., 2011), and the 10-best list is from

an SMT system trained on the whole CLC (Nicholls, 2003). More details about the datasets and system are presented in Section 3.

only needs to be performed once, which allows for
fast experimentation.

Most previous work on GEC has used evaluation
methods based on precision (P), recall (R), and F-
score (e.g. the CoNLL 2013 and 2014 shared tasks).
However, they do not provide an indicator of im-
provement on the original text so there is no way to
compare GEC systems with a ‘do-nothing’ baseline.
Since the aim of GEC is to improve text quality, we
use the Improvement (I) score calculated by the I-
measure (Felice and Briscoe, 2015), which tells us
whether a system improves the input.

The main contributions of our work are as fol-
lows. First, to the best of our knowledge, we are
the first to use a supervised discriminative re-ranking
model in SMT for GEC, showing that n-best list
re-ranking can be used to improve sentence quality.
Second, we propose and investigate a range of easily
computed features for GEC re-ranking. Finally, we
report results on two well-known publicly available
test sets that can be used for cross-system compar-
isons.

2 Approach

Our re-ranking approach is defined as follows:

1. an SMT system is first used to generate an n-
best list of candidates for each input sentence;

2. features that are potentially useful to discrimi-
nate between good and bad corrections are ex-
tracted from the n-best list;

3. these features are then used to determine a new
ranking for the n-best list;

4. the new highest-ranked candidate is finally out-
put.

2.1 SMT for grammatical error correction

Following previous work (e.g. Brockett et al. (2006),
Yuan and Felice (2013), Junczys-Dowmunt and
Grundkiewicz (2014)), we approach GEC as a trans-
lation problem from incorrect into correct English.

Our training data comprises parallel sentences
extracted from the Cambridge Learner Corpus
(CLC) (Nicholls, 2003). Two automatic alignment
tools are used for word alignment: GIZA++ (Och
and Ney, 2003) and Pialign (Neubig et al., 2011).
GIZA++ is an implementation of IBM Models 1-
5 (Brown et al., 1993) and a Hidden-Markov align-
ment model (HMM) (Vogel et al., 1996). Word
alignments learnt by GIZA++ are used to extract
phrase-to-phrase translations using heuristics. Un-
like GIZA++, Pialign creates a phrase table directly
from model probabilities. In addition to default fea-
tures, we add character-level Levenshtein distance
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to each mapping in the phrase table as proposed by
Felice et al. (2014).

Decoding is performed using Moses (Koehn et
al., 2007). The language models used during de-
coding are built from the corrected sentences in
the learner corpus, to make sure that the final sys-
tem outputs fluent English sentences. The IRSTLM
Toolkit (Federico et al., 2008) is used to build n-
gram language models (up to 5-grams) with modi-
fied Kneser-Ney smoothing (Kneser and Ney, 1995).
Previous work has shown that adding bigger lan-
guage models based on larger corpora improves
performance (Yuan and Felice, 2013; Junczys-
Dowmunt and Grundkiewicz, 2014). The use of big-
ger language models will be investigated at the re-
ranking stage, as it allows us to compute a richer set
of features that would otherwise be hard to integrate
into the decoding stage.

2.2 Ranking SVM

The SMT system is not perfect, and candidates with
the highest probability from the SMT system do not
always constitute the best correction. An n-best list
re-ranker is trained to re-rank these candidates in or-
der to find better corrections. We treat n-best list
re-ranking as a discriminative ranking problem. Un-
like standard SMT, the source input sentence is also
added to the candidate pool if it is not in the n-best
list, since in many cases the source sentence has no
error and should be translated as itself.

We use rank preference SVMs (Joachims, 2002)
in the SVMrank package (Joachims, 2006). This
model learns a ranking function from preference
training examples and then assigns a score to each
test example, from which a global ordering is de-
rived. The default linear kernel is used due to train-
ing and test time costs.

Rank preference SVMs work as follows. Suppose
that we are given a set of ranked instances R con-
taining training samples xi and their target rankings
ri:

R = {(x1, r1), (x2, r2), ..., (xl, rl)} (1)

such that xi � xj when ri < rj , where� denotes
a preference relationship. A set of ranking functions
f ∈ F is defined, where each f determines the pref-
erence relations between instances:

xi � xj ⇔ f(xi) > f(xj) (2)

The aim is to find the best function f that min-
imises a given loss function ξ with respect to the
given ranked instances. Instead of using the R set
directly, a set of pair-wise difference vectors is cre-
ated and used to train a model. For linear ranking
models, this is equivalent to finding the weight vec-
tor w that maximises the number of correctly ranked
pairs:

∀(xi � xj) : w(xi − xj) > 0 (3)

which is, in turn, equivalent to solving the follow-
ing optimisation problem:

min
w

1
2
wTw + C

∑
ξij (4)

subject to

∀(xi � xj) : w(xi − xj) ≥ 1− ξij (5)

where ξij ≥ 0 are non-negative slack variables
that measure the extent of misclassification.

2.3 Feature space
New features are introduced to identify better cor-
rections in the n-best produced by the SMT decoder.
We use general features that work for all types of
errors, leaving L2-specific features for future work.
These are described briefly below.

A) SMT feature set: Reuses information ex-
tracted from the SMT system. As the SMT frame-
work has been shown to produce good results for
GEC, we reuse these pre-defined SMT features.
This feature set includes:

Decoder’s scores: Includes unweighted trans-
lation model scores, reordering model scores, lan-
guage model scores and word penalty scores. We
use unweighted scores, as the weights for each score
will be reassigned during training.

N-best list ranking information: Encodes the
original ranking information provided by the SMT
decoder. Both linear and non-linear transformations
are used.

Note that both the decoder’s features and the n-
best list ranking features are extracted from the SMT
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system output. If the source sentence is not in the n-
best list, it will not have these two kinds of features
and zeros will be used.

B) Language model feature set: Raw candidates
from an SMT system can include many malformed
sentences so we introduce language model (LM)
features and adaptive language model (ALM) fea-
tures in an attempt to identify and discard them.

LM: Language models are widely used in GEC,
especially to rank correction suggestions proposed
by other models. Ideally, correct word sequences
will get high probabilities, while incorrect or un-
seen ones will get low probabilities. We use Mi-
crosoft’s Web N-gram Services, which provide ac-
cess to large smoothed n-gram LMs built from web
documents (Gao et al., 2010). All our experiments
are based on the 5-gram ‘bing-body:apr10’ model.
We also build several n-gram LMs from native and
learner corpora, including the CLC, the British Na-
tional Corpus (BNC) and ukWaC (Ferraresi et al.,
2008). The LM feature set contains unnormalised
sentence scores, normalised scores using arithmetic
mean and geometric mean, and the minimum and
maximum n-gram probability scores.

ALM: Adaptive LM scores are calculated from
the n-best list’s n-gram probabilities. N-gram counts
are collected using the entries in the n-best list for
each source sentence. N-grams repeated more of-
ten than others in the n-best list get higher scores,
thus ameliorating incorrect lexical choices and word
order. The n-gram probability for a target word ei
given its history ei−1

i−n+1 is defined as:

pn−best(ei|ei−1
i−n+1) =

countn−best(ei, ei−1
i−n+1)

countn−best(ei−1
i−n+1)

(6)
The sentence score for the sth candidateHs is cal-

culated as:

score(Hs) = log(
∏

pn−best(ei|ei−1
i−n+1)) (7)

The sentence score is then normalised by sentence
length to get an average word log probability, mak-
ing it comparable for candidates of different lengths.
In our re-ranking system, different values of n are

used, from 2 to 6. This feature is taken from Hilde-
brand and Vogel (2008).

C) Statistical word lexicon feature set: We use
the word lexicon learnt by the IBM Model 4, which
contains translation probabilities for word-to-word
mappings. The statistical word translation lexicon is
used to calculate the translation probability Plex(e)
for each word e in the target sentence. Plex(e) is
the sum of all translation probabilities of e for each
word fj in the source sentence fJ

1 . Specifically, this
can be defined as:

Plex(e|fJ
1 ) =

1
J + 1

J∑
j=0

p(e|fj) (8)

where fJ
1 is the source sentence and J is the

source sentence length. p(e|fj) is the word-to-word
translation probability of the target word e from one
source word fj .

As noted by Ueffing and Ney (2007), the sum in
Equation (8) is dominated by the maximum lexicon
probability, which we also use as an additional fea-
ture:

Plex−max(e|fJ
1 ) = max

j=0,...,J
p(e|fj) (9)

For both lexicon scores, we sum over all words
ei in the target sentence and normalise by sentence
length to get sentence translation scores. Lexicon
scores are calculated in both directions. This feature
is also taken from Hildebrand and Vogel (2008).

D) Length feature set: These features are used to
make sure that the final system does not make un-
necessary deletions or insertions. This set contains
four length ratios:

score(Hs, E) =
N(Hs)
N(E)

(10)

score(Hs, H1) =
N(Hs)
N(H1)

(11)

score(Hs, Hmax) =
N(Hs)
N(Hmax)

(12)

score(Hs, Hmin) =
N(Hs)
N(Hmin)

(13)
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whereHs is the sth candidate, E is the source (er-
roneous) sentence, H1 is the 1-best candidate (the
candidate ranked 1st by the SMT system), N(·) is
the sentence’s length, N(Hmax) is the maximum
candidate length in the n-best list for that source
sentence and N(Hmin) is the minimum candidate
length.

3 Experiments

3.1 Dataset

We use the publicly available FCE dataset (Yan-
nakoudakis et al., 2011), which is a part of the CLC.
The FCE dataset is a set of 1,244 scripts written
by learners of English taking the First Certificate
in English (FCE) examination around the world be-
tween 2000 and 2001. The texts have been man-
ually error-annotated with a taxonomy of approxi-
mately 80 error types (Nicholls, 2003). The FCE
dataset covers a wide variety of L1s and was used
in the HOO-2012 error correction shared task (Dale
et al., 2012). Compared to the National Univer-
sity of Singapore Corpus of Learner English (NU-
CLE) (Dahlmeier et al., 2013) used in the CoNLL
2013 and 2014 shared tasks, which contains essays
written by students at the National University of Sin-
gapore, the FCE dataset is a more representative test
set of learner writing, which is why we use it for our
experiments. The performance of our model on the
CoNLL-2014 shared task test data is also presented
in Section 3.7.

Following Yannakoudakis et al. (2011), we split
the publicly available FCE dataset into training and
test sets: we use the 1,141 scripts from the year
2000 and the 6 validation scripts for training, and
the 97 scripts from the year 2001 for testing. The
FCE training set contains about 30,995 pairs of par-
allel sentences (approx. 496,567 tokens on the tar-
get side), and the test set contains about 2,691 pairs
of parallel sentences (approx. 41,986 tokens on the
target side). Both FCE and NUCLE are too small
to build good SMT systems, considering that previ-
ous work has shown that training on small datasets
does not work well for SMT-based GEC (Yuan
and Felice, 2013; Junczys-Dowmunt and Grund-
kiewicz, 2014). To overcome this problem, Junczys-
Dowmunt and Grundkiewicz (2014) introduced ex-
amples collected from the language exchange social

networking website Lang-8, and were able to im-
prove system performance by 6 F-score points. As
noticed by them, Lang-8 data may be too noisy and
error-prone, so we decided to add examples from
the fully annotated learner corpus CLC to our train-
ing set (approx. 1,965,727 pairs of parallel sentences
and 29,219,128 tokens on the target side).

Segmentation and tokenisation are performed us-
ing RASP (Briscoe et al., 2006), which is expected
to perform better on learner data than a system de-
veloped exclusively from high quality copy-edited
text such as the Wall Street Journal.

3.2 Evaluation

System performance is evaluated using the I-
measure proposed by Felice and Briscoe (2015),
which is designed to address problems with previous
evaluation methods and reflect any improvement on
the original sentence after applying a system’s cor-
rections. An I score is computed by comparing sys-
tem performance (WAccsys) with that of a baseline
that leaves the original text uncorrected (WAccbase):

I =



bWAccsysc if WAccsys = WAccbase

WAccsys −WAccbase

1−WAccbase
if WAccsys > WAccbase

WAccsys
WAccbase

− 1 otherwise

(14)
Values of I lie in the [−1, 1] interval. Positive val-

ues indicate improvement, while negative values in-
dicate degradation. A score of 0 indicates no im-
provement (i.e. baseline performance), 1 indicates
100% correct text and -1 indicates 100% incorrect
text.

In order to compute the I score, system perfor-
mance is first evaluated in terms of weighted accu-
racy (WAcc), based on a token-level alignment be-
tween a source sentence, a system’s candidate, and
a gold-standard reference:1

1TP: true positives, TN: true negatives, FP: false positives,
FN: false negatives, FPN: both a FP and a FN (see Felice and
Briscoe (2015))
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WAcc =
w · TP + TN

w · (TP + FP) + TN + FN− (w + 1) · FPN
2

(15)
In Section 3.3 and 3.7, we also report results us-

ing another two evaluation metrics for comparison:
F0.5 from M2 Scorer (Dahlmeier and Ng, 2012b)
and GLEU (Napoles et al., 2015). The M2 Scorer
was the official scorer in the CoNLL 2013 and 2014
shared tasks, with the latter using F0.5 as the sys-
tem ranking metric. GLEU is a simple variant of
BLEU (Papineni et al., 2002), which shows better
correlation with human judgments on the CoNLL-
2014 shared task test set.

3.3 SMT system
We train several SMT systems and select the best
one for our re-ranking experiments. These systems
use different configurations, defined as follows:

• GIZA++: uses GIZA++ for word alignment;

• Pialign: uses Pialign to learn a phrase table;

• FCE: uses the publicly available FCE as train-
ing data;

• + LD: limits edit distance by adding the
character-level Levenshtein distance as a new
feature;

• + CLC: incorporates additional training exam-
ples extracted from the CLC.

Evaluation results using the aforementioned met-
rics are presented in Table 2. As we mentioned ear-
lier, a baseline system which makes no corrections
gets zero F score. We can see that not all the systems
make the source text better. Pialign outperforms
GIZA++. Adding more learner examples improves
system performance. The Levenshtein distance fea-
ture further improves performance. The best system
in terms of the I-measure is the one that has been
trained on the whole CLC, aligned with Pialign, and
includes edit distance as an additional feature (Pi-
align + FCE + CLC + LD). The positive I score
of 2.87 shows a real improvement in sentence qual-
ity. This system is also the best system in terms of
GLEU and F0.5 so we use the n-best list from this
system to perform re-ranking.

3.4 SVM re-ranker

The input to the re-ranking model is the n-best list
output from an SMT system. The original source
sentence is used to collect a 10-best list of candidates
generated by the SMT decoder, which is then used
to build a supervised re-ranking model. For training,
we use per-sentence I-measure values as gold labels.

The effectiveness of our re-ranker is proved by the
results: performing a 10-best list re-ranking yields a
statistically significant improvement in performance
over the top-ranked output from the best existing
SMT system.2 The best re-ranking model is built
using all features, achieving I = 9.78 (Table 3 #1).
In order to measure the contribution of each feature
set to the overall improvement in sentence quality, a
number of ablation tests are performed, where new
models are built by removing one feature type at a
time. In Table 3, SMT best is the best SMT sys-
tem output without re-ranking. FullFeat combines
all feature types described in Section 2.3. The rest
are FullFeat minus the indicated feature type.

The ablation tests tell us that all the features in
the FullFeat set have positive effects on overall per-
formance. Among them, the SMT decoder’s scores
are the most effective, as their absence is responsible
for a 6.58 decrease in I-measure (Table 3 #2). The
removal of the word lexicon features also acounts
for a 2.13 decrease (#6), followed by SMT n-best
list ranking information (1.46 #3), ALM (1.43 #5),
length features (0.75 #7) and the LM features (0.22
#4). In order to test the performance of the SMT
decoder’s scores on their own, we built a new re-
ranking model using only these features, which we
report in Table 3 #8. We can see that using only
the SMT decoder’s scores yields worse performance
than no re-ranking, suggesting that the existing fea-
tures used by the SMT decoder are not optimal when
used outside the SMT ecosystem. We hypothesise
that this might be caused by the lack of scores for
the source sentences that are not included in the n-
best list of the original SMT system.

Looking at the re-ranker’s output reveals that
there are some L2 learners errors which are missed
by the SMT system but are captured by the re-ranker
- see Table 4.

2We perform two-tailed paired T-tests, where p < 0.05.
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Align Setting GLEU M2 I-measure
P R F0.5 WAcc I

Baseline 60.39 100 0 0 86.83 0
GIZA++ FCE 61.42 36.66 16.97 29.76 83.24 -4.14

+ LD 61.64 37.70 16.40 29.92 83.64 -3.68
+ CLC 67.70 48.67 37.64 45.97 83.94 -3.33
+ CLC + LD 67.98 49.87 37.16 46.67 84.42 -2.78

Pialign FCE 62.22 43.13 11.34 27.64 84.94 -2.17
+ LD 62.19 43.07 11.17 27.41 85.00 -2.11
+ CLC 70.07 62.37 32.19 52.52 87.01 1.38
+ CLC + LD 70.15 63.27 31.95 52.90 87.21 2.87

Table 2: SMT system performance on the FCE test set (in percentages). The best results are marked in bold.

# Feature WAcc I
0 SMT best 87.21 2.87
1 FullFeat 88.12 9.78
2 - SMT (decoder) 87.25 3.20
3 - SMT (rank) 87.93 8.32
4 - LM 88.09 9.56
5 - ALM 87.93 8.35
6 - word lexicon 87.84 7.65
7 - length 88.02 9.03
8 SMT (decoder) 87.15 2.40

Table 3: Results of 10-best list re-ranking on the FCE test set

(in percentages). The best results are marked in bold.

3.5 Oracle score

In order to estimate a realistic upper bound on the
task, we calculate an oracle score from the same 10-
best list generated by our best SMT model. The ora-
cle set is created by selecting the candidate which
has the highest sentence-level weighted accuracy
(WAcc) score for each source sentence in the test set.

Table 5 #0-2 compares the results of standard
SMT (i.e. the best candidate according to the SMT
model), the SVM re-ranker (the best re-ranking
model from Section 3.4) and the approximated or-
acle. The oracle score is about 41 points higher than
the standard SMT score in terms of I, and about 5
points higher in terms of WAcc, suggesting that there
are alternative candidates in the 10-best list that are
not chosen by the SMT model. Our re-ranker im-
proves the I score from 2.87 to 9.78, and the WAcc
score from 87.21 to 88.12, a significant improve-
ment over the standard SMT model. However, there

is still much room for improvement.
The oracle score tells us that, under the most

favourable conditions, our models could only im-
prove the original text by 44.35% at most. This also
reveals that in many cases, the correct translation is
not in the 10-best list. Therefore, it would be im-
possible to retrieve the correct translation even if the
re-ranking model was perfect.

3.6 Benchmark results

We also compare our ranking model with two other
methods: Minimum Bayes-Risk (MBR) re-ranking
and Multi-Engine Machine Translation (MEMT)
candidate combination.

MBR was first proposed by Kumar and
Byrne (2004) to minimise the expected loss of
translation errors under loss functions that measure
translation performance. Instead of using the
model’s best output, the one that is most similar
to the most likely translations is selected. We use
the same n-best list as the candidate set and the
likely translation set. MBR re-ranking can then be
considered as selecting a consensus candidate: the
least ‘risky’ candidate which is closest on average
to all the likely candidates.

The MEMT system combination technique was
first proposed by Heafield and Lavie (2010) and
was successfully applied to GEC by Susanto et
al. (2014). A confusion network is created by align-
ing the candidates, on which a beam search is later
performed to find the best candidate.

The 10-best list from the best SMT system in Ta-
ble 2 is used for re-ranking and results of using MBR
re-ranking and MEMT candidate combination are
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System Example sentences
Source I meet a lot of people on internet and it really interest me.
Reference I meet a lot of people on the Internet and it really interests me.
SMT best I meet a lot of people on the internet and it really interest me.
SVM re-ranker I meet a lot of people on the Internet and it really interests me.
Source And they effect everyone’s life directly or indirectly.
Reference And they affect everyone’s life directly or indirectly.
SMT best And they effect everyone’s life directly or indirectly.
SVM re-ranker And they affect everyone’s life directly or indirectly.
Source Of course I will give you some more detail about the student conference.
Reference Of course I will give you some more details about the student conference.
SMT best Of course I will give you some more detail about the student conference.
SVM re-ranker Of course I will give you some more details about the student conference.

Table 4: Example output from SMT best and SVM re-ranker.

# Model WAcc I
0 SMT best 87.21 2.87
1 SVM re-ranker 88.12 9.78
2 Oracle 92.67 44.35
3 MBR 87.32 3.71
4 MEMT 87.75 5.34

Table 5: Performance of SMT best, SVM re-ranker, oracle

best, MBR re-ranking and MEMT candidate combination (in

percentages).

presented in Table 5 #3-4. SVM re-ranker is our best
ranking model (#1), MBR is the MBR re-ranking
(#3) and MEMT is the MEMT candidate combina-
tion (#4). We can see that our supervised ranking
model achieves the best I score, followed by MEMT
candidate combination and MBR re-ranking. Our
model clearly outperforms the other two methods,
showing its effectiveness in re-ranking candidates
for GEC.

3.7 CoNLL-2014 shared task

The CoNLL-2014 shared task on grammatical error
correction required participating systems to correct
all errors present in learner English text. The official
training and test data comes from the NUCLE. F0.5
was adopted as the evaluation metric, as reported by
the M2 Scorer. In order to test how well our re-
ranking model generalises, we apply our best model
trained on the CLC to the CoNLL-2014 shared task
test data. We re-rank the 10-best correction can-
didates from the winning team in the shared task

(CAMB, Felice et al. (2014)), which were kindly
provided to us for these experiments. After the
shared task, there has been an on-going discussion
about how to best evaluate GEC systems, and dif-
ferent metrics have been proposed (Dahlmeier and
Ng, 2012b; Felice and Briscoe, 2015; Bryant and
Ng, 2015; Napoles et al., 2015; Grundkiewicz et
al., 2015). We evaluated our re-ranker using GLEU,
the M2 Scorer and the I-measure. Our proposed re-
ranking model (SVM re-ranker) is compared with
five other systems: the baseline, the top three sys-
tems in the shared task and a GEC system by Su-
santo et al. (2014), which combined the output
of two classification-based systems and two SMT-
based systems, and achieved a state-of-the-art F0.5
score of 39.39% - see Table 6. We can see that our
re-ranker outperforms the top three systems on all
evaluation metrics. It also achieves a comparable
F0.5 score to the system of Susanto et al. (2014) even
though our re-ranker is not trained on the NUCLE
data or optimised for F0.5. This result shows that our
model generalises well to other datasets. We expect
these results might be further improved by retokenis-
ing the test data to be consistent with the tokenisa-
tion of the CLC.3

4 Related work

The aim of GEC for language learners is to correct
errors in non-native text. Brockett et al. (2006) first

3The NUCLE data was preprocessed using the NLTK
toolkit, whereas the CLC was tokenised with RASP.
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System GLEU F0.5 I
Baseline 64.19 0 0
CAMB + SVM re-ranker 65.68 38.08 -1.71
Susanto et al. (2014) n/a 39.39 n/a
Top 3 systems in CoNLL-2014
CAMB (Felice et al., 2014) 64.32 37.33 -5.58
CUUI (Rozovskaya et al., 2014) 64.64 36.79 -3.91
AMU (Junczys-Dowmunt and
Grundkiewicz, 2014)

64.56 35.01 -3.31

Table 6: System performance on the CoNLL-2014 test set with-

out alternative answers (in percentages).

proposed the use of a noisy channel SMT model for
correcting a set of 14 countable/uncountable nouns
which are often confusing for learners. Dahlmeier
and Ng (2012a) developed a beam-search decoder
to iteratively generate candidates and score them us-
ing individual classifiers and a general LM. Their
decoder focused on five types of errors: spelling, ar-
ticles, prepositions, punctuation insertion, and noun
number. Three classifiers were used to capture
three of the common error types: article, prepo-
sition and noun number. Yuan and Felice (2013)
trained phrase-based and POS-factored SMT sys-
tems to correct 5 error types using learner and ar-
tificial data. Later, researchers realised the need for
new features in SMT for GEC. Felice et al. (2014)
and Junczys-Dowmunt and Grundkiewicz (2014) in-
troduced Levenshtein distance and sparse features
to their SMT systems, and reported better perfor-
mance. In addition, Felice et al. (2014) used a LM
to re-rank the 10-best candidates after they noticed
that better corrections were in the n-best list. Simi-
larly, for Chinese GEC, Zhao et al. (2015) confirmed
that their system included correct predictions in its
10-best list not selected during decoding, so a re-
ranking of the n-best list was clearly needed.

Re-ranking has been widely used in many natural
language processing tasks such as parsing, tagging
and sentence boundary detection (Collins and Duffy,
2002; Collins and Koo, 2005; Roark et al., 2006;
Huang et al., 2007). Various machine learning algo-
rithms have been adapted to these re-ranking tasks,
including boosting, perceptrons and SVMs.

In machine translation, generative models have
been widely used. Over the last decade, re-ranking
techniques have shown significant improvement.
Discriminative re-ranking (Shen et al., 2004), one of

the best-performing strategies, used two perceptron-
like re-ranking algorithms that improved translation
quality over a baseline system when evaluating with
BLEU. Goh et al. (2010) employed an online train-
ing algorithm for SVM-based structured prediction.
Various global features were investigated for SMT
re-ranking, such as the decoder’s scores, source and
target sentences, alignments and POS tags, sen-
tence type probabilities, posterior probabilities and
back translation features. More recently, Farzi and
Faili (2015) proposed a re-ranking system based on
swarm algorithms.

5 Conclusions and future work

We have investigated n-best list re-ranking for SMT-
based GEC. We have shown that n-best list re-
ranking can be performed to improve correction
quality. A supervised machine learning model has
proved to be effective and to generalise well. Our
best re-ranking model achieves an I score of 9.78%
on the publicly available FCE test set, compared to
a 2.87% score for our best SMT system without
re-ranking. When testing on the official CoNLL-
2014 test set without alternative answers, our model
achieves an F0.5 score of 38.08%, an I score of -
1.71%, and a GLEU score of 65.68%, outperform-
ing the top three teams on all metrics.

In future work, we would like to explore more
discriminative features. Syntactic features may pro-
vide useful information to correct potentially long-
distance errors, such as those involving subject-verb
agreement. Features that can capture the seman-
tic similarity between the source and the target sen-
tences are also needed, as it is important to retain
the meaning of the source sentence after correction.
Neural language models and neural machine trans-
lation models might also be useful for GEC. It is
worth trying GEC re-ranking jointly for larger con-
text as corrections for some errors may require a
signal outside the sentence boundaries, for example
by adding new features computed from surrounding
sentences. The n-best list size is an important pa-
rameter in re-ranking. We leave its optimisation to
future research, but our upper bound for re-ranking
the 10-best list of just over 40% suggests further im-
provements may be possible.
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